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A NEW MIN-CUT MAX-FLOW RATIO FOR
MULTICOMMODITY FLOWS∗

OKTAY GÜNLÜK†

Abstract. In this paper we present a new bound on the min-cut max-flow ratio for multicom-
modity flow problems with specified demands. For multicommodity flows, this is a generalization of
the well-known relationship between the capacity of a minimum cut and the value of the maximum
flow of a single commodity flow problem. For multicommodity flows, capacity of a cut is scaled by the
demand that has to cross the cut to obtain the numerator of this ratio. In the denominator, the max-
imum concurrent flow value is used. Currently, the best known bound for this ratio is proportional
to log(k), where k is the number of origin-destination pairs with positive demand. Our new bound
is proportional to log(k∗), where k∗ is the cardinality of the minimum cardinality vertex cover of the
demand graph. To obtain this bound, we start with a so-called aggregated commodity formulation
of the maximum concurrent flow problem with k∗ commodities. We also show a similar bound for
the maximum multicommodity flow problem. The new bound is proportional to min{log(k∗), k∗∗},
where k∗∗ denotes the size of the minimum cardinality complete bipartite subgraph cover of the
demand graph.
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1. Introduction. In this paper we study multicommodity flow problems and
present new bounds on the associated min-cut max-flow ratio. Starting with the
pioneering work of Leighton and Rao [13] there has been ongoing research in the area
of “approximate min-cut max-flow theorems” for multicommodity flows. We present a
summary of previous work later in section 1.3. We next state the well-known min-cut
max-flow theorem and present an interpretation of it for flow problems with specified
flow requirements. We then clarify what is meant by “minimum cut” and “maximum
flow” for multicommodity flow problems.

Throughout the paper, we assume that the input graph is connected and has
positive capacity on all edges.

1.1. Single commodity flows. Given an undirected graph G = (V,E), edge
capacities ce for e ∈ E, and two special nodes s, v ∈ V , the well-known min-cut
max-flow theorem [6] states that the value of the maximum flow from the source node
s to the sink node v is equal to the capacity of the minimum cut:

min
S⊂V :s∈S,v �∈S

{ ∑
e∈δ(S)

ce

}
,

where δ(S) = {e ∈ E : |e∩S| = 1}. Let t ∈ R+ be a specified flow requirement; then
the min-cut max-flow theorem implies that t units of flow can be routed from s to v
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if and only if the minimum cut-capacity to cut-load ratio ρ∗, where

ρ∗ = min
S⊂V :s∈S,v �∈S

{∑
e∈δ(S)

ce

t

}

is at least 1.
We generalize this result to flow requirements with a single common source node

and several sink nodes as follows: Given a source node s and a collection of sink nodes
vq ∈ V \ {s} for q ∈ Q, it is possible to simultaneously route tq ∈ R+ units of flow
from s to vq for all q ∈ Q if and only if ρ∗ ≥ 1, where

ρ∗ = min
S⊂V :s∈S

{ ∑
e∈δ(S)

ce∑
q∈Q : vq �∈S tq

}
.

This observation is the main motivation behind our study, as it shows that a
min-cut max-flow relationship holds tight for network flow problems (with specified
flow requirements) as long as the sink nodes share a common source node. Note that,
since G is undirected, the min-cut max-flow relationship also holds tight when there
is a single sink node and multiple source nodes.

1.2. Multicommodity flows. A natural extension of this observation is to con-
sider multicommodity flows, where a collection of pairs of vertices {sq, vq}, q ∈ Q,
together with a flow requirement tq for each pair is provided. Let the minimum
cut-capacity to cut-load ratio for multicommodity flows be similarly defined as

ρ∗ = min
S⊂V

{ ∑
e∈δ(S)

ce∑
q∈Q:|S∩{sq,vq}|=1 tq

}
.

In the remainder of the paper we refer to ρ∗ as the minimum cut ratio. Clearly,
it is possible to simultaneously route tq units of flow from sq to vq for all q ∈ Q, only
if ρ∗ ≥ 1. But the converse is not true [16], [18], and a simple counterexample is the
complete bipartite graph K2,3 with unit capacity edges and unit flow requirements
between every pair of nodes that are not connected by an edge.

For multicommodity flows, metric inequalities provide the necessary and sufficient
conditions for feasibility (see [9] and [19]). More precisely, it is possible to simulta-
neously route tq units of flow from sq to vq for all q ∈ Q, if and only if the edge
capacities satisfy ∑

e∈E

wece ≥
∑
q∈Q

dist(sq, vq)tq

for all w ≥ 0, where dist(u, v) denotes the shortest path distance from u to v using w
as edge weights. The set of all important edge weights form a well-defined polyhedral
cone. Notice that the above example with K2,3 does not satisfy the metric inequality
“generated” by we = 1 for all e ∈ E. It is easy to show that the condition ρ∗ ≥ 1 is
implied by metric inequalities.

The maximum concurrent flow problem is the optimization version of the multi-
commodity flow feasibility problem (see [22] and [16]). For a given collection of flow
requirements and edge capacities, the objective here is to find the maximum value
of κ such that κ tq units of flow can be simultaneously routed from sq to vq for all
q ∈ Q. Note that κ can be greater than one.
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For a given instance of the multicommodity flow problem, let κ∗ denote the value
of the maximum concurrent flow. In other words, it is possible to simultaneously
route κ tq units of flow from sq to vq for all q ∈ Q if and only if κ ≤ κ∗. Clearly the
maximum concurrent flow value cannot exceed the minimum cut ratio:

ρ∗ ≥ κ∗.(1)

Our main result in this paper establishes the following reverse relationship between
the minimum cut ratio and the maximum concurrent flow value:

κ∗ ≥ 1

c �log k∗� ρ∗,(2)

where c is a constant and k∗ is the cardinality of the minimum cardinality vertex
cover for the demand graph. In other words, k∗ is the size of the smallest set K∗ ⊆ V
such that K∗ contains at least one of sq or vq for all q ∈ Q. Throughout the paper,
we assume that k∗ > 1.

Combining (1) and (2) we can bound the min-cut max-flow ratio as follows:

c �log k∗� ≥ ρ∗

κ∗ ≥ 1.(3)

In literature, these bounds are often called “approximate min-cut max-flow the-
orems,” as they relate the maximum (concurrent) flow of a multicommodity flow
problem to the (scaled) capacity of the minimum cut. As discussed above, this bound
is tight, i.e., ρ∗ = κ∗, when k∗ = 1.

1.3. Related work. Starting with the pioneering work of Leighton and Rao
[13] there has been ongoing interest in the area of approximate min-cut max-flow
theorems. The first such result in [13] shows that the upper bound in (3) is at most
O(log |V |) when tq = 1 for all q ∈ Q. Later Klein et al. [12] extend this result
to general tq and show that the bound is O(log C log D), where D is the sum of
(integral) demands (i.e., D =

∑
q∈Q tq) and C is the sum of (integral) capacities (i.e.,

C =
∑

e∈E ce). Tragoudas [23] has later improved this bound to O(log |V | log D)
and Garg, Vazirani, and Yannakakis [8] have further improved it to O(log k log D),
where k = |Q|.

Plotkin and Tardos [21] present the first bound that does not depend on the input
data by showing that the upper bound in (3) is at most O(log2 k). Finally, Linial,
London, and Rabinovich [14] and Aumann and Rabani [1] independently show that
the bound is at most O(log k).

Our result improves this best known bound to O(log k∗). To emphasize the
difference between O(log k) and O(log k∗), we note that for an instance of the multi-
commodity flow problem with a single source node and |V |−1 sink nodes, k = |V |−1,
whereas k∗ = 1. In general, k ≥ k∗ ≥ k/|V |.

The paper is organized as follows: In section 2, we present a linear programming
formulation of the maximum concurrent flow problem using aggregate commodities.
A commodity in this formulation combines all demand requirements with a common
source node. In section 3, we show the O(log k∗) bound using this formulation. In
section 4, we discuss geometric implications of this result. Finally, in section 5, we
show similar bounds for the so-called maximum multicommodity flow problem. In the
linear programming formulation of this problem, an aggregate commodity combines
all demand requirements that form a complete bipartite subgraph of the demand
graph.
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2. Formulation. When formulating a multicommodity problem as a linear pro-
gram, what is meant by a “commodity” can affect the size of the formulation signif-
icantly. Even though this has been noticed and exploited by researchers interested
in solving these linear programs (see, for example, [2] and [15]), it has been over-
looked by researchers interested in the theoretical aspects of multicommodity flows.
We next present a formulation for the concurrent flow problem where each commodity
aggregates flow requirements with a common source node. We note that the original
linear programming formulation of the maximum concurrent flow problem presented
in Shahrokhi and Matula [22] also uses aggregate commodities.

2.1. The concurrent flow problem. Given an undirected graph G = (V,E),
edge capacities ce for e ∈ E, and flow requirements tq for given pairs of vertices
{sq, vq}, for all q ∈ Q, let T denote the corresponding flow requirement matrix. More
precisely, T[k,u] =

∑
q∈Q : sq=k, vq=u tq for all k, u ∈ V . We then define the set of

“source nodes” K ⊆ V to be K = {k ∈ V :
∑

u∈V T[k,u] > 0} and formulate the
maximum concurrent flow problem as follows:

Maximize κ

Subject to

∑
v:{v,u}∈E

fk
vu −

∑
v:{u,v}∈E

fk
uv = κ T[k,u] ∀ u ∈ V, k ∈ K with u 
= k,

∑
v:{v,k}∈E

fk
vk −

∑
v:{k,v}∈E

fk
kv = − κ

∑
u∈V

T[k,u] ∀ k ∈ K,

∑
k∈K

(
fk
uv + fk

vu

)
≤ c{u,v} ∀ {u, v} ∈ E,

κ ≥ 0, fk
uv ≥ 0 ∀ k ∈ K, and {u, v} ∈ E,

where variable fk
vu denotes the flow of commodity k from node v to node u, and

variable κ denotes the value of the concurrent flow. Note that as the commodities
are defined with respect to source nodes, fk

vu gives the total flow on edge (v, u) that
has originated at node k. The destination of the flow, however, is not specified by
the commodity (unlike the “natural formulation” where each source-sink pair defines
a commodity).

Given a flow vector f , it is easy to find disaggregated flows for node pairs (k, u)
with T[k,u] > 0. More precisely, for an aggregate commodity k, if T[k,u] > 0 for some
node u, then it is possible to trace κT[k,u] units of commodity k entering node u back to
its origin k. Reducing aggregate flows as disaggregate flows are identified, and repeat-
ing this process iteratively gives a routing of source-sink flows. The disaggregation,
however, is not necessarily unique.

2.2. A reformulation of the concurrent flow problem. To find the small-
est set of commodities that would model the problem instance correctly, we do
the following: Let GD = (V,ED) denote the (undirected) demand graph, where
ED = {{sq, vq} : q ∈ Q}. We first find a minimum cardinality vertex cover K∗ ⊆ V
of GD. In other words, K∗ is a smallest cardinality set that satisfies {sq, vq}∩K∗ 
= ∅
for all q ∈ Q. We then inspect all q ∈ Q, and if sq 
∈ K∗ and vq ∈ K∗ for some q, we
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rename the source node to be vq so that we have sq ∈ K∗ for all q ∈ Q. Note that this
can be done without loss of generality since the capacity constraints in the formulation
do not depend on the orientation of the flow. After this change, the corresponding
flow requirement matrix T has the property that T[k,u] > 0 only if k ∈ K∗.

We therefore obtain a formulation with |K∗| commodities. In the remainder of
the paper we assume that K = K∗. Next, we present a slightly modified version of
this formulation:

Maximize κ

Subject to

∑
v:{u,v}∈E

fk
uv −

∑
v:{v,u}∈E

fk
vu + κ T[k,u] ≤ 0 ∀ u ∈ V, k ∈ K∗ with u 
= k,

∑
k∈K∗

(
fk
uv + fk

vu

)
≤ c{u,v} ∀ {u, v} ∈ E,

κ free, fk
uv ≥ 0 ∀ k ∈ K∗, and {u, v} ∈ E,

where (i) we have deleted the flow balance equalities for the source nodes k ∈ K∗, (ii)
changed the flow balance equalities for the remaining nodes to inequality, and (iii)
relaxed the nonnegativity requirement for κ. Note that these modifications do not
affect the value of the optimal solution.

The dual of this formulation is

Minimize
∑

{u,v}∈E

c{u,v} w{u,v}

Subject to ∑
k∈K∗

∑
u∈V

T[k,u] y
k
u = 1,

ykv − yku + w{u,v} ≥ 0

yku − ykv + w{u,v} ≥ 0

}
∀ k ∈ K∗, and {u, v} ∈ E,

ykk = 0 ∀ k ∈ K∗,

yku ≥ 0 ∀ u ∈ V, k ∈ K∗ with u 
= k,

w{u,v} ≥ 0 ∀ {u, v} ∈ E,

where dual variables ykk for k ∈ K∗ are included in the formulation even though
there are no corresponding primal constraints. These variables are set the zero in a
separate constraint. The main reason behind reformulating the primal problem and
using redundant variables in the dual problem is to obtain a dual formulation that
would have an optimal solution that satisfies the following properties.

Proposition 1. Let [ȳ, w̄] be an optimal solution to the dual problem, and let
ŷ ∈ R|V |×|V | be the vector of shortest path distances (using w̄ as edge weights) with
ŷku denoting distance from node k to u.

(i) For any k ∈ K∗ and u ∈ V, with T[k,u] > 0, ȳku is equal to ŷku.

(ii) For any {u, v} ∈ E, w̄{u,v} is equal to ŷuv .



6 OKTAY GÜNLÜK

Proof. (i) For any k → u path P = {{k, v1}, {v1, v2}, . . . , {v|P |−1, u}} we have∑
e∈P we ≥ ȳku, implying ŷku ≥ ȳku. If ŷku > ȳku for some k ∈ K∗, u ∈ V with T[k,u] > 0,

we can write
∑

k∈K∗
∑

u∈V T[k,u] ŷ
k
u = σ >

∑
k∈K∗

∑
u∈V T[k,u] ȳ

k
u = 1. This implies

that a new solution, with an improved objective function value, can be constructed
by scaling [ŷ, w̄] by 1/σ, a contradiction.

(ii) Clearly, w̄{u,v} ≥ ŷuv . If w̄{u,v} > ŷuv , replacing w̄{u,v} by ŷuv in the solution
improves the objective function value, a contradiction (remember that c{u,v} > 0 for
all {u, v} ∈ E).

As a side remark, we note that it is therefore possible to substitute some of the
dual variables, and consequently it is possible to combine some of the constraints in
the primal formulation.

We next express the maximum concurrent flow value as a ratio of a weighted
sum of edge capacities and a weighted sum of flow requirements. Notice that this
expression resembles the minimum cut ratio ρ∗.

Corollary 2. Let κ∗ be the optimal value of the primal (or the dual) problem.
Then,

κ∗ =

∑
{u,v}∈E c{u,v} dist(u, v)∑

k∈K∗
∑

v∈V T[k,v] dist(k, v)
,(4)

where dist(u, v) denotes the shortest path distance from node u to node v with respect
to the edge weight vector w̄ of Proposition 1.

3. The min-cut max-flow ratio. We next argue that there exists a mapping
Φ : V → Rp

+ for some p, such that ||Φ(u)−Φ(v)||1 is not very different from dist(u, v)
for node pairs {u, v} that are of interest. We then substitute ||Φ(u)−Φ(v)||1 in place
of dist(u, v) in (4) and relate the new right-hand side of (4) to the minimum cut ratio.
More precisely, we show that

κ∗ ≥ 1

α
×

∑
{u,v}∈E c{u,v} ||Φ(u) − Φ(v)||1∑

k∈K∗
∑

v∈V T[k,v] ||Φ(k) − Φ(v)||1
≥ 1

α
ρ∗.

3.1. Mapping the nodes of the graph with small distortion. Our ap-
proach follows the general structure of the proof of a related result by Bourgain [3]
that shows that any n-point metric space can be embedded into l1 with logarithmic
distortion. We state this result more precisely in section 4.

Given an undirected graph G = (V,E) with edge weights we ≥ 0, for e ∈ E,
let d(u, v) denote the shortest path distance from u ∈ V to v ∈ V using w as edge
weights. For v ∈ V and S ⊆ V let d(v, S) = mink∈S{d(v, k)} and define d(v, ∅) = σ =∑

u∈V

∑
v∈V d(u, v). Furthermore, let K ⊆ V with |K| > 1 also be given.

For any l, t ≥ 1, let Qt
l be a random subset of K such that members of Qt

l are
chosen independently and with equal probability P (k ∈ Qt

l) = 1/2t for all k ∈ K. Note
that for all l ≥ 1, Qt

l has an identical probability distribution and E[|Qt
l |] = |K|/2t.

For m = �log(|K|)� and L = 300 · �log(|V |)�, define the following (random) mapping
ΦR : V → RmL

+ :

ΦR(v) =
1

L ·m

⎡
⎢⎢⎢⎣

d(v,Q1
1) d(v,Q2

1) . . . d(v,Qm
1 )

d(v,Q1
2) d(v,Q2

2) . . . d(v,Qm
2 )

...
...

. . .
...

d(v,Q1
L) d(v,Q2

L) . . . d(v,Qm
L )

⎤
⎥⎥⎥⎦ .
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Note that |d(u, S) − d(v, S)| ≤ d(u, v) for any S ⊆ V , and therefore

||ΦR(u) − ΦR(v)||1 =
1

L ·m

m∑
t=1

L∑
l=1

∣∣d(u,Qt
l) − d(v,Qt

l)
∣∣

≤ 1

L ·m · L ·m · d(u, v) = d(u, v)(5)

for all u, v ∈ V .
Notice that as all Qt

l ⊆ K, the expression ||ΦR(u) − ΦR(v)||1 does not give a
good approximation of d(u, v) when u, v 
∈ K. To see this consider an example
where for some u, v ∈ V \ K, we have d(u, k) = d(v, k) for all k ∈ K. In this
case ||ΦR(u) − ΦR(v)||1 = 0, whereas the actual distance d(u, v) between the two
nodes can be strictly positive. We next bound ||ΦR(u) − ΦR(v)||1 from below when
|{u, v} ∩K| ≥ 1. Note that the bound on the distortion of the mapping depends on
the size of the set K from which Qt

l ’s are chosen.
Lemma 3. For all u ∈ K and v ∈ V and for some α = O(log |K|) the property

||ΦR(u) − ΦR(v)||1 ≥ 1

α
· d(u, v)

holds simultaneously with positive probability.
Proof. For any v ∈ V let B(v, δ) = {k ∈ K : d(v, k) ≤ δ} and Bo(v, δ) = {k ∈ K :

d(v, k) < δ}, respectively, denote the collection of members of K that lie within the
closed and open balls around v. We next define a sequence of δ’s for pairs of nodes.

For any fixed u ∈ K and v ∈ V let

t∗uv = max
{

1,
⌈
log

(
max

{
|B(u, d(u, v)/2)|, |B(v, d(u, v)/2)|

})⌉}
and define

δtuv =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, t = 0,

max{δ ≥ 0 : |Bo(u, δ)| < 2t and |Bo(v, δ)| < 2t}, t∗uv > t > 0,

d(u, v)/2, t = t∗uv.

We use the following three observations in the the proof:
1. m = �log(|K|)� ≥ t∗uv > 0,

2. max{|B(u, δtuv)|, |B(v, δtuv)|} ≥ 2t ∀ t < t∗uv, and

3. min{|Bo(u, δtuv)|, |Bo(v, δtuv)|} < 2t ∀ t ≤ t∗uv.

For a fixed u, v ∈ V , and t ≥ 0 such that t < t∗uv, rename u and v as zmax and
zother so that |B(zmax, δ

t
uv)| ≥ |B(zother, δ

t
uv)|. Using 1

e ≥ (1 − 1
x )x ≥ 1

4 , for any

x ≥ 2, we can write the following for any Qt+1
l for L ≥ l ≥ 1:

P
(
Qt+1

l ∩B(zmax, δ
t
uv) = ∅

)
=

(
1 − 2−(t+1)

)|B(zmax,δ
t
uv)|

≤ (1 − 2−(t+1))2
t ≤ e−

1
2 ,

P
(
Qt+1

l ∩Bo(zother, δ
t+1
uv ) = ∅

)
=

(
1 − 2−(t+1)

)|Bo(zother,δ
t+1
uv )|

≥ (1 − 2−(t+1))2
t+1 ≥ 1

4 .
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Notice that Qt+1
l ∩ B(zmax, δ

t
uv) 
= ∅ implies that d(zmax, Q

t+1
l ) ≤ δtuv, and sim-

ilarly, Qt+1
l ∩ Bo(zother, δ

t+1
uv ) = ∅ implies that d(zother, Q

t+1
l ) ≥ δt+1

uv . Using the
independence of the two events (since the two balls are disjoint) we can now write

P

(
Qt+1

l ∩B(zmax, δ
t
uv) 
= ∅ and Qt+1

l ∩Bo(zother, δ
t+1
uv ) = ∅

)
≥

(
1 − e−

1
2

)
× 1

4
≥ 1

11
,

and therefore

P

( ∣∣d(zother, Qt+1
l ) − d(zmax, Q

t+1
l )

∣∣ ≥ δt+1
uv − δtuv

)
≥ 1

11

or, equivalently,

P

( ∣∣d(u,Qt+1
l ) − d(v,Qt+1

l )
∣∣ ≥ δt+1

uv − δtuv

)
≥ 1

11

for all t < t∗uv.
Let Xtl

uv be a random variable taking value 1 if
∣∣d(u,Qt+1

l ) − d(v,Qt+1
l )

∣∣ ≥ δt+1
uv −

δtuv, and 0 otherwise. Note that for any fixed u ∈ K and v ∈ V if
∑L

l=1 X
tl
uv ≥ L/22

(that is, at least one-half the expected number) for all t < t∗uv, then we can write

||ΦR(u) − ΦR(v)||1 =
1

L ·m

m∑
t=1

L∑
l=1

∣∣d(u,Qt
l) − d(v,Qt

l)
∣∣

≥ 1

L ·m

t∗uv∑
t=1

L

22

(
δtuv − δt−1

uv

)

=
1

22m

(
δ
t∗uv
uv − δ0

uv

)
=

d(u, v)

44m
.

To this end, we first use the Chernoff bound (see, for example, [17, Chapter 4])
to claim that

P

( L∑
l=1

Xtl
uv <

1

2
× L

11

)
< e−

1
2×

1
4×

L
11 = e−

L
88

for any u ∈ K, v ∈ V , and t < t∗uv, which, in turn, implies that

P

( L∑
l=1

Xtl
uv <

L

22
for some u ∈ K, v ∈ V, and t < t∗uv

)
< |K||V | �log(|K|)� e−L/88,

where the right-hand side of the inequality is less than 1 for L ≥ 88(3 · log(|V |).
Therefore, with positive probability,

∑L
l=1 X

tl
uv ≥ L

22 for all u ∈ K, v ∈ V , and t <
t∗uv, which implies that, with positive probability,

||ΦR(u) − ΦR(v)||1 ≥ d(u, v)

44m

for all u ∈ K, v ∈ V .
An immediate corollary of this result is the existence of a (deterministic) mapping

with at most log(|K|) distortion.
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Corollary 4. There exists a collection of sets Q̄t
l ⊆ K for m ≥ t ≥ 1 and

L ≥ l ≥ 1 such that the corresponding mapping ΦD : V → RmL
+ satisfies the following

two properties:
(i) d(u, v) ≥ ||ΦD(u) − ΦD(v)||1 ∀ u, v ∈ V ;

(ii) d(u, v) ≤ α ||ΦD(u) − ΦD(v)||1 ∀ u ∈ K and v ∈ V,
where α = c log |K| for some constant c.

3.2. Bounding the maximum concurrent flow value. Combining Corollar-
ies 2 and 4, we now bound the maximum concurrent flow value as follows:

κ∗ =

∑
{u,v}∈E c{u,v} dist(u, v)∑

k∈K∗
∑

v∈V T[k,v] dist(k, v)
≥

∑
{u,v}∈E c{u,v} ||ΦD(u) − ΦD(v)||1∑

k∈K∗
∑

v∈V T[k,v] α ||ΦD(k) − ΦD(v)||1

=
1

α
×

∑m
t=1

∑L
l=1

(∑
{u,v}∈E c{u,v} |d(u, Q̄t

l) − d(v, Q̄t
l)|

)
∑m

t=1

∑L
l=1

(∑
k∈K∗

∑
v∈V T[k,v] |d(k, Q̄t

l) − d(v, Q̄t
l)|

)

≥ 1

α
×

∑
{u,v}∈E c{u,v} |d(u,Q∗) − d(v,Q∗)|∑

k∈K∗
∑

v∈V T[k,v] |d(k,Q∗) − d(v,Q∗)|(6)

for Q∗ = Qt∗
l∗ for some m ≥ t∗ ≥ 1 and L ≥ l∗ ≥ 1. Note that we have essentially

bounded maximum concurrent flow value (from below) by a collection of cut ratios.
We next bound it by the minimum cut ratio.

First, we assign indices {1, 2, . . . , |V |} to nodes in V so that d(vp, Q
∗) ≥ d(vp−1, Q

∗)
for all |V | ≥ p ≥ 2, and let xp = d(vp, Q

∗). Next, we define |V | nested sets
Sp = {vj ∈ V : j ≤ p} and the associated cuts Cp = {{u, v} ∈ E : |{u, v} ∩ Sp| = 1}
and Tp = {(k, v) ∈ K∗ × V : |{k, v} ∩ Sp| = 1}. We can now rewrite the summations
in (6) as follows:

1

α
×

∑
{vi,vj}∈E c{vi,vj} |xi − xj |∑

vi∈K∗
∑

vj∈V T[vi,vj ] |xi − xj |
=

1

α
×

∑|V |
p=2 (xp − xp−1)

∑
{u,v}∈Cp

c{u,v}∑|V |
p=2 (xp − xp−1)

∑
(k,v)∈Tp

T[k,v]

≥ 1

α
×

∑
{u,v}∈Cp∗ c{u,v}∑
(k,v)∈Tp∗ T[k,v]

≥ 1

α
ρ∗

for some p∗ ∈ {1, . . . , |V |}. We have therefore shown the following theorem.
Theorem 5. Given a multicommodity problem, let κ∗ denote the maximum

concurrent flow value, ρ∗ denote the minimum cut ratio, and k∗ denote the cardinality
of the minimum cardinality vertex cover of the associated demand graph. If k∗ > 1,
then

c �log k∗� ≥ ρ∗

κ∗ ≥ 1

for some constant c.

3.3. A tight example. We next show that there are problem instances for
which the above bound on the min-cut max-flow ratio is tight, up to a constant. This
result is a relatively straightforward extension of a similar result by Leighton and
Rao [13].
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Lemma 6. For any given n, k∗ ∈ Z+ with n ≥ k∗, it is possible to construct
an instance of the multicommodity problem with n nodes and k∗ (minimal) aggregate
commodities such that

ρ∗

κ∗ ≥ c �log k∗�

for some constant c.

Proof. We start with constructing a bounded-degree expander graph Gk∗
with

k∗ nodes and O(k∗) edges. See, for example, [17] for a definition, and existence
of constant degree expander graphs. As discussed in [13], these graphs (with unit
capacity for all edges and unit flow requirement between all pairs of vertices) provide
examples with ρ∗/κ∗ ≥ c �log k∗� for some constant c. Note that the demand graph
is complete and therefore the minimum cardinality vertex cover has size k∗.

We next augment Gk∗
by adding n − k∗ new vertices and n − k∗ edges. Each

new vertex has degree one and is connected to an arbitrary vertex of Gk∗
. The new

edges are assigned arbitrary capacities. The augmented graph, with the original flow
requirements, has n nodes and satisfies ρ∗/κ∗ ≥ c �log k∗�.

4. Geometric interpretation. Both of the more recent studies (namely Linial,
London, and Rabinovich [14] and Aumann and Rabani [1]) that relate the min-cut
max-flow ratio to the number of origin-destination pairs in the problem instance take
a geometric approach and base their results on the fact that a finite metric space can
be mapped into a Euclidean space with logarithmic distortion. More precisely, they
base their analysis on the following result that shows that n points can be mapped
from ln∞ to lp1 with O(log n) distortion (where lab denotes Ra equipped with the norm
||x||b = (

∑a
i=1 |xi|b)1/b ).

Lemma 7 (Bourgain [3]; also see [14]). Given n points x1, . . . , xn ∈ Rn, there
exists a mapping Φ : Rn → Rp, with p = O(log n), that satisfies the following two
properties:

(i) ||xi − xj ||∞ ≥ ||Φ(xi) − Φ(xj)||1 ∀ i, j ≤ n;

(ii) ||xi − xj ||∞ ≤ α ||Φ(xi) − Φ(xj)||1 ∀ i, j ≤ n,
where α = c log n for some constant c.

Using this result, it is possible to map the optimal dual solution of the disaggre-
gated (one commodity for each source-sink pair) formulation to lp1 with logarithmic
distortion; see [14] and [1]. One can then show a O(log k) bound by using arguments
similar to the ones presented in section 3.2.

We next give a geometric interpretation of Corollary 4 in terms of mapping n
points from lm∞ to lp1 with logarithmic distortion with respect to a collection of “seed”
points.

Lemma 8. Given n points x1, . . . , xn ∈ Rm, the first t ≤ n of which are special,
t > 1, there exists a mapping Φ : Rm → Rp with p = O(log n) that satisfies the
following two properties:

(i) ||xi − xj ||∞ ≥ ||Φ(xi) − Φ(xj)||1 ∀ i, j ≤ n;

(ii) ||xi − xj ||∞ ≤ α ||Φ(xi) − Φ(xj)||1 ∀ i ≤ t, j ≤ n,
where α = c log t for some constant c.

Proof. Let G = (V,E) be a complete graph with n nodes where each node vi is
associated with point xi for i = 1, . . . , n. For e = {vi, vj} ∈ E, let we = ||xi−xj ||∞ be
the edge weight. Furthermore, let d(vi, vj) denote the shortest path length between
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nodes vi, vj ∈ V using w as edge weights. Note that

||xi − xj ||∞ ≤ ||xi − xk||∞ + ||xk − xj ||∞
for any i, j, k ≤ n, and therefore d(vi, vj) = ||xi−xj ||∞ for all i, j ≤ n. We can now use
Corollary 4 to show the existence of a mapping Φ′ : Rm → Rq with q = O(log n log t)
that satisfies the desired properties.

To decrease the dimension of the image space, we scale Φ′ by
√
Lm to map the

points x1, . . . , xn to lq2 with c′ log t distortion. More precisely, we use Φ′′ : Rm → Rq,
where Φ′′(x) =

√
Lm Φ′(x). It is easy to see that

(i) ||Φ′′(xi) − Φ′′(xj)||2 ≤
√

(1/Lm)
∑m

k=1

∑L
q=1 d(vi, vj)

2

= d(vi, vj) = ||xi − xj ||∞,

(ii) ||Φ′′(xi) − Φ′′(xj)||2 ≥ ||Φ′(xi) − Φ′(xj)||1

≥ c′ log t d(vi, vj) = c′ log t ||xi − xj ||∞.

We can now use the following two facts (also used in [14]) to reduce the dimension
of the image space to O(log n): (i) for any q ∈ Z+, n points can be mapped from lq2
to lp2 , where p = O(log n) with constant distortion (see [10]), and (ii) for any p ∈ Z+,
lp2 can be embedded in l2p1 with constant distortion(see [20, Chapter 6]).

We also note that in Lemma 8 (and Lemma 7), mapping Φ actually satisfies
||x′ − x′′||∞ ≥ ||Φ(x′) − Φ(x′′)||1 for all x′, x′′ ∈ Rm (Rn).

5. Maximum multicommodity flows. The “maximum multicommodity flow”
problem is a generalization of the (single commodity) maximum flow problem. Given
an undirected graph G = (V,E) with edge capacities ce for e ∈ E, the objective here
is to maximize the sum of flows that can be simultaneously sent between given pairs
of vertices {sq, vq}, q ∈ Q. For this problem, the generalization of the minimum cut
is the so-called minimum multicut, which is a collection of edges (of minimum total
capacity) that separates sq from vq for all q ∈ Q. We denote the capacity of a multicut
Δ ⊆ E by C(Δ) =

∑
e∈Δ ce.

We next present two formulations for this problem and describe new bounds on
the ratio of the minimum multicut capacity to the maximum multicommodity flow.

5.1. The maximum multicommodity flow problem. As in section 2.2, let
K∗ ⊆ V be a minimum cardinality vertex cover of the demand graph GT = (V,ET ),
where ET = {{sq, vq} ∈ V × V : q ∈ Q}, and let Tk = {v ∈ V : {k, v} ∈ ET } denote
the set of sink nodes for k ∈ K∗. The problem can be formulated as follows:

Maximize
∑
k∈K∗

∑
u∈Tk

xk
u

Subject to

∑
v:{u,v}∈E

fk
uv −

∑
v:{v,u}∈E

fk
vu + xk

u ≤ 0 ∀ u ∈ V, k ∈ K∗ with k 
= u,

∑
k∈K∗

(
fk
uv + fk

vu

)
≤ c{u,v} ∀ {u, v} ∈ E,

xk
u ≥ 0, fk

uv ≥ 0 ∀ k ∈ K∗, and {u, v} ∈ E,
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where variable fk
uv denotes the flow of commodity k from node u to node v and xk

u

denotes the total flow of commodity k that terminates at node u. The dual of this
formulation is

Minimize
∑

{u,v}∈E

c{u,v} w{u,v}

Subject to

ykv − yku + w{u,v} ≥ 0

yku − ykv + w{u,v} ≥ 0

}
∀ k ∈ K∗, and {u, v} ∈ E,

yku ≥
{

1 ∀ k ∈ K∗, u ∈ Tk,

0 ∀ k ∈ K∗, u ∈ V \ Tk,

ykk = 0 ∀ k ∈ K∗,

w{u,v} ≥ 0 ∀ {u, v} ∈ E,

where variable yku can be interpreted as the shortest path distance from node k to
node u using w as edge weights. Note that any feasible solution to the dual problem
assigns weights to the edges in such a way that the shortest path distance from any
k ∈ K∗ to any one of its sink nodes is at least 1.

We next state a O(log k∗) bound on the associated min-cut max-flow ratio. This
improves the previous best known bound of O(log k) (where k denotes the number of
origin-destination pairs) presented in Garg, Vazirani, and Yannakakis [8].

Lemma 9. Given a maximum multicommodity flow problem, let F ∗ denote the
maximum total flow, C(Δ∗) denote the capacity of the minimum multicut, and k∗ de-
note the cardinality of the minimum cardinality vertex cover of the associated demand
graph. If k∗ > 1, then

c �log k∗� ≥ C(Δ∗)

F ∗ ≥ 1

for some constant c.
Proof. Clearly, capacity of any multicut is an upper bound on the total flow

implying C(Δ∗)/F ∗ ≥ 1. For the upper bound, we use the algorithm presented in
Garg, Vazirani, and Yannakakis [8] with the input set V ′ = K∗ and an optimal dual
solution vector w∗. Given edge weights w, this (constructive) algorithm produces a
multicut that separates any k ∈ V ′ from vertices that have a shortest path distance
of 1 or more from k. The multicut is guaranteed to have a capacity of at most
c �log |V ′|� (

∑
{u,v}∈E c{u,v} w{u,v}) for some constant c. In [8], the authors use this

algorithm with V ′ = {sq : q ∈ Q} to prove a log(k) bound.
We note that in [8], the authors use their algorithm with V ′ = {sq : q ∈ Q}

to prove a log(k) bound. Garg, in his unpublished thesis [7], however, also observes
that their algorithm can be used with the minimum cardinality vertex cover. This
(independent) result has been brought to our attention by Chekuri [4].

Also note that if the w variables in the dual linear program are required to be
integral, any feasible (integral) solution to the dual problem gives a multicut for the
maximum multicommodity flow problem and the optimal solution gives a minimum
multicut. Therefore, Lemma 9 implies that the integrality gap of this formulation of
the minimum multicut problem is bounded by a factor of O(log k∗).
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5.2. A reformulation of the maximum multicommodity flow problem.
A more compact formulation of the maximum multicommodity flow problem (i.e., a
formulation with fewer variables) can be obtained by allowing a commodity to have
multiple source nodes in addition to multiple sink nodes.

Let a complete bipartite subgraph cover of a graph be a collection of subgraphs of
the graph that satisfy the following two properties: (i) each subgraph is a complete
bipartite graph, and (ii) the edges of the subgraphs cover the edges of the graph.
See Fishburn and Hammer [5] for a detailed study of these covers. Notice that the
complete bipartite subgraph (CBS) cover is a generalization of the vertex cover in the
sense that given a vertex cover K, one can construct a (CBS) cover B with |K| = |B|.
We next formulate the problem using a (CBS) cover of the demand graph.

As in section 5.1, let GT = (V,ET ) be the demand graph where ET = {{sq, vq} ∈
V × V : q ∈ Q}. Let B = {B1, B2, . . . , B|B|} be a (CBS) cover of GT where
Bk = (Sk, Tk, Ek) is a complete bipartite graph with Sk, Tk ⊆ V , Ek = {{u, v} ∈
V × V : u ∈ Sk, v ∈ Tk} ⊆ ET , and ∪kEk = ET .

In the following reformulation, source nodes of a “commodity” k are denoted by
Sk and sink nodes by Tk. Let B = {1, 2, . . . , |B|} be the index set for commodities.

Maximize
∑
k∈B

∑
u∈Tk

xk
u

Subject to

∑
v:{u,v}∈E

fk
uv −

∑
v:{v,u}∈E

fk
vu + xk

u ≤ 0 ∀ k ∈ B, u ∈ V \ Sk,

∑
Bk∈B

(
fk
uv + fk

vu

)
≤ c{u,v} ∀ {u, v} ∈ E,

xk
u ≥ 0, fk

uv ≥ 0 ∀ k ∈ B, and {u, v} ∈ E,

where variable fk
uv denotes the flow of commodity k from node u to node v and xk

u

denotes the total flow of commodity k that terminates at node u. Given an aggregate
flow vector f , it is easy to find disaggregated flows by tracing each unit of xk

u from
node u ∈ Tk to some v ∈ Sk. The disaggregation is not necessarily unique.

The dual of this formulation is

Minimize
∑

{u,v}∈E

c{u,v} w{u,v}

Subject to

ykv − yku + w{u,v} ≥ 0

yku − ykv + w{u,v} ≥ 0

}
∀ k ∈ B, and {u, v} ∈ E,

yku ≥
{

1 ∀ k ∈ B, u ∈ Tk,

0 ∀ k ∈ B, u ∈ V \ Tk,

yku = 0 ∀ k ∈ B, u ∈ Sk,

w{u,v} ≥ 0 ∀ {u, v} ∈ E,
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where variable ykv can be interpreted as the least shortest path distance between v
and a member of Sk using w as edge weights.

If |B| = 1, the dual feasible set is integral (see Karzanov [11], for example) and
an optimal dual solution corresponds to a multicut of capacity equal to the maximum
flow. It is also possible to see this by noticing that the maximum multicommodity
flow problem can easily be transformed into a maximum flow problem with a single
source node and a single sink node.

Based on this observation, we now relate the min-cut max-flow ratio to the size
of a minimum cardinality CBS cover of the demand graph. The size of this minimum
cardinality cover is called the bipartite dimension [5] of the graph.

Lemma 10. Let F ∗ and C(Δ∗) be defined as in Lemma 9, let B∗ be a minimum
cardinality CBS cover of the demand graph, and let k∗∗ = |B∗| denote the bipartite
dimension of the demand graph. Then

k∗∗ ≥ C(Δ∗)

F ∗ .

Proof. Let B∗ = {B1, B2, . . . , Bk∗∗}. We solve k∗∗ maximum multicommodity
flow problems, one for each Bi = {Bi}, and obtain the maximum flow value F ∗

i and the

corresponding multicut Δi. Clearly, F ∗ ≥ F ∗
i = C(Δi), and

∑k∗∗

i=1 C(Δi) ≥ C(Δ∗).
We can therefore write

k∗∗ ≥
k∗∗∑
i=1

F ∗
i

F ∗ =

k∗∗∑
i=1

C(Δi)

F ∗ ≥ C(Δ∗)

F ∗ .

Depending on the problem instance, Lemma 10 can provide a tighter bound than
Lemma 9. For example, consider an instance where S1 ⊆ V , S2 = V \ S1 with
|S1| = |S2| = n/2 and ET = {{s, v} ∈ V × V : s ∈ S1, v ∈ S2}. For this problem
instance, the number of source-sink pairs is k = n2/4, the size of the minimum
cardinality vertex cover of GT is k∗ = n/2, and the size of the minimum cardinality
CBS cover of GT is k∗∗ = 1.

A remaining open question is whether or not one can show a O(log k∗∗) bound
on the min-cut max-flow ratio for the maximum multicommodity flow problem. We
were unable to prove or disprove such a bound.

6. Conclusion. In this paper we presented improved bounds on the min-cut
max-flow ratio for the multicommodity flow and the maximum multicommodity flow
problems. Our bounds are motivated by “compact” linear programming formulations
based on covers of the demand graph. For both problems, our results suggest that
the quality of the ratio depends on the demand graph in a more structural way than
the size of the edge set (i.e., the number of origin-destination pairs).

To extend our approach to directed versions of the (maximum) multicommodity
flow problems, one needs to find minimum cardinality covers of the “directed” demand
graph in the following sense: The demand graph now has two nodes v′ and v′′ for
each original node v ∈ V , and it has an undirected edge {u′, v′′} if there is a flow
requirement from node u to node v. A cover C of this undirected bipartite graph
gives a linear programming formulation with |C| aggregate commodities and therefore
provides a |C| bound on the min-cut max-flow ratio. Relating this ratio logarithmically
to the number of aggregate commodities is an open problem.
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Abstract. A signed binary representation (SBR) of an integer N is a string ab · · · a2a1a0 over

the alphabet {−1, 0, 1} such that N =
∑b

i=0 ai2
i. An SBR of an integer N is said to be minimal if

the number of nonzero digits is minimum. In this paper, we describe a simple 3-close Gray code for
listing all minimal SBRs of an integer N . The algorithm is implemented to run in constant amortized
time. In addition, we identify the values for N that have the maximum number of minimal SBRs
given the length of the binary representation of N .
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1. Introduction. A signed binary representation (SBR) of an integer N is a

string ab · · · a2a1a0 over the alphabet {−1, 0, 1} such that N =
∑b

i=0 ai2
i. An example

of an SBR for N = 51 is 101̄0101̄ (where for convenience we use 1̄ for −1), which
corresponds to 26 − 24 + 22 − 20.

An SBR of an integer N is said to be minimal if the number of nonzero digits is
minimum. A minimal SBR for an integer N is not necessarily unique; in fact, we will
show that there may be an exponential number of such strings with respect to the
length of the binary representation of N . As an example, there are 5 minimal SBRs
for N = 51 each requiring 4 nonzero bits:

0110011, 0110101̄, 1001̄1̄01̄, 101̄0011, 101̄0101̄.

Booth [2] first applied the notion of SBRs to a signed binary multiplication tech-
nique. A decade later, Reitwiesner [10] gave the first linear time algorithm to find a
minimal SBR for a given integer N . Since then, several other researchers have pro-
vided similar linear time algorithms, including the following one-line algorithm (based
on work by Güntzer and Paul [4]) given by Prodinger [9]: “writing 3N/2 in binary
and subtracting (bitwise) the binary representation of N/2.” For a more thorough
history of SBRs and how they apply to fast exponentiation and cryptography, consult
[6, 8, 12, 14].

As there are potentially an exponential number of minimal SBRs for an integer
N (with respect to the length of the binary representation of N), it is natural to ask
how efficiently we can produce an exhaustive listing of these objects. Ideally, a listing
algorithm will run in time proportional to the number of objects (strings) generated.
Such algorithms are said to be CAT for constant amortized time. Also, it is often
useful for a listing of objects to have the Gray code property : successive objects in the
listing differ by a constant amount.

In [6], Ganesan and Manku show how minimal SBRs can be used to find optimal
routes in a network derived from Chord [5], a peer-to-peer network topology. They

∗Received by the editors September 28, 2005; accepted for publication (in revised form) July 23,
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also present the only previously known algorithm for exhaustively listing all minimal
SBRs. Unfortunately, no analysis of the algorithm was provided and the resulting
listing does not have the Gray code property. To remedy this situation, we modify
their algorithm into one that is a 3-close Gray code listing (successive strings differ
in 3 consecutive positions) and provide steps to make the algorithm CAT. This is
discussed in section 2. Then in section 3, as a secondary result, we identify precisely
the values for N that have the maximum number of minimal SBRs given the length
of the binary representation for N . In section 4 we identify two interesting sequences
with respect to SBRs and conclude with final remarks in section 5.

For the remainder of this paper we will let SBR(N) denote the set of all minimal
signed binary representations of an integer N . It also assumed that N is represented
in binary as ab · · · a2a1a0, and as mentioned earlier, we will use 1̄ to represent −1 for
convenience.

2. Listing minimal SBRs. The following is a recursive description of Ganesan
and Manku’s algorithm [6] where B(N) denotes a listing of all the strings in SBR(N).
The notation B(N) · 1 denotes the listing B(N) with an additional 1 appended to
each string. The notation B(N),B(M) indicates the list of strings B(N) followed by
the list of strings B(M):

B(N) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if N = 0,

B(N
2

) · 0 if suffix(N, 0) and N > 0,

B(N−1
2

) · 1 if suffix(N, 0(01)∗01),

B(N+1
2

) · 1̄ if suffix(N, 1(10)∗11) ,

B(N+1
2

) · 1̄, B(N−1
2

) · 1 if suffix(N, 11(01)∗01) or
if suffix(N, 00(10)∗11).

The predicate suffix(N , expr) returns true if a suffix of N , represented in binary
(and padded with 0’s on the left), matches the regular expression expr. An example
computation tree for B(51) is given in Figure 1. The nodes in the tree represent the
input strings, and the labels on the edges represent the character to be prepended to
the output string as specified by B(N). Thus, each minimal SBR can be found by
tracing a path from a leaf back to the root while recording the labels on the edges.
Observe that since 0011 is a suffix of 110011, it satisfies the last case in the recursive
description. Thus, the root node in Figure 1 has 2 children producing strings that
end with 1̄ and 1, respectively.

2.1. A Gray code. In general the listing B(N) is not a Gray code since suc-
cessive strings in the listing may differ by up to a linear amount Ω(b). However, by
studying the listings for a variety of input values and focusing on the parities of the
repeated terms in the regular expressions, we discover a 3-close Gray code description
for SBR(N). This new listing is obtained by reversing the order of particular subtrees
within the computation tree of B(N). The result is a listing that will produce the
same strings but in a different order. The overline in the description of this new listing
L(N) indicates that the listing of strings is reversed:
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Level  1

Level  2

Level  3

Level  4

Level  5

Level  6

Level  0

1

1

1

1 1

1010101

0

0

0

1

0

0

1

1

0

1

0

0

1

11010

1101

111

100

10 10 1

110

11 11

110

1100

11001

10 1

111

11

1 1 1

1010011 01100111001101 0110101

110011

minimal SBRs:

Fig. 1. Computation tree for B((110011)2) = B(51).

L(N) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if N = 0,

L(N
2

) · 0 if suffix(N, 0) and N > 0,

L(N−1
2

) · 1 if suffix(N, 0(01)∗01),

L(N+1
2

) · 1̄ if suffix(N, 1(10)∗11),

L(N+1
2

) · 1̄, L(N−1
2

) · 1 if suffix(N, 11(01)t01) and t even (1),

L(N+1
2

) · 1̄, L(N−1
2

) · 1 if suffix(N, 00(10)t11) and t even (2),

L(N+1
2

) · 1̄, L(N−1
2

) · 1 if suffix(N, 11(01)t01) and t odd or (3),
if suffix(N, 00(10)t11) and t odd (4).

Theorem 1. The listing L(N) of all strings in SBR(N) where N > 0 is a 3-close
Gray code.

Proof. Assume that N is represented in binary. Let first(N) and last(N) denote
the first and last strings in the listing of L(N). To prove that the listing L(N) is a
3-close Gray code we show that the interface strings for Cases (1), (2), (3), and (4)
differ in exactly the last three positions. Applying induction completes the proof.

Case (1). N is of the form x11(01)t01, where x is some binary string and t is
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even. Here we must compare the last string in L(N+1
2 ) · 1̄ = first(x11(01)t1) · 1̄ and

the first string in L(N−1
2 ) · 1 = first(x11(01)t0) · 1. First consider t > 0:

first(x11(01)t1) · 1̄ = first(x1(10)t11) · 1̄
= first(x1(10)t−1110) · 1̄1̄

= first(x1(10)t−111) · 01̄1̄,

first(x11(01)t0) · 1 = first(x11(01)t) · 01

= first(x11(01)t−101) · 01

= first(x11(01)t−11) · 1̄01

= first(x1(10)t−111) · 1̄01.

If t = 0, let x = y01r:

first(y01r111) · 1̄ = first(y10r00) · 1̄1̄

= first(y10r0) · 01̄1̄,

first(y01r110) · 1 = first(y01r11) · 01

= first(y10r0) · 1̄01.

Case (2). N is of the form x00(10)t11, where x is some binary string and t is
even. Again we consider two subcases depending on the value for t. If t > 0, then
we must compare the last string in L(N+1

2 ) · 1̄ = last(x00(10)t−1110) · 1̄ and the first

string in L(N−1
2 ) · 1 = last(x00(10)t1) · 1:

last(x00(10)t−1110) · 1̄ = last(x00(10)t−111) · 01̄

= last(x00(10)t−11) · 101̄

= last(x0(01)t) · 101̄,

last(x00(10)t1) · 1 = last(x0(01)t01) · 1
= last(x0(01)t0) · 11

= last(x0(01)t) · 011.

If t = 0, then the two interface strings are last(x010)·1̄ and last(x001)·1, respectively:

last(x010) · 1̄ = last(x01) · 01̄

= last(x0) · 101̄,

last(x001) · 1 = last(x001) · 1
= last(x0) · 011.

Case (3). N is of the form x11(01)t01, where x is some binary string and t is odd.
Here we must compare the last string in L(N+1

2 ) · 1̄ = last(x11(01)t1) · 1̄ and the first

string in L(N−1
2 ) · 1 = first(x11(01)t0) · 1:

last(x11(01)t1) · 1̄ = last(x1(10)t11) · 1̄
= last(x1(10)t−1110) · 1̄1̄

= last(x1(10)t−111) · 01̄1̄,

first(x11(01)t0) · 1 = first(x11(01)t−101) · 01

= last(x11(01)t−11) · 1̄01

= last(x1(10)t−111) · 1̄01.
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Case (4). N is of the form x00(10)t11, where x is some binary string and t is odd.
Here we must compare the last string in L(N+1

2 ) · 1̄ = last(x00(10)t−1110) · 1̄ and the

first string in L(N−1
2 ) · 1 = first(x00(10)t1) · 1:

last(x00(10)t−1110) · 1̄ = last(x00(10)t−111) · 01̄

= first(x00(10)t−11) · 101̄

= first(x0(01)t) · 101̄,

first(x00(10)t1) · 1 = first(x0(01)t01) · 1
= first(x0(01)t0) · 11

= first(x0(01)t) · 011.

In all cases we have shown that the interface strings differ in exactly the last 3
positions. By applying induction, this proves that L(N) is a 3-close Gray code for
the strings in SBR(N).

As an example, Figure 2 displays the computation tree for L(110011). As before,
the nodes represent the input strings, but now if a subtree is to be reversed, this infor-
mation is additionally passed down via the edges and represented by R. Naturally, a
reversal of a reversed subtree produces the regular ordering (see the 11 node furthest
to the right in Figure 2).

The following is the final listing generated for L(110011):

0 1 0 0 1̄ 1̄ 0 1̄
0 1 0 1̄ 0 1 0 1̄ (2)
0 0 1 1 0 1 0 1̄ (4)
0 0 1 1 0 0 1 1 (0)
0 1 0 1̄ 0 0 1 1 (4)

Observe that each successive string differs in exactly 3 consecutive positions by
either the transformation 011 ↔ 101̄ or 01̄1̄ ↔ 1̄01. Also observe that the rightmost
of these positions (indicated in parentheses) corresponds to the levels of the degree
2 nodes in the computation tree when visited in order. These properties can also be
inferred from Theorem 1 and its proof. Therefore given the in-order sequence of levels
of the degree 2 nodes along with the first output string in the listing, we can generate
the Gray code listing L(N) in constant amortized time. In the next subsection, we
describe how we can efficiently generate this sequence.

It is also interesting to note from this example that a 2-close listing is impossible
in general. This is because the first string is the only one that contains 01̄1̄ in positions
4, 5, and 6.

Also of interest is the underlying graph with vertices corresponding to the minimal
SBRs (for a given integer N) and edges between two vertices if and only if their
corresponding SBRs differ in exactly 3 adjacent positions. Clark and Liang [3] showed
that this graph is connected. The result in this paper shows that this graph contains
a Hamilton path. In general there is no Hamilton cycle since the underlying graph
from our example has a vertex with degree 1: 01001̄1̄01̄.

2.2. Efficiency considerations. If we apply the algorithm for L(N) or B(N)
directly, we may require a linear amount of work to process each node: computing
the suffix and modifying the input string for the next recursive call. This amount
of computation is not desirable; however, because there are repeated subtrees, we
can precompute the parent child relationships for each node. In fact, given that
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Level  1

Level  2

Level  3

Level  4

Level  5

Level  6

Level  0

1

1

1 1

1

1001101 01100111010101 0110101 1010011

110011

11010

1101

111

100

10

1 1

10

11

110

1100

110

11

11001

10

1

0

0

0 0

0

1

0

0

0

1

1 1

1

11

1

1

1

1

1

R

R

R

R

R

R

R

R

R

minimal SBRs:

Fig. 2. Computation tree for L(110011).

N = ab · · · a2a1a0 and that αi denotes the prefix ab · · · ai and βi = αi+1, the following
lemma shows that the number of different possible nodes in the computation tree for
L(N) or B(N) is at most 2(b + 1).

Lemma 2. At level i in the computation tree of L(N) or B(N) the input string
is either αi or βi.

Proof. The proof is by induction on i. When i = 0, we are at the root of the
computation tree and the input string is α0. For the inductive hypothesis, suppose
that the input string for a node at level i ≥ 0 is either αi or βi. By using the rules
of the listing L(N) or B(N), observe that the input string for the child of a node is
obtained either by trimming off the least significant bit or by adding one first and
then trimming off the final bit. Thus, if the input string of a node at level i is αi,
then the input for its children must be either αi+1 or βi+1. In the case where the
input string is βi we consider two subcases depending on the last bit. If βi ends with
0, then its only child is (βi)/2 = βi+1. Otherwise, if βi ends with 1, then trimming
off the last bit will result in αi+1. If we add one first and then trim the last bit, we
will obtain βi+1.

Since there at most 2(b+1) different nodes in the computation tree for L(N), we
can precompute the parent child relationships for all nodes in O(b2) time. (In fact, if
we reuse the suffix details starting at node α0, we could perform this precomputation
in linear time O(b).) After performing this precomputation, we can determine the
children of a node in constant time, allowing us to construct the computation tree for
L(N) in constant time per node. Applying this method, the overall running time of
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the algorithm will be proportional to the number of nodes in the computation tree.
If this number is proportional to the number of strings generated (the leaves in the
tree), then the algorithm will be CAT. However, in general, this will not be the case
due to the large number of degree 1 nodes.

Fortunately, as discussed at the end of the previous subsection, we need only visit
the degree 2 nodes (in order) from the computation tree to obtain the Gray code
listing. Again, since there are only a linear number of nodes, we can precompute the
nearest (left and right) descendants that have degree 2 for each potential node in the
computation tree. This can be done in O(b) time, since there are only O(b) nodes to
visit. Now, for each node, we can find the nearest left and/or right descendant that
has degree 2 in constant time. All that remains is to compute the initial minimal
SBR by following the leftmost path in the computation tree and then traversing the
degree 2 nodes in order, outputting the original level of each node. When traversing
this tree we must be careful to maintain information about subtree reversal so that
we know which child branch to visit first.

The following is a detailed summary of the steps required to produce the listing
L(N) in constant amortized time:

1. For 0 ≤ i ≤ n determine the child or children of each node αi and βi. The
level of these nodes will be i, and from the recursive description of L(N) we
can determine whether or not the subtrees for each child should be reversed.
This will take O(b2) time.

2. For 0 ≤ i ≤ n determine the nearest left and/or right descendant of αi and βi

that has degree 2. This can be computed in linear time O(b) by starting with
i = b and working back to i = 0. Details about whether or not the subtrees
are to be reversed must be maintained for each degree 2 node.

3. Determine the initial minimal SBR of the listing L(N) by tracing a path
through the virtual computation tree rooted by α0. This will take linear time
O(b).

4. Visit the degree 2 nodes in order, being careful to consider when subtrees are
to be reversed. For each level i that is output, modify the current minimal
SBR in positions i + 2, i + 1, i. This is done by scanning these 3 characters
and applying the appropriate transformation rule: 011 ↔ 101̄ or 01̄1̄ ↔ 1̄01.
The degree 2 nodes can be traversed in constant amortized time; thus the
running time of this step will be proportional to the number of minimal
SBRs generated.

Observe that the original computation tree is never actually constructed.

Theorem 3. The Gray code listing L(N) can be generated in constant amortized
time with O(b2) initialization.

3. Maximizing the number of minimal SBRs. If N is represented by the
binary string ab · · · a2a1a0, where ab = 1, then there may be only one string in SBR(N)
or there could potentially be an exponential number with respect to b. Thus given b,
we are interested in finding a tight upper bound on the number of strings in SBR(N),
denoted Max(b), as well as a characterization of the bitstrings that obtain this upper
bound. Note that the actual length of the binary representation of N is b+ 1. When
b = 0, 1, 2, the binary representations that produce the maximum number of minimal
SBRs are 1, 11, and 110, respectively. The values Max(0) = 1 and Max(1) =
Max(2) = 2. For 3 ≤ b ≤ 10 we apply a generation algorithm to determine which
binary representations of N have Max(b) strings in SBR(N):
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b Binary representations of N Max(b)
3 1011 1101 3
4 10110 11010 3
5 101101 110011 5
6 1011010 1100110 5
7 10110011 11001101 8
8 101100110 110011010 8
9 1011001101 1100110011 13
10 10110011010 11001100110 13

Theorem 4. Max(b) = f�b/2�+2, the �b/2�+2nd Fibonacci number. Moreover,
the SBRs of the two values of N that have Max(b) minimal SBRs where b ≥ 3 are

10(1100)t11 and 11(0011)t01 if b = 4t+3,
10(1100)t110 and 11(0011)t010 if b = 4t+4,
10(1100)t1101 and 11(0011)t0011 if b = 4t+5,
10(1100)t11010 and 11(0011)t00110 if b = 4t+6.

Proof. Applying a generation algorithm, it is trivial to verify the theorem for
3 ≤ b ≤ 6. For b > 6 we assume that Max(i) = f� i

2 �+2 for 3 ≤ i < b (inductive

hypothesis) and consider ab · · · a2a1a0, the binary representation for an integer N .
Using the recursive listing B(N), we will examine each possible suffix of N to de-
termine restrictions on the strings in SBR(N). In particular, we will show that the
strings in SBR(N) must end with particular bit sequences for a given suffix.

suffix(N, 0). All strings end with 0. Thus, the maximum number of strings is
bounded by Max(b − 1). This result implies that Max(b) does not decrease as b
increases.

suffix(N , 0(01)∗01). Applying the recursive rules twice, all strings must end with
01. Thus, the maximum number of strings is bounded by Max(b− 2).

suffix(N , 1(10)∗11). Applying the recursive rules twice, all strings must end with
01̄. Thus, the maximum number of strings is bounded by Max(b− 2).

For the remaining two suffixes, the strings may end with either 1 or 1̄.

suffix(N, 11(01)t01). Applying the recursive rules, all strings ending with 1 will
end with 01. Otherwise if a string ends with 1̄, then if t = 0, it must end with 001̄1̄;
if t = 1, it must end with 001̄01̄1̄; if t > 1, it must end with 1̄01̄01̄1̄. Thus, when
the suffix of N is 1101, an upper bound on the maximum number of minimal SBRs
is Max(b − 2) + Max(b − 4). Otherwise if t > 1, the upper bound is Max(b − 2) +
Max(b− 6).

suffix(N, 00(10)t11). Applying the recursive rules, all strings ending with 1̄ will
end with 01̄. Otherwise if a string ends with 1, then if t = 0, it must end with 0011;
if t = 1, it must end with 001011; if t > 1, it must end with 101011. Thus, when
the suffix of N is 0011, an upper bound on the maximum number of minimal SBRs
is Max(b − 2) + Max(b − 4). Otherwise if t > 1, the upper bound is Max(b − 2) +
Max(b− 6).

Observe that from our inductive hypotheses that when b is even, Max(b − 1) =
Max(b−2)+Max(b−4) = f� b

2 �+2, and when b is odd, Max(b−1) = f� b
2 �+2−1. Thus

an overall upper bound on Max(b) is f� b
2 �+2. We complete the proof by showing the

two strings that obtain this bound, thus proving Max(b) = f� b
2 �+2. We examine four

cases depending on b. Since b > 6, we must have t ≥ 1.
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b = 4t − 1. In this case b is odd, so if Max(b) is to obtain the upper bound
of Max(b − 2) + Max(b − 4), N must have the suffix 1101 or 0011. If it ends with
1101, then in order for the number of strings in SBR(N) that end with 01 to meet
the maximum of Max(b − 2), the first b − 2 bits must be either 10(1100)t−11101 or
11(0011)t−10011 (by induction). Additionally, in order for the number of strings that
end with 001̄1̄ to meet the maximum of Max(b − 4), the first b − 4 bits must be
either 10(1100)t−111 or 11(0011)t−101 with 1 subtracted as a result of the recursive
definition applied to the final 4 bits. Thus taking the union of these criteria over all
binary strings, we are left with N = 11(0011)t01. A similar examination will show
that when N has a suffix 0011, the only string that will obtain the upper bound of
Max(b− 2) + Max(b− 4) strings is N = 10(1100)t11.

b = 4t. Using induction, if N ends with 0, then Max(b) = Max(b − 1) if and
only if N = 10(1100)t110 or N = 11(0011)t010. Otherwise, in order for the size
of SBR(N) to meet the upper bound, it must have the suffix 1101 or 0011. If it
ends with 1101, the first b− 2 bits must be either 10(1100)t11010 or 11(0011)t00110.
However, since neither of these strings ends with 11, no value for N ending with 1101
will meet the upper bound in this case. If it ends with 0011, the first b− 2 bits must
be either 10(1100)t11010 or 11(0011)t00110, but this time with 1 subtracted since the
strings must end with 01̄ (from the recursive definition). However, since neither of the
resulting strings ends with 00, no value for N ending with 0011 will meet the upper
bound.

b = 4t + 1. This is similar to the case b = 4t− 1.
b = 4t + 2. This is similar to the case b = 4t.

4. Related sequences. If we consider the number of bits required to represent
each string in SBR(N) for each value of N starting from N = 0, we obtain the
following sequence:

A = 0, 1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 3, 2, 3, 2, 2, . . . .

For example, the minimum number of bits required to represent the integer 3 as the
difference of 2 binary numbers is 2 (given by the fourth element in the sequence). This
sequence corresponds to sequence A007302 in Sloane’s The On-Line Encyclopedia of
Integer Sequences [13]. Interestingly, these values also correspond to the cost of grid
communications on the Connection Machine [15]. This sequence is also discussed with
respect to k-regular sequences in [1].

Another interesting sequence is the one obtained from the number of strings in
SBR(N) for each value of N starting from 0:

B = 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 3, 2, 3, 1, 1, . . . .

For example, the fourth element in this sequence is 2 since there are two strings in
SBR(3). This sequence corresponds to sequence A110955 in Sloane’s The On-Line
Encyclopedia of Integer Sequences [13].

5. Final remarks. In this paper we have presented a 3-close Gray code algo-
rithm to generate all minimal SBRs of an integer N . After some initialization, the
algorithm can be implemented to run in constant amortized time. A CAT imple-
mentation is available from the author upon request or at http://www.cis.uoguelph.
ca/∼sawada/prog.html. As a secondary result, we have precisely identified the values
for N that produce the maximum number of minimal SBRs given the length of the
binary representation of N .



A SIMPLE GRAY CODE TO LIST ALL MINIMAL SBRs 25

A preliminary version of this work appears in the proceedings of GRACO 2005
[11]. Since this manuscript was submitted, a related result by Manku and Sawada
appeared in the proceedings of ESA 2005 [7]. In that work, a loopless algorithm to
list all minimal SBRs of an integer N is provided. The loopless algorithm is based
on the binary reflected Gray code and is significantly more complex than the simple
recursive description given in this paper.
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CROSSING GRAPHS AS JOINS OF GRAPHS AND CARTESIAN
PRODUCTS OF MEDIAN GRAPHS∗
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Abstract. For a partial cube G its crossing graph G# is the graph whose vertices are the
Θ-classes of G, two classes being adjacent if they cross on some cycle in G. The following problem
posed in [S. Klavžar and H. M. Mulder, SIAM J. Discrete Math., 15 (2002), pp. 235–251, Problem
7.1] is considered: What can be said about the partial cube G if G# is the join A⊕ B of graphs A
and B with at least one edge? It is proved that for arbitrary graphs A and B, where at least one of
them contains an edge, there exists a Cartesian prime partial cube G such that G# = A⊕B. On the
other hand, if G is a median graph, then G# = A⊕B if and only if G = H �K, where H# = A and
K# = B. Along the way some new facts about partial cubes are obtained; for instance, a bipartite
graph of radius 2 is a partial cube if and only if it is K2,3-free.
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of graphs
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1. Introduction. Intersection concepts in graph theory have been extensively
studied [16]. Although some of the intersection operations yield all graphs (for in-
stance, every graph is the intersection graph of some set system), their importance
is due to their usefulness in the characterization of particular classes of graphs, thus
leading to a deeper structural understanding. Here we study a nonstandard inter-
section operation where vertices of the intersection graph (called crossing graph) are
equivalence classes of a certain equivalence relation Θ defined on the edge-set of a
graph. Hence the edges of the crossing graph are not defined in the standard way
(by intersections of subsets). The graphs that we are interested in are isometric sub-
graphs of hypercubes, and the relation Θ is of great importance for understanding the
structure of these graphs. So before presenting the preliminary work on these graphs
and the crossing graph operation, let us recall necessary definitions.

The distance dG(u, v) between vertices u and v of a graph G is the length of a
shortest u, v-path in G. A subgraph U of G is isometric if dU (u, v) = dG(u, v) for all
u, v ∈ U . The interval IG(u, v) is the set of vertices that lie on shortest paths between
u and v in G. A subgraph U is convex if IG(u, v) ⊆ U for all u, v ∈ U. (Indices in the
above definitions are omitted when the graph is understood from the context.) Recall
that the hypercube Qk, or k-cube, is the graph with the vertex set {0, 1}k, where two
vertices are adjacent whenever they differ in exactly one position.

Partial cubes are isometric subgraphs of hypercubes. This class of graphs has
been extensively investigated; see, for instance, [3, 5, 6, 7, 8, 21]. A well-known
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characterization of partial cubes is by the relation Θ on the edge-set of a graph. Two
edges e = xy and f = uv of a graph G are in the Djoković–Winkler [7, 21] relation
ΘG, Θ for short, if dG(x, u)+dG(y, v) �= dG(x, v)+dG(y, u). Winkler [21] proved that
a bipartite graph is a partial cube if and only if Θ is transitive. Letting R∗ denote
the transitive closure of a relation R, Winkler’s result reads as follows: A connected
bipartite graph G is a partial cube if and only if Θ = Θ∗. Hence in partial cubes the
relation Θ is an equivalence relation on E(G), and the classes of the corresponding
partition will be called Θ-classes.

For a partial cube G its crossing graph G# was introduced in [15] as follows. The
vertices of G# are the Θ-classes of G, two vertices being adjacent if the respective
Θ-classes meet (or cross) on some cycle (that is, there is a cycle C that contains
edges of both Θ-classes). In fact, in the class of median graphs the same concept was
introduced earlier by Bandelt and Chepoi under the name incompatibility graph [1].

In this paper we address the problem of what can be said about the partial cube
G if G# = A ⊕ B, where A and B have at least one edge. Here A ⊕ B denotes the
join of graphs A and B, that is, the graph obtained from the disjoint union of A
and B by joining every vertex of A with every vertex of B by an edge. In the next
section we state important properties of the Cartesian product of graphs and median
graphs that are needed later. In section 3 we prove that for arbitrary graphs A and
B, where at least one of them contains an edge, there exists a Cartesian prime partial
cube G such that G# = A⊕B. Then we restrict our attention to median graphs and
prove that the crossing graph of a median graph G is the join of two graphs A and
B if and only if G is a Cartesian product graph. In due course we also characterize
partial cubes of radius 2 and observe that a partial cube contains no nontrivial convex
subgraph that meets all of its Θ-classes.

2. Cartesian products and median graphs. The Cartesian product G�H
of the graphs G and H is the graph with the vertex set V (G) × V (H) in which two
vertices (a, x) and (b, y) are adjacent whenever ab ∈ E(G) and x = y, or a = b and
xy ∈ E(H). The Cartesian product is associative and commutative with K1 as its
unit. It is easy to see that the Cartesian product of k copies of K2 is the hypercube
Qk. A graph G is called prime (with respect to the Cartesian product) if it cannot
be represented as the product of two nontrivial graphs; that is, G = G1 �G2 implies
that G1 or G2 is the one-vertex graph K1.

The well-known prime factorization theorem, proved by Sabidussi [19] and in-
dependently by Vizing [20], states that every connected graph has a unique prime
factor decomposition with respect to the Cartesian product. This decomposition can
be made explicit in the following way: Edges uv and uw are said to be in relation
τG, or τ for short, if u is the unique common neighbor of v and w. Feder [9] proved
(cf. also [11, Theorem 4.8] and [13]) that (Θ ∪ τ)∗ is the Cartesian product relation
of a connected graph. This actually means that the equivalence classes of the relation
(Θ∪τ)∗ determine the prime factor decomposition of a graph—every equivalence class
yields one factor of the decomposition. The following consequence of this theorem will
be useful for us.

Corollary 1. A connected graph G is prime if and only if (ΘG∪τG)∗ = E(G).

We will also need the following result (in a way part of the folklore) on the
Cartesian product; see [4].

Lemma 2. A subgraph C of the Cartesian product G1 � · · · �Gm of connected
graphs is convex if and only if C = p1(C) � · · · � pm(C), where pi(C) is convex in
Gi, 1 ≤ i ≤ m. (Here pi is the projection map from G onto Gi.)
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The most important subclass of partial cubes are median graphs. They have been
rediscovered several times, and a rich theory of these graphs and related structures has
been developed; cf. the survey [14]. The most common definition is the following: G is
a median graph if for every triple of vertices u, v, w ∈ V (G) : I(u, v)∩I(u,w)∩I(v, w)
consists of precisely one vertex (which is called the median of the triple u, v, w). One of
the most well-known characterizations of median graphs involves a certain expansion
procedure, a result due to Mulder [17]. (By the way, it inspired Chepoi [5] to prove a
similar characterization of partial cubes.) In this note we will make use of a variation
of the expansion procedure that involves peripheral subgraphs of a median graph [18];
see also [2].

Let G be a connected graph and G0 a convex subgraph. Then the peripheral
expansion of G is the graph G′ obtained as follows. Take the disjoint union of a copy
of G and a copy of G0. Join each vertex u in the copy of G0 with the vertex that
corresponds to u in the copy of G (actually in the subgraph G0 of G). We say that
the resulting graph G′ is obtained by a (peripheral) expansion from G along G0. We
also say that we expand G0 in G to obtain G′. Note that in a peripheral expansion
one new Θ-class appears. It is easy to prove that expanding a convex subgraph of a
median graph yields again a median graph. It is more surprising that the converse is
also true, as proved by Mulder in [18].

Theorem 3. A graph G is a median graph if and only if it can be obtained from
K1 by a sequence of peripheral expansions.

Hence each median graph contains a peripheral subgraph, that is, a subgraph H
whose vertices are all incident with a particular Θ-class F in G, such that H is a
connected component of G−F (the graph obtained from G by removal of edges from
F ). Even more is known [18], as stated in the following proposition.

Proposition 4. Let G be a median graph and F any Θ-class in G. Then both
connected components of G− F contain a peripheral subgraph of G.

It is easy to see that median graphs are closed under Cartesian multiplication
and that, conversely, if a median graph is not prime, all of the factors also must be
median graphs.

3. Partial cubes whose crossing graphs are joins. Crossing graphs of Carte-
sian products have a simple structure [15, Proposition 6.1].

Proposition 5. Let H and K be partial cubes. Then (H �K)# = H# ⊕K#.
Let A and B be graphs. Clearly, A ⊕ B is a complete bipartite graph if and

only if both A and B have no edges. In [15] it has also been proved that G# is a
complete bipartite graph if and only if G is the Cartesian product of two trees. In
this section we show, a bit surprisingly, that any other join of graphs can be realized
as the crossing graph of a partial cube that is prime with respect to the Cartesian
product.

Recall that the radius of a connected graph G is minu∈V (G) maxv∈V (G) dG(u, v)
and that G is called K2,3-free if it contains no induced subgraph isomorphic to K2,3.
Note that partial cubes are K2,3-free, as follows readily from the fact that Θ is not
transitive on K2,3.

For the main result of this section we first state the following lemma, which might
be of independent interest.

Lemma 6. Let G be a bipartite graph of radius 2. Then G is a partial cube if and
only if G is K2,3-free.

Proof. We only need to show that if G is bipartite of radius 2 and K2,3-free, then
G is a partial cube. Let u be a vertex that realizes the radius of G and let v1, . . . , vk be
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its neighbors. As G is bipartite, v1, . . . , vk is an independent set of G. Let w1, . . . , wr

be the remaining vertices of G; then they are all at distance 2 from u. Again, there
is no edge between wi and wj .

Note that a graph is a partial cube if and only if the graph obtained from it by
removing a pendant vertex is a partial cube. Hence we may without loss of generality
assume that G has no pendant vertex. Since G is K2,3-free, it follows that every
vertex wi is of degree 2. Moreover, no two vertices wi and wj , i �= j, have the same
pair of neighbors. Therefore every edge of the form wivj lies in precisely one square.

No two edges uvi and uvj , i �= j, are in relation Θ. We claim that G isometrically
embeds into Qk and construct edge-subsets E1, . . . , Ek of E(G) as follows. For i =
1, . . . , k put uvi in Ei. Consider an edge wivj and let wivjuv� be the unique square
containing this edge. Then wivj is in relation Θ with uv�. Put wivj ∈ E�. We claim
that E1, . . . , Ek form the Θ = Θ∗-classes of G.

Clearly, E1, . . . , Ek is a partition of E(G). Suppose wivj and wi′vj′ are two
distinct edges of E�. Note first that i �= i′, for otherwise wi would have three neighbors
at distance 1 from u; see Figure 1(i). The case j = j′ leads to another K2,3; see Figure
1(ii). Hence i �= i′ and j �= j′ and we have the situation as shown in Figure 1(iii).
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Fig. 1. Cases in the proof of Lemma 6.

Then wiv� ∈ E(G) and wi′v� ∈ E(G), which implies that wivj is in relation Θ
with wi′vj′ . Thus all pairs of edges from E� are in relation Θ. Now assume wivj ∈ E�

and wi′vj′ ∈ E�′ , where � �= �′. If i = i′ or j = j′, then clearly wivj and wi′vj′

are not in relation Θ. Next, if � = j′, then d(wi, wi′) + d(vj , vj′) = 2 + 2 is equal
to d(wi, vj′) + d(wi′ , vj) = 1 + 3; hence they are again not in relation Θ (the case
�′ = j is analogous). Otherwise we get d(wi, wi′) + d(vj , vj′) = 4 + 2 = 3 + 3 =
d(wi, vj′) + d(wi′ , vj). Hence we conclude that Θ = Θ∗ and thus G is a partial cube
by Winkler’s theorem.

Theorem 7. Let A and B be arbitrary graphs, where at least one of them contains
an edge. Then there exists a Cartesian prime partial cube G such that G# = A⊕B.

Proof. For a graph H let H̃ be the graph obtained from H by subdividing all
edges of H and adding a new vertex u joined to all the original vertices of H. (This
construction has been introduced in [12] to establish a connection between median

graphs and triangle-free graphs.) We claim that G = ˜A⊕B does the job.
Let V (A) = {a1, . . . , an} and V (B) = {b1, . . . , bm}, so that in G the vertex u

is adjacent to a1, . . . , an and to b1, . . . , bm. Let xij be the vertex of G obtained by
subdividing the edge aibj , 1 ≤ i ≤ n, 1 ≤ j ≤ m.

We first observe that G is a partial cube by Lemma 6. Let Ei be the Θ-classes of
G with the representative uai, 1 ≤ i ≤ n, and let Fi be the Θ-classes of G with the



30 BOŠTJAN BREŠAR AND SANDI KLAVŽAR

representative ubi, 1 ≤ i ≤ m. Consider the square uaixijbj to infer that Ei and Fj

cross. Similarly, Ei and Ej (resp., Fi and Fj) cross if and only if aiaj ∈ E(A) (resp.,
bibj ∈ E(B)). Hence G# = A⊕B.

It remains to show that G is prime with respect to the Cartesian product. Assume
without loss of generality that n ≥ 2 and that a1a2 ∈ E(A). Let ai, aj , i �= j, be
arbitrary vertices of A and bk a vertex of B. Then we have xikbk ∈ Ei and xjkbk ∈ Ej .
By the construction of G (recall that xik and xjk are of degree 2) we infer that
the edges xikbk and xjkbk are in relation τ . As i and j were arbitrary, it follows
that E1, . . . , En belong to the same equivalence class of (ΘG ∪ τG)∗. Analogously,
F1, . . . , Fm belong to the same equivalence class of (ΘG ∪ τG)∗. Let y be the vertex
of G obtained by subdividing the edge a1a2. Then we have a1y ∈ E2 and a1x11 ∈ F1.
Moreover, a1y is in relation τ with a1x11, which implies that (ΘG ∪ τG)∗ consists of
a single equivalence class. By Corollary 1 we conclude that G is a Cartesian prime
graph.

Other constructions that yield joins of graphs as crossing graphs can also be
obtained. Let A be a graph and let G be the graph that is obtained from Ã by
the Chepoi expansion (cf. [5]) with covering sets A and the star induced by u and
its neighbors. Then G is a partial cube with G# = K1 ⊕ A. This construction is
illustrated in Figure 2 for the case when A is the graph on four vertices and five
edges. The new Θ-class of G that yields the K1 in the join decomposition is denoted
with thick lines.

A

G

Fig. 2. Expanding Ã into G, so that G# = K1 ⊕A.

4. The case of median graphs. Crossing graphs of median graphs are easier
to study than those of general partial cubes, since if two Θ-classes of a median graph
cross on some cycle, then there exists a square in which they cross. This fact can be
easily seen by using the expansion procedure and induction.

In [15] it is proved that every graph is the crossing graph of some median graph.
However, it was erroneously mentioned that there are prime median graphs whose
crossing graphs are joins of two graphs. The graph presented in Figure 7.2 of [15] is a
Cartesian product graph, namely P3 �G, where G is the graph obtained from C4 and
another vertex joined to one of the vertices of C4. In this section we prove that the
above remark is indeed wrong by proving that a median graph whose crossing graph
is the join of two graphs is necessarily the Cartesian product of two graphs. Note
that this is in surprising contrast to the situation from the previous section. We will
need the following lemma that might be of independent interest. It follows from the
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Fig. 3. Case |A| = 1 in the proof of Theorem 9.

Convexity Lemma from [10], which asserts that an induced connected subgraph H of
a bipartite graph G is convex if and only if no edge with one endvertex in H and the
other not in H is in relation Θ to an edge in H.

Lemma 8. Let G be a partial cube and H a convex subgraph of G. If H intersects
all Θ-classes of G, then H = G.

Proof. Suppose H is a proper subgraph of G. Then, since H is convex and hence
induced, there exists an edge uv of G such that u ∈ H and v /∈ H. By the Convexity
Lemma, uv is in relation Θ to no edge of H. But then H does not intersect the Θ-class
of uv, a contradiction.

We can now state the main result of this section.
Theorem 9. Let G be a median graph. Then G# = A ⊕ B if and only if

G = H �K, where H# = A and K# = B.
Proof. By Proposition 5 one direction is proved: The crossing graph of the Carte-

sian product of median graphs is the join of the crossing graphs of the factors. Hence
it remains to prove the converse of this statement, for which we will use induction on
the number of Θ-classes of a median graph G. Clearly the smallest graph that is the
join of two graphs and the crossing graph of a median graph is K2. It is obvious that
the only median graph with exactly two Θ-classes that cross is C4, and C4 = K2 �K2,
providing the basis of the induction.

Assume the statement holds for median graphs with fewer than k Θ-classes. Let
G be a median graph with k Θ-classes and G# = A ⊕ B. By Theorem 3, G can
be obtained by the peripheral expansion from a median graph M along its convex
subgraph R. Denote by R′ the corresponding peripheral subgraph (isomorphic to R),
that is, R′ = G−M . As M has one Θ-class less than G, M# is an induced subgraph
of G#. More precisely M# = G# − u, where u corresponds to the peripheral Θ-class
E′ of G. Without loss of generality we may assume that u ∈ A.

Assume first that |A| = 1. By Proposition 4 both connected components of
G−E′ contain a peripheral subgraph. One component clearly induces the peripheral
subgraph R′. Let P be a peripheral subgraph in the other component of G − E′.
Denote by F the Θ-class such that P is a component of G − F and denote by v the
vertex of G# that corresponds to F (see Figure 3). If F �= E′, then F and E′ do not
cross, for otherwise P would lie in both components of G−E′. Hence, in G# vertices
u and v are not adjacent, which means that they must both be in A, but this is a
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contradiction with |A| = 1. The remaining case is E′ = F , which implies P = R.
Hence G = K2 �R, where R# = B.

Now, let |A| > 1. Then M# = (A − u) ⊕ B, and by the induction hypothesis,
M = U �K, where U# = A − u and K# = B. Note that Θ-classes of M consist of
Θ-classes of U and of Θ-classes of K. More precisely, if F is a Θ-class of U (resp., K),
then F × V (K) (resp., V (U)×F ) is a Θ-class of U �K; cf. [11, Lemma 4.3]. Denote
by u1, . . . , up the vertices of A−u that correspond to Θ-classes of U , and by v1, . . . , vr
the vertices of B that correspond to Θ-classes of K. By Lemma 2, R = U ′ �K ′, where
U ′ is a convex subgraph of U and K ′ is a convex subgraph of K.

Suppose K ′ is a proper subgraph of K. By Lemma 8 there exists a Θ-class of K
that does not intersect with R, and thus it does not cross with E′. This implies that
there is a vertex vi ∈ B which is not adjacent to u ∈ A, a contradiction. Hence K ′ = K
and R = U ′ �K, where U ′ is a convex subgraph of U . We deduce that G = H �K,
where H is the graph obtained from U by expanding U ′. Clearly H# = A and
K# = B, which completes the proof.
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[10] W. Imrich and S. Klavžar, A convexity lemma and expansion procedures for bipartite graphs,
European J. Combin., 19 (1998), pp. 677–685.
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Abstract. The correlation of graph characteristics, such as the number of independent vertex
or edge subsets, the number of connected subsets, or the sum of distances, which also play a role
in combinatorial chemistry, is studied by a generating function approach and asymptotic analysis.
It is shown how an asymptotic formula for the correlation coefficient can be obtained when simply
generated families of trees are investigated. For rooted ordered trees, the calculations are done
explicitly. Further feasible correlation measures are discussed.
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1. Introduction. In combinatorial chemistry, so-called topological indices are
used for the description of the structural properties of molecular graphs. Formally,
such an index is a map from the set of graphs into the real numbers (usually integer-
valued). Typically, for a fixed number of vertices, the trees of maximal and minimal
indices are the path and the star, respectively (or vice versa). A variety of graph-
theoretical indices has been proposed for this purpose, and their connection to the
physico-chemical properties of the corresponding molecules has been studied (cf. [19,
23]).

The isomer-discriminating power, a measure of the ability of an index to distin-
guish between isomeric compounds, has been considered in the paper [15], and there
is also a large amount of literature on extremal and asymptotic properties of various
indices; we refer to [3, 4, 11, 12, 16, 20, 22].

However, it seems that there is yet no theoretical result on the correlation between
the different indices. It should be quite natural to claim some strong correlation
between them, since they all reflect the structural properties of graphs in some way.
This paper tries to fill this gap a little by proposing and discussing measures for the
correlation of two indices.

The main part of this paper will deal with the asymptotic behavior of the classical
correlation coefficient given by

r(Xn, Yn) =
E(XnYn) − E(Xn)E(Yn)√

Var(Xn) Var(Yn)
.(1.1)

Here, Xn = X(Tn) and Yn = Y (Tn) are the X-index and Y -index of a tree Tn on n
vertices taken uniformly at random from some family of trees—for simplicity, we will
consider only rooted ordered trees in detail; however, the methods can be extended to
other families of simply generated trees (such as binary trees; cf. [4, 17]) quite easily.

The asymptotic behavior of the correlation coefficient will give us a measure of
the linear correlation of the indices X and Y . Other possible ways to define such
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a measure are discussed in the last section, but it seems that a similar asymptotic
analysis is not practicable in these cases.

The indices that will be taken into consideration are the following:
(1) The Merrifield–Simmons-index (or σ-index) is defined to be the number of

independent vertex subsets of a graph, i.e., the number of vertex subsets
in which no two vertices are adjacent, including the empty set. Merrifield
and Simmons investigated the σ-index in their work [19] and pointed out its
correlation to boiling points of molecules.

(2) The Hosoya-index (or Z-index) [8] is defined as the number of independent
edge subsets (also referred to as “matchings”), i.e., the number of edge subsets
in which no two edges are adjacent, again including the empty set.

(3) The number of subtrees is called the ρ-index in [19] and was discussed recently
in a paper of Székely and Wang [22].

(4) The Wiener-index is probably the most popular topological index (see [3, 4,
26]). It is defined as the sum of all the distances between pairs of vertices,
i.e.,

W (G) =
∑

v,w∈V (G)

dG(v, w).(1.2)

Section 2 will deal with the correlation of (1), (2), and (3). The Wiener-index has a
different growth structure than the other three, so we need a different approach, which
will be presented in section 3. Finally, we will take a look at some other statistical
measures in section 4.

2. σ-index, Z-index, and ρ-index. The method for determining the expected
values of these indices for rooted ordered trees on n vertices has been given in several
papers [11, 12, 13]. However, for the sake of completeness, it is repeated here. It
is well known that the generating function for the number of rooted ordered trees is
given by the functional equation

T (z) =
z

1 − T (z)
,(2.1)

which is an immediate consequence of the recursive structure of this family of trees.
Now, consider the σ-index, for instance. We want to determine the function

S(z) =
∑
T

σ(T )z|T |,

where the sum goes over all trees T , and |T | denotes the number of vertices. Now,
we distinguish between independent sets containing the root and those not containing
it and denote the corresponding quantities by σ1(T ), σ2(T ). If T1, . . . , Tk are the
branches of the rooted tree T , it is easy to see that the recursive relations

σ1(T ) =

k∏
i=1

σ2(Ti),

σ2(T ) =

k∏
i=1

(σ1(Ti) + σ2(Ti))

hold. These relations can be translated into equations for the corresponding gener-
ating functions: if S1(z) is the generating function for the number of subsets of the
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first type and S2(z) the generating function for the number of subsets of the second
type, we obtain

S1(z) =
∑
T

σ1(T )z|T |

=
∑
k≥0

∑
T1

∑
T2

. . .
∑
Tk

(
k∏

i=1

σ2(Ti)

)
z|T1|+···+|Tk|+1

= z
∑
k≥0

(∑
T

σ2(T )z|T |

)k

= z
∑
k≥0

S2(z)
k =

z

1 − S2(z)
,

(2.2)

and in exactly the same way,

S2(z) =
z

1 − S1(z) − S2(z)
.(2.3)

The asymptotic growth of the coefficients of functions satisfying algebraical equations
of this kind can be determined by a standard application of the Flajolet–Odlyzko sin-
gularity analysis, which is discussed in several papers, such as [1, 2, 5, 18] (sometimes,
one can even find exact expressions by means of Lagrange’s inversion formula; this is
the case for this example (see [11, 12]), but we won’t need the exact solution, which
can be given as a hypergeometric sum). However, the details can be intricate, as will
be explained in the following. Here, using (2.2) in (2.3) yields

S2(z) =
z

1 − z
1−S2(z)

− S2(z)

or

S2(z)
3 − 2S2(z)

2 + S2(z) − z = 0.

Bender [1] gives a general theorem dealing with functional equations of the type
F (z, w(z)) = 0. His theorem states that, given a minimal solution (with respect to
absolute value) (α, β) of the system

F (z, w) = 0, Fw(z, w) = 0,

which lies within the region of analyticity of F and satisfies Fz(α, β), Fww(α, β) �= 0,
the asymptotic behavior of the coefficients an of w(z) is determined by

an ∼

√
αFz(α, β)

2πFww(α, β)
n−3/2α−n.

However, there is a slight mistake in this theorem, as was pointed out by Canfield [2],
and the method might give erroneous results. The theorem holds only if α is indeed
the radius of convergence of w(z) and the only singularity on the circle of convergence.

In the present case, we know from [7, Thm. 12.2.1] (see also [2]) that a singularity
of an algebraic function w(z) given by a polynomial equation of the form

F (z, w) =
k∑

j=0

pk−j(z)w
j = 0
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is either a zero of p0(z) (here, there is no such zero) or given by a solution of the
system F (z, w) = 0, Fw(z, w) = 0.

Therefore, the common singularity z0 of S1(z), S2(z), and S(z) = S1(z) + S2(z)
nearest to the origin is given by the system of equations

F (s, z) = s3 − 2s2 + s− z = 0,

∂

∂s
F (s, z) = 3s2 − 4s + 1 = 0,

yielding z0 = 4
27 . Using the formula for the number of rooted ordered trees on n

vertices,

tn =
1

n

(
2n− 2

n− 1

)
∼ 1

4
√
π
n−3/24n,

it is easy now to find the asymptotics for the expected σ-index:

E(σn) ∼
√

3

(
27

16

)n−1

≈ (1.02640) · (1.6875)n.

Similarly, for the Z-index, we have

Z1(T ) =

k∑
j=1

Z2(Tj)

k∏
i=1
i�=j

(Z1(Ti) + Z2(Ti),

Z2(T ) =

k∏
i=1

(Z1(Ti) + Z2(Ti)),

where Z1(T ) and Z2(T ) denote the number of independent edge subsets containing
(resp., not containing) an edge incident to the root. From this, we obtain the equations

Z1(z) =
zZ2(z)

(1 − Z1(z) − Z2(z))2
,

Z2(z) =
z

1 − Z1(z) − Z2(z)

(2.4)

for the respective generating functions. This system gives us the asymptotic expression
for the average Z-index:

E(Zn) ∼

√
65 −

√
13

78

(
35 + 13

√
13

54

)n

≈ (0.88719) · (1.51615)n.

Finally, for the ρ-index,

ρ1(T ) =

k∏
i=1

(1 + ρ1(Ti)),

ρ2(T ) =

k∑
i=1

(ρ1(Ti) + ρ2(Ti)),
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where ρ1(T ) and ρ2(T ) denote the number of subtrees containing (resp., not contain-
ing) an edge incident to the root. Here, the system of equations for the corresponding
generating functions is

R1(z) =
z

1 −R1(z) − T (z)
,

R2(z) =
z

(1 − T (z))2
(R1(z) + R2(z)),

(2.5)

yielding

E(ρn) ∼ 16

3
√

15

(
25

16

)n

≈ (1.37706) · (1.5625)n.

All these results have already been given in a paper of Klazar [13]. Now, to find the
covariances, one needs four generating functions connected by a system of equations.
For the covariance of the σ-index and Z-index, for example, we take SZ11, . . . ,SZ22

to be the generating functions for the product of the number of independent vertex
subsets and independent edge subsets such that the root is contained in

• the vertex and the edge subset;
• the vertex, but not the edge subset;
• the edge, but not the vertex subset;
• neither,

respectively. The functional equations can be seen to be a combination of those for
S1 and S2 (resp., Z1 and Z2):

SZ11(z) =
z SZ22(z)

(1 − SZ21(z) − SZ22(z))2
,

SZ12(z) =
z

1 − SZ21(z) − SZ22(z)
,

SZ21(z) =
z(SZ12(z) + SZ22(z))

(1 − SZ11(z) − SZ12(z) − SZ21(z) − SZ22(z))2
,

SZ22(z) =
z

1 − SZ11(z) − SZ12(z) − SZ21(z) − SZ22(z)
.

(2.6)

For instance, the functional equation for SZ11 is derived as follows:

SZ11(z) =
∑
T

σ1(T )Z1(T )z|T |

=
∑
k≥0

k∑
j=1

∑
T1

∑
T2

. . .
∑
Tk

⎛
⎝σ2(Tj)Z2(Tj)

∏
i �=j

σ2(Ti)(Z1(Ti) + Z2(Ti))

⎞
⎠

· z|T1|+···+|Tk|+1

= z
∑
k≥0

k SZ22(z)(SZ21(z) + SZ22(z))
k−1

=
z SZ22(z)

(1 − SZ21(z) − SZ22(z))2
.

Since all the functional equations can be written in polynomial form, it is possible to
employ the method of Gröbner bases (cf. [6]) and a computer algebra package, such
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as Mathematica (for details, see [24]), to obtain a single polynomial equation from
the system. In this case, we find that s = SZ22(z) satisfies the polynomial equation

F (z, s) = s10 + 2zs8 − 3zs7 + z2s6 − 4z2s5 + 3z2s4 − z3s3 + 2z3s2 − z3s + z4 = 0.

Since SZ(z) = SZ11(z) + SZ12(z) + SZ21(z) + SZ22(z) = 1 − z
SZ22(z)

, the smallest

singularity of SZ is either a singularity of SZ22 or a zero of SZ22. However, from the
functional equation we know that SZ22 has only one zero at z = 0, where the zero
cancels out with the numerator. Therefore, we have only to find the smallest singu-
larity of SZ22 to apply Bender’s theorem. Fortunately, things are still comparatively
simple since we can bound the range of the singularity by an a priori estimate.

Again, the leading coefficient of the polynomial equation is 1, so it has no ze-
roes. Therefore, the dominating singularity is a solution of the system F (z, w) = 0,
Fw(z, w) = 0 again. The solutions of this system can be found by the method of
Gröbner bases as well—it turns out that a singularity z0 of SZ must be a solution of

5038848z4 − 221833728z3 + 5017360096z2 + 3451610880z − 387420489 = 0.

Now we note that, for trivial reasons, 1 ≤ σ(T ), Z(T ), ρ(T ) ≤ 2|T | for all trees T .
This shows that the coefficients cn of SZ are bounded by

1

n

(
2n− 2

n− 1

)
≤ cn ≤ 1

n

(
2n− 2

n− 1

)
· 4n,

so the radius of convergence of SZ lies in the interval
[

1
16 ,

1
4

]
. Thus we have only

to search for a solution whose absolute value lies within this interval. There is only
one such solution in this case, which is given by z0 ≈ 0.0982673. Expanding SZ22

and SZ around this singularity and applying Bender’s formula yields an asymptotic
expression for the expected product of the σ-index and Z-index:

E(σnZn) ∼ (0.92565) · (2.54408)n.

Of course, the same reasoning can also be used to determine the other expected values
E(σnρn) and E(Znρn), as well as the variances of all our random variables. All details
(which are mostly analogous to the example) are given in [24]. Therefore, we list all
the asymptotics only in Table 2.1.

Table 2.1

Asymptotic formulas for expected values and variances.

E(σn)
√

3
(

27
16

)n−1 ∼ (1.02640) · (1.6875)n

E(Zn)

√
65−

√
13

78

(
35+13

√
13

54

)n

∼ (0.88719) · (1.51615)n

E(ρn) 16

3
√

15

(
25
16

)n ∼ (1.37706) · (1.5625)n

E(σnZn) (0.92565) · (2.54408)n

E(σnρn) (1.36653) · (2.66477)n

E(Znρn) 1
116

√
5(128985+57683

√
5)

58
·
(
8(7 − 3

√
5)
)n ∼ (1.28557) · (2.33437)n

Var(σn) (1.03802) · (2.86096)n

Var(Zn) (0.77227) · (2.31549)n

Var(ρn) 64
√

14
147

·
(

81
32

)n ∼ (1.79509) · (2.53125)n
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Now we can turn to the correlation coefficients. We see that

r(σn, Zn) ∼ (−1.01706) · (0.99405)n,

r(σn, ρn) ∼ (1.05088) · (0.99023)n,

r(Zn, ρn) ∼ (−1.08924) · (0.97853)n

and conclude that the σ-index and ρ-index are positively correlated, whereas they are
both negatively correlated to the Z-index. The correlation coefficient tends to zero as
n → ∞, but very slowly. The constant factor as well as the basis of the exponential
term can be used as a measure for the correlation. So we may claim that the closest
correlation of the three is between the σ-index and the Z-index.

3. Correlation to the Wiener-index. The Wiener-index has a different re-
cursive structure than the indices discussed in the preceding chapter, and its growth
is not exponential. Entringer et al. [4] were able to show that the average Wiener-
index is asymptotically K · n5/2 for a simply generated family of trees, where K is a
constant depending on the specific family. For rooted ordered trees, the constant K

is
√
π

4 . We repeat the argument of [4] here since it will be needed for the computation
of the covariances.

We are first going to consider an auxiliary value, D(T ), denoting the sum of the
distances of all vertices from the root. This is also known as the total height [21] or
internal path length [9] of the tree T . Then, we set

D(z) :=
∑
T

D(T )z|T |,

where the sum again runs over all rooted ordered trees T . The value D(T ) can be
calculated recursively from the branches of T : in fact, if T1, . . . , Tk are the branches
of T , we have

D(T ) =

k∑
i=1

D(Ti) + |T | − 1,(3.1)

where |T | is the size (number of vertices) of T . In terms of D(z), this gives

D(z) =
∑
T

D(T )z|T |

=
∑
k≥0

k∑
i=1

∑
T1

∑
T2

. . .
∑
Tk

D(Ti)z
|T1|+···+|Tk|+1 +

∑
T

(|T | − 1)z|T |

= z
∑
k≥0

kD(z)T (z)k−1 + zT ′(z) − T (z)

=
zD(z)

(1 − T (z))2
+ zT ′(z) − T (z).

(3.2)

Now, the Wiener-index of a tree can also be determined recursively from its branches:

W (T ) = D(T ) +

k∑
i=1

W (Ti) +
∑
i �=j

(
D(Ti) + |Ti|

)
|Tj |,(3.3)

where the last sum goes over all k(k − 1) pairs of different branches. Thus, if

W (z) :=
∑
T

W (T )z|T |,
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we have

W (z) = D(z) +
zW (z)

(1 − T (z))2
+

2z2T ′(z)(D(z) + zT ′(z))

(1 − T (z))3
.(3.4)

It turns out that W (z) = z2

(1−4z)2 , giving an average Wiener-index of asymptoti-

cally
√
π

4 n5/2. Now, we introduce various generating functions for the correlation of
D(T ),W (T ), and σ(T ): let DS1,DS2,WS1, and WS2 be the generating functions for
the product of D(T ) (resp., W (T )) with the number of independent vertex subsets
containing (resp., not containing) the root. In analogy to the functional equations for
D(z) and W (z), we obtain a system of linear equations—for example, we have

DS1(z) =
∑
T

D(T )σ1(T )z|T |

=
∑
k≥0

∑
T1

. . .
∑
Tk

⎛
⎝ k∑

i=1

D(Ti)

k∏
j=1

σ2(Tj)

⎞
⎠ z|T1|+···+|Tk|+1

+
∑
T

(|T | − 1)σ1(T )z|T |

=
∑
k≥0

∑
T1

. . .
∑
Tk

⎛
⎝ k∑

i=1

D(Ti)σ2(Ti)
∏
j �=i

σ2(Tj)

⎞
⎠ z|T1|+···+|Tk|+1

+ zS′
1(z) − S1(z)

= z
∑
k≥0

kDS2(z)S2(z)
k−1 + zS′

1(z) − S1(z)

=
z DS2(z)

(1 − S2(z))2
+ zS′

1(z) − S1(z).

Altogether, we obtain

DS1(z) =
z DS2(z)

(1 − S2(z))2
+ zS′

1(z) − S1(z),

DS2(z) =
z(DS1(z) + DS2(z))

(1 − S1(z) − S2(z))2
+ zS′

2(z) − S2(z),

WS1(z) = DS1(z) +
z WS2(z)

(1 − S2(z))2
+

2z2S′
2(z)(DS2(z) + zS′

2(z))

(1 − S2(z))3
,

WS2(z) = DS2(z) +
z(WS1(z) + WS2(z))

(1 − S1(z) − S2(z))2

+
2z(zS′

1(z) + zS′
2(z))(DS1(z) + DS2(z) + zS′

1(z) + zS′
2(z))

(1 − S1(z) − S2(z))3
.

(3.5)

We solve this system for WS1 and WS2 (which can be done explicitly in terms of S1

and S2 since the system is linear) and write the total generating function WS(z) =
WS1(z) + WS2(z) in terms of S1, S2, S

′
1, S

′
2. Then we make use of the functional

equations for S1 and S2 and replace S1(z) with z
1−S2(z)

. Implicit differentiation of the

equation S2(z)
3 − 2S2(z)

2 + S2(z) − z = 0 yields

S′
2(z) =

1

3S2(z)2 − 4S2(z) + 1
,
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so WS can be written in terms of only S2 and z. In fact, we have

WS(z) =
N

(1 − 3S2(z))2(1 − S2(z))3(S2(z)2 + S2(z)3 − z)2
,

where N is a polynomial in S2 and z. The denominator vanishes only at 0 and at the
dominating singularity 4

27 of S2. Therefore, we have only to expand WS around 4
27 :

WS(z) ∼ 5

81
(
1 − 27z

4

)2 ,
which once again gives us the expected value E(Wnσn) by means of the Flajolet–
Odlyzko singularity analysis [5]:

E(Wnσn) ∼ 20
√
π

81
n5/2

(
27

16

)n

.

It was shown by Janson [9] that the variance of the Wiener-index for rooted ordered
trees is given asymptotically by

Var(Wn) ∼ 16 − 5π

80
n5,

and thus the correlation coefficient of Wn and σn is

r(Wn, σn) ∼ (−0.27891) · (0.99767)n.

Similarly, we obtain

r(Wn, Zn) ∼ (0.40351) · (0.99637)n,

r(Wn, ρn) ∼ (−1.78357) · (0.98209)n.

Again, the calculational details are given in [24].

4. Some numerical values and their interpretation. We have seen that in
all the considered cases, the correlation coefficient was asymptotically of the form

α · βn

for some constants α and β. The significance of these constants can be roughly
described as follows:

• A large value of α usually means a higher correlation for trees with few
vertices.

• A large value of β means that the correlation decreases very slowly—thus, it
is a measure of the correlation of the indices when the number of vertices is
large.

When the pairwise correlation of σ, Z, and ρ was considered, β depended on the
growth of both indices. If the correlation was negative in these cases (which it was,
except for the correlation of the σ-index and ρ-index), the exact asymptotics of the
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Table 4.1

E(XnYn) and E(Xn)E(Yn) separated.

Indices
E(XnYn)√

Var(Xn) Var(Yn)

E(Xn)E(Yn)√
Var(Xn) Var(Yn)

E(XnYn)
E(Xn)E(Yn)

σ – Z (1.03386) · (0.988448)n (1.01706) · (0.99405)n (1.01652) · (0.99436)n

σ – ρ (1.05088) · (0.99023)n (1.08694) · (0.97981)n (0.96683) · (1.01064)n

Z – ρ (1.14617) · (0.96423)n (1.08924) · (0.97853)n (1.05227) · (0.98539)n

σ – W (7.10957) · (0.99767)n (7.38848) · (0.99767)n 0.96225

Z – W (7.80764) · (0.99637)n (7.40413) · (0.99637)n 1.05450

ρ – W (6.12924) · (0.98209)n (7.91281) · (0.98209)n 0.77460

Table 4.2

Correlation coefficients for rooted ordered trees, n ≤ 25.

n r(σn, Zn) r(σn, ρn) r(Zn, ρn) r(σn,Wn) r(Zn,Wn) r(ρn,Wn)

4 -1.000000 1.000000 -1.000000 -1.000000 1.000000 -1.000000

5 -0.991189 0.971494 -0.994334 -0.923381 0.966092 -0.988064

6 -0.970054 0.947369 -0.955649 -0.870581 0.918482 -0.977131

7 -0.959741 0.926080 -0.926321 -0.829908 0.883867 -0.966673

8 -0.950801 0.907123 -0.898558 -0.796570 0.853248 -0.956356

9 -0.943296 0.890225 -0.873371 -0.768197 0.826459 -0.945962

10 -0.936479 0.875159 -0.850213 -0.743446 0.802492 -0.935353

11 -0.930116 0.861703 -0.828817 -0.721477 0.780828 -0.924449

12 -0.924048 0.849641 -0.808906 -0.701723 0.761060 -0.913214

13 -0.918187 0.838772 -0.790246 -0.683782 0.742891 -0.901641

14 -0.912479 0.828909 -0.772640 -0.667357 0.726088 -0.889750

15 -0.906888 0.819890 -0.755923 -0.652218 0.710467 -0.877574

20 -0.880077 0.783214 -0.681768 -0.590624 0.645700 -0.814057

25 -0.854498 0.753917 -0.617683 -0.544547 0.596088 -0.750155

expected value of their product would be redundant for the asymptotics of the corre-
lation coefficient. So, in order to exploit this piece of information as well, one should
separately consider normalized values of the form

E(XnYn)√
Var(Xn) Var(Yn)

and
E(Xn)E(Yn)√

Var(Xn) Var(Yn)
,

where Xn and Yn are the X-index and Y -index, respectively, of random trees.
Further problems arise in the study of the Wiener-index. Since the Wiener-index

grows only polynomially, β depends only on the expected value and variance of the
second index. Again, one should also consider separately the coefficients given above.
We have seen that they are of the same asymptotic order except from the constant
factors, so one might use their quotient as a correlation measure as well. Table 4.1
gives the asymptotic behavior of these coefficients and their quotient. In any case, our
approach will yield us only quantitative correlation measures; qualitative information
on the correlation structure is not provided.

One can calculate the exact correlation coefficients for small values of n quite
easily from the functional equations. In Table 4.2, some numerical examples are
given; note that the correlation coefficient makes sense only for n ≥ 4: for n ≤ 3, all
trees are isomorphic.
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Fig. 4.1. Top, left to right: σ- and Z-index, σ- and ρ-index. Middle, left to right: Z- and
ρ-index, σ- and Wiener-index. Bottom, left to right: Z- and Wiener-index, ρ- and Wiener-index.

We see that the correlation coefficient between the σ-index and Z-index is largest
among those investigated in section 2. Likewise, the correlation to the Wiener-index
is highest for the ρ-index. This observation agrees with the asymptotic results of the
preceding sections. The plots in Figure 4.1 suggest that the correlation is in fact
very strong in both cases (much stronger than for the other pairs, which is quite
remarkable), but not entirely linear, which is clear from the exponential growth of
the σ-index, Z-index, and ρ-index (this phenomenon will be discussed in detail in the
following section). The plots show the values of all trees with 12 vertices.

5. Other correlation measures. Unfortunately, there are some drawbacks in
our approach. Apart from the obvious fact that asymptotic correlations might hold
only for a considerably large number of vertices, the correlation coefficient principally
measures linear dependence. But since the σ-, Z-, and ρ- indices grow exponentially
with different growth rates, the dependence cannot be completely linear. Thus, it
might be reasonable to instead study the correlation of their logarithms. The problem
with that approach is the fact that generating function methods as presented in this
paper will no longer be applicable. The corresponding plot for the correlation of
log σn and logZn (the random variables are rescaled in such a way that they are of
equal order now!) suggests that it is reasonable to use a logarithmic transformation—
it shows an almost linear correspondence (Figure 5.1). This suggests that a sharp
inequality of the form

fn(σ(T )) ≤ Z(T ) ≤ gn(σ(T ))(5.1)
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Fig. 5.1. σ- and Z-index after logarithmic transformation.

should hold for all trees T on n vertices, where fn(x), gn(x) behave like negative
powers of x, i.e., fn(x) ∼ a1(n)x−c1 , gn(x) ∼ a2(n)x−c2 . However, it is not difficult
to construct discordant pairs of trees, i.e., two trees T1, T2 such that Z(T1) > Z(T2)
and σ(T1) > σ(T2).

This leads us to an alternative method of measuring correlation: the use of rank
statistics (cf. [10, 14]). Given two indices X and Y, we assign ranks xi and yi to all
trees T1, . . . , Ts on n vertices such that xi and yi range from 1 to s and such that
xi < xj if X(Ti) < X(Tj) (resp., yi < yj if Y (Ti) < Y (Tj)). Then, a correlation
measure is given by Spearman’s ρ,

ρS(Xn, Yn) = 1 − 6
∑s

i=1(xi − yi)
2

s3 − s
,(5.2)

which ranges from −1 (perfect negative correlation) to 1 (perfect positive correlation).
Unfortunately, even though rank statistics are an interesting means of measuring the
statistical dependence of random variables, it seems virtually impossible to apply
them to our problem, since generating function methods are not applicable in the
treatment of ranks. It seems that rank statistics can be applied to our problem only
if the number of vertices is considerably small, so that everything can be calculated
explicitly.

Another problem with rank statistics is the occurrence of ties—all the random
variables under consideration are discrete, and the number of trees grows larger than
the maximal index in all our cases, so ties (i.e., several nonisomorphic trees of the
same index) are inevitable. There are statistical methods for coping with this problem
(cf. [10, 14]); usually, if ties occur, the average rank is allotted to all tied elements.
This method is used in the examples at the end of this section.

The problem of ties leads us to our final remark. The methods of this paper easily
generalize to all simply generated families of trees. However, one would like to apply
them to unordered rooted trees or trees (so one can take isomorphisms into account).
This should be doable (in essentially the same way as in [25]), but it certainly requires
very lengthy calculations.

In Table 5.1, correlation coefficients for trees with ≤ 14 vertices are given. If we
compare them to the values of Table 4.2, we see that the correlation coefficients for
rooted ordered trees provide suitable estimates.

Finally, we examine the rank correlation. Table 5.2 shows the numerical values
of Spearman’s ρ for all trees with ≤ 14 vertices.

Again, we observe the striking correspondence between the σ-index and Z-index
(resp., ρ-index and Wiener-index). It seems to be a challenging graph-theoretical
problem to explain this phenomenon.
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Table 5.1

Correlation coefficients for trees, n ≤ 14.

n r(σn, Zn) r(σn, ρn) r(Zn, ρn) r(σn,Wn) r(Zn,Wn) r(ρn,Wn)

4 -1.000000 1.000000 -1.000000 -1.000000 1.000000 -1.000000

5 -0.995871 0.986241 -0.997176 -0.960769 0.981981 -0.993399

6 -0.977051 0.969611 -0.982970 -0.901473 0.953231 -0.977255

7 -0.955329 0.959254 -0.943865 -0.863896 0.911843 -0.959471

8 -0.930868 0.947142 -0.918181 -0.819996 0.886845 -0.940935

9 -0.908594 0.932074 -0.869200 -0.778345 0.841803 -0.91815

10 -0.890714 0.920543 -0.836300 -0.748034 0.816189 -0.899454

11 -0.877343 0.903475 -0.797497 -0.714065 0.782806 -0.879018

12 -0.869047 0.889422 -0.767693 -0.689129 0.758290 -0.860836

13 -0.862946 0.872456 -0.739304 -0.663493 0.732342 -0.843721

14 -0.859211 0.857532 -0.715078 -0.642464 0.710476 -0.827013

Table 5.2

Spearman’s ρ for n ≤ 14.

n ρS(σn, Zn) ρS(σn, ρn) ρS(Zn, ρn) ρS(σn,Wn) ρS(Zn,Wn) ρS(ρn,Wn)

4 -1.000000 1.000000 -1.000000 -1.000000 1.000000 -1.000000

5 -1.000000 1.000000 -1.000000 -1.000000 1.000000 -1.000000

6 -1.000000 0.942857 -0.942857 -0.942857 0.942857 -1.000000

7 -1.000000 0.918182 -0.918182 -0.877273 0.886364 -0.986364

8 -0.994071 0.881670 -0.876729 -0.867836 0.870800 -0.996789

9 -0.996126 0.854591 -0.852798 -0.805273 0.809349 -0.990171

10 -0.997048 0.832577 -0.834320 -0.774514 0.777381 -0.992314

11 -0.997392 0.811737 -0.814267 -0.746093 0.749423 -0.990921

12 -0.997471 0.796388 -0.801514 -0.724382 0.729450 -0.990146

13 -0.997421 0.781437 -0.787808 -0.697123 0.703244 -0.987169

14 -0.997383 0.770002 -0.777472 -0.675956 0.682617 -0.984820
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THE SPECTRUM OF THE CORONA OF TWO GRAPHS∗

S. BARIK† , S. PATI‡ , AND B. K. SARMA†

Abstract. We consider only simple graphs. Given two graphs G with vertices 1, . . . , n and H,
the corona G ◦ H is defined as the graph obtained by taking n copies of H and for each i inserting
edges between the ith vertex of G and each vertex of the ith copy of H. For a connected graph G
and any r-regular graph H we provide complete information about the spectrum of G ◦H using the
spectrum of G and spectrum of H. Complete information about the Laplacian spectrum of G ◦ H
is also provided even when H is not regular. A graph G is said to have the property (R) if 1

λ
is an

eigenvalue of G whenever λ is an eigenvalue of G. Further, if λ and 1
λ

have the same multiplicity,
for each eigenvalue λ, then it is said to have the property (SR). We characterize all trees with
property (SR) and show that such a tree is the corona product of some tree and an isolated vertex.
We supply a family of bipartite graphs with property (R). As an application we construct infinitely
many pairs of nonisomorphic graphs with the same spectrum and the same Laplacian spectrum. We
prove some results about the eigenvector related to the second smallest eigenvalue of the Laplacian
matrix of G ◦H and give an application.

Key words. adjacency matrix, Laplacian matrix, property (R), property (SR), corona

AMS subject classifications. 05C05, 05C50, 15A18

DOI. 10.1137/050624029

1. Introduction. Throughout this article we consider only simple graphs. Let
G = (V,E) be a graph with vertex set V = {1, 2, . . . , n}. The adjacency matrix of G,
denoted by A(G), is defined as A(G) = [aij ]n, where

aij =

{
1 if i and j are adjacent in G,
0 otherwise.

The spectrum of G is defined throughout as

σ(G) = (λ1(G), λ2(G), . . . , λn(G)),

where λ1(G) ≤ λ2(G) ≤ · · · ≤ λn(G) are the eigenvalues of A(G). The largest
eigenvalue of A(G) is called the spectral radius of G and is denoted by ρ(G). If G is
connected, then A(G) is irreducible, thus the spectral radius of G is of multiplicity
one and is afforded by a positive eigenvector called the Perron vector. A graph G is
said to be singular if A(G) is singular.

It is well known [4] that a graph G is bipartite if and only if the negative of
each eigenvalue of G is also an eigenvalue of G. Let us say that a graph G has
property (R)1 if 1

λ is an eigenvalue of G whenever λ is an eigenvalue of G. Further, if
λ and 1

λ have the same multiplicity for each eigenvalue λ, then we say that the graph
has property (SR).2
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1(R) for reciprocal.
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In section 2, we supply a class of graphs satisfying property (R), using the corona
of a bipartite graph and a single vertex. We characterize the trees satisfying prop-
erty (SR). We show that this is the class of trees on 2n vertices with n matchings
which are leaves. We refer to such trees as corona trees. We supply suitable examples
to show that a graph with property (R) is not necessarily the corona of two graphs
and not necessarily bipartite.

The Laplacian matrix of G, denoted by L(G) is defined as D(G) − A(G), where
D(G) is the diagonal degree matrix of G. The Laplacian spectrum of G is defined as

S(G) = (γ1(G), γ2(G), . . . , γn(G)),

where γ1(G) ≤ γ2(G) ≤ · · · ≤ γn(G) are the eigenvalues of L(G). For any graph
G, γ1(G) = 0 afforded by the all ones eigenvector 11. It is well known that L(G)
is a positive semidefinite matrix and there is extensive literature available on works
related to Laplacian matrices. We refer the interested reader to a survey article [13]
and the references therein to know more. Fiedler [5] showed that the second smallest
eigenvalue of L(G) is 0 if and only if the graph is disconnected. Thus the second
smallest eigenvalue of L(G) is popularly known as the algebraic connectivity of G and
is denoted by a(G). The eigenvectors corresponding to a(G) are called Fiedler vectors
of the graph G.

In section 3, we give a complete description of the spectrum of G ◦H using the
spectrum of G and the spectrum of H when H is r-regular. We also give a complete
description of the Laplacian spectrum of G ◦ H (here H is not necessarily regular).
As an application we show how to construct infinitely many pairs of nonisomorphic
graphs which have the same spectrum and same Laplacian spectrum. We study the
algebraic connectivity and the characteristic set of the corona of graphs and prove
some structural results. An application is indicated.

The complete graph of order n is denoted by Kn and the star graph of order n
is denoted by K1,n−1. Let R = [rij ], S be matrices. Then the Kronecker product of
R and S is defined to be the partitioned matrix [rijS] and is denoted by R⊗ S. The
vector with ith entry equal to one and all other entries zero is denoted by ei.

Definition 1.1 (see [9]). Let G1 and G2 be two graphs on disjoint sets of n and
m vertices, respectively. The corona G1 ◦ G2 of G1 and G2 is defined as the graph
obtained by taking one copy of G1 and n copies of G2, and then joining the ith vertex
of G1 to every vertex in the ith copy of G2.

Note that the corona G1 ◦G2 has n(m+1) vertices and |E(G1)|+n(|E(G2)|+m)
edges. There has been some research on the corona of two graphs; see, for example,
[7].

Example 1.2. Let G1 = C4, the cycle of order 4 and G2 = K2. The two different
coronas G1 ◦G2 and G2 ◦G1 are shown in Figure 1.1.

G2 ◦G1

G1 G2

G1 ◦G2

Fig. 1.1. Coronas of two graphs.
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We close this section by citing some well known results which will be used later.
The results can be found in [3, 4].

Lemma 1.3. Let P (x) = xn + C1x
n−1 + C2x

n−2 + · · · + Cn−2x
2 + Cn−1x + Cn

be the characteristic polynomial of a tree T on n vertices. Then C2i+1 = 0, and

C2i = (−1)i(the number of pairwise disjoint edge subsets of size i).

Lemma 1.4. Let T be a tree with vertex set {1, 2, . . . , n}. If two or more pendant
vertices have a common neighbor, then T is singular.

Lemma 1.5. A graph G with diameter d has at least d + 1 distinct eigenvalues.

2. Trees with property (SR). In this section we first investigate graphs with
property (R). The first examples are paths P2 and P4. For P2 the eigenvalues are
1,−1, where as for P4 the eigenvalues are

1 ±
√

5

2
,
−1 ±

√
5

2
.

A careful examination of P4 leads us to the following result.
Lemma 2.1. Let G1 be any graph and G be obtained by adding a new pendant to

every vertex of G1. Then λ is an eigenvalue of G if and only if −1
λ is an eigenvalue

of G. Further, if G1 is bipartite, then G has property (R).
Proof. Let G1 be on n vertices. It is clear that G = G1 ◦K1. Thus

A(G) =

[
A(G1) In
In 0

]
.

Let μ1, . . . , μn be the eigenvalues of A(G1) corresponding to the eigenvectors x1, . . . ,
xn, respectively, where the set {x1, . . . , xn} is orthonormal. Then the vectors[

x1
2

μ1+
√

μ2
1+4

x1

]
,

[
x1
2

μ1−
√

μ2
1+4

x1

]
, . . . ,

[
xn
2

μn+
√

μ2
n+4

xn

]
,

[
xn
2

μn−
√

μ2
n+4

xn

]

are all eigenvectors of A(G) corresponding to the eigenvalues

μ1 +
√
μ2

1 + 4

2
,
μ1 −

√
μ2

1 + 4

2
, . . . ,

μn +
√
μ2
n + 4

2
,
μn −

√
μ2
n + 4

2
,

respectively.

We observe that
μi +

√
μ2
i + 4

2

μi −
√
μ2
i + 4

2
= −1 and the first conclusion fol-

lows. Note that if G1 is bipartite, then G is bipartite. Thus if λ ∈ σ(G), then by the
above −1

λ ∈ σ(G) and as G is bipartite 1
λ ∈ σ(G).

The following is an immediate corollary.
Corollary 2.2. Let G = G1 ◦K1. Then

(a) G is nonsingular and the determinant of A(G) = (−1)n, where n is the number
of vertices in G1.

(b) There are n positive and n negative eigenvalues of G. If λi are the positive

eigenvalues of G, then

n∑
i=1

λi =

n∑
i=1

1

λi
.

(c) ρ(G) =
ρ(G1) +

√
ρ(G1)2 + 4

2
, where ρ(H) is the spectral radius of a graph H.
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G H

Fig. 2.1. Graphs with property (R) which are not corona of two graphs.

It is natural to ask whether the converse of Lemma 2.1 is true, that is, if G is
any graph which has property (R), is it necessarily the corona of a bipartite graph
and K1? The answer is in the negative, in general, as can be seen from the following
example.

Example 2.3. The graphs G,H in Figure 2.1 satisfy property (R). The eigen-
values of the graph on the left are 1,−1,±1 +

√
2,±1 −

√
2. The eigenvalues of the

graph on the right are

1, 1,
−3 ±

√
5

2
,
1 +

√
33 +

√
18 + 2

√
33

4
,
1 +

√
33 −

√
18 + 2

√
33

4
,

1 −
√

33 +
√

18 − 2
√

33

4
,
1 −

√
33 −

√
18 − 2

√
33

4
.

We can argue that G is not the corona of two graphs. Suppose that G = G1 ◦G2.
Thus 6 = |G| = (|G2| + 1)|G1|, where |G| means the number of vertices of G. Note
that |G1| cannot be 1 because in that case G would have a vertex of degree 5 and
|G1| �= 6, otherwise G2 has to be empty. If |G1| = 2, then |G2| = 2 and thus G1 ◦G2

cannot have a 6-cycle. If |G1| = 3, then |G2| = 1 in which case G1 ◦G2 should have
3 pendants. One can argue in a similar way that H is not a corona of two graphs.

Thus we have two immediate questions.
1. Characterize the trees with property (R).
2. Characterize the trees with property (SR).

In this section we supply an answer to question 2.
It turns out that any tree with property (SR) is of the form T ◦K1, for some tree

T . Before we prove that we need the following observation.
Lemma 2.4. Let G be a graph on n vertices with property (SR) and P (x) be the

characteristic polynomial of A(G). Then |Cr| = |Cn−r|, where Cr is the coefficient of
xn−r in P (x).

Proof. Since G satisfies property (SR), G is nonsingular. Moreover P (x) and

xnP
( 1

x

)
have the same roots. Since P (x) is monic and the leading coefficient of

xnP
( 1

x

)
is ±1, it follows that P (x) = ±xnP

( 1

x

)
and the conclusion follows.

The following is the main result of this section.
Theorem 2.5. Let T be a tree on n vertices. Then T has property (SR) if and

only if T = T1 ◦K1, for some tree T1.
Proof. We prove the only if part here. Let T have property (SR). Then n = 2k,

for some k. If k = 1, 2, then the only nonsingular trees of size 2k are the paths which
are K1 ◦K1, K2 ◦K1. Assume that k ≥ 3. Further, T has a perfect matching. Let
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u1

v1

u2

v2

u3

v3

u4

v4

uk

vk

Fig. 2.2.

M = {fi = uivi, i = 1, . . . , k} be those edges of T (see Figure 2.2). Note here that if
we put back the remaining k − 1 edges we get Figure 2.2.

We claim that for each edge fi at least one of ui, vi is of degree 1 in T . Suppose
this is not the case. Thus there is an edge, say f2, such that u2, v2 both have degrees
greater than 1, say u1u2, v2v3 are present.

Let

P (x) = x2k + C1x
2k−1 + C2x

2k−2 + · · · + C2k−2x
2 + C2k−1x + C2k

be the characteristic polynomial of the tree T . By Lemma 2.4, |C2| = |C2k−2|.
But by Lemma 1.3, |C2| = the number of edges in T = 2k − 1 and |C2k−2| = the

number of pairwise disjoint edge subsets of size k − 1. Hence the number of pairwise
disjoint edge subsets of size k − 1 is 2k − 1.

There are k pairwise edge disjoint subsets of size k − 1 of T of the form

{f1, . . . , fk} \ {f1}, {f1, . . . , fk} \ {f2}, . . . , {f1, . . . , fk} \ {fk}.

Any edge e of T which is not in M is incident to exactly two edges in M, say
fi, fj and gives us a pairwise edge disjoint subset of size k − 1 of T of the form

{e} ∪M \ {fi, fj}.

We will have k − 1 such pairwise edge disjoint subsets of size k − 1 of T .
Further, the set {u1u2, v2v3, f4, . . . fk} is also a pairwise edge disjoint subset of

size k − 1 of T . Thus the number of pairwise edge disjoint subsets of size k − 1 of T
exceeds 2k− 1, which is a contradiction and the claim is justified. Assume that the k
pendants of T are {u1, . . . , uk} and let T1 be the subtree of T induced by {v1, . . . , vk}.
Then T = T1 ◦K1 and the proof is complete.

Let F be the class of all trees with property (R) and S be the class of all trees
with property (SR). Then it is clear that S ⊂ F . It has been shown in [2] that these
two classes are in fact the same.

The questions of characterizing all bipartite graphs/nonbipartite graphs with
property (R)/(SR) remain open.

3. The corona G1◦G2. Throughout this section G1 is assumed to be connected
with n > 1 vertices and G2 any graph on m ≥ 1 vertices. In this section we give a
complete description of the eigenvalues and the corresponding eigenvectors of the
adjacency matrix of G1 ◦G2, where G2 is regular and also give a complete description
of the eigenvalues and the corresponding eigenvectors of the Laplacian matrix of
G1 ◦G2, for any graph G2. As a consequence we obtain some interesting results.

Let G1 be a graph with vertex set V = {1, 2, . . . , n} and G2 be a regular graph
of order m and of regularity r (say), r ≤ m− 1. Let G = G1 ◦G2. Thus

|V (G)| = (m + 1)n, and |E(G)| = |E(G1)| + mn +
nmr

2
,
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and the adjacency matrix of G is

A(G) =

⎡
⎢⎢⎢⎣

A(G1) In . . . In
In
... A(G2) ⊗ In
In

⎤
⎥⎥⎥⎦ ,

where A(G1) and A(G2) are the adjacency matrices of the graphs G1 and G2, re-
spectively. The following gives a complete characterization of the eigenvalues and the
eigenvectors of G1 ◦G2.

Theorem 3.1. Let G1 be any graph, G2 be an r-regular graph, and G = G1 ◦G2.
Let σ(G1) = (μ1, μ2, . . . , μn) and σ(G2) = (η1, η2, . . . , ηm = r). Then

(a)
μi + r ±

√
(r − μi)2 + 4m

2
∈ σ(G) with multiplicity 1 for i = 1, . . . , n and

(b) ηj ∈ σ(G) with multiplicity n for j = 1, . . . ,m− 1.

Thus ρ(G) =
ρ(G1) + r +

√
(r − ρ(G1))2 + 4m

2
.

Proof. Let X1, . . . , Xn be the orthonormal eigenvectors of A(G1) corresponding
to the eigenvalues μ1, μ2, . . . , μn, respectively. For i = 1, . . . , n, let

λi =
μi + r +

√
(r − μi)2 + 4m

2
, λ̂i =

μi + r −
√

(r − μi)2 + 4m

2
.

Note that
μi + r ±

√
(r − μi)2 + 4m

2
= r implies m = 0, so that λi, λ̂i are never r.

1

2

n

Xi

each entry is 1
λi−r

Xi(1)

each entry is 1
λi−r

Xi(2)

each entry is 1
λi−r

Xi(n)

1

2

n

0

Zj

0

0

Fig. 3.1. Left: eigenvector corresponding to λi. Right: one of the eigenvectors corresponding
to ηj .

Observe that λi, λ̂i are eigenvalues of A(G) corresponding to the eigenvectors

⎛
⎜⎜⎜⎝

Xi
1

λi−rXi

...
1

λi−rXi

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

Xi
1

λ̂i−r
Xi

...
1

λ̂i−r
Xi

⎞
⎟⎟⎟⎟⎠ ,

respectively (see Figure 3.1, picture on left).
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Further, for 1 ≤ j ≤ m − 1, let Zj be the eigenvector corresponding to the
eigenvalue ηj of A(G2). Then for i = 1, . . . , n we have (see Figure 3.1, picture on
right, for i = 1)

A(G)

(
0

Zj ⊗ ei

)
= ηj

(
0

Zj ⊗ ei

)
.

In the previous equation we use that G2 is r-regular and hence Zj ⊥ 11, for
j = 1, 2, . . . ,m− 1. Hence the proof.

Next we talk about the Laplacian matrix of G1 ◦ G2. Let L(G1) and L(G2) be
the Laplacian matrices of the graphs G1 and G2, respectively. Thus the Laplacian
matrix of G is

L(G) =

⎡
⎢⎢⎢⎣

L(G1) + mIn −In . . . −In
−In

... (L(G2) + Im) ⊗ In
−In

⎤
⎥⎥⎥⎦ .

Theorem 3.2. Let G1, G2 be any graphs, not necessarily regular and G = G1◦G2.
Let S(G1) = (0 = ν1, ν2, . . . , νn) and S(G2) = (0 = δ1, δ2, . . . , δm). Then

(a)
νi + m + 1 ±

√
(m + 1)2 − 4νi

2
∈ S(G) with multiplicity 1 for i = 1, . . . , n and

(b) δj + 1 ∈ S(G) with multiplicity n for j = 2, . . . ,m.
Thus
(i) 1 /∈ S(G) if and only if G2 is connected.
(ii) m + 1 ∈ S(G) always.

(iii) a(G) =
a(G1) + m + 1 −

√
(a(G1) + m + 1)2 − 4a(G1)

2
< 1.

Proof. Suppose that 11 = Y1, Y2, . . . , Yn, are the eigenvectors of L(G1) correspond-
ing to the eigenvalues 0 = ν1, ν2, . . . , νn, respectively. For i = 1, . . . , n, let

γi =
νi + m + 1 +

√
(νi + m + 1)2 − 4νi
2

=
νi + m + 1 +

√
(νi + m− 1)2 + 4m

2
,

γ̂i =
νi + m + 1 −

√
(νi + m + 1)2 − 4νi
2

=
νi + m + 1 −

√
(νi + m− 1)2 + 4m

2
.

Notice that
νi + m + 1 ±

√
(νi + m− 1)2 + 4m

2
= 1 implies m = 0, so that γi, γ̂i are

never 1.
Observe that γi, and γ̂i are eigenvalues of L(G) afforded by the eigenvectors⎛

⎜⎜⎜⎝
Yi
1

1−γi
Yi

...
1

1−γi
Yi

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

Yi
1

1−γ̂i
Yi

...
1

1−γ̂i
Yi

⎞
⎟⎟⎟⎠ ,

respectively.
Also if the eigenvalues δ1(= 0), δ2, . . . , δm−1, δm of L(G2) are afforded by the

eigenvectors Z1, Z2, . . . , Zm, respectively, then for j = 2, . . . ,m,(
0

Zj ⊗ e1

)
,

(
0

Zj ⊗ e2

)
, . . . ,

(
0

Zj ⊗ en

)
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are the n eigenvectors corresponding to the eigenvalue δj +1 of L(G). Hence the first
statement follows. Items (i), (ii) are routine. Item (iii) follows from the fact that

νi + m + 1 −
√

(νi + m− 1)2 + 4m

2
< 1 and if νi ≤ νj , then

νi + m + 1 −
√

(νi + m− 1)2 + 4m

2
≤ νj + m + 1 −

√
(νj + m− 1)2 + 4m

2
.

Hence the proof.
In order to show an application of Theorem 3.2 we need the following setup. Let

G be a connected graph. Define a relation R on the edge set as: e1Re2 if and only
if either e1 = e2 or there is a simple cycle containing both of them. Then R is an
equivalence relation. Let E1

⋃
E2

⋃
· · ·

⋃
Ek be the decomposition of the edge set into

equivalence classes. The subgraphs Gi, i = 1, . . . , k of G consisting of all edges in Ei

and all vertices adjacent to them is called a block of G. A vertex v is called a point of
articulation if v is common to more than one block. Let Y be a Fiedler vector of G. A
vertex v of G is called a characteristic vertex of G if Y (v) = 0 and if there is a vertex
w, adjacent to v, such that Y (w) �= 0. An edge e with end vertices u,w is called a
characteristic edge if Y (u)Y (w) < 0. By C(G,Y ) we denote the characteristic set
of G which is defined as the collection of all characteristic vertices and characteristic
edges of G (keeping the notations from [1]). The following is essentially contained
in [6].

Proposition 3.3. Let G be a connected graph and Y a Fiedler vector. Then
exactly one of the following holds.
Case 1. C(G,Y ) = {v}, where v is a point of articulation.
Case 2. Or Case 1 does not hold and there is a unique block B (called characteristic
block) of G which contains all the characteristic vertices and edges.

The following was shown in [12].
Proposition 3.4. Let G be connected. If Case 1 of Proposition 3.3 holds, then

for any Fiedler vector Z of G, C(G,Z) = {v}. If Case 2 holds, then for any Fiedler
vector z of G the characteristic block of G is B.

The following is an easy consequence of Theorem 3.2.
Corollary 3.5. Let G1 be a graph with vertex set V = {1, 2, . . . , n} and G2 be

any graph of order m and G = G1 ◦G2. Then exactly one of the following holds.
Case 1. For some Fiedler vector Y of G1, C(G1, Y ) = {v}. Then for each Fiedler
vector Z of G we have C(G,Z) = {v}.
Case 2. For some Fiedler vector Y of G1 there is a unique characteristic block B.
Then for each Fiedler vector Z of G the characteristic block is also B.

Proof. We know that

a(G) =
a(G1) + m + 1 −

√
(a(G1) + m + 1)2 − 4a(G1)

2
,

and the vector ⎛
⎜⎜⎜⎝

Y
1

1−a(G)Y
...

1
1−a(G)Y

⎞
⎟⎟⎟⎠

is a Fiedler vector of G, where Y is a Fiedler vector of the graph G1. Hence the
proof.
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A graph T which satisfies Case 1 of Proposition 3.3 is called a Type I graph. Con-
structions of an infinite class of Type I trees with nonisomorphic Perron branches has
been discussed in [11]. The following result which is immediate from previous results,
helps in the construction of Type I graphs with nonisomorphic Perron branches.

Corollary 3.6. Let G1 = T be a tree and G2 be any graph. Then the charac-
teristic set C(G,Y ) of G = T ◦G2 (with respect to any Fiedler vector Y ) is completely
determined by the nature of T . The set C(G,Y ) always has only one element, either
a vertex or an edge. Further, C(G,Y ) = C(G,Z) = C(T,X), where Z,X are any
Fiedler vectors of G,T , respectively.

In particular, if T is Type I with characteristic vertex v, then G is Type I with
characteristic vertex v.

In view of this result, to construct Type I graphs with nonisomorphic Perron
branches all we need is to take a Type I tree on more than 2 vertices, say T and any
graph H. Then G = T ◦ H is an example; note that G ◦ H is also an example. In
particular, considering the tree T in Figure 3.2, which is known to be Type I with
nonisomorphic Perron branches (see [8]), and taking H to be an isolated vertex, we
see that T, T ◦H, (T ◦H)◦H, . . . gives us a different infinite class of Type I trees with
nonisomorphic Perron branches.

v

Fig. 3.2. A Type I tree with characteristic vertex v.

Below we discuss another application of the results in this article. Two graphs
G and H are called cospectral if the spectrum of A(H) and A(G) are the same. Two
graphs are called Laplacian cospectral if L(G) and L(H) have the same spectrum.
This topic has been an area of interest for many researchers. We refer the reader
to [14] and the references therein to learn more. Our aim here is to construct infinite
pairs of nonisomorphic graphs G,H which are cospectral and Laplacian cospectral.

Let G,H be two nonisomorphic cospectral and Laplacian cospectral graphs (such
a pair can be found in [14]). Let B be the graph of an isolated vertex. Let G1 = G◦B,
H1 = H ◦B, and for i = 2, . . . define Gi = Gi−1 ◦B, Hi = Hi−1 ◦B. By Theorems 3.1
and 3.2, we see that the spectrum and the Laplacian spectrum of G1, H1 is completely
determined by the spectrum of G,H and they are the same. Use of induction leads
us to the following conclusion.

Corollary 3.7. Let Gi, Hi be defined as above, for i ∈ N. Then for each i
the graphs Gi, Hi are nonisomorphic cospectral and Laplacian cospectral nonregular
graphs.

Acknowledgment. We sincerely thank the referee for many valuable suggestions
which improved the presentation of the article.
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SHARP THRESHOLD FOR HAMILTONICITY OF RANDOM
GEOMETRIC GRAPHS∗
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Abstract. We show for an arbitrary �p norm that the property that a random geometric graph

G(n, r) contains a Hamiltonian cycle exhibits a sharp threshold at r = r(n) =
√

log n
αpn

, where αp is the

area of the unit disk in the �p norm. The proof is constructive and yields a linear time algorithm for

finding a Hamiltonian cycle of G(n, r) asymptotically almost surely, provided r = r(n) ≥
√

log n
(αp−ε)n

for some fixed ε > 0.
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1. Introduction. Given a graph G on n vertices, a Hamiltonian cycle is a simple
cycle that visits each vertex of G exactly once. A graph is said to be Hamiltonian if it
contains a Hamiltonian cycle. The problem of deciding if a given graph is Hamiltonian
is known to be NP-complete [5]. Two known facts for the Hamiltonicity of random
graphs are that almost all d-regular graphs (d ≥ 3) are Hamiltonian [14], and that in
the Gn,p model if p(n) = (logn + log logn + ω(n))/n, then a.a.s. Gn,p is Hamiltonian
[9] (see also Chapter 8 of [3]). Throughout this paper, “a.a.s.” means asymptotically
almost surely, that is, with probability tending to 1 as n goes to ∞.

A random geometric graph G(n, r) [6] is a graph resulting from placing a set of
n vertices uniformly at random and independently on the unit square [0, 1]2, and
connecting two vertices if and only if their distance is at most the given radius r, the
distance depending on the type of metric being used. The two metrics more often
used are the �2 and the �∞ norms. In recent times, random geometric graphs have
received quite a bit of attention in the modeling of sensor networks, and in general
ad hoc wireless networks (see, e.g., [1]).

Random geometric graphs are the randomized version of unit disk graphs. An
undirected graph is a unit disk graph if its vertices can be put into one-to-one corre-
spondence with circles of equal radius in the plane in such a way that two vertices are
joined by an edge if and only if their corresponding circles intersect. W.l.o.g. it can
be assumed that the radius of the circles is 1 [4]. The problem of deciding if a given
unit disk graph is Hamiltonian is known to be NP-complete [8].

Many properties of random geometric graphs have been intensively studied, from
both the theoretical and the empirical points of view. It is known (see [7]) that all
monotone properties of G(n, r) exhibit a sharp threshold. For the present paper, the
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most relevant result on random geometric graphs is the connectivity threshold: in [10]
it is proved that r = r(n) =

√
log n/(πn) is the sharp threshold for the connectivity of

G(n, r) in the �2 norm. For the �∞ norm, the sharp threshold for connectivity occurs
at r = r(n) =

√
log n/(4n) (see [2]). In general, for an arbitrary �p norm, for some

fixed p, 1 ≤ p ≤ ∞, the sharp threshold is known to be r = r(n) =
√

log n/(αpn),
where αp is the area of the unit disk in the �p norm (see [11] and [12]).

A natural issue to study is the existence of Hamiltonian cycles in G(n, r). Penrose
in his book [12] poses as an open problem whether, exactly at the point where G(n, r)
becomes 2-connected, the graph also becomes Hamiltonian a.a.s., Petit in [13] proved
that for r = ω(

√
log n/n), G(n, r) is Hamiltonian a.a.s., and he also gave a distributed

algorithm for finding a Hamiltonian cycle in G(n, r) with his choice of radius. In the
present paper, we find the sharp threshold for this property in any �p metric. In fact,
let p (1 ≤ p ≤ ∞) be arbitrary but fixed throughout the paper, and let G = G(n, r)
be a random geometric graph with respect to �p. We first show the following

Theorem 1. The property that a random geometric graph G = G(n, r) contains

a Hamiltonian cycle exhibits a sharp threshold at r =
√

logn
αpn

, where αp is the area of

the unit disk in the �p norm.
More precisely, for any ε > 0,

• if r =
√

logn
(αp+ε)n , then a.a.s. G contains no Hamiltonian cycle;

• if r =
√

logn
(αp−ε)n , then a.a.s. G contains a Hamiltonian cycle.

As a corollary of the proof, we describe a linear time algorithm that finds a Hamilto-

nian cycle in G(n, r) a.a.s., provided that r ≥
√

logn
(αp−ε)n for some fixed ε > 0.

2. Proof of Theorem 1. To prove Theorem 1, note that the lower bound of

the threshold is trivial. In fact, if r =
√

logn
(αp+ε)n , then a.a.s. G is disconnected [11],

and hence it cannot contain any Hamiltonian cycle. To simplify the proof of the
upper bound, we need some auxiliary definitions and lemmas. In the remainder of

the section, we assume that r =
√

logn
(αp−ε)n for some fixed ε > 0, and we show that

a.a.s. G contains a Hamiltonian cycle.

Let us take y =
⌈

2
r

⌉−1
. Intuitively, y is close to r/2 but slightly smaller. We

divide [0, 1]2 into squares of side length y. Call this the initial tessellation of [0, 1]2.
Two different squares R and S are defined to be friends if they are either adjacent
(i.e., they share at least one corner) or there exists at least one other square T adjacent
to both R and S. Thus, each square has at most 24 friends. Then we create a second
and finer tessellation of [0, 1]2 by dividing each square into k2 new squares of side
length y/k ∼ r/(2k), for some large enough but fixed k = k(ε) ∈ N. We call this the
fine tessellation of [0, 1]2, and we refer to these smaller squares as cells. We note that
the total numbers of squares and cells are both Θ(1/r2). Note that with probability
1, for every fixed n, any vertex will be contained in exactly one cell (and exactly one
square). In the following we always assume this.

We say that a cell is dense if it contains at least 48 vertices of G. If the cell contains
at least one vertex but less than 48 vertices, we say the cell is sparse. If the cell contains
no vertex, the cell is empty. Furthermore we define an animal to be a union of cells
which is topologically connected. The size of an animal is the number of different cells
it contains. In particular, the squares of the initial tessellation of [0, 1]2 are animals
of size k2. An animal is called dense if it contains at least one dense cell. If an animal
contains no dense cell, but it contains at least one vertex of G, it is called sparse.
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Fig. 1. Set of cells close to, above, and to the right of the shaded cell.

From hereinafter, all distances in [0, 1]2 will be taken in the �p metric. As usual,
the distance between two sets of points P1 and P2 in [0, 1]2 is the infimum of the
distances between any pair of points in P1 and P2. Two cells c1 and c2 are said to be
close to each other if

sup
p1∈c1,p2∈c2

{distance(p1, p2)} ≤ r.

For an arbitrary cell c at distance at least r from the boundary of [0, 1]2, let K = K(n)
be the number of cells which are close to c and also above and to the right of c (see
Figure 1). Obviously, K does not depend on the particular cell we chose.

Lemma 1. For any η > 0, we can choose k sufficiently large such that K >
(αp − η)k2 for n large enough.

Proof. Let c be a cell at distance at least r from the boundary of [0, 1]2. Call A
the union of the cells which are close to c and also above and to the right of c. Let p
be the top right corner point of c. Define the set

B = {q ∈ [0, 1]2 ∩R : distance(p, q) ≤ r − 4y/k},

where R is the set of points which are above and to the right of p. Observe that
B ⊆ A. Moreover, if k is chosen large enough, the area of B is at least 1

4 (αp − η)r2.
Thus, A contains at least 1

4 (αp − η)r2/( yk )2 > (αp − η)k2 cells.
Lemma 2. The following statements are true a.a.s:
(i) All animals of size 4K are dense.
(ii) All animals of size 2K which touch any of the four sides of [0, 1]2 are dense.
(iii) All cells at distance less than 4y from two sides of [0, 1]2 are dense.
Proof. Let 0 < δ < ε. Taking into account that the side length of each cell is

( yk ) ≥ 1
2k

√
logn

(αp−δ)n (but also ( yk ) ≤ c
√

log n/n for some c > 0), the probability that

any given cell is not dense (i.e., it contains at most 47 vertices) is

47∑
i=0

(
n

i

)(
y2

k2

)i (
1 − y2

k2

)n−i

= Θ(1)n47

(
y2

k2

)47 (
1 − y2

k2

)n

,

since the weight of this sum is concentrated in the last term. Then, plugging in the
bounds for y/k, we get that the probability above is

O(1)

(
ny2

k2

)47

e−y2n/k2

= O(1)(logn)47n
− 1

4k2(αp−δ) .

For each one of the cells of a given animal, we can consider the event that this
particular cell is not dense. Notice that these events are negatively correlated (i.e.,
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the probability that any particular cell is not dense conditional upon having some
other cells with at most 47 vertices is not greater than the unconditional probability).
Thus, the probability that a given animal of size 4K contains no dense cell is at most

(
O(1)(logn)47n

− 1
4k2(αp−δ)

)4K

= O(1)(logn)Cn
− K

k2(αp−δ) ,

for some constant C. Let ρ = K
k2(αp−δ) . From Lemma 1 applied with any 0 < η < δ,

by choosing k sufficiently large, we can guarantee that ρ > 1. Now note that the
number of animals of size 4K is O(1/r2) since for each fixed shape of an animal there
are O(1/r2) many choices and there is only a constant number of shapes. Thus, by
taking a union bound over all animals and plugging in the value of r, we get that the
probability of having an animal without any dense cell is

O(1)(logn)C−1/nρ−1 = o(1),

and (i) holds.
An analogous argument shows that any given animal of size 2K is not dense with

probability

O(1)(logn)C/2n−ρ/2.

Observe that there exist only O(1/r) animals touching any of the four sides of [0, 1]2.
Hence, the probability that one of these is not dense is

O(1)(logn)(C−1)/2/n(ρ−1)/2 = o(1),

and (ii) is proved.
To prove (iii), we simply recall that the probability that a given cell is not dense

is o(1). By taking a union bound, the same argument holds for a constant number of
cells.

Lemma 3. A.a.s., for any cell c1, there exists a cell c2 which is dense and close
to c1.

Proof. Let S be the square of the initial tessellation of [0, 1]2, where c1 is contained,
and let A be the animal containing all the cells which are close to c1 but different
from c1. Suppose that S is at distance at least 2y from all sides of [0, 1]2. Then A
has size greater than 4K, and it must contain some dense cell by Lemma 2(i) a.a.s.

Otherwise, suppose that S is at distance less than 2y from just one side of [0, 1]2.
Then, A has size greater than 2K and it touches one side of [0, 1]2, and thus it must
contain some dense cell by Lemma 2(ii) a.a.s.

Finally, if S is at distance less than 2y from two sides of [0, 1]2, then all cells in
that square must be dense by Lemma 2(iii) a.a.s.

We now consider the following auxiliary graph G′: The vertices of G′ are all those
squares belonging to the initial tessellation of [0, 1]2 which are dense, and there is
an edge between two dense squares R and S if they are friends and there exist cells
c1 ⊂ R and c2 ⊂ S which are dense and close to each other. We observe that the
maximal degree of G′ is 24.

Lemma 4. A.a.s., G′ is connected.
Proof. Suppose for contradiction that G′ contains at least two connected compo-

nents C1 and C2. We denote by D the union of all dense cells which are contained in
some vertex (i.e., dense square) of C1, and let H ⊇ D be the union of all cells which
are close to some cell contained in D. Note that H is topologically connected, and let
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the closed curve γ be the outer boundary of H with respect to R

2. Each connected
part obtained by removing from γ the intersection with the sides of [0, 1]2 is called a
piece of γ. Define by E the union of all cells in H but not in D. In general, E might
have several connected components (animals). Moreover, all cells in E must be not
dense, by construction. Note that any cell in D cannot touch any piece of γ. Hence,
each piece of γ is touched by exactly one connected component A ⊆ E. Observe that,
if γ touches some side of [0, 1]2, then all connected components of E touching some
piece of γ must also touch some side of [0, 1]2.

Given any of the four sides s of [0, 1]2, the distance between s and C1 is understood
to be the distance between s and the dense square of C1 which has the smallest distance
to s. We now distinguish between a few cases depending on whether C1 is at distance
less than 2y from one (or more) side(s) of [0, 1]2 or not.

Case 1. C1 is at distance at least 2y from any side of [0, 1]2.
In this case, let A be the only connected component of E which touches γ. Con-

sider the uppermost dense cell c ⊂ D (if there are several ones, choose an arbitrary
one) and the lowermost dense cell d ⊂ D (possibly equal to c). Then all cells which
are close to c and above c and all cells which are close to d and below d belong to A.
Since there are at least as many as 4K of these, we have an animal A of size at least
4K without any dense cell, which by Lemma 2(i) does not happen a.a.s.

Case 2. C1 is at distance less than 2y from exactly one side of [0, 1]2.
W.l.o.g. we can assume that C1 is at distance less than 2y from the bottom side

of [0, 1]2. Consider the uppermost dense cell c ⊂ D (if there are several, choose an
arbitrary one). Let A be the connected component of E which contains all cells which
are close to c and above c. Note that there are at least as many as 2K of these cells.
Moreover, A touches one of the pieces of γ. Hence, we have an animal A of size at
least 2K without any dense cell and that touches some side of [0, 1]2. By Lemma 2(ii)
this does not happen a.a.s.

Case 3. C1 is at distance less than 2y from two opposite sides of [0, 1]2.
W.l.o.g. we can assume that C1 is at distance less than 2y from the top and

bottom sides of [0, 1]2. From among all cells contained in squares of C1 that are at
distance less than 4y from the top side of [0, 1]2, consider the rightmost dense cell c.
If c is at distance less than 2y from that side, consider all K cells which are close to
c and below and to the right of c. Otherwise, if c is at distance at least 2y from that
side, consider all K cells which are close to c and above and to the right of c. Let A
be the connected component of E containing these cells. Similarly, from among all
cells contained in squares of C1 that are at distance less than 4y from the bottom side
of [0, 1]2, consider the rightmost dense cell d. Again, if d is at distance less than 2y
from that side, consider all K cells which are close to d and above and to the right of
d. Otherwise, if d is at distance at least 2y from that side, consider all K cells which
are close to d and below and to the right of d. Thus, in either case, we obtain K cells
pairwise different from the K previously described ones, and let A′ be the connected
component containing them. A and A′ must be the same, since they touch the same
piece of γ. Hence, we have an animal A of size at least 2K touching at least one side
of [0, 1]2 and without any dense cell. By Lemma 2(ii) this does not happen a.a.s.

Case 4. C1 is at distance less than 2y from one vertical side and one horizontal
side of [0, 1]2.

W.l.o.g. we can assume that C1 is at distance less than 2y from the left and top
sides of [0, 1]2. From among all cells contained in squares of C1 that are at distance
less than 4y from the top side of [0, 1]2, consider the rightmost dense cell c. If c is
at distance less than 2y from that side, consider all K cells which are close to c and
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below and to the right of c. Otherwise, if c is at distance at least 2y from that side,
consider all K cells which are close to c and above and to the right of c. Let A be the
connected component of E containing all these K cells. By construction, all these K
cells are at distance less than 4y from the top side of [0, 1]2. Then, by Lemma 2(iii),
they must be a.a.s. at distance at least 4y from the left side of [0, 1]2, since otherwise
they would be all dense. Similarly, from among all cells contained in squares of C1

that are at distance less than 4y from the left side of [0, 1]2, consider the lowermost
dense cell d. Again, if d is at distance less than 2y from that side, consider all K cells
which are close to d and below and to the right of d. Otherwise, if d is at distance
at least 2y from that side, consider all K cells which are close to d and below and to
the left of d. Let A′ be the connected component of E containing these K cells. By
construction, all these K cells are at distance less than 4y from the left side of [0, 1]2,
and hence they must be pairwise different from the K ones previously described a.a.s.
(note that we used Lemma 2(iii) to prove that the K cells contained in A described
above must be at distance at least 4y from the top side of [0, 1]2). Moreover, A and
A′ must be the same, since they touch the same piece of γ. Then we have an animal
A of size at least 2K touching at least one side of [0, 1]2 without any dense cell. By
Lemma 2(ii) this does not happen a.a.s.

Case 5. C1 is at distance less than 2y from three sides of [0, 1]2.
W.l.o.g. we can assume that C1 is at distance less than 2y from the left, top, and

bottom sides of [0, 1]2. The argument is exactly the same as in Case 3, and hence this
case does not occur a.a.s.

In the case when C2 is at distance at least 2y from some side of [0, 1]2, we can
apply one of the above cases with C2 instead of C1. Thus, it suffices to consider the
following case.

Case 6. Both C1 and C2 are at distance less than 2y from all four sides of [0, 1]2.
Let Q be the union of all those cells at distance less than 4y from both the

bottom and left sides of [0, 1]2. By Lemma 2, all the cells in Q must be dense, and
thus must belong to squares of the same connected component of G′. W.l.o.g., we can
assume that they are not in D (i.e., are not contained in squares of C1). Moreover, A
must touch the left (and the bottom) side of [0, 1]2. From among all cells contained in
squares of C1 that are at distance less than 4y from the bottom side of [0, 1]2, consider
the leftmost dense cell c. If c is at distance less than 2y from that side, consider all K
cells which are close to c and above and to the left of c. Otherwise, if c is at distance
at least 2y from that side, consider all K cells which are close to c and below and to
the left of c. Let A be the connected component of E containing all these K cells.
By construction, all these K cells are at distance less than 4y from the bottom side
of [0, 1]2. Then, by Lemma 2(iii), they must be a.a.s. at distance at least 4y from the
left side of [0, 1]2, since otherwise they all would be dense. Similarly, from among all
cells contained in squares of C1 that are at distance less than 4y from the left side
of [0, 1]2, consider the lowermost dense cell d. Again, if d is at distance less than 2y
from that side, consider all K cells which are close to d and below and to the right of
d. Otherwise, if d is at distance at least 2y from that side, consider all K cells which
are close to d and below and to the left of d. Let A′ be the connected component
of E containing all these K cells. By construction, all these K cells are at distance
less than 4y from the left side of [0, 1]2, and hence they must be pairwise different
from the K ones previously described a.a.s. Moreover, A and A′ must be the same,
since they touch the same piece of γ. Then we have an animal A of size at least 2K
touching at least one side of [0, 1]2 without any dense cell. By Lemma 2(ii) this does
not happen a.a.s.



HAMILTONICITY OF RANDOM GEOMETRIC GRAPHS 63

Fig. 2. Illustration of G′′.

Proof of the upper bound of Theorem 1. Starting from G′ we construct a new
graph G′′ by adding some new vertices and edges as follows. Let us consider one fixed
sparse square S of the initial tessellation of [0, 1]2. For each sparse cell c contained in
S, we can a.a.s. find at least one dense cell close to it (by Lemma 3) which we call the
hook cell of c (if this cell is not unique, or even if the square containing these cell(s) is
not unique, take an arbitrary one). This hook cell must lie inside some dense square
R, which is a friend of S. Then that sparse cell c gets the label R. By grouping
those ones sharing the same label, we partition the sparse cells of S into at most 24
groups. Each of these groups of sparse cells will be thought of as a new vertex, added
to graph G′ and connected by an edge to the vertex of G′ described by the common
label. By performing this same procedure for all remaining sparse squares, we obtain
the desired graph G′′ (see Figure 2). Those vertices in G′′ which already existed in G′

(i.e., dense squares) are called old, and those newly added ones are called new. Notice
that by construction of G′′ and by Lemma 4, G′′ must be connected a.a.s.

Now, consider an arbitrary spanning tree T of G′′. Observe that the maximal
degree of T is 24, and that all new vertices of T have degree one and are connected
to old vertices. We use capital letters U , V to denote vertices of T and reserve the
lowercase u, v, w for vertices of G. Fix an arbitrary traversal of T which, starting at
an arbitrary vertex, traverses each edge of T exactly twice and returns to the starting
vertex. Note that such a traversal always exists: Fix an arbitrary vertex of T to be
the root vertex, and always follow the edge going to the leftmost neighbor of that
vertex (the vertex with the smallest x-coordinate; if there are more, the one among
them with the smallest y-coordinate) which was not yet visited. Do this recursively
for each vertex. When all neighbors of a vertex are visited, we go back to the vertex
from which we came. We iterate this procedure until all vertices are visited and we
are back at the root vertex. This traversal gives an ordering in which we construct
our Hamiltonian cycle in G (i.e., as the Hamiltonian cycle travels along the vertices
of G, it will visit the vertices of T according to this traversal).

Let us give a constructive description of our Hamiltonian cycle. Suppose that
at some time we visit an old vertex U of T and that the next vertex V (w.r.t. the
traversal) is also old. Then there must exist a pair of dense cells c1 ⊂ U , c2 ⊂ V close
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to each other, and let u ∈ c1 and v ∈ c2 be vertices not used so far. In case this is
not the last time we visit U (w.r.t. the traversal), immediately after entering vertex w
inside U we connect w to u, and then u is connected to v. If U is visited for the last
time (w.r.t. the traversal), we connect from the entering vertex w all vertices inside
U not yet used by an arbitrary Hamiltonian path (note that they form a clique in G)
before leaving U via u, and subsequently we connect u to v.

Otherwise, suppose that at some time we visit an old vertex U of T and that
the next vertex V (w.r.t. the traversal) is new. We connect all the vertices inside V
(possibly just one) by an arbitrary Hamiltonian path, whose endpoints lie inside the
sparse cells d1 ⊂ V and d2 ⊂ V (possibly d1 equals d2). Again this is possible since
these vertices form a clique in G. Let c1 ⊂ U and c2 ⊂ U (possibly c1 equals c2) be the
hook cells of d1 and d2 (i.e., ci is a dense cell in U close to the sparse cell di in V ). Let
u ∈ c1 and v ∈ c2 be vertices not used so far. Then immediately after entering vertex
w inside U we connect w to u, and then u is joined to the corresponding endpoint
of the Hamiltonian path connecting the vertices inside V . The other endpoint is
connected to v, and so we again visit U .

We observe that at some steps of the above construction we request unused ver-
tices of G. This is always possible; in fact, each vertex of T is visited as many times
as its degree (at most 24); for each visit of an old vertex U our construction requires
exactly two unused vertices v ∈ c, w ∈ c inside some dense cell c ⊂ U ; and c contains
at least 48 vertices. By construction, the described cycle is Hamiltonian and the result
holds.

In the following corollary, we give an informal definition of a linear time algorithm
that constructs a Hamiltonian cycle for a specific instance of G(n, r). The procedure
is based on the previous constructive proof. We assume that real arithmetic can be
done in constant time.

Corollary 1. Let r ≥
√

logn
(αp−ε)n for some fixed ε > 0. The proof of Theorem 1

yields an algorithm that a.a.s. produces a Hamiltonian cycle in G(n, r) in linear time
with respect to n.

Proof. Assume that the input graph satisfies all the conditions required in the
proof of Theorem 1, which happens a.a.s. Assume also that each vertex of the input
graph is represented by a pair of coordinates. Observe that the total number of
squares is O(n/ log n), and since the number of cells per square is constant, the same
holds for the total number of cells. First, we compute in linear time the label of the
cell and the square where each vertex is contained. At the same time, we can find for
each cell (and square) the set of vertices it contains, and mark those cells (squares)
which are dense. Now, for the construction of G′, note that each dense square has
at most a constant number of friends to which it can be connected. Thus, the edges
of G′ can be obtained in time O(n/ log n). In order to construct G′′, for each of the
O(n/ log n) cells in sparse squares, we compute in constant time its hook cell and the
dense square containing it. Since both the number of vertices and the number of edges
of G′′ are O(n/ log n), we can compute in time O(n) (e.g., by Kruskal’s algorithm) an
arbitrary spanning tree T of G′′. The traversal and construction of the Hamiltonian
cycle is proportional to the number of edges in T plus the number of vertices in G
and thus can be done in linear time.

3. Conclusion and outlook. We believe that the above construction can be
generalized to obtain sharp thresholds for Hamiltonicity for random geometric graphs
in [0, 1]d (d being fixed). However, it seems much more difficult to generalize the
results to arbitrary distributions of the vertices. The problem posed by Penrose [12],
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whether or not the graph also becomes Hamiltonian a.a.s. exactly at the point where
G(n, r) gets 2-connected, still remains open.
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TURÁN’S THEOREM IN THE HYPERCUBE∗
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Abstract. We are motivated by the analogue of Turán’s theorem in the hypercube Qn: How
many edges can a Qd-free subgraph of Qn have? We study this question through its Ramsey-type
variant and obtain asymptotic results. We show that for every odd d it is possible to color the edges

of Qn with
(d+1)2

4
colors such that each subcube Qd is polychromatic, that is, contains an edge of

each color. The number of colors is tight up to a constant factor, as it turns out that a similar coloring
with

(d+1
2

)
+ 1 colors is not possible. The corresponding question for vertices is also considered. It

is not possible to color the vertices of Qn with d + 2 colors such that any Qd is polychromatic, but
there is a simple d + 1 coloring with this property. A relationship to anti-Ramsey colorings is also
discussed. We discover much less about the Turán-type question which motivated our investigations.
Numerous problems and conjectures are raised.

Key words. hypercube, Turán-type problems, Ramsey’s theorem, anti-Ramsey problems
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1. Introduction. For graphs G and H, let ex(G,H) denote the maximum num-
ber of edges in a subgraph of G which does not contain a copy of H. The quantity
ex(G,H) was first investigated in the case when G is a clique. Turán’s theorem
resolves the problem precisely when H is a clique as well.

In this paper, we study these Turán-type problems for the case when the base
graph G is the n-dimensional hypercube Qn. This setting was initiated by Erdős
[8] who posed the problem of determining the largest number of edges in a C4-free
subgraph of the hypercube. He conjectured that the answer is (1

2 + o(1))e(Qn) and
offered $100 for a solution. The current best upper bound, due to Chung [6], stands
at ≈ .623e(Qn). The best known lower bound is 1

2 (n +
√
n) 2n−1 (for n = 4r) due to

Brass, Harborth, and Nienborg [5].
Erdős [8] also raised the extremal question for even cycles. Chung [6] obtained

that ex(Qn,C4k)
e(Qn)) → 0 for every k ≥ 2, i.e., cycles with length divisible by 4, starting

from 8 are harder to avoid than the 4-cycle. She also showed that

1

4
e(Qn) ≤ ex(Qn, C6) ≤ (

√
2 − 1 + o(1))e(Qn).

Later Conder [7] improved the lower bound to 1
3e(Qn) by defining a 3-coloring of

the edges of the n-cube such that every color class is C6-free. On the other hand, it
is shown in [1] that for any fixed k, in any k-coloring of the edges of a sufficiently
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(szabo@inf.ethz.ch ).

66
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large cube there are monochromatic cycles of every even length greater than 6. Note,
however, that the Turán problem for cycles of length 4k + 2 is still wide open. For
k ≥ 2, it is not even known whether ex(Qn, C4k+2) = o(e(Qn)).

In the present paper we consider a generalization of the C4-free subgraph problem
in a different direction, which we feel is the true analogue of Turán’s theorem in
the hypercube. For arbitrary d we give bounds on ex(Qn, Qd). For convenience we
will talk about the complementary problem; i.e., let f(n, d) denote the minimum
number of edges one must delete from the n-cube to make it d-cube-free. Obviously
f(n, d) = e(Qn) − ex(Qn, Qd). By a simple averaging argument one can see that
for any fixed d the function f(n, d)/e(Qn) is nondecreasing in n, so a limit cd exists.
(In fact this limit exists for an arbitrary forbidden subgraph H in the place of Qd).
Erdős’s conjecture then could be stated as c2 = 1

2 .
Trivially f(d, d) = 1, so by the above, cd ≥ 1

d2d−1 . On the other hand, if one
deletes edges of the hypercube on every dth level, one obtains a Qd-free subgraph.
For this, observe that every d-dimensional subcube spans edges on d consecutive levels.
Thus cd ≤ 1

d .
In the present paper we improve on these trivial bounds.
Theorem 1.

Ω

(
log d

d2d

)
= cd ≤

{ 4
(d+1)2 if d is odd,

4
d(d+2) if d is even.

We conjecture that our construction is essentially optimal for d = 3.
Conjecture 2.

c3 =
1

4
.

The best known lower bound on c3 is 1 −
(

5
8

)1/4 ≈ 0.11 and follows from some
property of the four-dimensional cube. (A Q3-free subgraph of Q4 cannot contain
more than 10 vertices of degree 4; see the paper of Graham et al. [10]).

For arbitrary d we are less confident; it would certainly be very interesting to
determine how fast cd tends to 0, when d tends to infinity.

Problem 3. Determine the order of magnitude of cd.
We tend to think that cd is larger than inverse exponential, but feel that we are

very far from understanding the truth. In fact all our arguments are set in the related
Ramsey-type framework, rather than the original Turán-type. A coloring of the edges
of Qn is called d-polychromatic if every subcube of dimension d is polychromatic (i.e.,
it has all the colors represented on its edges). Let pc(n, d) be the largest integer p such
that there exists a d-polychromatic coloring of the edges of Qn in p colors. Clearly,
pc(n, d) ≤ d2d−1 and f(n, d) ≤ e(Qn)/pc(n, d). Since pc(n, d) is a nonincreasing
function in n, it stabilizes for large n. Let pd be this limit; then we have cd ≤ 1/pd.
We can determine pd up to a factor of 2.

Theorem 4.

(
d + 1

2

)
≥ pd ≥

⎧⎨
⎩

(d+1)2

4 if d is odd,

d(d+2)
4 if d is even.

The lower bound implies the upper bound in Theorem 1. It would be interesting
to resolve the following problem.
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Problem 5. Determine the asymptotic behavior of pd.
The lower bound in Theorem 1 is a consequence of some known results on the

analogous problem for vertices of the cube. Let g(n, d) be the minimum number of
vertices one must delete from the n-cube to make it d-cube-free. Clearly g(n, d) ≤
f(n, d). Again, simple averaging shows that for any fixed d the function g(n, d)/2n is
nondecreasing in n, so a limit c0d exists.

The problem of determining g(n, d) was investigated early and widely by several
research communities, mostly in a dual formulation under the different names of t-
independent sets [12], qualitatively t-independent 2-partitions [13], and (n, t)-universal
vector sets [15], where t = n−d. These investigations mostly deal with the case when
d is large, i.e., very close to n. The lone result we are aware of about g(n, d) for d
small compared to n is due to Johnson and Entringer [11] who prove that c02 = 1/3.
Even more, they show that the unique smallest set breaking all copies of Q2 is in the
form of every third level of the cube. In general we know very little.

Proposition 6.

1

d + 1
≥ c0d ≥ log d

2d+2
.

Again, the Ramsey analogue of the problem is more clear. In fact we have here
a precise result. A coloring of the vertices of Qn is called d-polychromatic if every
subcube of dimension d has all the colors represented on its vertices. Let pc0(n, d) be
the largest integer p such that there exists a d-polychromatic coloring of the vertices
of Qn in p colors. Clearly, pc0(n, d) ≤ 2d and g(n, d) ≤ 2n/pc0(n, d). Since pc0(n, d)
is a nonincreasing function of n, it stabilizes for large n. Let p0

d be this limit; then we
have c0d ≤ 1/p0

d. We can determine p0
d for every d.

Theorem 7.

p0
d = d + 1.

1.1. Relation to rainbow colorings. In this subsection we point out a relation
between the established notion of anti-Ramsey coloring and the one of polychromatic
coloring introduced in this paper. We also note how Theorem 4 could be applied to
improve a result of [2].

An edge-coloring r : E(H) → {1, 2, . . . } of a graph H is called rainbow if no two
edges of H receive the same color. A coloring c of the edges of graph G is called H-
anti-Ramsey if the restriction of c to any subgraph H0 ⊆ G, H0

∼= H, is not rainbow.
Let ar(G,H) be the largest number of colors used in an H-anti-Ramsey coloring of
G. The function ar(G,H) was introduced by Erdős, Simonovits, and Sós [9]. It is
well known that ar(G,H) ≤ ex(G,H) since taking one arbitrary edge from each color
class of an H-anti-Ramsey coloring, one must obtain an H-free subgraph of G.

For any graph G and H, we call a p-coloring c : E(G) → {1, . . . , p} of the edges
of G H-polychromatic if every subgraph H0 ⊆ G, H0

∼= H, has all the p colors
represented on its edges. Let pc(G,H) be the largest number p such that there is an
H-polychromatic coloring of the edges of G. The following proposition establishes a
relationship between H-anti-Ramsey and H-polychromatic colorings.

Proposition 8.

ar(G,H) ≥
(

1 − 2

pc(G,H)

)
e(G).

Proof. Given an H-polychromatic coloring c of G with p = pc(G,H) colors, we
define an H-anti-Ramsey coloring r of G with at least (1 − 2/p)e(G) colors. Let F
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be the set of edges formed by the union of the two smallest color classes of c. The
coloring r will be chosen constant on F ; say, all edges in F receive color 1. All other
edges of G will receive distinct colors. Then we used at least (1 − 2

p )e(G) + 1 colors.
Also, the coloring r defined this way is H-anti-Ramsey since each copy of H in G
contains at least two edges of F , and thus at least two edges receive the color 1 in
every copy of H.

In a recent paper [2] Axenovich et al. investigated Qd-anti-Ramsey colorings of
Qn. Lower and upper bounds for ar(Qn, Qd) are found. In particular for fixed d, the
leading terms of their bounds amount to(

1 − 4

d2d

)
e(Qn) ≥ ar(Qn, Qd) ≥

(
1 − 1

d

)
e(Qn).

One can improve the upper bound by applying Theorem 1, and the lower bound by
using the polychromatic coloring of Theorem 4.

Corollary 9.(
1 − Ω

(
log d

d2d

))
e(Qn) ≥ ar(Qn, Qd) ≥

(
1 − 8

d2
−O

(
1

d3

))
e(Qn).

Notation. We consider the cube as a set of n-dimensional 0/1-vectors, where
the coordinates are labeled by the first n positive integers, [n] = {1, . . . , n}. A d-
dimensional subcube of the n-dimensional cube is denoted by a vector from {0, 1, �}n
which contains d �-entries; the stars represent the nonconstant coordinates of the sub-
cube. For a subcube D of the n-dimensional cube we denote by ONE(D), ZERO(D),
and STAR(D) the set of labels of those coordinates which are 1, 0, and �, respectively.

2. Qd-free subgraphs of Qn. In this section we give a proof of the lower bound
in Theorem 4.

Proof. First assume that d is odd. We define a (d+1)2

4 -coloring of the edges of Qn,
which is d-polychromatic.

We color the edges of Qn with elements of Z d+1
2

×Z d+1
2

in the following way. The

edge e with a star at coordinate a is colored with the vector whose first coordinate is
|{x ∈ ONE(e) : x < a}| (mod d+1

2 ) and whose second coordinate is |{x ∈ ONE(e) :

x > a}| (mod d+1
2 ).

Now consider a d-dimensional subcube C of Qn with STAR(C) = {a1, . . . , ad},
where a1 < a2 < · · · < ad. Let s be the vertex of C with the least number of ones. So
for each vertex x of C we have that ONE(s) ⊆ ONE(x) ⊆ ONE(s) ∪ {a1, . . . , ad}.

We will show that all (d+1)2

4 colors appear on edges of C whose star is at position
a d+1

2
. Let (u, v) be an arbitrary element of Z d+1

2
× Z d+1

2
.

Let l := |{x ∈ ONE(s) : x < a d+1
2
}| (mod d+1

2 ) and r := |{x ∈ ONE(s) : x >

a d+1
2
}| (mod d+1

2 ). Choose any k ≡ u−l (mod d+1
2 ) elements K from {a1, . . . , a d+1

2 −1}
and any p ≡ v − r (mod d+1

2 ) elements L from {a d+1
2 +1, . . . , ad}. Define s′ by

ONE(s′) = ONE(s) ∪ K ∪ L. Then the edge incident to s′ and having a star at
position a d+1

2
has color (u, v).

For even d a similar construction works; the only difference is that we take the
number of ones to the left of the label of the edge modulo d

2 and the number of ones

to the right modulo d+2
2 . Then one can prove that among the edges with label d

2 all
colors appear.
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3. Upper bound in the Ramsey problems. First, we prove the upper bound
in Theorem 4.

Proof of Theorem 4. Suppose we have a d-polychromatic p-edge-coloring c of Qn

where n is huge. We will use Ramsey’s theorem for d-uniform hypergraphs with pd2
d−1

colors. We define a pd2
d−1

-coloring of the d-subsets of [n]. Fix an arbitrary ordering
of the edges of Qd. For an arbitrary subset S of the coordinates, define cube(S) to be
the subcube whose � coordinates are at the positions of S and all its other coordinates
are 0, i.e., STAR(cube(S)) = S and ZERO(cube(S)) = [n] \ S. Let S be a d-subset
of [n] and define the color of S to be the vector whose coordinates are the c-values
of the edges of the d-dimensional subcube cube(S) (according to the fixed ordering of
the edges of Qd). By Ramsey’s theorem, if n is large enough, there is a set T ⊆ [n] of
d2 + d − 1 coordinates such that the color-vector is the same for any d-subset of T .
Let us now fix a set S of d particular coordinates from T : those ones which are the
(id)th elements of T for some i = 1, . . . , d. Hence any two elements of S have at least
d− 1 elements of T in between.

Claim 10. The c-value of an edge e of cube(S) depends only on the number of
ones to the left of the � of e and the number of ones to the right of this �.

Proof. Let e1 and e2 be two edges of cube(S) such that they have the same number
of ones to the left of their respective star and the same number of ones to the right
as well. We can find d coordinates S′ from T such that STAR(e2) ∪ ONE(e2) ⊆ S′

(i.e., e2 is an edge of cube(S′)), and the vector e2 restricted to S′ is equal to the vector
e1 restricted to S. Indeed, there are enough unused 0-coordinates of e2 in T between
any two elements of S.

Now, since every d-subset of T has the same color-vector, the corresponding edges
of the cubes cube(S) and cube(S′) have the same c-value. In particular the colors of
e1 and e2 are equal. The claim is proved.

To finish the proof of the upper bound in Theorem 4 we just note that there are
exactly 1 + · · · + d =

(
d+1
2

)
many ways to separate at most d − 1 ones by a �. By

Claim 10 a d-polychromatic edge-coloring is not possible with more colors.
With a very similar argument one can prove the matching upper bound in the

analogous question for vertices.
Proof of Theorem 7. Assume we have a d-polychromatic coloring of the vertices

of Qn. Let us define a d2d

-coloring of the d-tuples of [n]. For a d-subset S let the color
be determined by the vector of the 2d colors of the vertices of the subcube cube(S)
with STAR(cube(S)) = S and ZERO(cube(S)) = [n] \ S (according to some fixed
ordering of the vertex set of Qd). By Ramsey’s theorem there is a set T of d2 + d− 1
coordinates such that the color-vector is the same for any d-subset of T . Let us again
fix d coordinates S in T such that any two elements of S have at least d− 1 elements
of T in between (as in the proof of Theorem 4).

Claim 11. The color of a vertex in cube(S) depends only on its number of ones.
Proof. Let v1 and v2 be two vectors from cube(S) such that |ONE(v1)| =

|ONE(v2)|. We can find d coordinates S′ from T such that ONE(v2) ⊆ S′, and
the vector v2 restricted to S′ is equal to the vector v1 restricted to S. Indeed, there
are enough unused 0 coordinates in T between any two elements of S to do this. Now,
since T is monochromatic according to our color-vectors, the color of v1 and v2 is the
same as well. The claim is proved.

To finish the proof of the upper bound in Theorem 7 we just note that there are
exactly d+ 1 possible values for the number of ones on d coordinates. By Claim 11 a
d-polychromatic coloring is not possible with more colors.
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For the lower bound in Theorem 7 one can color each vertex of the cube with the
number of its nonzero coordinates modulo d+ 1. This gives a d-polychromatic vertex
coloring in d + 1 colors.

4. A lower bound on cd. The lower bound in Proposition 6 can be deduced
from earlier results on the d-independent set problem and is essentially stated (im-
plicitly) in [10]. For completeness we sketch the proof.

Let G be a set of g vertices which intersects all d-cubes of the n-cube. This
happens if and only if, interpreting these vertices as subsets of an n-element base set
X, G shatters all (n−d)-element subsets of X. (A family F of subsets shatters a given
subset K if all 2|K| subsets of K can be represented as K ∩F for some F ∈ F .) Now
let MG be the g × n 0/1-matrix whose rows correspond to the elements of G. Then
the columns of MG can be interpreted as a family L of n subsets of a g-element base
set Y such that all the 2n−d parts of the Venn diagram of any n−d members of L are
nonempty. (A family L satisfying this property is usually called (n−d)-independent.)

Thus determining g(d + t, d) is the same problem as determining the largest size
of a t-independent family. This was first done by Schönheim [14] and Brace and
Daykin [4] for t = 2 and later reproved and generalized by many others, e.g., Kleitman
and Spencer [12].

It is known that g(d + 2, d) ≥ log d, and thus the lower bound on c0d follows by
the monotonicity of g(n, d)/2n. The lower bound in Theorem 1 also follows since
f(d + 2, d) ≥ g(d + 2, d) and f(n, d)/e(Qn) is nondecreasing.

5. Remarks and more open problems.
Remark. The following claim shows that if 1/cd is indeed subexponential, then

one has to search for the evidence in very large, i.e., doubly exponential, dimensions.
For simplicity we write here the proof for c0d (the vertex version); the argument

for cd follows along similar lines.

Claim. For any p ≤ 2d

2d , there is a d-polychromatic p-coloring of the n-cube, with

n = 1
2 exp

{
2d

2dp

}
. In particular, for any ε > 0 and n ≤ 1

2 exp
{
2(1−ε)d

}
,

g(n, d) ≤ 2d

2εd
· 2n.

Proof. We randomly color the vertices of Qn with p colors. For each vertex v
select a color uniformly at random from {1, . . . , p}, with choices being independent
from the choices on all other vertices. For a d-cube D, let AD be the event that there
is a color which does not appear on the vertices of D. The probability of AD is at

most p (1 − 1/p)
2d

. Each d-cube intersects less than 2d
(
n
d

)
other d-cubes. Obviously

AD is independent from the set of all events AD′ , where D′ is disjoint from D.

For p ≤ 2d

2d and n = 1
2 exp

{
2d

2dp

}
,

e · p
(

1 − 1

p

)2d

2d
(
n

d

)
≤ e1+log p− 2d

p +d log 2n = od(1).

Hence the Lovász Local Lemma implies that with nonzero probability all p colors are
represented on all d-cubes.

For the second part of the claim, choose p = 2εd/2d and leave out the vertices of
the sparsest color class in a d-polychromatic p-coloring of the n-cube.
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Open problems. Since f(n, 2) is known to be strictly larger than one-third of the
number of edges in Qn for large n [6], it is clear that p2 = 2. Bialostocki [3] proved
that in any 2-polychromatic edge-2-coloring of Qn the color classes are asymptotically
equal. The next natural question is the determination of p3, which is either 4, 5, or
6. Once p3 is known, it would be interesting to generalize Bialostocki’s theorem
and decide whether in any 3-polychromatic p3-edge-coloring of Qn, each color class
contains approximately 1

p3
e(Qn) edges.

Everything above could be generalized, quite straightforwardly, but would not
solve the following problems:

Turán-type: Let f (l)(n, d) be the smallest integer f such that there is a family
of f l-faces of Qn such that every d-face contains at least one member of this family.

Again, f (l)(n, d)/
(
n
l

)
2n−l is nondecreasing, so there is a limit c

(l)
d . Determine it!

Ramsey-type: A coloring of the l-faces of Qn is d-polychromatic if for every d-face
S and color s there is an l-face of S with color s. Let pc(l)(n, d) be the largest number
of colors with which there is a d-polychromatic coloring of the l-faces of Qn. Again,

the limit p
(l)
d of pc(l)(n, d) exists. Determine it!

Note added in proof. Problem 5 was recently solved by David Offner. He showed
that the lower bound in Theorem 4 is tight for every d.

Acknowledgment. We would like to thank an anonymous referee for pointing
out reference [2] to us.
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Abstract. Recently Alon and Shapira [Every monotone graph property is testable, New York,
Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, ACM
Press, 2005, pp. 128–137] have established that every monotone graph property is testable. They
raised the question whether their results can be extended to hypergraphs. The aim of this paper is to
address this problem. Based on the recent regularity lemma of Rödl and Schacht [Regular partitions
of hypergraphs, Combin. Probab. Comput., to appear], we prove that any monotone property of
3-uniform hypergraphs is testable answering in part the question of Alon and Shapira. Our approach
is similar to the one developed by Alon and Shapira for graphs. We believe that based on the general
version of the hypergraph regularity lemma the proof presented in this article extends to k-uniform
hypergraphs.
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1. Introduction.

1.1. Basic definitions. Let k ≥ 2 be an integer and A be a property of k-
uniform hypergraphs. In other words, A is a (possibly infinite) family of k-uniform
hypergraphs, and we say that a given hypergraph H satisfies A if H ∈ A . In this
paper we consider only decidable properties A , which are those for which there is an
algorithm that decides if H ∈ A or H �∈ A in finite time (depending on the size of
H) for every k-uniform hypergraph H.

For a given constant η > 0, we say a k-uniform hypergraph H on n vertices is η-far
from A if no k-uniform hypergraph G on the same vertex set with |E(G)�E(H)| ≤
ηnk satisfies A . This is a natural measure of how far the given hypergraph H is from
satisfying the property A .

We consider randomized algorithms which for an input hypergraph H on the
vertex set {1, 2, . . . , n} = [n] are able to make queries whether a given k-tuple of
vertices spans an edge in H. For a property A and a constant η > 0, such an
algorithm will be called a tester for A if it can distinguish with, say, probability 2/3
whether H satisfies A or is η-far from it. If a property A has for every η > 0 a tester
whose query complexity (i.e., the number of queries) is bounded by a function of η
and A but is independent of the number of vertices of the input hypergraph H, the
property is called testable.

One can observe that some simple properties such as connectivity or containing a
copy of some fixed hypergraph F are not testable. Perhaps surprisingly, many other
properties, e.g., being F-free, are testable.
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1.2. Testable graph properties. The general notion of property testing was
introduced by Rubinfeld and Sudan in [26]. In [14], Goldreich, Goldwasser, and Ron
initiated the study of property testing for combinatorial structures. In the present
paper the combinatorial structures we focus on are hypergraphs. Our work builds on
some of the earlier work of Alon et al. In a series of papers [1, 2, 3, 6, 4, 5] Alon
and his co-authors investigated testability of graph properties. This line of research
culminated in the recent result of Alon and Shapira [4] asserting that every hereditary
property A , i.e., A is closed under taking induced subgraphs, is testable (see also
Lovász and Szegedy [19] for an alternative proof). A central tool in the work for
graphs is Szemerédi’s regularity lemma (see Theorem 4) for graphs [28].

Some ideas of property testing for graphs were already present before the notion of
a tester was developed. For example if A consists of all graphs not containing a fixed
graph F (as a not necessarily induced subgraph), then the existence of a tester for A
follows from the so-called removal lemma for graphs. The removal lemma asserts that
for every graph F and every η > 0 there exists a c > 0 such that if G is an n-vertex
graph which is η-far from being F -free, then G contains at least cn|V (F )| copies of F .
This result was first obtained for F being the triangle K3 by Ruzsa and Szemerédi [27]
and later extended to arbitrary graphs F by Erdős, Frankl, and Rödl [12]. Those
results can straightforwardly be generalized to prove the testability of properties A ,
which can be defined by a finite collection F of forbidden subgraphs, i.e.,

(1) A = Forb(F ) := {G : F � G for every F ∈ F},
with |F | < ∞ (see the discussion in section 3.1).

For infinite families F it follows for example from a result of Bollobás et al. [7]
that being bipartite is a testable graph property. In [10], answering a question of
Erdős (see, e.g., [11]), Duke and Rödl generalized the result from [7] and proved
that being h-colorable is testable for any h ≥ 2. The proof in [10] is also based on
Szemerédi’s regularity lemma. Later this result and related results were established
by Goldreich, Goldwasser, and Ron [14] and subsequently improved by Alon and
Krivelevich [3]. The authors of [14] and [3] could avoid using Szemerédi’s regularity
lemma and, consequently, obtained much better bounds on the query complexity for
the testers.

The general problem for monotone graph properties, which are those properties
as described in (1) with a possibly infinite forbidden family F , was solved by Alon
and Shapira [5]. They showed that every monotone graph property is testable and
asked if the same holds for hypergraphs. In this paper we answer their question
positively for 3-uniform hypergraphs (see Theorem 2 below). Our proof uses the ideas
of Alon and Shapira and is based on the recent hypergraph extensions of Szemerédi’s
regularity lemma [13, 15, 21, 23, 24, 29]. The transition from graphs to hypergraphs
leads, however, to some technical difficulties. In this paper we restrict ourselves to
3-uniform hypergraphs. This case already reflects the main differences between the
graphs and the general case of k-uniform hypergraphs but allows us to simplify the
notation and to improve the presentation of the proof. We believe that the argument
can be extended with no major conceptual modification to k-uniform hypergraphs
(see also section 5).

The main result of the present paper is the first general result for 3-uniform hyper-
graphs which establishes testability for a fairly natural and general class of properties.
A few other hypergraph results were already known before, e.g., h-colorability [9], not
containing one fixed induced subhypergraph [17] and not containing one fixed non-
induced subhypergraph [20, 21].
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1.3. Main result. We now state the main result of the paper. A 3-uniform
hypergraph H on the vertex set V is some family of 3-element subsets of V , i.e.,
H ⊆

(
V
3

)
. Note that we identify hypergraphs with its edge set and we write V (H) for

the vertex set. We recall that a property A of 3-uniform hypergraphs is monotone
if H ∈ A implies that every (not necessarily induced) subhypergraph G ⊆ H exhibits
property A as well. In other words, A is closed under removal of vertices and edges.
Note that if A is a monotone property and the hypergraph H does not satisfy A ,
then no hypergraph obtained by adding edges to H will satisfy A . Consequently,
for monotontone properties the definition of η-far given earlier is equivalent to the
following.

Definition 1. For a monotone property A we say an n-vertex 3-uniform hy-
pergraph H is η-far from A if every subhypergraph G of H with |H \ G| ≤ ηn3 satis-
fies G �∈ A .

We say a tester has one-sided error if it confirms with probability 1 that H ∈ A .
In other words, whenever H satisfies A , the algorithm will be correct with probability
equal to 1. Moreover, a property A is testable with one-sided error if for every η > 0
there exists a tester with one-sided error.

In [5] Alon and Shapira proved that for any (decidable) monotone graph prop-
erty A and any η > 0 there exists a tester which after a bounded number of random
edge queries comes to the following conclusion:

• If H ∈ P, then the tester confirms it with probability 1.
• If H is η-far from A , then the tester outputs with probability 2/3 that H /∈ P.
• Otherwise, if H �∈ A and H is not η-far from A , then there are no guarantees

for the output of the tester.
In this paper we generalize this result from graphs to 3-uniform hypergraphs.

Theorem 2. Every decidable and monotone property A of 3-uniform hypergraphs
is testable with one-sided error.

As discussed earlier, monotone properties can be described by a (possibly infinite)
family of forbidden hypergraphs, i.e, for every monotone property A there exists a
family of hypergraphs F such that A = Forb(F ), where Forb(F ) is the family of
those hypergraphs not containing any element of F as a (not necessarily induced)
subhypergraph. Theorem 2 is then a consequence of the following result, as we will
show momentarily.

Theorem 3. Let F be a family of 3-uniform hypergraphs and A = Forb(F ).
For all η > 0 there exists c = c(A , η) > 0, and there are positive integers C = C(A , η)
and n0 = n0(A , η) such that the following holds.

If H is a 3-uniform hypergraph on n ≥ n0 vertices which is η-far from satis-
fying A , then there exists a hypergraph F0 ∈ F on f0 ≤ C vertices such that the
number of copies of F0 in H is at least cnf0 .

Theorem 1 easily follows from Theorem 2.
Proof (Theorem 3 is a direct consequence of Theorem 2). Let a decidable and

monotone property A = Forb(F ) and some η > 0 be given. By Theorem 2, there is
some c > 0 and there are integers C and n0 ∈ N such that any 3-uniform hypergraph
on n ≥ n0 vertices, which is η-far from exhibiting A , contains at least cn|V (F0)| copies
of some F0 ∈ F with |V (F0)| ≤ C.

Let s ∈ N be such that (1 − c)s/C < 1/3, and set m0 = max{s, n0}. We claim
that there exists a one-sided tester with query complexity

(
m0

3

)
for A . For that let H

be a 3-uniform hypergraph on n vertices. If n ≤ m0, then the tester simply queries
all edges of H, and since A is decidable, there is an exact algorithm with running
time depending only on the fixed m0, which determines correctly if H ∈ A or not.
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Consequently, let n > m0. Then we choose uniformly at random a set S of s
vertices from H. Consider the hypergraph H[S] = H ∩

(
S
3

)
induced on S. If H[S]

has A , then the tester says “yes” and otherwise “no.” Since A is decidable and s is
fixed, the algorithm decides whether or not H[S] is in A in constant time (constant
depending only on s and A ).

Clearly, if H ∈ A or n ≤ m0, then this tester outputs correctly, and hence it
is one-sided. On the other hand, if H is η-far from A and n > m0, then due to
Theorem 3 the random set S spans a copy of F0 for some F0 ∈ F on f0 ≤ C vertices,
with probability at least

(2) cnf0/
(
n
f0

)
≥ c.

Hence the probability that S does not span any copy of F0 is at most (1 − c)s/f0 ≤
(1− c)s/C < 1/3. In other words, S spans a copy of F0 with probability at least 2/3,
which shows that the tester works as specified.

From now on we are concerned only with the proof of Theorem 3. The main
philosophy of the proof of Theorem 3 is similar to the corresponding statement for
graphs in [5], which was originally obtained by Alon et al. in [2]. The proof requires
a strengthening of the hypergraph regularity lemma analogous to the modification
of Szemerédi’s regularity lemma proved in [2]. A similar lemma for 3-uniform hy-
pergraphs was already proved by Kohayakawa, Nagle, and Rödl [17] based on the
regularity lemma for 3-uniform hypergraphs of Frankl and Rödl [13] (see also [24]).
We give here a different (and simpler) proof, based on a “cleaner” version of the reg-
ularity lemma from [13], which was obtained for general k-uniform hypergraphs by
Rödl and Schacht [23]. We call this auxiliary result the representative lemma (see
Lemma 16 below).

This paper is organized as follows: In section 2, we develop the necessary defi-
nitions for the regularity method of 3-uniform hypergraphs. In particular, we state
the hypergraph regularity lemma (Theorem 13), the corresponding counting lemma
(Theorem 8), and the representative lemma (Lemma 16). Section 3 is devoted to the
proof of Theorem 3, and in section 4 we prove the representative lemma.

2. Regularity method for hypergraphs. In this section we recall some defi-
nitions of the hypergraph regularity method following the approach from [13].

2.1. Szemerédi’s regularity lemma. We start the discussion with graphs.
Given a graph G and disjoint subsets X, Y ⊆ V (G), the density of the pair (X,Y ) is

(3) dG(X,Y ) =
eG(X,Y )

|X||Y | ,

where eG(X,Y ) denotes the number of edges in G with one vertex in X and one
vertex in Y . The pair (X,Y ) will be called (ε, d)-regular if for every X ′ ⊆ X and
Y ′ ⊆ Y such that |X ′| ≥ ε|X| and |Y ′| ≥ ε|Y | we have

(4) |dG(X ′, Y ′) − d| < ε .

We also say (X,Y ) is ε-regular if it is (ε, d)-regular for some d. Roughly speaking,
an (ε, d)-regular pair (X,Y ) behaves in a similar way to a random bipartite graph
on the same vertex sets, where each edge appears with probability d. Szemerédi’s
regularity lemma [28] states that, for every ε > 0, we can partition the vertex set
of any large graph into a bounded number (depending only on ε) of sets such that
almost all bipartite graphs between the partition classes are ε-regular.
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Theorem 4 (Szemerédi’s regularity lemma [28]). For any ε > 0 and any inte-
ger t0, there are positive integers T0 = T0(ε, t0) > t0 and n0 = n0(ε, t0) such that
for every graph G = (V,E) with |V | = n ≥ n0 there exists a partition P(1) =
{V1, V2, . . . , Vt} of V such that

(i) t0 ≤ t ≤ T0,
(ii) ||Vi| − |Vj || ≤ 1 for all 1 ≤ i < j ≤ t, and
(iii) all but εt2 pairs (Vi, Vj) are ε-regular, where 1 ≤ i < j ≤ t.
This lemma is a powerful tool in extremal graph theory (see [18] for a survey or

many of its applications). It is often used in conjunction with the so-called counting
lemma for graphs. We will later need the simplest form of that lemma for triangles.

Lemma 5 (triangle counting lemma [18]). For all constants γ > 0 and d > 0
there exists εtcl = εtcl(γ, d) > 0 and mtcl = mtcl(f, γ, d) ∈ N such that the following
holds. If P is a tripartite graph with vertex classes V1, V2, and V3 of size |V1| = |V2| =
|V3| = m ≥ mtcl and if, moreover, (Vi, Vj) is (εtcl, d)-regular for all 1 ≤ i < j ≤ 3,
then the number of triangles K3 in P is in the interval (1 ± γ)d3m3.

An extension of Szemerédi’s regularity lemma for 3-uniform hypergraphs has been
developed in [13]. More recently extensions to k-uniform hypergraphs were obtained
by several authors in [15, 16, 24] and subsequently in [23, 29]. The key feature of
all those extensions of Theorem 4 to hypergraphs mentioned above is that it allows
one to prove a corresponding extension of the counting lemma, Lemma 5, as shown
in [13, 15, 16, 20, 21, 23, 29].

In our proof we will use the regularity lemma and the counting lemma for hyper-
graphs from [23]. Since, in this paper, we focus only on 3-uniform hypergraphs, we
develop the definitions only for that case, following the approach from [13]. Moreover,
from now on, by a hypergraph we mean a 3-uniform hypergraph.

2.2. Regular hypergraphs and the counting lemma for hypergraphs.
Let V1, V2, and V3 be mutually disjoint subsets of some vertex set V . We call a triple
Q̂ = (Q12, Q13, Q23) of bipartite graphs with vertex sets V1 ∪ V2, V2 ∪ V3 and V1 ∪ V3

a triad. Usually, we will think of a triad Q̂ = (Q12, Q13, Q23) as a tripartite graph with
vertex set V1 ∪ V2 ∪ V3 and edge set E(Q12)∪E(Q13)∪E(Q23). For the regularity of
hypergraphs, triads play the same role as pairs of vertex sets in Szemerédi’s regularity
lemma.

For a triad Q̂ = (Q12, Q13, Q23) with vertex set V1 ∪ V2 ∪ V3 we define Tr(Q̂) as
the set of triples of vertices of Q̂ each inducing a triangle in Q̂:

Tr(Q̂) =
∣∣{{v1, v2, v3} : vi ∈ Vi and vivj ∈ E(Qij) for all 1 ≤ i < j ≤ 3

}∣∣ .
For a hypergraph H on some vertex set V and a triad Q̂ with vertex classes V1, V2,
and V3 ⊂ V , we define the density of H on the triad Q̂ as

(5) dH(Q̂) =

{
|H∩Tr(Q̂)|
|Tr(Q̂)| if |Tr(Q̂)| > 0 ,

0 otherwise .

This is a natural extension of the notion of density from graphs w.r.t. pairs (see (3))
to hypergraphs w.r.t. triads. We generalize the last definition to the density of an
r-tuple of subtriads of a given triad. We say a tripartite graph X̂ = (X12, X13, X23)
with vertex sets W1, W2, and W3 is a subtriad of a triad Q̂ = (Q12, Q13, Q23) with
vertex sets V1 ⊇ W1, V2 ⊇ W2, and V3 ⊇ W3 if for every 1 ≤ i < j ≤ 3 we
have E(Xij) ⊆ E(Qij). For a given triad Q̂ = (Q12, Q13, Q23) and a family of (not
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necessarily disjoint) subtriads X̂ = {X̂s = (X12
s , X13

s , X23
s ) : s = 1, . . . , r} we define

Tr(X̂ ) =
r⋃

i=1

Tr(X̂i)

and extend (5) by setting

dH(X̂ ) =

{
|H∩Tr(X̂ )|
|Tr(X̂ )| if |Tr(X̂ )| > 0 ,

0 otherwise .

We now proceed to a central definition and extend the notion of a regular pair to
a regular triad.

Definition 6 ((δ, d, r)-regularity). Let δ > 0, d > 0, and r ∈ N. We say a
hypergraph H is (δ, d, r)-regular with respect to a triad Q̂ = (Q12, Q13, Q23) on the
vertex sets V1, V2, and V3 ⊆ V (H) if for any family of r subtriads X̂ = {X̂s : s =
1, . . . , r} satisfying

|Tr(X̂ )| > δ|Tr(Q̂)|

we have

|dH(X̂ ) − d| < δ .

This notion was introduced in [13] and, similar to Szemerédi’s regularity lemma,
decomposes every graph in a bounded number of “mostly” regular pairs; the hy-
pergraph regularity lemma (Theorem 13) will partition the edge set of any given
hypergraph into “triads” in such a way that most of them are regular in the sense
of Definition 6. In order to simplify the notation we sometimes do not specify the
density d. We will say a hypergraph is (δ, ∗, r)-regular if it is (δ, d, r)-regular for some
density d.

The counting lemma for hypergraphs is a crucial tool in our proof of Theorem 3.
It ensures the existence of many copies of a fixed small hypergraph inside a larger,
dense and “sufficiently regular” hypergraph H. We need a few more definitions before
we give the precise statement.

Let V1 ∪ V2 ∪ · · · ∪ Vf be a partition of some vertex set V . We denote by
Kf (V1, . . . , Vf ) the complete f -partite graph on that partition. Let R be any f -
partite subgraph of Kf (V1, . . . , Vf ) on the same vertex partition, and as above, let
Tr(R) be the set of those 3-element subsets of V , which span a K3 in R. We say R
underlies a hypergraph H on the same vertex set V if H ⊆ Tr(R). This leads to the
notion of a regular complex.

Definition 7 (regular complex). Let positive integers f , m, and r ∈ N and
positive constants δ2, δ3, d2, d3 > 0 be given. Suppose F is a hypergraph with vertex
set [f ] = {1, 2, . . . , f}, V1 ∪ V2 ∪ · · · ∪ Vf is a partition of some vertex set V , R ⊆
Kf (V1, . . . , Vf ), and R underlies a hypergraph H with vertex set V (H) = V . We say
the pair (R,H) is a (δ2, δ3, d2, d3, r)-regular (m,F)-complex if the following holds:

(i) |Vi| = m for all i = 1, . . . , f ;
(ii) for every 1 ≤ i < j ≤ f such that {i, j, k} ∈ F for some k ∈ [f ], the induced

subgraph Rij = R[Vi, Vj ] of R on the vertex sets Vi and Vj is (δ2, d2)-regular;
and

(iii) for every {i, j, k} ∈ F the hypergraph H is (δ3, dijk, r)-regular w.r.t. the triad

R̂ = (Rij , Rik, Rjk) for some dijk ≥ d3.
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The counting lemma for hypergraphs extends Lemma 5 and gives a bound on the
number of copies of a fixed hypergraph F in H for sufficiently (δ2, δ3, d2, d3, r)-regular
(m,F)-complexes (R,H).

Theorem 8 (counting lemma for 3-uniform hypergraphs [20]). For every f ∈ N

and constants γ > 0 and d3 > 0, there exist δ3 = δ3(f, γ, d3) > 0 such that for every
d2 > 0 there exist δ2 = δ2(f, γ, d3, d2) > 0, and positive integers r = r(f, γ, d3, d2)
and m0 = m0(f, γ, d3, d2) ∈ N such that the following holds.

Suppose F is a hypergraph with vertex set [f ] = {1, . . . , f}, V1 ∪ V2 ∪ · · · ∪ Vf is a
partition of some vertex set V , R ⊆ Kf (V1, . . . , Vf ), and R underlies a hypergraph H
with vertex set V (H) = V . If, moreover, (R,H) is a (δ2, δ3, d2, d3, r)-regular (m,F)-
complex with m ≥ m0, then the number of copies of F in H is at least

(6) (1 − γ)d
|Δ(F)|
2 d

|F|
3 mf ,

where Δ(F) is the shadow of F , i.e.,

Δ(F) =
{
{i, j} : 1 ≤ i < j ≤ f so that there exists k ∈ [f ] with {i, j, k} ∈ F

}
.

A generalization of this counting lemma to k-uniform hypergraphs can be found
in [21] and [23].

2.3. Regularity lemma for hypergraphs. In this section we state a variant
of the regularity for 3-uniform hypergraphs [13], which was obtained by the Rödl and
Schacht for general k-uniform hypergraphs in [23]. First we generalize the concept of
vertex partition present in Szemerédi’s regularity lemma.

Definition 9 ((t, �)-partition). Let V be a vertex set, P(1) = {V1, V2, . . . , Vt}
be a partition of V , and P(2) = {P ij

α : 1 ≤ i < j ≤ t and 1 ≤ α ≤ �} be a family of(
t
2

)
� bipartite graphs. We say the pair P = {P(1),P(2)} is a (t, �)-partition1 on V if

for every 1 ≤ i < j ≤ t the family {E(P ij
1 ), E(P ij

2 ), . . . , E(P ij
� )} is a partition of the

edge set of the complete bipartite graph K2(Vi, Vj).
We say a (t, �)-partition is T -bounded if max{t, �} ≤ T . Moreover, for a (t, �)-

partition P, we denote by P̂ the set of all triads of the form (P ij
α , P ik

β , P jk
γ ) with

1 ≤ α, β, γ ≤ � and 1 ≤ i < j < k ≤ t.
We consider such (t, �)-partitions for which the bipartite graphs P ij

α are μ-regular.
Moreover, as in Szemerédi’s regularity lemma we will require the vertex partition
classes to have almost the same size. This leads us to the following definition.

Definition 10 ((μ, t, �)-equitable). We say a (t, �)-partition P = {P(1),P(2)}
is (μ, t, �)-equitable if

(i) P(1) = {V1, V2, . . . , Vt} is equitable, i.e., for all 1 ≤ i < j ≤ t we have
||Vi| − |Vj || ≤ 1, and

(ii) for every 1 ≤ i < j ≤ t and 1 ≤ α ≤ � the bipartite graph P ij
α ∈ P(2) is

(μ, 1/�)-regular on the pair (Vi, Vj).
The regularity lemma from [23] guarantees the existence of a T -bounded (μ, t, �)-

equitable partition P (where μ = μ(t, �) is any function of t and �) for any hyper-
graph H, where T is independent of the number of vertices of H. Moreover, the
hypergraph H will be (δ, ∗, r)-regular w.r.t. almost all triads of P̂.

Theorem 11 (regularity lemma for 3-uniform hypergraphs [23]). For every inte-
ger t0 ∈ N, every constant δP > 0, and all functions μP : N

2 → (0, 1] and rP : N

2 →

1Note that while P(1) is a partition of V , the family of bipartite graphs P(2) is not a partition
of

(V
2

)
but a partition of the edge set of the complete t-partite graph Kt(V1, . . . , Vt).
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N, there exist positive integers T0 = T0(t0, δP , μP , rP) and n0 = n0(t0, δP , μP , rP)
such that for every hypergraph H with n ≥ n0 vertices V there exists a partition
P, and there are positive integers tP and �P such that for μP = μP(tP , �P) and
rP = rP(tP , �P) the following holds:

(i) P is (μP , tP , �P)-equitable and a T0-bounded partition on V ; and

(ii) H is (δP , ∗, rP)-regular w.r.t. all but at most δPt3P�3P triads P̂ ∈ P̂.
In our proof we will use the regularity lemma twice. First we use it in the form

as stated above, and in the second application we will refine the given partition P to
obtain a partition Q w.r.t. which H will be “more regular.” To state that version we
need the notion of a refinement of a partition.

Definition 12 (refinement). We say a partition Q = {Q(1),Q(2)} on V refines
a partition P = {P(1),P(2)} on V and write Q ≺ P if

(i) for every vertex set U ∈ Q(1) there exists W ∈ P(1) such that U ⊆ W , and
(ii) for every bipartite graph Q ∈ Q(2) there exists P ∈ P(2) such that Q is a

subgraph of P .
We now state that refinement version of Theorem 11. In fact, Theorem 11 is a

simple corollary of the refinement version, and a proof of that stronger version can be
found in [23]. The lemma roughly states that given a (μ, tP , �P)-equitable partition P
(with (μ, 1/�P)-regular auxiliary graphs P ij

α ∈ P(2) for sufficiently small μ) any
hypergraph H admits a partition Q ≺ P for which H is (δ, ∗, r)-regular on most

triads Q̂ ∈ Q̂.
Theorem 13 (refinement version of the regularity lemma [23]). For all posi-

tive integers tP, �P ∈ N, every constant δQ > 0, and all functions εQ : N

2 → (0, 1]
and rQ : N

2 → N, there exist μhrl = μhrl(tP , �P , δQ, εQ, rQ) > 0 and positive inte-
gers Thrl = Thrl(tP , �P , δQ, εQ, rQ) and nhrl = nhrl(tP , �P , δQ, εQ, rQ) such that the
following holds. If

(a) H is a hypergraph with n ≥ nhrl vertices V , and
(b) P is a (μhrl, tP , �P)-equitable (and hence max{tP , �P}-bounded) partition on

V ,
then there exists a partition Q and there are positive integers tQ and �Q such that
the following holds for tPQ = tPtQ, �PQ = �P�Q, εQ = εQ(tPQ, �PQ), and rQ =
rQ(tPQ, �PQ):

(i) Q is (εQ, tPQ, �PQ)-equitable and Thrl-bounded partition on V ;
(ii) Q ≺ P; and

(iii) H is (δQ, ∗, rQ)-regular w.r.t. all but at most δQt3PQ�3PQ triads Q̂ ∈ Q̂.

2.4. Statement of the representative lemma for hypergraphs. We now
turn to the key definition of a representative of a (t, �)-partition P. Roughly speaking,
a representative is a subobject of a (t, �)-partition P reflecting the structure of P.

Definition 14 (representative). Let P = {P(1),P(2)} be a (t, �)-partition
on V with vertex partition P(1) = {V1, V2, . . . , Vt} and P(2) = {P ij

α : 1 ≤ i < j ≤
t and 1 ≤ α ≤ �}. We say R = {R(1),R(2)}, where R(1) = {W1,W2, . . . ,Wt}
and R(2) = {Rij

α : 1 ≤ i < j ≤ t and 1 ≤ α ≤ �} is a representative of P (or R
represents P) if

(i) Wi ⊆ Vi for every 1 ≤ i ≤ t, and
(ii) Rij

α is a (bipartite) subgraph of P ij
α with vertex classes Wi and Wj for every

1 ≤ i < j ≤ t and 1 ≤ α ≤ �.
Moreover, we define for every triad P̂ = (P ij

α , P ik
β , P jk

γ ) ∈ P̂ the corresponding

triad R̂(P̂) = (Rij
α , R

ik
β , Rjk

γ ), and we let R̂ = {R̂(P̂) : P̂ ∈ P̂} be the family of triads
of the representative.
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In our proof of Theorem 3 the representative R of the partition P will be appro-
priately chosen from an equitable refinement Q of P (cf. Theorem 13), and hence, R
will be equitable in the following sense.

Definition 15 ((εR , tR , �R)-representative). Let εR > 0 and positive integers
tR and �R ∈ N be given. We say a representative R = {R(1),R(2)} of a (tP , �P)-
partition P on n vertices is an (εR , tR , �R)-representative if

(i) |W | = n/(tPtR) for every W ∈ R(1), and
(ii) R is (εR , 1/(�P�R))-regular for every R ∈ R(2).

We say the (εR , tR , �R)-representative R of a (tP , �P)-partition P is T -bounded for
some T ∈ N if max{tP , tR , �P , �R} ≤ T .

Recall that due to the quantification of the regularity lemma (Theorem 11), which
states that for every δP there exists T0, the resulting T0-bounded partition P may
satisfy tP , �P � 1/δP . This would, however, not suffice to count hypergraphs F of
a size comparable to tP or �P , the number of the blocks in the partition P. That
is due to the quantification of the counting lemma (Theorem 8), which for a given
hypergraph F of size f ensures the existence of sufficiently small δ � 1/f (δ3 in the
statement).

To circumvent a similar problem arising in the graph case, Alon and Shapira [5]
used an iterated version of Szemerédi’s regularity lemma, which was first obtained
and used by Alon et al. in [2]. This iterated regularity lemma yields for a given
graph G a vertex partition P(1) = {V1, V2, . . . , Vt} and a representative R(1) =
{W1,W2, . . . ,Wt} with Wi ⊆ Vi for every i = 1, 2, . . . , t. In that lemma the represen-
tative R(1) resembles typically the density of G w.r.t. P, i.e., dG(Wi,Wj) ∼ dG(Vi, Vj)
for most pairs 1 ≤ i < j ≤ t. Moreover, the graph G is ε-regular on every pair
(Wi,Wj) of the representative, and (most importantly) ε can be chosen as an arbi-
trary function of t, e.g., on the representative one can count graphs of order t, i.e.,
the size of the partition P(1).

The representative lemma, Lemma 16 below, is an analogous statement for 3-
uniform hypergraphs. For a given hypergraph H it asserts the existence of a partition
P = {P(1),P(2)} and of a representative R = {R(1),R(2)} of P so that H is
(δR(tP , �P), ∗, rR(tP , tR , �P , �R))-regular on every triad of the representative (see
(iv) in Lemma 16). Note that the number of partition blocks in R, which is the same
as that in the partition P, depends on tP and �P only, and here δR(tP , �P) is a
function of those parameters. On the other hand, the functions rR(tP , tR , �P , �R)
and εR(tP , tR , �P , �R) can depend on tP , tR , �P , and �R , so in particular, they can
depend on �P�R , which is the reciprocal of the densities of R ∈ R(2). Choosing
δR(tP , �P) and rR(tP , tR , �P , �R) appropriately as functions of tP , �P , tR , and �R

will allow us to satisfy the quantification of the counting lemma, Theorem 8, for
counting hypergraphs F whose size depends on tP and �P . Additionally, we will also
ensure that dH(R̂(P̂)) ∼ dH(P̂) for most triads P̂ ∈ P̂ (see (iii) in Lemma 16).

Lemma 16 (representative lemma). For every t1 ∈ N and δ > 0 and all functions
εP : N

2 → (0, 1] δR : N

2 → (0, 1], εR : N

4 → (0, 1], and rR : N

4 → N, there exist
positive integers TP, TPR , and n1 ∈ N such that the following holds.

If H is a hypergraph on at least n1 vertices, then there exist positive integers tP
and �P and a TP-bounded (tP , �P)-partition P = {P(1),P(2)} with t1 ≤ tP, and
there is representative R = {R(1),R(2)} of P such that

(i) every graph in P ∈ P(2) is (εP(tP , �P), 1/�P)-regular;
(ii) R is a TPR-bounded (εR(tP , tR , �P , �R), tR , �R)-representative of P for some

positive integers tR and �R ;
(iii) for all but at most δt3P�3P triads P̂ ∈ P̂ we have |dH(P̂)−dH(R̂(P̂))| ≤ δ; and



82 C. AVART, V. RÖDL, AND M. SCHACHT

(iv) H is (δR(tP , �P), ∗, rR(tP , tR , �P , �R))-regular w.r.t. R̂(P̂) ∈ R̂ for every

triad P̂ ∈ P̂.
A similar lemma was proved by Kohayakawa, Nagle, and Rödl [17]. In section 4

we give a different proof of the representative lemma based on Theorem 13.

3. Proof of Theorem 3. A weakened version of Theorem 3 is obtained by
restricting the theorem to finite forbidden families F . In that case the corresponding
statement of Theorem 3 has essentially been proved for k-uniform hypergraphs in [15,
21, 25]. We briefly outline that proof in section 3.1 and discuss its limitations w.r.t.
infinite families F . The representative lemma, Lemma 16, will allow us to overcome
those difficulties, and in section 3.2 we give a proof of Theorem 3 based on Lemma 16
and the counting lemma, Theorem 8.

3.1. The finite case. We now sketch a (straightforwardly adjusted) proof of
the removal lemma [15, 21, 25], based on the regularity and the counting lemma for
hypergraphs, which yields the restricted version of Theorem 3 for finite forbidden
families F .

Let F be a finite family of hypergraphs and η > 0 be given, and consider an
n-vertex hypergraph H which is η-far from A = Forb(F ). We apply Theorem 11
with appropriately chosen parameters δP and functions μP and rP (discussed below).
This way we obtain a partition P = {P(1),P(2)}. We then delete those edges H of
H which satisfy one of the following conditions:

(a) H is noncrossing in P, i.e., there exist Vi ∈ P(1) so that |H ∩ Vi| ≥ 2;

(b) H belongs to a sparse triad, i.e., dH(P̂) < η/3 for the unique P̂ ∈ P̂, with
H ∈ Tr(P̂); or

(c) H belongs to a (δP , ∗, rP(tP , �P))-irregular triad, i.e., the hypergraph H is

not (δP , ∗, rP(tP , �P))-regular w.r.t. the unique P̂ ∈ P̂, with H ∈ Tr(P̂).
We call the resulting hypergraph H′. Choosing δP < η/3 and provided the regular
partition has sufficiently many vertex classes (which implies that only a few tuples,
e.g., less than ηn3/3, are deleted because of (a)), one can show that at most ηn3 edges
of H were deleted. Since by assumption H is η-far from A , the hypergraph H′ still
does not satisfy A . Consequently, H′ contains a subhypergraph F0 isomorphic to
some forbidden hypergraph from F . Due to the construction of H′ all edges of F0 are
crossing w.r.t. the vertex partition P(1) and belong to dense and regular triads from
P̂. Suppose now that the entire copy F0 is crossing w.r.t. P(1), i.e., V (F0) intersects
each vertex partition class Vi ∈ P(1) in at most one vertex. (The case when F0 is
not crossing can be handled similarly, as we will show in the general proof for not
necessarily finite families F .)

Since each edge of F0 belongs to a dense and regular triad, the union of those
triads defines a dense and regular (m,F0)-complex (see Definition 7) with m = n/tP .
Moreover, maxF∈F |V (F)| exists since |F | < ∞. In other words, we can forecast the
maximum possible size of F0 we may encounter, and we can choose δP and functions
μP and rP at the beginning of the proof appropriately so that the (m,F0)-complex
from above is ready for an application of the counting lemma, Theorem 8. The
counting lemma then guarantees Ω(n|V (F0)|) copies of F0 in the (m,F0)-complex and,
consequently, in H′ ⊆ H, which concludes the proof.

Clearly, this argument breaks down for infinite families F , as we cannot forecast
an upper bound on the size of F0. The representative lemma, Lemma 16, allows us
to get around this issue. Given a hypergraph H we apply Lemma 16 and delete non-
crossing edges and edges belonging to triads P̂ for which R̂(P̂) is sparse; similarly,
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as in the discussion above (and also using (iii) of Lemma 16), we will be left with a
hypergraph H′ which again contains a hypergraph F0 from the forbidden family F .
In this (infinite) case we have no upper bound on the size of F0. However, since all
edges of F0 belong to triads of the (tP , �P)-partition P, we will argue that H′ also
contains some other forbidden hypergraph F1 of F , whose edges belong to the same
triads as the edges of F0 and, more importantly, the size of F1 will be bounded by a
function depending only on tP and �P . (Roughly speaking, the F0 and F1 can both be
homomorphically mapped in the “cluster-structure” of the partition P, and the size
of F1 depends only on the number of partition blocks of P.) This will allow us, with
appropriately chosen functions δR(tP , �P) and rR(tP , tR , �P , �R) for the regularity
of the representative, to find (using the counting lemma) Ω(n|V (F1)|) copies of F1 in
H′ ⊆ H. We now give the details of this outline.

3.2. The general case. In this section we make the ideas presented in the
outline above precise. For that we need a few more definitions. For positive integers t
and � we denote by M(t, �) the complete multigraph with vertex set [t] = {1, . . . , t} and
edge multiplicity �. We can view edges as ordered pairs ({i, j}, α), where 1 ≤ i < j ≤ t
and α ∈ [l]. We denote by Tr(M(t, �)) the set of all

(
t
3

)
�3 triangles of M(t, �). We will

identify a triangle on the vertices 1 ≤ i < j < k ≤ t and edges ({i, j}, α), ({i, k}, β),
({j, k}, γ) with the 6-tuple ((i, j, k), (α, β, γ)) and set

Tr
(
M(t, �)

)
=

{(
(i, j, k), (α, β, γ)

)
: 1 ≤ i < j < k ≤ t and α, β, γ ∈ [l]

}
.

We also consider homomorphisms into sub-multi-hypergraphs of Tr(M(t, �)). Recall
that for a hypergraph F we denote by Δ(F) the shadow of F , i.e., the family of all
pairs of vertices contained in an edge of F .

Definition 17. Let t and � be integers, and let S ⊆ Tr(M(t, �)) be a multi-
hypergraph. For a 3-uniform hypergraph F on f vertices, we say a pair of mappings
(ϕ,ψ)

ϕ : V (F) → V (S) ⊆ [t] and ψ : Δ(F) → [�]

is a homomorphism from F to the multihypergraph S if ϕ is onto and if there exists
a labeling of V (F) = {v1, . . . , vf} such that for every edge {vx, vy, vz} ∈ F , with
1 ≤ x < y < z ≤ f , we have ϕ(vx) < ϕ(vy) < ϕ(vz) and((

ϕ(vx), ϕ(vy), ϕ(vz)
)
,
(
ψ(vx, vy), ψ(vx, vz), ψ(vy, vz)

))
∈ S .

We will abbreviate the existence of a homomorphism from F to S as F � S.
Proof of Theorem 3. Let A = Forb(F ) for a (possibly infinite) family of forbidden

hypergraphs F , and let η > 0 be a positive constant. We need a few auxiliary
functions before we reveal the promised constants c > 0, C, and n0 (see (13) below).
Given two positive integers t and � and a multihypergraph S ⊆ Tr(M(t, �)), we set

FS = {F ∈ F : F � S}

and

(7) CS =

{
min{|V (F)| : F ∈ FS} if FS �= ∅,
0 otherwise.

Let Ψ: N

2 → N ∪ {0} be defined for two positive integers t and � as

Ψ(t, l) = max
{
CS : S ⊆ Tr(M(t, �))

}
.
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The function Ψ(t, �) is designed to forecast the maximal size of a witness from F we
may encounter after application of the representative lemma, Lemma 16. Next we
introduce the parameters δ and t1 and the functions εP , δR , εR , and rR with which
we are going to apply Lemma 16. Recall the functions δ3(f, γ, d3), δ2(f, γ, d3, d2),
r(f, γ, d3, d2), and m0(f, γ, d3, d2) from Theorem 8 and εtcl(γ, d) and mtcl(γ, d) from
Lemma 5. For the given η from above we set

(8) δ =
η

3
and t1 =

⌈
4

η

⌉

and define functions in integer variables t, t′, �, and �′:

εP(t, �) = εtcl(γ = 1/2, d = 1/�),(9)

δR(t, �) = δ3
(
f = Ψ(t, �), γ = 1/2, d3 = η/3

)
,(10)

εR(t, t′, �, �′) = δ2
(
f = Ψ(t, �), γ = 1/2, d3 = η/3, d2 = 1/(��′)

)
,(11)

rR(t, t′, �, �′) = r
(
f = Ψ(t, �), γ = 1/2, d3 = η/3, d2 = 1/(��′)

)
.(12)

For that choice of δ, t1, εP , δR , εR , and rR , Lemma 16 yields constants

TP , TPR , and n1 .

Now we define the constants c, C, and n0 promised by Theorem 3, and we set

C = Ψ(TP , TP) , c =
1

4C!
×
(

1

TPTPR

)(C2)
×
(η

3

)(C3)
(

1

TPTPR

)C

,

and

n0 = max
{
n1, TP ×mtcl(γ = 1/2, d = 1/TP), C2/c,

TPTPR ×m0(f = C, γ = 1/2, d3 = η/3, d2 = 1/(TPTPR))
}
.

(13)

This concludes the definition of all constants and functions involved in the proof.
Let H be a hypergraph on n ≥ n0 vertices which is η-far from A . Due to

Lemma 16 the hypergraph H admits a (tP , �P)-partition P (where tP ≥ t1) with a
representative R, and there are integers tR and �R such that (i)–(iv) of the lemma
hold. We formally fix

εP = εP(tP , �P), δR = δR(tP , �P),

εR = εR(tP , tR , �P , �R), and rR = rR(tP , tR , �P , �R) .

Now we delete all edges H of H which satisfy at least one of the two properties below:
(a) H is noncrossing w.r.t. the vertex partition P(1); i.e., there is some Vi ∈ P(1)

(1 ≤ i ≤ tP) such that |H ∩ Vi| ≥ 2; or
(b) H ∈ Tr(P̂) for which dH(R̂(P̂)) < 2η/3.

We call the resulting subhypergraph H′ ⊆ H. Next we estimate H \ H′. We first
consider the edges deleted due to (a). Recalling the definition of t1 in (8) and tP ≥ t1
we get that the number of noncrossing triples in H is at most

(14) 2

(
tP
2

)(
n/tP

2

)
n

tP
+ tP

(
n/tP

3

)
≤ n3

tP
≤ η

4
n3 .

Next we estimate the number of edges deleted because of (b). By property (i) of
Lemma 16 all graphs P ij

α ∈ P(2) are (εP , 1/�P)-regular, and consequently, Lemma 5
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applies to every triad P̂ ∈ P̂ (with γ = 1/2 and d = 1/�P). We consider two sub-

cases. First, the edge H could belong to a triad P̂ ∈ P̂ which is exceptional in the
sense of (iii) of Lemma 16. However, the number of those edges cannot exceed∣∣∣⋃{

Tr(P̂) : P̂ ∈ P̂ and |dH(P̂) − dH(R̂(P̂))| > δ
}∣∣∣

≤ δt3P�3P × max
P̂∈P̂

∣∣Tr(P̂)
∣∣ ≤ δt3P�3P ×

(
1 +

1

2

)
n3

t3P�3P
≤ η

2
n3 .

(15)

Finally, the number of edges of H in triads P̂ which are not exceptional in the sense
of part (iii) of Lemma 16 but satisfy (b) is at most

(16)

(
2η

3
+ δ

)
× max

P̂∈P̂

∣∣Tr(P̂)
∣∣× (

tP
3

)
�3P ≤ η × 3

2

n3

t3P�3P
× t3P

6
�3P ≤ η

4
n3 .

It follows from the considerations above and from (14)–(16) that

|H \ H′| ≤ ηn3 .

Hence, by assumption on H the hypergraph H′ �∈ A and contains some copy F0

of some forbidden hypergraph from F . Note that since H′ contains only crossing
edges in P, the existence of F0 ⊆ H′ yields the existence of some homomorphism to
Tr(M(tP , �P)). Let S ⊆ Tr(M(tP , �P)) be a homomorphic image of such a homo-
morphism. In particular, FS �= ∅, since F0 ∈ FS . We denote by F1 some hypergraph
in FS with the minimum number CS of vertices (see (7)) and let (ϕ,ψ) be the ho-
momorphism from F1 to S. Let

f1 = CS = |V (F1)| ≤ C,

and let V (F1) = {v1, . . . , vf1
}. We are going to show that the number of copies of F1

in H′ will satisfy

(17) #{F1 ⊆ H′} ≥ cnf1 ,

which clearly implies Theorem 3.
We define the graph

RS =
⋃

({i,j},α)∈S
Rij

α ,

where Rij
α ∈ R(2) are graphs of the representative. Assume without loss of generality

that V (S) = {1, 2, . . . , s} for some s ≤ tP and thus V (RS) = W1 ∪ W2 ∪ · · · ∪ Ws

with Wi ∈ R(1). If f = s, then (RS ,H′ ∩ Tr(RS)) is a (n/(tPtR),F1)-complex
(since by definition ϕ is onto), and we could invoke the counting lemma, Theorem 8,
which would yield (17). However, since this does not have to be the case, we will
define an auxiliary (n/(tPtR),F1)-complex (G,G) which will satisfy the assumptions
of Theorem 8, and due to its construction we will infer (17) from it.

We first define the vertex set of (G,G). For each x = 1, 2, . . . , f1 let Yx be a copy
of Wϕ(x) such that for all 1 ≤ x < y ≤ f1 we have Yx ∩ Yy = ∅. Moreover, for every
x = 1, 2, . . . , f1 let ϑx : Wϕ(x) → Yx be a bijection. Note that if {x, y} ∈ Δ(F1),

then ϕ(x) �= ϕ(y) and, consequently, ({ϕ(x), ϕ(y)}, ψ(x, y)) ∈ S and R
ϕ(x)ϕ(y)
ψ(x,y) ∈ R2.
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Hence, we can define for every {x, y} ∈ Δ(F1) with x < y a bipartite graph Gxy with
vertex classes Yx and Yy and edge set

E(Gxy) =
{
{ϑ(w), ϑ(w′)} : {w,w′} ∈ E(R

ϕ(x)ϕ(y)
ψ(x,y) )

}
.

It follows from that definition that Gxy is an isomorphic copy of R
ϕ(x)ϕ(y)
ψ(x,y) and that

G = (Y,EG) defined by

Y = Y1 ∪ · · · ∪ Yf1
and EG =

⋃{
E(Gxy) : {x, y} ∈ Δ(F1)

}
is an f1-partite graph satisfying (i) and (ii) of Definition 7 with m = n/(tPtR),
δ2 = εR , and d2 = 1/(�P�R). Similarly, for every edge {x, y, z} ∈ F1 there is a triad

R(x, y, z) ∈ R̂ defined by

R(x, y, z) = (R
ϕ(x)ϕ(y)
ψ(x,y) , R

ϕ(x)ϕ(z)
ψ(x,z) , R

ϕ(y)ϕ(z)
ψ(y,z) ) .

We set

Gxyz =
{
{w,w′, w′′} : {w,w′, w′′} ∈ H′ ∩ Tr(R(x, y, z))

}
and

G =
⋃{

Gxyz : {x, y, z} ∈ F1

}
.

Again it follows from the definition that G satisfies (iii) of Definition 7 with δ3 =
δR , d3 ≥ η/3, and r = rR . Summarizing, (G,G) is an (εR , δR , 1/(�P�R), η/3, rR)-
regular (n/(tPtR),F1)-complex. By the choices in (10)–(12) and (13) we can apply
the counting lemma, Theorem 8, and hence,

#{F1 ⊆ G} ≥
(

1 − 1

2

)(
1

�P�R

)|Δ(F1)| (η
3

)|F1|
(

n

tPtR

)f1 (13)

≥ 2f1!cn
f1 .

Observe that almost every copy of F1 in G corresponds to a labeled copy of F1 in
H′ (with ϑx : Yx → Wϕ(x) defining the isomorphism). The only possible exceptions
are those copies of F1 with an image of size less then f1. This may happen since for
each x = 1, . . . , f1 the map ϑx is a bijection, but ϑ−1

x (u) = ϑ−1
y (w) for two different

vertices u and w of a copy of F1 in G if, e.g., x and y are such that Wϕ(x) = Wϕ(y). The

number of those copies of F1 in G is however bounded from above by
(
f1

2

)
(n/tPtR)f1−1.

Consequently, we can find 2f1!cn
f1 −

(
f1

2

)
(n/tPtR)f1−1 labeled copies of F1 in H′ and

by the choice of n0 ≥ C2/c at least cnf1 unlabeled copies. Hence, we verified (17),
which concludes the proof of Theorem 3.

4. Proof of the representative lemma. The proof of Lemma 16 is based on
two successive applications of the regularity lemma (first in the form of Theorem 11
and second in the form of Theorem 13).

Proof of Lemma 16. First we recall the quantification of the representative lemma,
Lemma 16. Let constants t1 ∈ N and δ > 0 and functions εP : N

2 → (0, 1], δR : N

2 →
(0, 1], εR : N

4 → (0, 1], and rR : N

4 → N be given. We are supposed to define positive
integers TP , TPR , and n1, and we are going to define them in (23). First, however,
we need some preparations.
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Our proof of Lemma 16 will rely on the regularity lemma for hypergraphs in
the form of Theorems 13 and 11 and the counting lemma for graphs, Lemma 5.
Below we will use the functions μhrl(tP , �P , δQ, εQ, rQ), Thrl(tP , �P , δQ, εQ, rQ), and
nhrl(tP , �P , δQ, εQ, rQ) given by Theorem 13; the functions T0(t0, δP , μP , rP) and
n0(t0, δP , μP , rP) given by Theorem 11; and the functions εtcl(γ, d) and mtcl(γ, d)
given by the triangle counting lemma, Lemma 5.

We define auxiliary functions μaux : N

2 → (0, 1], Taux : N

2 → N, and naux : N

2 →
N, and we set for positive integers t and � and x ∈ {μ, T, n}

xaux(t, �) = xhrl

(
tP = t, �P = �, δQ = min

{
δR(t, �), (t�)−3/3

}
,

εQ(t′, �′) = min
{
εR(t, t′, �, �′), εtcl

(
γ = 1

2 , d = 1
��′

)}
,

rQ(t′, �′) = rR(t, t′, �, �′)
)
.

(18)

In other words, for fixed t and � the values μaux(t, �), Taux(t, �), and naux(t, �) are
defined by the corresponding constants μhrl, Thrl, and nhrl given by Theorem 13 for
those parameters tP , �P , and δQ and functions εQ and rQ displayed in (18). Note
that the choice in (18) is such that, for fixed integers t and �, the parameters tP , �P ,
and δQ are constants, while εQ : N

2 → (0, 1] and rQ : N

2 → N are functions in the
variables t′ and �′, which matches the quantification of Theorem 13.

With those auxiliary functions at hand, we define the parameters and constants
with which we will apply the “simple” regularity lemma, Theorem 11, later. For that
we fix constants

t0 = t1 and δP =
δ

9
(19)

and functions μP : N

2 → (0, 1] and rP : N

2 → N defined for all positive integers t
and � by

μP(t, �) = min
{
μaux(t, �), εP(t, �), εtcl(γ = 1/2, d = 1/�)

}
,(20)

rP(t, �) =
(
Taux(t, �)

)6
,(21)

where t1, δ, and εP are input parameters of Lemma 16. Given t0, δP , μP , and rP

from above, Theorem 11 yields positive integers

(22) T0 = T0(t0, δP , μP , rP) and n0(t0, δP , μP , rP) .

Now we are able to determine the promised constants TP , TPR , and n1 of Lemma 16,
and we set

TP = T0, TPR = max
1≤t,�≤T0

Taux(t, �),

and n1 = max
{

max
1≤t,�≤T0

naux(t, �), n0, TP ×mtcl(γ = 1
2 , d = 1

TP

)
,

TPTPR ×mtcl(γ = 1
2 , d = 1

TPTPR

)}
.

(23)

Having defined those constants, let H be a given hypergraph on n ≥ n1 vertices. Since
n1 ≥ n0 we can apply Theorem 11 with constants t0 and δP and functions μP and rP

defined in (19)–(21). Theorem 11 yields a partition P = {P(1),P(2)} and positive
integers tP and �P such that (i) and (ii) of Theorem 11 hold; i.e.,
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(P1) P is (μP(tP , �P), tP , �P)-equitable, T0-bounded, and tP ≥ t0; and

(P2) H is (δP , ∗, rP(tP , �P))-regular w.r.t. all but at most δPt3P�3P triads P̂ ∈ P̂.
Next we will apply the refining version of the regularity lemma, Theorem 13, to H
and P, with parameters tP , �P , δQ = min{δR(tP , �P), (3t3P�3P)−1)}, εQ(t′, �′) =
min{εR(tP , t′, �P , �′), εtcl(γ = 1

2 , d = 1
�P�′ )}, and rQ(t′, �′) = rR(tP , t′, �P , �′). In

other words, we will apply Theorem 13 with precisely the same parameters as those
in (18). Therefore, we have to check that H and P satisfy the assumptions (a) and (b)
of Theorem 13 for naux(tP , �P) and μaux(tP , �P). However, due to (23) and (P1)
we have n ≥ naux(tP , �P) and due to the choice in (20) we have μP(tP , �P) ≤
μaux(tP , �P). Consequently, assumptions (a) and (b) of Theorem 13 hold, and Theo-
rem 13 yields a partition Q = {Q(1),Q(2)} and positive integers tQ and �Q such that
with

δQ = min{δR(tP , �P), (tP�P)−3/3} ,(24)

εQ = min{εR(tP , tQ, �P , �Q), εtcl(γ = 1
2 , d = 1

�P�Q
)} ,(25)

and

rQ = rR(tP , tQ, �P , �Q) .(26)

we have
(Q1) Q is (εQ, tPtQ, �P�Q)-equitable and a Taux(tP , �P)-bounded partition on V ,
(Q2) Q ≺ P, and

(Q3) H is (δQ, ∗, rQ)-regular w.r.t. all but at most δQt3Pt3Q�3P�3Q triads Q̂ ∈ Q̂.
It follows directly from (P1), (20), and the choice of TP in (23) that

(27) P is TP-bounded and satisfies (i) of Lemma 16.

Below we will select the representative R from the finer partition Q. For property (iii)
of Lemma 16 the following claim will be useful.

Claim 18. If P̂ ∈ P̂ is such that H is (δP , ∗, rP(tP , �P))-regular w.r.t. P, then

all but at most 2δPt3Q�3Q triads Q̂ ∈ Q̂ with Q̂ ⊆ P̂ satisfy

(28)
∣∣dH(P̂) − dH(Q̂)

∣∣ ≤ δ .

Proof. Let P̂ ∈ P̂ as in the claim be given. We set

B+ = {Q̂ ∈ Q̂ : Q̂ ⊆ P̂ and dH(Q̂) > dH(P̂) + δ},
B− = {Q̂ ∈ Q̂ : Q̂ ⊆ P̂ and dH(Q̂) < dH(P̂) − δ} .

We first consider |B+|. Observe that by definition of B+

(29) dH

⎛
⎝ ⋃

Q̂∈B+

Q̂

⎞
⎠ > dH(P̂) + δ

(19)
> dH(P̂) + δP .

On the other hand, recalling that by (Q1) every Q ∈ Q(2) is an (εQ, 1/(�P�Q))-regular
bipartite graph and that by (25) εQ ≤ εtcl(γ = 1

2 , d = 1
�P�Q

), we infer from Lemma 5

that the total number of triangles contained in some Q̂ ∈ B+ ⊆ Q̂ does not exceed

(30) |B+| ×
3

2

(
1

�P�Q

)3 (
n

tPtQ

)3

.
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Since H is (δP , ∗, rP(tP , �P))-regular w.r.t. P̂ and by (21)

rP(tP , �P) ≥
(
Taux(tP , �P)

)6 (Q1)

≥ t3Q�3Q ≥ |B+|,

we infer from (29) that the quantity from (30) is smaller than

|B+| ×
3

2

(
1

�P�Q

)3 (
n

tPtQ

)3

≤ δP

∣∣Tr(P̂)
∣∣ ≤ δP × 3

2

(
1

�P

)3 (
n

tP

)3

,

where we used the (μP(tP , �P), 1/�P)-regularity of the bipartite subgraphs of every

P̂ ∈ P̂ (see (P1)), μP(tP , �P) ≤ εtcl(γ = 1
2 , d = 1

�P
) (see (20)), and Lemma 5 for the

last inequality. Consequently,

|B+| ≤ δPt3Q�3Q .

Repeating the same argument for |B−| yields |B+| + |B−| ≤ 2δPt3Q�3Q, and the claim
follows.

In what follows we will select the representative R from Q randomly and show
that with positive probability such an R satisfies properties (ii)–(iv) of Lemma 16.
For that the following notation will be useful. Recall that P(1) = {V1, V2, . . . , VtP

}
and P(2) = {P ij

α : 1 ≤ i < j ≤ tP , α ∈ [�P ]}, where V (P ij
α ) = Vi ∪ Vj . Let the

vertex partition classes of Q(1) be labeled in such a way that Q(1) = {Wi,i′ : (i, i′) ∈
[tP ]× [tQ]} and Vi = Wi,1 ∪Wi,2 ∪ · · · ∪Wi,tQ

for every i = 1, 2, . . . , tP . Furthermore,

let the graphs of Q
(2)
P = {Q ∈ Q(2) : Q ⊆ P for some P ∈ P(2)} be labeled

Q
(2)
P =

{
Q

(i,i′),(j,j′)
α,α′ : (α, α′) ∈ [�P ] × [�Q], (i, i′), (j, j′) ∈ [tP ] × [tQ], and i < j

}
such that for every (i, i′), (j, j′) ∈ [tP ] × [tQ] with i < j and (α, α′) ∈ [�P ] × [�Q],

V (Q
(i,i′),(j,j′)
α,α′ ) = Wi,i′ ∪Wj,j′ ,

E(P ij
α [Wi,i′ ∪Wj,j′ ]) =

⋃
α′∈[�Q]

E(Q
(i,i′),(j,j′)
α,α′ ) .

Now consider a pair of random mappings

ϕ : [tP ] → [tQ] and ψ :

(
[tP ]

2

)
× [�P ] → [�Q];

both mappings are chosen independently and uniformly at random from the set of

all ttP

Q or �
(tP

2 )�P

Q mappings. To each such pair of mappings we associate a random

representative R = R(ϕ,ψ) = {R(1),R(2)} defined by

R(1) = {Wi,ϕ(i) : i ∈ [tP ]}

and

(31) R(2) =
{
Q

(i,ϕ(i)),(j,ϕ(j))
α,ψ({i,j},α) : 1 ≤ i < j ≤ tP , α ∈ [�P ]

}
.

It is easy to check that R(ϕ,ψ) indeed is a representative of P for every choice of ϕ
and ψ. Moreover, we infer from (Q1), (25), and the choice of TPR in (23) that setting

(32) tR = tQ and �R = �Q
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yields

(33) R(ϕ,ψ) satisfies (ii) of Lemma 16 for every choice of ϕ and ψ.

We are going to show that there is a choice of mappings ϕ and ψ such that the
representative R = R(ϕ,ψ) satisfies properties (iii) and (iv) of Lemma 16 as well.

Due to Claim 18 we have that if P̂ ∈ P̂ is such that H is (δP , ∗, rP(tP , �P))-

regular w.r.t. P̂, then at most 2δPt3Q�3Q subtriads Q̂ ⊆ P̂ from Q̂ violate (28).

Moreover, by (P2) the number of (δP , ∗, rP(tP , �P))-irregular triads P̂ ∈ P̂ does

not exceed δPt3P�3P , and consequently, the total number of subtriads Q̂ ∈ Q̂ with

Q̂ ⊆ P̂ ∈ P̂, where P̂ is (δP , ∗, rP(tP , �P))-irregular, is at most δPt3P�3P × t3Q�3Q.

We say a triad Q̂ ∈ Q̂ is bad if there exists some P̂ ∈ P̂ such that P̂ ⊇ Q̂ and
either (28) is violated or P̂ is (δP , ∗, rP(tP , �P))-irregular. From the discussion above
we clearly infer that

∣∣{Q̂ ∈ Q̂ : Q̂ is bad}
∣∣ ≤ 2δPt3Q�3Q × |P̂| + δPt3P�3Pt3Q�3Q ≤ 3δP(tP�PtQ�Q)3 .

Since each Q̂ ∈ Q̂ which is a subtriad of some P̂ ∈ P̂ is contained in the same number

(ttP−3
Q �

(tP
2 )�P−3

Q ) of all representatives R(ϕ,ψ), the expected number of bad triads
contained in a random representative R(ϕ,ψ) is smaller than 3δPt3P�3P . Let B1 be
the event for which the random representative contains more than 9δPt3P�3P = δt3P�3P
(see (19)) bad triads Q̂ ∈ Q̂. From Markov’s inequality we infer P(R(ϕ,ψ) ∈ B1) ≤
1/3. In other words,

(34) P

(
R(ϕ,ψ) satisfies (iii) of Lemma 16

)
≥ 2

3
.

Similarly, due to (Q3) combined with (24), (26), and (32), we have that the num-

ber of (δR(tP , �P), ∗, rR(tP , tR , �P , �R))-irregular triads Q̂ ∈ Q̂ is at most δQt3Pt3Q�3P�3Q.
Hence, the expected number of such irregular triads contained in the random repre-
sentative R(ϕ,ψ) is at most

δQt3P�3P
(24)

≤ 1

3
.

Let B2 be the event for which the random representative R(ϕ,ψ) contains at least one
(δR(tP , �P), ∗, rR(tP , tR , �P , �R))-irregular triad. Thus again by Markov’s inequality
we infer P(R(ϕ,ψ) ∈ B2) ≤ 1/3, i.e.,

(35) P

(
R(ϕ,ψ) satisfies (iv) of Lemma 16

)
≥ 2

3
.

Combining (34) and (35) implies that the probability that R(ϕ,ψ) satisfies (iii)
and (iv) of Lemma 16 is at least 1/3. Hence, there exist representative satisfying
properties (iii) and (iv), and Lemma 16 follows from (27) and (33).

5. Concluding remarks. We close this paper with a few remarks concerning
extensions of Theorem 2 to monotone properties of general k-uniform hypergraphs
and hereditary properties of hypergraphs.
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5.1. Monotone properties of k-uniform hypergraphs. As we mentioned
earlier, the proof of Theorem 2 presented in this paper extends without any major
modification from 3-uniform to k-uniform hypergraphs. This is because the two main
tools used in the proof, namely, the hypergraph regularity lemma (Theorems 11 and
13) and the hypergraph counting lemma (Theorem 8), were already proved for general
k-uniform hypergraphs (see [23]). While the philosophy of the regularity method
for general uniform hypergraphs and its application in this context stays the same,
the general case of k-uniform hypergraphs brings a more complicated and technical
notation. For example, the concept of a (t, �)-partition extends to a family of partitions
of the vertices, pairs, triples, and so on, and (k − 1)-tuples of vertices. Due to this
more complicated structure of the partition provided by the general regularity lemma,
the notion of an appropiate representative is more involved. In particular, it cannot
be described through such explicit labels as, e.g., used in (ii) of Definition 14 or in
(31).

We believe that the special (and more explicit) case of 3-uniform hypergraphs
provides a good balance between generality and clarity and that, due to the less
complex notation, the proof is more readable. Therefore we restricted ourselves to
3-uniform hypergraphs here.

5.2. Hereditary properties of hypergraphs. Another interesting general-
ization of Theorem 2 is the extension from monotone to hereditary properties. A
hypergraph property is called hereditary if it is closed under taking induced sub-
hypergraphs. Monotone properties are a special case of hereditary properties. Re-
cently Alon and Shapira [4] and later Lovász and Szegedy [19] (see also [8]) proved
that every hereditary graph property is testable. In particular, Alon and Shapira use
a strengthened version of Szemerédi’s regularity lemma from [2], which in some sense
corresponds to the representative lemma, Lemma 16, from our proof (see also [17]
for a similar lemma). We believe that the proof of Alon and Shapira can be adapted
to k-uniform hypergraphs by using the extension of the representative lemma given
in this paper. Here again the main obstacles seem to be of a technical nature. In
particular, dealing with edges which are not crossing in the partition seems to present
additional problems of a technical nature.

Inspired by the work of Lovász and Szegedy, Rödl and Schacht [22] found a way
to merge some ideas from [19] with that of Alon et al. [2]. This yields a somewhat
different proof, which circumvents the technical issues mentioned above.
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[13] P. Frankl and V. Rödl, Extremal problems on set systems, Random Structures Algorithms,
20 (2002), pp. 131–164.

[14] O. Goldreich, S. Goldwasser, and D. Ron, Property testing and its connection to learning
and approximation, J. ACM, 45 (1998), pp. 653–750.

[15] W. T. Gowers, Hypergraph regularity and the multidimensional Szemerédi theorem, submit-
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[27] I. Z. Ruzsa and E. Szemerédi, Triple systems with no six points carrying three triangles,

in Combinatorics, Vol. II, Colloq. Math. Soc. János Bolyai, ed., Elsevier–North Holland,
Amsterdam, 1978, pp. 939–945.
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A GENERALIZATION OF KOTZIG’S THEOREM AND ITS
APPLICATION∗

RICHARD COLE† , �LUKASZ KOWALIK‡ , AND RISTE ŠKREKOVSKI§

Abstract. An edge of a graph is light when the sum of the degrees of its end-vertices is at
most 13. The well-known Kotzig theorem states that every 3-connected planar graph contains a
light edge. Later, Borodin [J. Reine Angew. Math., 394 (1989), pp. 180–185] extended this result
to the class of planar graphs of minimum degree at least 3. We deal with generalizations of these
results for planar graphs of minimum degree 2. Borodin, Kostochka, and Woodall [J. Combin. Theory
Ser. B, 71 (1997), pp. 184–204] showed that each such graph contains a light edge or a member of
two infinite sets of configurations, called 2-alternating cycles and 3-alternators. This implies that
planar graphs with maximum degree Δ ≥ 12 are Δ-edge-choosable. We prove a similar result
with 2-alternating cycles and 3-alternators replaced by five fixed bounded-sized configurations called
crowns. This gives another proof of Δ-edge-choosability of planar graphs with Δ ≥ 12. However, we
show efficient choosability; i.e., we describe a linear-time algorithm for max{Δ, 12}-edge-list-coloring
planar graphs. This extends the result of Chrobak and Yung [J. Algorithms, 10 (1989), pp. 35–51].

Key words. Kotzig’s theorem, planar graph, light edge, choosability, list-coloring, algorithm
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1. Introduction. One of the best-known facts concerning planar graphs states
that every planar graph contains a vertex of degree at most 5. Let the weight of
edge e = uv, denoted by w(e), be the sum of the degrees of its end-vertices; i.e.,
w(e) = degG(u)+degG(v). We say that an edge is light when its weight is at most 13.
In 1955 Kotzig [12] showed the following theorem.

Theorem 1.1 (Kotzig). Every 3-connected planar graph contains a light edge.
This result was an inspiration for dozens of papers, which form the now so-called

light graph theory (see the surveys by Jendrol’ and Voss [10, 11] and the introduction
in [13]).

Kotzig’s theorem was generalized in several directions; see, e.g., [2, 7, 15]. In
particular, Erdős conjectured that it is valid also for planar graphs with vertices of
degree at least 3, and this was proved by Borodin [1].

Theorem 1.2 (Borodin). Every simple planar graph with minimum degree δ ≥ 3
contains a light edge.

A light edge is not always present if the graph under consideration has vertices of
degree 2; for example, consider the bipartite complete graph K2,k for any k ≥ 12. In
this example each vertex of degree d ≥ 12 has many 2-neighbors. However, one can
guarantee the existence of a light edge by bounding the number of 2-neighbors.
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Proposition 1.3. Let G be a simple planar graph with minimum degree δ ≥ 2
such that each d-vertex, d ≥ 12, has at most d − 11 neighbors of degree 2. Then G
contains a light edge.

Proof. We may assume that every 2-vertex of G is adjacent to two vertices of
degree at least 12 for otherwise there is a light edge in G. Consider the graph G′

obtained from G by replacing each path uxw such that deg(x) = 2 by an edge joining
u and w. Additionally we replace multiple edges by single ones. Clearly G′ is a simple
planar graph with vertices of degree at least 3, and by Theorem 1.2, G′ contains an
edge of weight at most 13. Consider such an edge uw.

First assume that u has a 2-neighbor x in G. Then degG(u) ≥ 12 and in G vertex
u has at least 11 neighbors of degree at least 3, which implies that degG′(u) ≥ 11 and
hence uw has weight at least 14, a contradiction.

Hence we may assume that u has no 2-neighbor in G and that the same holds for w.
It follows that uw belongs to G. Also, degG(u) = degG′(u) and degG(w) = degG′(w),
and hence uw has in G the same weight as in G′.

Borodin, Kostochka, and Woodall [3] proved the following result, where the num-
ber of 2-neighbors is not bounded.

Theorem 1.4 (Borodin, Kostochka, and Woodall). Every planar graph with
minimum degree δ ≥ 2 contains a light edge, a 2-alternating cycle, or a 3-alternator.

In the above theorem a 2-alternating cycle is an even length cycle with every
second vertex of degree 2, while a 3-alternator is a bipartite subgraph F with partite
sets U,W such that, for each u ∈ U , 2 ≤ degF (u) = degG(u) ≤ 3, and for each
w ∈ W , either degF (w) ≥ 3 or w has exactly two neighbors in U , both of degree
14 − degG(w) (the latter case is possible only if degG(w) = 11 or 12).

In this paper, we give a similar result involving only five small fixed subgraphs,
called crowns (see section 2 for the definition and see Figure 2.1 for an illustration),
instead of 2-alternating cycles and 3-alternators.

Theorem 1.5. Every planar graph with minimum degree δ ≥ 2 contains a light
edge or a k-crown, for some k ∈ {1, . . . , 5}.

Unlike 2-alternating cycles and 3-alternators the five crowns have bounded size
and are contained in the “neighborhood” of one vertex.

1.1. Applications. Let G be a graph. An edge-list assignment L : E(G) →
P(N) is a function that assigns to each edge e of G a set (or a list) L(e) of admissible
colors. A function λ : E(G) → N is an L-edge-coloring if λ(e) ∈ L(e) for every
e ∈ E(G), and λ(e) �= λ(f) for every pair of incident edges e, f ∈ E(G). If G admits
an L-edge-coloring, it is L-edge-colorable. For k ∈ N , a graph G is k-edge-choosable
if it has an L-edge-coloring for every edge-list assignment L such that |L(e)| ≥ k for
each e ∈ E(G).

Throughout the paper Δ(G) will denote the maximum degree of graph G, i.e.,
the largest of the vertex degrees in G. Usually it is clear which graph we refer to and
then we simply write Δ.

Although it is conjectured that if a graph is k-edge-colorable, then it is also k-
edge-choosable, there is no analogue of Vizing’s theorem for list-coloring; i.e., it is not
known whether every graph is Δ + O(1)-choosable. However, Borodin, Kostochka,
and Woodall [3] showed the following theorem.

Theorem 1.6 (Borodin, Kostochka, and Woodall). Every planar graph with
maximum degree Δ ≥ 12 is Δ-edge-choosable.

A subgraph of a planar graph is reducible when it cannot appear in a minimal
counterexample for Theorem 1.6. In this sense, a light edge is reducible (see the
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paragraph with the heading “Edges of bounded weight” below). In section 3 we show
that crowns are reducible. Together with our main result this gives a new proof of
Theorem 1.6.

We also consider efficient algorithms for edge-list-coloring planar graphs. Then
given an n-vertex graph G and an edge-list assignment L such that lists have length
max{Δ, 12}, one has to compute an L-edge-coloring of G. Note that the size of the
input is Θ(|E(G)|Δ), which is bounded by O(nΔ) when G is planar. Hence O(nΔ)-
time algorithms are considered to be linear. Additionally, we assume that each list
of admissible colors is sorted. If this assumption is not met, the lists can be bucket-
sorted in O(|E(G)|Δ + M) time, where M denotes the value of the largest color in
the lists. Hence, equivalently one can assume that M = O(|E(G)|Δ), which seems to
be very natural. We will refer to it as the small colors assumption.

The proof of the 2-choosability criterion by Erdős, Rubin, and Taylor [8] (proved
earlier by Vizing [14]) yields a linear-time algorithm for optimally edge-list-coloring
graphs with Δ = 2. For Δ = 3 there is a linear-time algorithm for 4-edge-list-coloring
general graphs due to Gabow and Skulrattanakulchai [9]. For higher values of Δ one
can use simple algorithms which rely on the existence in a planar graph of an edge of
low weight.

Edges of bounded weight. Assume we want to edge-list-color a planar graph G
with maximum degree Δ and with lists of length at least D. When an algorithm finds
in G an edge e of weight at most D + 1, then this edge is removed and the resulting
graph is colored recursively. Since there are at most D−1 edges incident with e, these
edges do not use all colors from list L(e), and we can color e with one of the remaining
colors. Observe that this proves that light edges are reducible. Also note that when
Δ = O(1) this algorithm has linear-time complexity. When Δ is not bounded, but the
small color assumption holds, the algorithm can also be implemented to work in linear
time (see Lemma 4.1). Clearly, any graph can be edge-list-colored from lists of length
D = 2Δ − 1, since then any edge has weight at most D + 1. For Δ = 4, 5 nothing
better is known, even for planar graphs; just note that for these values of Δ, there
are planar graphs with all edges of weight 2Δ. For example, consider the octahedron
and the dodecahedron. For Δ = 6, . . . , 10 we can use the result of Borodin [1]: every
planar graph of minimum degree at least 4 contains an edge of weight at most 11.
Hence any planar graph contains an edge of weight at most max{Δ + 3, 11} and can
be edge-list-colored in linear time from lists of length max{Δ + 2, 10}. For Δ ≥ 11
we can take advantage of Theorem 1.2. As before, it immediately yields a linear-time
algorithm which requires lists containing max{Δ + 1, 12} colors. Table 1.1 contains
the list of linear-time algorithms for list-edge-coloring planar graphs.

Ordinary edge-coloring. Chrobak and Yung [5] presented a linear-time algorithm
for max{Δ, 19}-edge-coloring planar graphs. Although it was not mentioned explic-
itly, their algorithm can be easily adapted to the list version of the problem. Then its
time complexity increases to O(nΔ), provided that the small colors assumption holds.
There is also an O(n log n)-time algorithm due to Chrobak and Nishizeki [4] and a
very recent O(n)-time algorithm by Cole and Kowalik [6], both for max{Δ, 9}-edge-
coloring planar graphs. However, as far as we know neither of these two algorithms
can be extended to the edge-list-coloring problem.

Our algorithm. We show an O(Δn)-time algorithm for max{Δ, 12}-list-coloring
planar graphs. The algorithm does not require a plane embedding of the input graph.
This extends the algorithm of Chrobak and Yung [5].

2. The main result. In this section we present the main result of the paper,
i.e., a generalization of Kotzig’s theorem.



96 RICHARD COLE, �LUKASZ KOWALIK, AND RISTE ŠKREKOVSKI

Table 1.1

Linear-time algorithms for list-edge-coloring planar graphs. For Δ = 4, 5, . . . , 11 the algorithms
consist of finding a reducible edge whose existence is obvious or guaranteed by the cited paper.

Δ Length of lists Time Paper

2 optimal O(n) Vizing [14]; Erdős, Rubin, and Taylor [8]

3 Δ + 1 O(n) Gabow, Skulrattanakulchai [9]

4, 5 2Δ − 1 O(n) folklore

6, 7 10 O(n) Borodin [1]

8, 9, 10 Δ + 2 O(n) Borodin [1]

11 Δ + 1 O(n) Borodin [1]

≥ 12 Δ O(Δn) this work

Fig. 2.1. A k-crown.

Definition 2.1. Let G be a multigraph, and let S be a subgraph of G, whose
vertices are v, x1, x2, . . . , x2k+1 for some k ≥ 1. We call S a crown of size k around v
(for short, a k-crown or just a crown; see Figure 2.1) if the following conditions are
satisfied:

(i) E(S) = {vx2i+1 : i = 0, . . . , k} ∪ {xixi+1 : i = 1, . . . , 2k},
(ii) degG(x1) = degG(x2k+1) = 2,
(iii) for each i = 1, 2, . . . , k − 1, degG(x2i+1) = 3, and
(iv) vertices v, x1, x2, . . . , x2k+1 are all distinct.

Moreover, a crown of size at most 5 will be called a small crown.
Observe that a crown S is not necessarily an induced subgraph of G. Thus, for

example, G may have edges vx2 or x2x4 which are not in S. We note here that every
edge of a crown S in a graph G has an end-vertex of degree 2 or 3 in G. Thus, if in
G one connects two vertices of degree ≥ 3 by an additional edge, then a new crown
is not introduced. These remarks will be used later in some arguments. Now we are
ready to prove the main result of the paper.

Proof of Theorem 1.5. Clearly, it suffices to prove the result for connected graphs.
In this proof we identify planar graphs with their fixed plane embeddings. This allows
us to consider faces of these graphs. The length of a face f , denoted by �(f), is the
length of the shortest closed walk induced by all edges incident with f . In order to
make the proof easier, we will allow multiple edges and loops in our graphs (where
each loop contributes 2 to the degree of its end-vertex) with the following restrictions:

(a) each face of G is of length ≥ 3;
(b) for each 2-vertex, at least one of the faces incident with it is not a triangle,

and the two edges incident with it are not parallel.
Clearly, every simple planar graph, except C3, satisfies these conditions. However, for
C3 the theorem holds trivially.

Suppose that G is a counterexample of the theorem on |V (G)| vertices with the
maximum possible number of edges. Let G∗ be the graph obtained from G by remov-
ing all its 2-vertices.
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Claim 1. G∗ is a triangulation.
The proof is by contradiction. We will show that if G∗ is not a triangulation,

then G is not maximal, i.e., that one can add an edge to G so that it is still a
counterexample for the theorem.

First assume that G∗ is disconnected. Then there is a 2-vertex x ∈ V (G) with
neighbors u and v, each of degree ≥ 12, such that u and v belong to different compo-
nents of G∗. Consider the graph G ∪ {uv} such that the added edge uv is embedded
in a face of G containing u and v. Clearly it is a plane multigraph with neither light
edges nor crowns. Note that u and v are not adjacent in G for otherwise they are
also adjacent in G∗. Hence G∪{uv} satisfies conditions (a) and (b). This contradicts
maximality of G and so G∗ is connected. Now it remains to show that every face of
G∗ is of length 3.

Graph G∗ does not contain a face of length 1 for otherwise G contains a 2-vertex
incident with parallel edges. If G∗ contains a 2-face f = xyx, it implies that f
contains at least one 2-vertex of graph G. If f contains precisely one 2-vertex, then
G violates (b), a contradiction. If f contains at least two 2-vertices, G contains two
adjacent 2-vertices or a 1-crown, a contradiction again. Hence each face of G∗ has
length at least 3.

Suppose that f is a face of G∗ of length k ≥ 4. Since G∗ is connected, f has a facial
walk, i.e., the shortest walk consisting of edges incident with f . Let x0x1, . . . , xx−1xk

be the vertices of this walk in clockwise order, x0 = xk.
We first prove that if f contains a 2-vertex from G, say w, and xi, xj denote the

neighbors of w, then i = j ± 1 (mod k). Otherwise, consider the graph G′ obtained
from G by connecting xi and xj by a new edge xixj . Obviously, G′ is planar, because
a plane embedding of G′ can be obtained from a plane embedding of G by drawing
edge xixj in a face of G that contains the 2-walk xiwxj . Moreover, G′ satisfies the
restrictions (a) and (b). Since xi, xj have a 2-neighbor, each of them is of degree
≥ 12 in G, which implies that G′ has no light edge. Finally observe that conditions
deg(xi) ≥ 12 and deg(xj) ≥ 12 imply that no crown contains the new edge xixj , and
consequently G′ contains no crown. Hence, G′ contradicts the maximality of G. This
establishes our auxiliary claim, that i = j ± 1 (mod k).

Since each of x0x1 and x2x3 has weight at least 14, it easily follows that deg(x0)+
deg(x2) ≥ 14 or deg(x1) + deg(x3) ≥ 14; say the latter holds. Consider the graph
G+ x1x3, where x1x3 is inserted in f . The above auxiliary claim implies that x1 and
x3 belong to a common face in G, and hence the resulting graph is planar. Again, one
can show that this graph contradicts the maximality of G. This establishes Claim 1.

Note that the above claim implies that G has no bridges, and so the length of a
face is the same as the number of (distinct) edges incident with it. Claim 1 and the
fact that there are no 1-crowns in G easily imply the following claim.

Claim 2. Every face f of G is of length �(f) = 3, 4, 5, or 6. Moreover, for
�(f) = 4, 5, 6 face f is incident with �(f) − 3 vertices of degree 2.

Initial charge. Let F (G) denote the set of faces of G. We assign a charge to
each vertex and face of G. For every x ∈ V (G), we define the initial charge c(x) =
deg(x)− 4. Similarly, for every f ∈ F (G), let c(f) = �(f)− 4. By Euler’s formula the
total sum of charge assigned to vertices and faces is∑

x∈V (G)∪F (G)

c(x) =
∑

v∈V (G)

(deg(v) − 4) +
∑

f∈F (G)

(�(f) − 4)

= 2|E(G)| − 4|V (G)| + 2|E(G)| − 4|F (G)| = −8.(2.1)
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Notice that only 2-vertices, 3-vertices, and 3-faces have negative initial charge. Our
goal is to redistribute charge between vertices and faces according to prescribed rules
in such a way that the total sum of charge will be nonnegative, which will contradict
(2.1). This contradiction will settle the theorem.

Rules. We use the following discharging rules to redistribute charge between
vertices and faces.

(R1) A 2-vertex receives 1 unit from each of its two neighbors.
(R2) A 3-vertex receives 1/3 of a unit from each of its three neighbors.
(R3) A 3-face v1v2v3 with deg(v1) ≤ 5 receives 1/2 of a unit from each of v2 and v3.

Let f be a face and let v1, v2, v3 be three consecutive vertices incident with f such
that deg(v2) ≥ 6.

(R4) If both v1 and v3 are of degree ≥ 6, then v2 sends 1/3 of a unit to f .
(R5) If �(f) ≥ 4, one of v1, v3 is of degree 2, and the other is of degree ≥ 6, then

v2 receives 1/6 from f .
(R6) If �(f) ≥ 4 and both of v1, v3 are of degree 2, then v2 receives 2/3 from f .

Since we deal with multigraphs, the multiple incidence/adjacency is considered
in the application of these rules. Thus, for example, if a 3-vertex x is adjacent to a
vertex v by two edges, then v sends the amount 1

3 + 1
3 of a unit of charge to x by (R2).

Final charge. Here we will prove that for each x ∈ V (G)∪F (G), the final charge
c∗(x) is nonnegative; i.e., c∗(x) ≥ 0. Let f be an arbitrary face of G. By Claim 2,
�(f) ∈ {3, 4, 5, 6}. Hence we consider four cases:

�(f) = 3: If f contains a vertex of degree at most 5, then c∗(f) = 0 by (R3).
Otherwise, all three neighbors are of degree ≥ 6, so f gets 1/3 from
each of them by (R4). Hence, c∗(f) = 0.

�(f) = 4: In this case, by Claim 2, f contains exactly one 2-vertex. Let f =
x1x2x3x4 with deg(x4) = 2. If deg(x2) ≤ 5, then f sends no charge,
and so c(f) = c∗(f) = 0. If deg(x2) ≥ 6, f gets 1/3 from x2 by (R4)
and sends 1/6 to each of x1 and x3 by (R5). This yields c∗(f) = 0.

�(f) = 5: By Claim 2, f contains exactly two 2-vertices, and so we can assume
that f = x1x2x3x4x5 with deg(x1) = deg(x3) = 2. Then f sends 1/6 to
each of x4, x5 by (R5) and sends 2/3 to x2 by (R6). Hence, c∗(f) = 0.

�(f) = 6: By Claim 2, f has three 2-vertices alternating with three vertices of
degree at least 12. Each of the latter receives 2/3 by (R6), which
implies that the final charge of f is 0.

We consider now the final charge of the vertices. By rules (R1) and (R2), it is
obvious that 2- and 3-vertices have nonnegative final charge and that 4- and 5-vertices
do not alter their charge, which is nonnegative.

Suppose now that a vertex v is of degree d ∈ {6, 7, 8}. Then, it may send charge
only to incident faces by rule (R4). Moreover, if some incident face is a triangle, then
its two other vertices have degrees at least 6, which implies that each such triangle
receives 1/3 from v. Hence,

c∗(v) ≥ d− 4 − d

3
≥ 0.

Next suppose that v is of degree d ∈ {9, 10}. It may send charge only to incident
faces by rules (R3) and (R4), and each such face receives at most 1/2 from v. Hence,

c∗(v) ≥ d− 4 − d

2
≥ 0.
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Suppose now that v is of degree 11. Notice that v is not adjacent to a 2-vertex,
and so it sends charge to a neighbor only if it is a 3-vertex. Since by Claim 2, no
two 3-neighbors of v are consecutive in clockwise order around v, the number of 3-
neighbors is at most 5. Notice that v sends 1/2 to at most 10 faces, and to the
remaining faces it sends at most 1/3. Hence,

c∗(v) ≥ 7 − 10

2
− 1

3
− 1

3
· 5 = 0.

Finally suppose that d ≥ 12. Let x0, x1, . . . , xd−1 be the neighbors of v enumer-
ated in clockwise order around v, and let fi be the face incident with the walk xivxi+1

(throughout this proof we take the indices in xi modulo d). We consider a few cases
regarding the number d2 of 2-vertices adjacent to v.

Case 1: d2 = 0. Since v sends at most 1/2 to each incident face and has at most
�d

2	 adjacent 3-neighbors, its final charge is

c∗(v) ≥ d− 4 − d

2
− 1

3

⌊
d

2

⌋
≥ d

3
− 4 ≥ 0.

Case 2: d2 = 1. Let x1 be the 2-neighbor of v. By Claim 1, without loss of
generality we may assume that f0 is a 3-face and f1 is a face of length 4 or 5 (f1

cannot be a face of length 6 since then f1 contains two 2-neighbors of v, and so
d2 ≥ 2). Notice that v sends 1 to x1 and 1/2 to f0. Next, it sends nothing to f1 and
≤ 1/2 to each of the d − 2 remaining faces. Finally, it sends at most 1

3

⌊
d−1
2

⌋
to its

adjacent 3-vertices. If d ≥ 13, then

c∗(v) ≥ d− 4 − 1 − 1

2
− d− 2

2
− 1

3

⌊
d− 1

2

⌋
≥ 0.

Now assume that d = 12. We consider two subcases regarding the degree of x2.
If deg(x2) ≥ 6, then f1 sends 1

6 to v by (R5), and we conclude

c∗(v) ≥ d− 4 − 1 − 1

2
− d− 2

2
− 1

3

⌊
d− 1

2

⌋
+

1

6
= 0.

Finally, since d is even, if deg(x2) ≤ 5, then there is a face distinct from f1 that
receives at most 1/3 from v. In that case, we obtain

c∗(v) ≥ d− 4 − 1 − 1

2
− d− 3

2
− 1

3
− 1

3

⌊
d− 1

2

⌋
= 0.

Case 3: d2 ≥ 2. Observe that since the rules move charge only between incident
faces and vertices, while calculating the charge sent by v we can restrict ourselves
only to v and its adjacent vertices and incident faces. In order to make the argument
shorter, we use the following claim.

Claim 3. We can modify the neighborhood of v so that every 2-vertex xi is
adjacent to xi−1 and the final charge c∗(v) stays the same.

Let degG(xi) = 2. Then by Claim 1, xi is adjacent to xi−1 or xi+1. Assume that
it is adjacent to xi+1. Then xi+2 is not a 2-vertex adjacent to xi+1, since G does not
contain a 1-crown. Then we remove xi and draw it inside face fi+1 together with the
edges to v and xi+1. In the new drawing, let us rename the vertices and faces so that
they are still enumerated in clockwise order. In particular, xi+1 is renamed as x′

i, xi
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is renamed as x′
i+1, and for every j �= i, i+ 1, vertex xj is renamed as x′

j . In the new
drawing, let f ′

i be the face incident with the walk x′
ivx

′
i+1. Let cj (respectively, c′j)

be the charge sent from v to fj (respectively, f ′
j) minus the charge received by v from

fj (respectively, f ′
j). Obviously the charge sent/received by v to/from neighbors of v

has not changed. Also, c′j = cj for j �= i−1, i+1. If degG(xi−1) = 2, then by Claim 2,
fi−1 is of length 5 or 6, so by (R5) and (R6), c′i−1 − ci−1 = −1/6 − (−2/3) = 1/2.
If degG(xi−1) = 3, 4, 5, then there is no 2-vertex adjacent to xi−1, so fi−1 is a 4-face
and f ′

i−1 is a 3-face; hence by (R3), c′i−1 − ci−1 = 1/2. Finally, when degG(xi−1) ≥ 6,
then fi−1 is of length 4 or 5, so by (R4) and (R5), c′i−1 − ci−1 = 1/3− (−1/6) = 1/2.
Hence c′i−1 − ci−1 = 1/2 in all cases. Analogously one can verify that no matter what
the degree of xi+2 is, c′i+1 − ci+1 = −1/2. Hence the charge sent from v remains the
same. This settles the claim.

We modify the neighborhood of v as described in Claim 3. Note that if xi is a 2-
vertex, then its neighbor xi−1 is of degree ≥ 12. Obviously, this redrawing in Claim 3
introduces neither a crown nor a pair of consecutive v neighbors of v of degree 3, 4,
or 5. Also, G∗ stays unchanged.

In what follows, we will bound the amount of charge sent by v to faces. Denote
by d4,5 the number of 4- and 5-neighbors of v. Denote by f−1/6 and f1/3 the number
of faces which send 1/6 to v or receive 1/3 from v, respectively. Let xi and xj be two
distinct 2-neighbors of v, such that for each k ∈ {i+1, . . . , j−1}, deg(xk) > 2. If there
is a crown whose vertices belong to {v, xi−1, xi, xi+1, . . . , xj}, we call the (ordered)
pair (xi, xj) bad ; otherwise it is good. Let b denote the number of bad pairs. Note
that there are d2 − b good pairs.

Claim 4. For any good pair (xi, xj) one of the following conditions holds:
(A) degG(xi+1) ≥ 6,
(B) for some k ∈ {i + 1, . . . , j − 2}, deg(xk) ≥ 6 and deg(xk+1) ≥ 6, or
(C) for some k ∈ {i + 1, . . . , j − 2}, degG(xk) ∈ {4, 5}.
Assume that none of the above conditions holds. Note that by Claim 3, j �= i+1.

Then the following property holds: for each k ∈ {i + 1, . . . , j − 1}, degG(xk) ≥ 6 if
k has the same parity as i, and degG(xk) = 3 otherwise. Let H be the subgraph of
G with V (H) = {v, xi−1, xi, xi+1, . . . , xj} and E(H) = {vxk : k ∈ {i− 1, i, . . . , j}} ∪
{xi−1xi, xi−1xi+1} ∪ {xkxk+1 : k ∈ {i + 1, . . . , j − 1}}. Then H is a crown around v,
unless some pair of its vertices xa, xb coincide. Notice that then deg(xa) = deg(xb) ≥
6. As long as there is such a pair in H we remove from H all the vertices and edges
inside the 2-cycle vxaxb and we remove edge vxb. The resulting subgraph H is a crown
around v with vertices in the set {v, xi−1, xi, xi+1, . . . , xj}, which is a contradiction.
This settles the claim.

Observe that in case (A) face fi sends 1/6 to v by (R5), and in case (B) face
fk receives precisely 1/3 from v by (R4). As there are d2 − b good pairs, it follows
that f−1/6 + f1/3 + d4,5 ≥ d2 − b. Thus, some d2 − b − f−1/6 − d4,5 faces receive
precisely 1/3 from v. Note that for any 2-vertex xi, the face fi does not receive a
charge from v. Thus, there are d2 faces which do not receive any charge from v. Each
of the remaining d−d2− (d2−b−f−1/6−d4,5) faces receives at most 1/2 unit from v.
Now we bound the total charge sent from v to faces minus the charge received from
faces. It amounts to at most

1

3

(
d2 − b− f−1/6 − d4,5

)
+

1

2

[
d− d2 − (d2 − b− f−1/6 − d4,5)

]
− 1

6
f−1/6

=
d

2
− 2

3
d2 +

b

6
+

d4,5

6
.(2.2)
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In what follows we estimate the charge v sends to neighbors. We start from
bounding the number of 3-neighbors of v. Consider (cyclically) the degree sequence
S0 = deg(x0),deg(x1), . . . ,deg(xd−1). First remove elements with value 2 from this
sequence. If two consecutive elements of the resulting sequence S1 each have value
at least 6, we will call them a big pair. Observe that if (A) holds in Claim 4, then
by Claim 3 degG(xi−1) ≥ 12 and, consequently, degG(xi−1) and degG(xi+1) are a big
pair. Hence by Claim 4, in S1 there are at least (d2−b)−d4,5 big pairs (we consider the
last element of S1 to be consecutive with the first one). Next, as long as the sequence
contains a big pair we remove one of the elements of the pair, unless the sequence
consists of only two elements, each of value at least 6. In the latter case both these
elements are removed. After these two steps, the resulting sequence S2 has length
≤ d− d2 − (d2 − b− d4,5). By Claim 1, and because edges have weight at least 14, it
follows that in G∗ vertex v has no pair of consecutive neighbors both of degree 3, 4,
or 5. It follows that sequence S2 does not contain a pair of consecutive elements equal

to 3, 4, or 5. Thus, S2 contains at most �d−d2−(d2−b−d4,5)
2 	 = �d+b+d4,5

2 	−d2 elements
equal to 3, 4, or 5, and hence this is an upper bound for the number of 3-, 4-, and

5-neighbors of v. It follows that v has at most �d+b+d4,5

2 	−d2−d4,5 = �d+b−d4,5

2 	−d2

neighbors of degree 3. Thus, the total charge sent from v to its neighbors is at most

d2 +
1

3

(⌊
d + b− d4,5

2

⌋
− d2

)
.(2.3)

Finally, by (2.2) and (2.3) we conclude that

c∗(v) ≥ d− 4 − d2 −
1

3

(⌊
d + b− d4,5

2

⌋
− d2

)
−
(
d

2
− 2

3
d2 +

b

6
+

d4,5

6

)

≥ d

3
− 4 − b

3
.

Each k-crown contains k − 1 vertices of degree 3, which are neighbors of v. For
each bad pair (xi, xj) there is a crown with vertices from {v, xi−1, . . . , xj}. Since
small crowns are excluded, such a crown contains at least five 3-neighbors of v. Hence
v has at least 5b neighbors of degree 3. By Claim 1, each 3-neighbor of v is incident
in G∗ with two triangular faces containing v. Each of these faces also contains a
neighbor of v of degree at least 11, as light edges are excluded. The edge joining v
and its neighbor can belong to at most 2 of these faces. Consequently there are at
least 5b edges joining v and its neighbors of degree at least 11. Finally, v has at least
b neighbors of degree 2. It follows that degG(v) ≥ 11b and so b ≤ � d

11	.
Hence for d ≥ 14, we get c∗(v) ≥ d

3 − 4 − 1
3 · d

11 > 0. For d = 13, we get

c∗(v) ≥ d
3 − 4 − 1

3 = 0. Observe that Claim 1 implies that all the vertices of a crown
around v, except for v, are adjacent to v. Hence a crown around v implies that at
least 13 edges are incident with v, for it has size at least 6. Consequently, for d = 12,
there are no crowns around v and c∗(v) ≥ d

3 − 4 = 0.
This completes the case d ≥ 12. We infer that every vertex and face has non-

negative charge after the rules are applied, which is a contradiction. This establishes
the proof.

In Theorem 1.5 the number 5 is best possible in the sense that there is a planar
graph with minimum degree 2 with no crowns of size smaller than 5 and with no light
edges. To construct such a graph take a triangulation T with vertices of degree 5
and 6 such that 5-vertices are at distance at least 5 from each other; for example, the
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duals of some fullerens are such graphs. Then, for each 5-vertex x of T we choose
one incident triangle and remove its edge not incident with x. As a result we get a
graph T ′ with faces of length 3 and 4. Next, we put a vertex into each face of T ′ and
join it with the vertices incident with the face. Denote the resulting triangulation by
T ′′. Observe that every light edge in T ′′ joins a 3-vertex with a 10-vertex. Moreover,
the 10-vertex is adjacent to a 4-vertex. For each 4-vertex y ∈ V (T ′′) let its neighbors
be y0, y1, y2, y3 in clockwise order. Finally, for each i ∈ {0, 1, 2, 3} we add a new
2-vertex connected to yi and yi+1 (indices modulo 4). Clearly, the resulting graph G
has vertices of degree 2, 3, 12, and 14 only. Vertices of degree 2 and 3 are adjacent to
vertices of degree 12 or 14. Hence there are no light edges in G. One may verify that
G contains crowns of size 5 and 6 but no crowns of smaller size.

3. Reducibility of crowns. In this section we show that crowns are reducible.
Although we use crowns of size at most 5, here we consider all crowns. In the next
lemma we will use the well-known fact that every even cycle is 2-edge-choosable.

Lemma 3.1. Let G be a graph of maximum degree Δ and let S be a k-crown in G,
k ≥ 1. Let L be a list assignment of G such that |L(e)| ≥ Δ for every edge e ∈ E(G).
Then any L-coloring of G− E(S) can be extended to an L-coloring of G.

Proof. Let λ be an arbitrary L-edge-coloring of G − E(S). For every e ∈ E(S),
let I(e) denote the set of edges from E(G) − E(S) that are incident with e and let
L′(e) = L(e)\

⋃
f∈I(e) λ(f). Let us denote the vertices of S as in Figure 2.1. Recall that

degG(x1) = degG(x2k+1) = 2 and for every i = 3, 5, . . . , 2k − 1, degG(xi) = 3. Note
that for i = 1, 3, . . . , 2k+1, |L′(vxi)| ≥ k+1, and for i = 1, 2, . . . , 2k, |L′(xixi+1)| ≥ 2.
Without loss of generality we may assume that for i = 1, 3, . . . , 2k+1, |L′(vxi)| = k+1,
and for i = 1, 2, . . . , 2k, |L′(xixi+1)| = 2. Clearly in order to extend λ to an L-coloring
of G it suffices to L′-color the graph S. Thus our objective will be to construct an
L′-coloring of S, where L′ is any list assignment with the above prescribed lengths
of lists. We do so by induction on k. For k = 1 we must 2-list-color a 4-cycle, but
even-length cycles are 2-choosable [8, 14].

Now, we consider the case k = 2. We may assume that L′(vx3) ⊆ L′(x2x3) ∪
L′(x3x4), for otherwise we color vx3 with a color from L′(vx3) \ [L′(x2x3)∪L′(x3x4)]
and then we are left with the problem of 2-list-coloring of a 6-cycle. Since |L′(vx3)| =
3, it follows that L′(x2x3) �= L′(x3x4). Then we color x2x3 with a color not in
L′(x3x4) and we color x1x2 with a free color. We assume now that vx3 has two free
colors; otherwise we remove one. We may also assume that vx3 and x4x5 do not have
a common free color, for otherwise we color them both with such a color and then
we can color vx1, vx5, x3x4, in this order, always using a free color. Since vx5 has
three free colors and both vx3, x4x5 have two free colors, either vx3 or x4x5 has a
free color p /∈ L′(vx5). In the case p ∈ L′(vx3) we color vx3 with p and then we color
the remaining edges in the following order: vx1, x3x4, x4x5, vx5. In the latter case
we assign color p to x4x5 and color x3x4, vx3, vx1, vx5, in this order, always using a
free color. This settles the case k = 2.

Now assume k ≥ 3. We consider the following two possibilities.
Case 1: L′(x2x3) = L′(x3x4). Let r be a color from L′(vx3) \ L′(x2x3). We

remove x3 and identify x2 with x4. For each i = 1, 3, 4, . . . , k + 1, let L′′(vx2i−1) =
L′(vx2i−1) \ {r}. The resulting graph is a (k − 1)-crown, and it is L′′-colorable by
the induction hypothesis. Let λ′′ be such a coloring. We extend λ′′ to an L′-coloring
of S as follows. Let p ∈ L′(x2x3) \ {λ′′(x1x2)} and q ∈ L′(x3x4) \ {λ′′(x4x5)}. Since
L′(x2x3) = L′(x3x4) and λ′′(x1x2) �= λ′′(x4x5), it follows that p �= q. Hence we can
color x2x3 with p, x3x4 with q, and vx3 with r.
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Case 2: L′(x2x3) �= L′(x3x4). Let L′(x2x3) = {a, b} and c ∈ L′(x3x4), c /∈ {a, b}.
Then we color vx3 with a color distinct from a, b, and c. This is possible since
|L′(vx3)| = k + 1 ≥ 4. Next, we color x3x4 with c and we color x4x5, x5x6, . . . ,
x2kx2k+1, in this order, always using a free color. Now for every i = 5, 7, . . . , 2k − 1,
vxi has at least k − 2 free colors and vx2k+1 has at least k − 1 free colors. Hence, we
may color them greedily, i.e., in the order vx5, vx7, . . . , vx2k+1, always using a free
color. Afterwards vx1 has at least one free color, and both x1x2, x2x3 have two free
colors, so we color them greedily as well.

Theorem 1.5 and Lemma 3.1 imply the following corollary.

Corollary 3.2. Every planar graph with maximum degree Δ ≥ 12 is Δ-edge-
choosable.

4. List-edge-coloring algorithm. In this section we describe a linear-time al-
gorithm which, for a given simple planar graph G and an edge-list assignment L,
computes an L-edge-coloring of G, provided that for every e ∈ E(G), |L(e)| =
max{Δ(G), 12}. The algorithm does not need a plane embedding of graph G. In
fact, one can use the algorithm for any class of graphs which can replace planar
graphs in Theorem 1.5.

We assume that the input graph G is given in the form of adjacency lists. Also
the list assignment is stored as an array of lists, one list for each edge. Additionally,
we assume that each list of admissible colors is sorted. Equivalently, one can assume
that the largest color has value O(|E(G)|Δ). Then the lists can be sorted in linear
time using bucket-sort.

In the following subsection we describe some tools used by our coloring algorithm.
Then we describe the main body of the algorithm and analyze its time complexity.

4.1. Efficient coloring and finding small crowns.

Lemma 4.1. Let G be a graph of maximum degree Δ containing an edge e of
weight at most max{Δ + 1, 13}. Let L be an edge-list assignment of G such that
|L(e)| ≥ max{Δ, 12} for every edge e ∈ E(G). Then any L-edge-coloring of G− {e}
can be extended to an L-edge-coloring of G in O(Δ) time.

Proof. Let λ denote the L-edge-coloring of G − {e}, let I(e) denote the set of
edges incident with e, and let L′(e) = L(e) \

⋃
f∈I(e) λ(f). Clearly |L′(e)| ≥ 1. The

algorithm simply colors e with any color from L′(e). In order to find L′(e) efficiently,
each vertex x in graph G stores a sorted list Used(x) of colors used by the already
colored incident edges. As the list L(e) is also sorted, the set L′(e) can be easily found
in O(Δ) time. Additionally, after coloring the edge e = xy, both lists Used(x) and
Used(y) are updated in O(Δ) time.

The following lemma states that the proof of Lemma 3.1 can be transformed into
an efficient algorithm when k = O(1).

Lemma 4.2. Let G be a graph of maximum degree Δ and let S be a k-crown
in G, k = O(1). Let L be an edge-list assignment of G such that |L(e)| ≥ Δ for
every edge e ∈ E(G). Then any L-edge-coloring of G − E(S) can be extended to an
L-edge-coloring of G in O(Δ) time.

Proof. We consider the algorithm arising from the proof of Lemma 3.1. Each of the
sets L′(e) from the proof of Lemma 3.1 is computed in O(Δ) time, as described in the
proof of Lemma 4.1. As k = O(1), this whole phase takes O(Δ) time. Afterwards,
we deal with bounded-sized graphs and bounded-sized list assignments; hence the
remaining part of the coloring algorithm takes constant time. Finally, as in the proof
of Lemma 4.1, relevant sets Used(·) are updated in O(Δ) time.
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Now we consider algorithm SearchSmallCrown(G, x) (see Algorithm 4.1),
which will be used for searching for small crowns.

Algorithm 4.1. SearchSmallCrown(G, x): Searching for a small crown.

1: for each v ∈ N(x) do
2: H ← (∅, ∅) � H is the empty graph
3: for each y ∈ N(v) do
4: if degG(y) ∈ {2, 3} then
5: for each z ∈ N(y) \ {v} do
6: if degG(z) ≤ 3 then
7: return {yz} � yz is a light edge
8: else
9: V (H) ← V (H) ∪ {y, z}; E(H) ← E(H) ∪ {yz}

10: Find in H a vertex ȳ such that degG(ȳ) = 2 and distH(x, ȳ) is as small as possible.
11: if ȳ exists then
12: P ← the shortest path in H between ȳ and another vertex of degree 2 in G
13: if P �= ∅ and |E(P )| ≤ 10 then
14: C ← E(P ) ∪ {vw : w ∈ V (P ) and degG(w) ∈ {2, 3}}
15: return C � C is an (|E(P )|/2)-crown.

16: return ∅

Lemma 4.3. Let x and v be distinct vertices in a graph G and let degG(x) ∈
{2, 3}. Assume that in G there is a small crown around v containing x. Then the
algorithm SearchSmallCrown(G, x) returns a light edge or the edges of a small
crown. Moreover, its time complexity is O(Δ).

Proof. First assume that the algorithm returns set C in line 15. We will show
that C contains the edges of a small crown. Since a light edge was not returned in
line 7, then for some vertex v, which is a neighbor of x,

E(H) = {yz : y ∈ N(v), degG(y) ∈ {2, 3}, z ∈ N(y) − {v}, and degG(z) > 3}.
(4.1)

Note that H is a bipartite graph with partite sets Y = {y ∈ V (H) : degG(y) ∈ {2, 3}}
and Z = {z ∈ V (H) : degG(z) > 3}. Hence P has even length, as both its ends have
degree 2 in G. Let y0, z1, y1, z2, y2, . . . , z|E(P )|/2, y|E(P )|/2 be the successive vertices of
P . Note that these vertices are all distinct for otherwise P is not the shortest path in
H between ȳ and another 2-vertex. By (4.1) each vertex yi of path P is adjacent to
v. Note that P contains at least two edges, since it has distinct ends. It follows that
C contains edges of a crown around v of size |E(P )|/2 ≤ 5.

Now it suffices to show that the algorithm returns a light edge in line 7 or returns
set C in line 15. Assume that neither of these happens. Let S be a small crown
around v containing x, v �= x. (S exists by the assumptions of the lemma.) Let k
denote the size of S. In lines 2 to 9 the algorithm finds the subgraph H ⊆ G with
edge set described in (4.1). Let x1, x2 be the neighbors of v in S with degree 2 in
G. Observe that E(S − v) ⊆ E(H). In line 10 the algorithm finds some vertex ȳ,
because S contains x, x1, and x2 (possibly x = x1 or x = x2). If ȳ = x1 (respectively,
ȳ = x2), then there is a path in H from ȳ to another vertex of degree 2 in G, namely
x2 (respectively, x1). Consequently, when ȳ ∈ {x1, x2}, the algorithm finds some
path P in line 12, and |E(P )| ≤ 2k. Also if ȳ /∈ {x1, x2}, then H contains a path
from ȳ to x and a path from x to x1; hence some path P is found. Moreover, then
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distH(x, ȳ) ≤ min{distH(x, x1),distH(x, x2)} and so

|E(P )| ≤ distH(ȳ, x) + min{distH(x, x1),distH(x, x2)}
≤ 2 min{distH(x, x1),distH(x, x2)}
≤ 2k.

It follows that |E(P )| ≤ 10. Hence line 15 is executed, a contradiction. This proves
that the algorithm returns a small crown or a light edge.

Clearly, graph H has O(Δ) size and building it takes O(Δ) time. The other part
of the algorithm can be easily implemented using breadth first search, and then it
takes time linear with respect to the size of H, i.e., O(Δ) time.

4.2. Main body of the algorithm. Now we describe algorithm EdgeList-

Color, which edge-list-colors an input simple planar graph G with edge color lists of
length max{Δ(G), 12}. Our algorithm uses a queue Q which stores vertices around
which one should look for light edges and small crowns. It is initialized with the set
of all vertices of G. However, one vertex may appear several times in Q.

Algorithm 4.2. EdgeListColor(G): List-edge-coloring planar graph G.

RecursiveColor(G)

1: C ← ∅
2: while C = ∅ do
3: x ← a vertex from queue Q
4: if degG(x) = 1 then
5: y ← the sole neighbor of x; C ← {xy}
6: else if x is incident with a light edge xy then
7: C ← {xy}
8: else if degG(x) ∈ {2, 3} then
9: C ← SearchSmallCrown(G, x)

10: if C = ∅ then Q ← Q \ {x}
11: Q ← Q ∪ V (C)
12: E(G) ← E(G) \ E(C)
13: if E(G) �= ∅ then
14: RecursiveColor(G)

15: E(G) ← E(G) ∪ E(C)
16: Color edges from E(C) according to Lemma 4.1 or Lemma 4.2

EdgeListColor(G)

1: Q ← V (G)
2: RecursiveColor(G)

After the initialization the algorithm calls a recursive routine RecursiveColor

(see Algorithm 4.2). Let us consider one such recursive call. Consider the following
assertion:

Q contains all 1-vertices and endpoints of light edges in G; for any
small crown C around v in G, queue Q contains a vertex x ∈ V (C) \
{v}, degG(x) ∈ {2, 3}.

Obviously, the assertion holds after initialization. Then, each time some set of edges is
removed from the graph, the endpoints of these edges are added to Q in line 11. Also,
if a vertex x is removed from Q and not inserted again, then degG(x) �= 1, there is
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no light edge incident with x, and either degG(x) /∈ {2, 3} or there is no small crown
containing it. This proves that the assertion always holds at the beginning of the
RecursiveColor routine. The assertion together with Theorem 1.5 and Lemma 4.3
guarantees that in line 11 set C contains a single edge of weight Δ + 1, a single light
edge, or the edges of a small crown. This easily implies the following corollary.

Corollary 4.4. Algorithm EdgeListColor properly colors the input planar
graph.

Proposition 4.5. Algorithm EdgeListColor works in O(|V (G)|Δ) time.
Proof. Since in each recursive call at least one edge is removed, there are O(|E(G)|)

= O(|V (G)|) recursive calls. In each recursive call O(1) vertices are added to Q; hence
in total O(|V (G)|) vertices are added to Q. A straightforward implementation of line 6
works in O(Δ) time. Line 9 takes O(Δ) time by Lemma 4.3. Hence the total time
spent on lines 1–10 is O(|V (G)|Δ).

Finally, as the number of recursive calls is O(|V (G)|, by Lemmas 4.1 and 4.2 the
total time spent on lines 11–16 is O(|V (G)|Δ). This settles the proof.
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OPERATIONS ON M-CONVEX FUNCTIONS ON JUMP SYSTEMS∗

YUSUKE KOBAYASHI† , KAZUO MUROTA† , AND KEN’ICHIRO TANAKA†

Abstract. A jump system is a set of integer points with an exchange property, which is a
generalization of a matroid, a delta-matroid, and a base polyhedron of an integral polymatroid
(or a submodular system). Recently, the concept of M-convex functions on constant-parity jump
systems was introduced by Murota as a class of discrete convex functions that admit a local criterion
for global minimality. M-convex functions on constant-parity jump systems generalize valuated
matroids, valuated delta-matroids, and M-convex functions on base polyhedra. This paper reveals
that the class of M-convex functions on constant-parity jump systems is closed under a number of
natural operations such as splitting, aggregation, convolution, composition, and transformation by
networks. The present results generalize hitherto-known similar constructions for matroids, delta-
matroids, valuated matroids, valuated delta-matroids, and M-convex functions on base polyhedra.
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1. Introduction. A jump system [6] is a set of integer points with an exchange
property (to be described later); see also [16], [18]. It is a generalization of a matroid
[8], a delta-matroid [4], [7], [9], and a base polyhedron of an integral polymatroid (or
a submodular system) [14].

Study of nonseparable nonlinear functions on matroidal structures was started
with valuated matroids [10], [12], which have come to be accepted as discrete concave
functions; see [20], [22]. This concept has been generalized to M-convex functions
on base polyhedra [21], which play a central role in discrete convex analysis [23].
Valuated delta-matroids [11] afford another generalization of valuated matroids. As
a common generalization of valuated delta-matroids and M-convex functions on base
polyhedra, the concept of M-convex functions on constant-parity jump systems was
introduced in [25]. To distinguish between M-convex functions on base polyhedra
and those on constant-parity jump systems, we sometimes refer to the former as MB-
convex functions and the latter as MJ-convex functions. A separable convex function
in the degree sequences of a graph is a typical example of MJ-convex functions. In all
these generalizations global optimality is equivalent to local optimality defined in an
appropriate manner. In addition, discrete duality theorems such as discrete separation
and min-max formula hold for valuated matroids and MB-convex functions, whereas
they fail for valuated delta-matroids and MJ-convex functions.

A number of operations can be defined on matroidal structures and functions.
For example, union (or sum) can be defined for two matroids to yield another

matroid. When translated in terms of incidence vectors, union can be understood
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Table 1.1

Sum of discrete structures.

Matroids Rado (1942) [27] (see [28])
(explicitly by Edmonds (1968) [13])

Base polyhedra McDiarmid (1975) [19]
Delta-matroids Bouchet (1989) [5]
(Constant-parity) jump systems Bouchet and Cunningham (1995) [6]

Table 1.2

Convolution of discrete functions.

Valuated matroids Murota (1996) [21] (see also [22])
MB-convex functions Murota (1996) [21]
Valuated delta-matroids
MJ-convex functions This paper

as the Minkowski sum, followed by truncation by the vector 1 = (1, 1, . . . , 1). Sum
can also be defined for delta-matroids, base polyhedra, and (constant-parity) jump
systems (see Table 1.1).

Convolution (or infimum convolution) of functions is a quantitative extension
of sum, and the first result of the present paper (Theorem 12) is that MJ-convex
functions are closed under convolution. This generalizes the known fact that valuated
matroids and MB-convex functions are closed under convolution (see Table 1.2).

Aggregation is another fundamental operation. For instance, it is known that
any polymatroid can be obtained as an aggregation of a matroid [14] and that any
jump system can be obtained as an aggregation of a delta-matroid [16]. The second
result of the present paper (Theorem 11) is that MJ-convex functions are closed under
aggregation. It is mentioned that the first result on convolution can be derived from
this. A kind of converse of aggregation operation is splitting, which divides variables
into several copies and generates a new function on a higher dimensional space. We
show that splitting of MJ-convex functions is again MJ-convex.

Transformation (or induction) by graphs or networks is one of the most general
operations. The fundamental fact in this direction is that a matroid can be trans-
formed to another matroid through matchings in a bipartite graph. This construction
also works for delta-matroids [4]. As for functions, valuated matroids are closed under
transformation by bipartite graphs defined in an appropriate manner [21], [22], and
MB-convex functions are closed under transformation by networks [21]. The third
result of the present paper (Theorem 14) is that this construction extends to MJ-
convex functions; that is, transformation of MJ-convex functions by networks, to be
defined precisely in section 6, preserves MJ-convexity. Aggregation, convolution, and
splitting may be obtained as special cases of this construction, whereas our proof for
the network transformation is based on the combination of aggregation, splitting, and
other basic operations.

Here is a remark on the proof technique of the present paper. Our proofs consist of
repeated applications of the defining exchange axiom of MJ-convex functions. This is
particularly true of the proof given in section 7. For MB-convex functions, on the other
hand, an alternative “geometric” or “polyhedral” approach is possible on the basis of
the convex extension of the functions. To be specific, such “polyhedral” proofs are
known for convolution and network transformation of MB-convex functions (see [14],
[21], [24]). MJ-convex functions, however, seem to deny such a “polyhedral” approach,
because jump systems can have “holes” within the convex hull and, accordingly, jump



OPERATIONS ON M-CONVEX FUNCTIONS ON JUMP SYSTEMS 109

systems are not determined by their convex hulls. It is also noted that MJ-convex
functions are not necessarily extensible to ordinary convex functions, although they
possess a number of nice properties that justify the name of “convex functions.”

2. Definitions and exchange axioms. Let V be a finite set. For x = (x(v)), y =
(y(v)) ∈ ZV define

x(V ) =
∑
v∈V

x(v),

||x||1 =
∑
v∈V

|x(v)|,

[x, y] = {z ∈ ZV | min(x(v), y(v)) ≤ z(v) ≤ max(x(v), y(v)) ∀v ∈ V }.

We denote by 0 the zero vector of an appropriate dimension. For u ∈ V we denote
by χu the characteristic vector of u, with χu(u) = 1 and χu(v) = 0 for v �= u. A
vector s ∈ ZV is called an (x, y)-increment if s = χu or s = −χu for some u ∈ V and
x + s ∈ [x, y]. An (x, y)-increment pair will mean a pair of vectors (s, t) such that s
is an (x, y)-increment and t is an (x + s, y)-increment.

A nonempty set J ⊆ ZV is said to be a jump system if it satisfies an exchange
axiom, called the 2-step axiom: for any x, y ∈ J and for any (x, y)-increment s with
x+s /∈ J , there exists an (x+s, y)-increment t such that x+s+t ∈ J . A set J ⊆ ZV is
a constant-sum system if x(V ) = y(V ) for any x, y ∈ J , and a constant-parity system
if x(V ) − y(V ) is even for any x, y ∈ J .

For constant-parity jump systems, Geelen [15] introduced a stronger exchange
axiom:
(J-EXC) For any x, y ∈ J and for any (x, y)-increment s, there exists an (x + s, y)-

increment t such that x + s + t ∈ J and y − s− t ∈ J .
This property characterizes a constant-parity jump system, a fact communicated to
one of the authors by Geelen (see [25] for a proof).

Theorem 1 (Geelen [15]). A nonempty set J is a constant-parity jump system
if and only if it satisfies (J-EXC).

Next we turn to functions defined on integer points J . We call f : J → R an
MJ-convex function if it satisfies the following exchange axiom:
(MJ-EXC) For any x, y ∈ J and for any (x, y)-increment s, there exists an (x+ s, y)-

increment t such that x + s + t ∈ J , y − s− t ∈ J , and

f(x) + f(y) ≥ f(x + s + t) + f(y − s− t).

It follows from (MJ-EXC) that J satisfies (J-EXC) and hence is a constant-parity
jump system.

We adopt the convention that f(x) = +∞ for x /∈ J . For a function f : ZV →
R ∪ {+∞} we denote the effective domain of f by

domf = {x ∈ ZV | f(x) < +∞}.

Then it can be seen that if f : ZV → R∪{+∞} satisfies (MJ-EXC), then its effective
domain J satisfies (J-EXC).

It is known that if J satisfies (J-EXC), the exchange axiom (MJ-EXC) is equiva-
lent to a local exchange axiom:
(MJ-EXCloc) For any x, y ∈ J with ||x−y||1 = 4 there exists an (x, y)-increment pair

(s, t) such that x + s + t ∈ J , y − s− t ∈ J , and

f(x) + f(y) ≥ f(x + s + t) + f(y − s− t).
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Theorem 2 (see [25]). A function f : J → R defined on a constant-parity jump
system J satisfies (MJ-EXC) if and only if it satisfies (MJ-EXCloc).

In what follows, we refer to MJ-convexity simply as M-convexity; in particular,
when we talk about an M-convex function it is presumed that its effective domain is
a constant-parity jump system.

The definition of an M-convex function is consistent with the previously con-
sidered special cases where (i) J is a constant-sum jump system, and (ii) J is a
constant-parity jump system contained in {0, 1}V . Case (i) is equivalent to J being
the set of integer points in the base polyhedron of an integral submodular system [14],
and then the M-convex function is the same as the MB-convex function investigated
in [21], [23]. Case (ii) is equivalent to J being an even delta-matroid [30], [31], and
then f is M-convex if and only if −f is a valuated delta-matroid in the sense of [11].

For an M-convex function, it is known that global optimality (minimality) is guar-
anteed by local optimality in the neighborhood of �1-distance two, which generalizes
the optimality criterion in [1] for separable convex function minimization over a jump
system. The efficient algorithm for the minimization problem of M-convex functions
follows from the optimality criterion [25], [26].

Theorem 3 (see [25]). Let f : J → R be an M-convex function on a constant-
parity jump system J , and let x ∈ J . Then f(x) ≤ f(y) for all y ∈ J if and only if
f(x) ≤ f(y) for all y ∈ J with ||x− y||1 ≤ 2.

It is also known that global optimality (minimality) for constrained minimization
on a hyperplane of a constant component sum is guaranteed by local optimality in
the neighborhood of �1-distance four.

Theorem 4 (see [25]). Let f : J → R be an M-convex function on a constant-
parity jump system J ⊆ ZV , let Jk = {x ∈ J | x(V ) = k}, and let x ∈ Jk. Then
f(x) ≤ f(y) for all y ∈ Jk if and only if f(x) ≤ f(y) for all y ∈ Jk with ||x−y||1 ≤ 4.

This optimality criterion for M-convex functions helps us deepen our understand-
ing of the result of Apollonio and Sebő [2], [3]. They provided a polynomial algo-
rithm for the minconvex factor problem, which is, given an undirected graph possibly
containing loops and parallel edges and a separable convex function on the degree
sequences, to find a subgraph with a specified number of edges that minimizes the
function. The key observation in [2], [3] is that global optimality is guaranteed by
local optimality in the neighborhood of �1-distance at most four in the space of degree
sequences. Since a separable convex function on the degree sequences of a graph is
an M-convex function, this result can be seen as a special case of Theorem 4.

3. Basic operations. Let f : ZV → R ∪ {+∞} be an M-convex function. We
introduce some basic operations on f that preserve M-convexity. Though too simple
to be interesting in their own right, these operations are stated explicitly in view of
their use in our proofs.

For a subset U ⊆ V and a superset W ⊇ V , we define the coordinate inversion
f−
U : ZV → R ∪ {+∞} of U , the restriction fU : ZU → R ∪ {+∞} to U , and the

0-augmentation fW : ZW → R ∪ {+∞} to W by

f−
U (y, z) = f(−y, z) (y ∈ ZU , z ∈ ZV \U ),

fU (y) = f(y,0) (y ∈ ZU ,0 ∈ ZV \U ),

fW (y, z) =

{
f(y) if z = 0

+∞ otherwise
(y ∈ ZV , z ∈ ZW\V ),
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respectively. For a linear function p : ZV → R, we define f [p] : ZV → R ∪ {+∞} by

f [p](x) = f(x) + p(x).

It is obvious that they are M-convex.
We say that ϕ : ZV → R∪{+∞} is a separable convex function if it is represented

as

ϕ(x) =
∑
u∈V

ϕu(x(u)),

where for each u ∈ V , ϕu : Z → R ∪ {+∞} is a convex function; that is, for any
integers ξ < η

ϕu(ξ) + ϕu(η) ≥ ϕu(ξ + 1) + ϕu(η − 1).

Note that this condition is equivalent to the following: for any integer ξ

ϕu(ξ − 1) + ϕu(ξ + 1) ≥ 2ϕu(ξ).

For a separable convex function ϕ, we define f + ϕ : ZV → R ∪ {+∞} by

(f + ϕ)(x) = f(x) + ϕ(x).

Theorem 5. If f is M-convex and ϕ is a separable convex function, then f + ϕ
is M-convex.

Proof. It suffices to show that for a one-dimensional convex function ϕu with a
particular u ∈ V the function g(x) = f(x) + ϕu(x(u)) is M-convex. Suppose that
x = (x(v)) ∈ ZV , y = (y(v)) ∈ ZV , and s is an (x, y)-increment. By M-convexity of
f , there exists an (x + s, y)-increment t such that

f(x) + f(y) ≥ f(x + s + t) + f(y − s− t),

and it holds that

ϕu(x(u)) + ϕu(y(u)) ≥ ϕu(x(u) + s(u) + t(u)) + ϕu(y(u) − s(u) − t(u))

by convexity of ϕu. Thus we have

g(x) + g(y) ≥ g(x + s + t) + g(y − s− t),

which completes the proof.

4. Splitting. Splitting is an operation which generates a new function by divid-
ing some variables. The objective of this section is to show that if a given function
is M-convex, then the function obtained by splitting is also M-convex (Theorem 7).
Although splitting is a simple operation, it plays an important role when we deal with
transformation by networks in section 6.

First we introduce an elementary operation, called elementary splitting, which
divides one variable into two variables. Elementary splitting preserves M-convexity,
from which we can show that splitting preserves M-convexity.

For a function f : ZV → R ∪ {+∞}, the elementary splitting of f at v ∈ V is a
function f ′ : ZV ′ → R ∪ {+∞} defined by

f ′(x0;x(v′), x(v′′)) = f(x0;x(v′) + x(v′′)),
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where V ′ = (V \ {v}) ∪ {v′, v′′} and x0 ∈ ZV \{v}.
Lemma 6. If f is M-convex, then its elementary splitting f ′ is M-convex.
Proof. For a concise description, let V = {1, 2, . . . , n} and V ′ = {1, 2, . . . , n −

1, a, b}. We show that if f is M-convex, then its elementary splitting f ′ at n defined
by

f ′(x0;xa, xb) = f(x0;xa + xb)

is M-convex. For u ∈ V ′ we denote by χ′
u the characteristic vector of u in V ′. It suffices

to show that f ′ satisfies (MJ-EXC); that is, for any two vectors x′ = (x0;xa, xb) ∈
domf ′, y′ = (y0; ya, yb) ∈ domf ′, and for any (x′, y′)-increment s′, there exists an
(x′ + s′, y′)-increment t′ such that

f ′(x′) + f ′(y′) ≥ f ′(x′ + s′ + t′) + f ′(y′ − s′ − t′).

We put ξ = xa + xb and η = ya + yb. We also put x = (x0; ξ) and y = (y0; η).
Case 1. Suppose that s′ = ±χ′

k is an (x′, y′)-increment, where 1 ≤ k ≤ n − 1.
We denote ±χk by s. Since f is M-convex and s is an (x, y)-increment, there exists
an (x + s, y)-increment t such that

f(x) + f(y) ≥ f(x + s + t) + f(y − s− t).

If t = ±χl with 1 ≤ l ≤ n− 1, then t′ = ±χ′
l is an (x′ + s′, y′)-increment and

f ′(x′) + f ′(y′) ≥ f ′(x′ + s′ + t′) + f ′(y′ − s′ − t′).

Otherwise we have l = n. Without loss of generality, we may assume that ξ < η and
t = χn. Since ξ < η implies that at least one of xa < ya and xb < yb holds, at least
one of χ′

a and χ′
b, say t′, is an (x′ + s′, y′)-increment and it holds that

f ′(x′)+f ′(y′) = f(x)+f(y) ≥ f(x+s+t)+f(y−s−t) = f ′(x′+s′+t′)+f ′(y′−s′−t′).

Case 2. Suppose that s′ = ±χ′
a or ±χ′

b is an (x′, y′)-increment. In this case,
without loss of generality, we may assume that s′ = χ′

b and xb < yb.
If xa > ya, then t′ = −χ′

a is an (x′ + s′, y′)-increment and

f ′(x′) + f ′(y′) = f(x) + f(y) = f ′(x′ + s′ + t′) + f ′(y′ − s′ − t′).

Suppose that xa ≤ ya. Then we have ξ < η and χn is an (x, y)-increment. Since f
is M-convex, by applying (MJ-EXC) with s = χn, there exists an (x+ s, y)-increment
t such that

f(x) + f(y) ≥ f(x + s + t) + f(y − s− t).

If t = ±χk with 1 ≤ k ≤ n− 1, then t′ = ±χ′
k is an (x′ + s′, y′)-increment and

f ′(x′)+f ′(y′) = f(x)+f(y) ≥ f(x+s+t)+f(y−s−t) = f ′(x′+s′+t′)+f ′(y′−s′−t′).

Otherwise, we have t = χn and ξ + 2 ≤ η. Thus at least one of xb + 2 ≤ yb and
xa + 1 ≤ ya holds, and hence at least one of χ′

b and χ′
a, say t′, is an (x′ + s′, y′)-

increment. We then have

f ′(x′)+f ′(y′) = f(x)+f(y) ≥ f(x+s+t)+f(y−s−t) = f ′(x′+s′+t′)+f ′(y′−s′−t′).



OPERATIONS ON M-CONVEX FUNCTIONS ON JUMP SYSTEMS 113

This shows the existence of t′ in Case 2.
Suppose that we are given a finite set V = {v1, v2 . . . , vn} and a family of

nonempty disjoint sets {Uv | v ∈ V } indexed by v ∈ V . Let U =
⋃

v∈V Uv. For
a function f : ZV → R ∪ {+∞}, we define the splitting of f to U as a function
f ′ : ZU → R ∪ {+∞} given by

f ′(x̃v1
, x̃v2

, . . . , x̃vn
) = f(ξv1

, ξv2
, . . . , ξvn

),

where x̃v ∈ ZUv and ξv = x̃v(Uv) for v ∈ V . We now have the following theorem.
Theorem 7. If f is M-convex, then its splitting f ′ is M-convex.
Proof. We can obtain splitting f ′ by applying elementary splittings

∑
v∈V (|Uv|−

1) times. Hence, by Lemma 6, f ′ is M-convex.
Theorem 7 implies that if domf is a constant-parity jump system, then domf ′ is

also a constant-parity jump system.

5. Aggregation and convolution. Minkowski sum is a fundamental operation
on matroid structures, and jump systems are closed under Minkowski sum. In this
section, we deal with an operation for functions called convolution, which is a quanti-
tative extension of sum, and also a related operation called aggregation. The objective
of this section is to show that M-convexity is preserved under these operations. As
with splitting, aggregation plays an important role when we deal with transformations
by networks in section 6.

For two jump systems J1 ⊆ ZV and J2 ⊆ ZV , their sum J1 + J2 ⊆ ZV is defined
by

J1 + J2 = {x1 + x2 | x1 ∈ J1, x2 ∈ J2},

which is known to be a jump system.
Theorem 8 (see [6]). The sum of two jump systems is a jump system.
While this theorem is shown directly in [6], Kabadi and Sridhar [16] gave an

alternative proof by showing that jump systems are closed under a related elementary
operation. They showed that if J ⊆ ZV is a jump system, then its elementary

aggregation J̃ ⊆ ZṼ at v1 ∈ V and v2 ∈ V defined by

J̃ = {(x0, x(v1) + x(v2)) | (x0, x(v1), x(v2)) ∈ J}

is also a jump system, where Ṽ = (V \ {v1, v2}) ∪ {v} and x0 ∈ ZV \{v1,v2}. Theorem
8 can be derived from the following fact.

Lemma 9 (see [16]). An elementary aggregation of a jump system is a jump
system.

Convolution is a quantitative extension of sum. For two functions f1 : ZV →
R ∪ {+∞} and f2 : ZV → R ∪ {+∞}, we define their (infimum) convolution as a
function f1�f2 : ZV → R ∪ {+∞,−∞} given by

(f1�f2)(x) = inf{f1(x1) + f2(x2) | x1 + x2 = x, x1 ∈ ZV , x2 ∈ ZV }.

To show that convolution preserves M-convexity (Theorem 12), we introduce a quan-
titative extension of elementary aggregation.

For a function f : ZV → R ∪ {+∞}, the elementary aggregation of f at v1 ∈ V

and v2 ∈ V is a function f̃ : ZṼ → R ∪ {+∞,−∞} defined by

f̃(x0; ξ) = inf{f(x0;x(v1), x(v2)) | ξ = x(v1) + x(v2)},
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where Ṽ = (V \ {v1, v2}) ∪ {v} and x0 ∈ ZV \{v1,v2}. Then we can show that if f is

M-convex, then f̃ is M-convex; the proof is given in section 7.
Lemma 10. If f is M-convex, then its elementary aggregation f̃ is M-convex,

provided that f̃ > −∞.
A general aggregation is defined as the result of repeated applications of ele-

mentary aggregations. More formally, let V be a finite set and π be its partition
V = V1 ∪ V2 ∪ · · · ∪ Vn into disjoint subsets. For a function f : ZV → R ∪ {+∞}, we
define the aggregation of f with respect to π as a function f̃ : Zn → R ∪ {+∞,−∞}
given by

f̃(ξ1, ξ2, . . . , ξn) = inf
{
f(x1, x2, . . . , xn) | xi ∈ ZVi , xi(Vi) = ξi

}
.

Then we have the following theorem.
Theorem 11. If f is M-convex, then its aggregation f̃ is M-convex, provided

that f̃ > −∞.
Proof. By applying elementary aggregations |V |−n times, we can obtain f̃ , which

is M-convex by Lemma 10.
We are now ready to show that convolution preserves M-convexity.
Theorem 12. If f1 and f2 are M-convex functions, then their convolution f1�f2

is M-convex, provided that f1�f2 > −∞.
Proof. First we make the direct sum f : ZV × ZV → R ∪ {+∞} of f1 and f2

defined by

f(x1, x2) = f1(x1) + f2(x2),

where x1, x2 ∈ ZV . Then f is M-convex because f1 and f2 are M-convex. Let π be
the partition consisting of pairs of the corresponding elements. Then the aggregation
of f coincides with f1�f2. Hence, by Theorem 11, f1�f2 is M-convex.

Finally, we consider another operation, called composition. Let f1 : ZS1 →
R ∪ {+∞} and f2 : ZS2 → R ∪ {+∞} be M-convex functions. Put V0 = S1 ∩ S2,
V1 = S1 \ V0, and V2 = S2 \ V0. We define the composition of f1 and f2 to be a
function f : ZV1∪V2 → R ∪ {+∞,−∞} given by

f(x1, x2) = inf{f1(x1, y1) + f2(x2, y2) | y1 = y2 ∈ ZV0} (x1 ∈ ZV1 , x2 ∈ ZV2).

Theorem 13. The composition of two M-convex functions is M-convex, provided
that it does not take the value −∞.

Proof. Consider M-convex functions f̃1 and f̃2 defined by

f̃1(x1, y1,0) = f1(x1, y1) (x1 ∈ ZV1 , y1 ∈ ZV0 ,0 ∈ ZV2),

f̃2(0, (−y2), x2) = f2(x2, y2) (0 ∈ ZV1 , (−y2) ∈ ZV0 , x2 ∈ ZV2).

Their convolution f̃1�f̃2 is M-convex by Theorem 12, and the restriction of f̃1�f̃2 to
V1 ∪ V2 coincides with the composition.

Note that the composition of M-convex functions is a generalization of the com-
position of (constant-parity) jump systems. It is known that the composition of two
jump systems is a jump system [6], and Theorem 13 generalizes this fact.

6. Transformation by networks. In this section, we consider the transfor-
mation of an M-convex function through a network. We show that it preserves M-
convexity on the basis of splitting, aggregation, and other basic operations discussed
above.
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Let G = (V,A;S, T ) be a directed graph with vertex set V , arc set A, entrance
set S, and exit set T , where S and T are disjoint subsets of V . For each a ∈ A, the
cost of integer-flow in a is represented by a function ϕa : Z → R ∪ {+∞}, which is
assumed to be convex.

Given a function f : ZS → R ∪ {+∞} associated with the entrance set S of the
network, we define a function f̃ : ZT → R ∪ {+∞,−∞} on the exit set T by

f̃(y) = inf
ξ,x

{
f(x) +

∑
a∈A

ϕa(ξ(a)) | ∂ξ = (x,−y,0),

ξ ∈ ZA, (x,−y,0) ∈ ZS × ZT × ZV \(S∪T )

}
(y ∈ ZT ),

where ∂ξ ∈ ZV is the vector given by

∂ξ(v) =
∑

a: a leaves v

ξ(a) −
∑

a: a enters v

ξ(a) (v ∈ V ).

If such (ξ, x) does not exist, we define f̃(y) = +∞. We may think of f̃(y) as the
minimum cost to meet a demand specification y at the exit, where the cost consists
of two parts, the cost f(x) of supply or production of x at the entrance and the cost∑

a∈A ϕa(ξ(a)) of transportation through arcs; the sum of these is to be minimized
over varying supply x and flow ξ subject to the flow conservation constraint ∂ξ =
(x,−y,0). We regard f̃ as a result of transformation (or induction) of f by the
network.

Theorem 14. Assume that f is M-convex and ϕa is convex for each a ∈ A.
Then the function f̃ induced by a network G = (V,A;S, T ) is M-convex, provided that
f̃ > −∞.

To prove this theorem, we first show that transformations by some simple bipartite
networks preserve M-convexity. When V = S ∪ T , we denote the graph G simply by
G = (S, T ;A). It is noted that some arcs are directed from S to T and the others
from T to S.

Lemma 15. Let G = (S, T ;A) be a bipartite network, where each vertex in T has
exactly one incident arc (see Figure 1). If f is M-convex and ϕa = 0 for each a ∈ A,
the function f̃ induced by G is M-convex.

Proof. We can obtain f̃ from f by restriction and splitting. Hence, if f is M-
convex, then f̃ is M-convex by Theorem 7.

Lemma 16. Let G = (S, T ;A) be a bipartite network, where each vertex in S has
exactly one incident arc (see Figure 2). If f is M-convex and ϕa = 0 for each a ∈ A,
the function f̃ induced by G is M-convex, provided that f̃ > −∞.

Proof. We can obtain f̃ from f by aggregation and 0-augmentation. Hence, if f
is M-convex, then f̃ is M-convex by Theorem 11.

Lemma 17. Let G = (S, T ;A) be a bipartite network, as in Figure 3, where S =
{s1, . . . , sn}, T = {t1, . . . , tn}, and A = {a1, . . . , an} with ai = (si, ti) or ai = (ti, si)

for i = 1, . . . , n. If f is M-convex and ϕa is convex for each a ∈ A, the function f̃
induced by G is M-convex.

Proof. We may assume that

S+ = {s1, . . . , sm}, S− = {sm+1, . . . , sn},
T+ = {t1, . . . , tm}, T− = {tm+1, . . . , tn},
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Fig. 1. Splitting.
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Fig. 2. Aggregation.

S T
Fig. 3. Addition.
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Fig. 4. Transformation by a bipartite network.

A+ = {(si, ti) | i = 1, . . . ,m}, A− = {(ti, si) | i = m + 1, . . . , n},

and A = A+ ∪A−. Then, for x = (xi) ∈ Zn, f̃ is expressed as

f̃(x) = f(x) +

m∑
i=1

ϕa(xi) +

n∑
i=m+1

ϕa(−xi),

and if ϕa(x) is convex, then ϕa(−x) is convex for a ∈ A−. Thus we can obtain f̃ by
adding a separable convex function to f . Hence, if f is M-convex, then f̃ is M-convex
by Theorem 5.

Using the above lemmas, we see that transformation by bipartite networks pre-
serves M-convexity.

Theorem 18. Assume that f is M-convex, ϕa is convex for each a ∈ A, and
G = (S, T ;A) is a bipartite network. Then the function f̃ induced by G is M-convex,
provided that f̃ > −∞.

Proof. We construct a new network that represents the same transformation as
the original network. The new network is obtained by subdividing each arc of G into
three arcs, as illustrated in Figure 4. For each arc a ∈ A we consider two new vertices
ua and wa; if a is directed from S to T , i.e., a = (s, t) with s ∈ S and t ∈ T , we
will have three arcs a1 = (s, ua), a2 = (ua, wa), and a3 = (wa, t), and if a = (t, s)
with t ∈ T and s ∈ S, we will have a3 = (t, wa), a2 = (wa, ua), and a1 = (ua, s).
The cost ϕa is associated with arc a2, whereas the arcs a1 and a3 are given 0 as the
cost. Thus the new network consists of three bipartite graphs connected in series,
G1 = (S,U ;A1), G2 = (U,W ;A2), and G3 = (W,T ;A3), where U = {ua | a ∈ A},
W = {wa | a ∈ A}, and Ai = {ai | a ∈ A} (i = 1, 2, 3).

The given M-convex function f on S is transformed through G1 to a function
f1 : ZU → R ∪ {+∞}, which is M-convex by Lemma 15. Then f1 is transformed
through G2 to a function f2 : ZW → R ∪ {+∞}, which is M-convex by Lemma 17.
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S T S

U W

T

Fig. 5. Transformation by a general network.

Finally, f2 is transformed through G3 to a function f3 : ZT → R∪{+∞,−∞}, which
is M-convex by Lemma 16. The resulting function f3 coincides with the function f̃
induced from f by G.

We are now ready to show Theorem 14.
Proof of Theorem 14. We construct a new network that represents the same

transformation as the original network. The new network is obtained by subdividing
each arc of G into some arcs, as illustrated in Figure 5. We may assume, by subdividing
arcs, that no arcs exist between the two vertices in S ∪ T . Let U = V \ (S ∪ T ), let
AUT be the set of arcs connecting U and T , and define ASU and AUU similarly. For
each arc a ∈ AUT , we consider a new vertex wa; if a is directed from U to T , i.e.,
a = (u, t) with u ∈ U and t ∈ T , we will have two arcs a1 = (u,wa), a2 = (wa, t), and
if a = (t, u) with t ∈ T and u ∈ U , we will have a2 = (t, wa), a1 = (wa, u). For each
arc a = (u1, u2) ∈ AUU with u1, u2 ∈ U , we consider a new vertex wa and have two
arcs a1 = (u1, wa), a2 = (wa, u2). Thus the new network consists of three bipartite
graphs connected in series, G1 = (S,U ;A1), G2 = (U,W ;A2), and G3 = (W,T ;A3),
where W = {wa | a ∈ AUT ∪ AUU}, A1 = ASU , A2 = {a1 | a ∈ AUT } ∪ {a1 | a ∈
AUU} ∪ {a2 | a ∈ AUU}, and A3 = {a2 | a ∈ AUT }.

By Theorem 18, transformations by the networks G1, G2, and G3 preserve M-
convexity. Since the transformation by G can be represented as a combination of
the above three transformations, the function f̃ transformed from f by G is M-
convex.

As we mentioned in section 1, transformations by networks also preserve MB-
convexity. Two kinds of proofs for this fact are known (see [21], [22], [29]); one uses
a dual variable, and the other is a complicated algorithmic proof. We can see that
our proof of Theorem 14 also works for MB-convex functions; that is, by proving that
splitting, aggregation, and other basic operations preserve MB-convexity, we can show
that transformations by networks preserve MB-convexity.

It is also noted that the transformation by networks can be generalized by replac-
ing networks by linking systems, and that transformations by linking systems also
preserve M-convexity [17].

7. Proof of Lemma 10 for elementary aggregation. In this section, we give
a proof of Lemma 10. For a concise description, we denote V = {1, 2, . . . , n − 1, n}
and Ṽ = {1, 2, . . . , n− 2, a}. We show that if f is M-convex, then f̃ defined by

f̃(x0; ξ) = inf{f(x0;xn−1, xn) | ξ = xn−1 + xn}
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is M-convex. For u ∈ Ṽ , we denote by χ̃u the characteristic vector of u in Ṽ .
We first deal with the case where the effective domain of f is bounded, whereas

the general case is treated in section 7.4.

7.1. Case of bounded effective domain.
Lemma 19. If f is M-convex and domf is bounded, then its elementary aggre-

gation f̃ is M-convex.
Proof. Let J and J̃ be the effective domains of f and f̃ , respectively. If f

is M-convex, then J is a constant-parity jump system, which implies by Lemma 9
that J̃ is also a constant-parity jump system. Hence, by Theorem 2, it is enough to
show that f̃ satisfies (MJ-EXCloc); that is, for any x̃ = (x0; ξ), ỹ = (y0; η) ∈ J̃ with
||x̃− ỹ||1 = ||x0 − y0||1 + |ξ − η| = 4, there exists an (x̃, ỹ)-increment pair (s, t) such
that

(∗) f̃(x̃) + f̃(ỹ) ≥ f̃(x̃ + s + t) + f̃(ỹ − s− t).

Without loss of generality, we may assume that ξ ≥ η. Take xn−1, xn, yn−1, yn
with the minimum value of |xn−1 − yn−1| + |xn − yn| such that

f̃(x0; ξ) = f(x0;xn−1, xn) ((x0;xn−1, xn) ∈ J, ξ = xn−1 + xn),

f̃(y0; η) = f(y0; yn−1, yn) ((y0; yn−1, yn) ∈ J, η = yn−1 + yn).

Note that such xn−1, xn, yn−1, yn exist, because J is finite and (x0; ξ), (y0; η) ∈ J̃ .
If xn−1 = yn−1 or xn = yn, then it is obvious by (MJ-EXC) for f that there exists

an (x̃, ỹ)-increment pair (s, t) satisfying (∗). Since xn−1 ≥ yn−1 or xn ≥ yn holds by
the assumption ξ ≥ η, we may assume that xn−1 > yn−1 and xn �= yn.

Case 1. Suppose that ξ ≥ η + 2. By (MJ-EXC) for f with s = −χn−1, we have

(1) f(x0;xn−1, xn) + f(y0; yn−1, yn)

≥ min

⎧⎨
⎩

f(x0;xn−1 − 1, xn ± 1) + f(y0; yn−1 + 1, yn ∓ 1),
f(x0;xn−1 − 2, xn) + f(y0; yn−1 + 2, yn),

f(x0 + t0;xn−1 − 1, xn) + f(y0 − t0; yn−1 + 1, yn)

⎫⎬
⎭ ,

where t0 ∈ Zn−2 is an (x0, y0)-increment. Note that the signs in (1) are determined
by the relations of components, and the second term exists only if xn−1−yn−1 ≥ 2. If
the second term or the third term achieves the minimum, then (s, t) = (−χ̃a,−χ̃a) or

(−χ̃a, t̃), where t̃ = (t0, 0) ∈ ZṼ , is an (x̃, ỹ)-increment pair satisfying (∗). Otherwise,
we have

f(x0;xn−1, xn) + f(y0; yn−1, yn) ≥ f(x0;xn−1 − 1, xn + 1) + f(y0; yn−1 + 1, yn − 1)

or

f(x0;xn−1, xn) + f(y0; yn−1, yn) ≥ f(x0;xn−1 − 1, xn − 1) + f(y0; yn−1 + 1, yn + 1).

If xn > yn, then we have f(x0;xn−1, xn) + f(y0; yn−1, yn) ≥ f(x0;xn−1 − 1, xn −
1) + f(y0; yn−1 + 1, yn + 1), and so f̃(x0; ξ) + f̃(y0; η) ≥ f̃(x0; ξ − 2) + f̃(y0; η + 2).
Thus (s, t) = (−χ̃a,−χ̃a) is an (x̃, ỹ)-increment pair satisfying (∗).

If xn < yn, we have f(x0;xn−1, xn) + f(y0; yn−1, yn) ≥ f(x0;xn−1 − 1, xn + 1) +
f(y0; yn−1+1, yn−1). By the definition of xn−1, xn, yn−1, yn, we have f(x0;xn−1, xn) =
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f(x0;xn−1 − 1, xn + 1) and f(y0; yn−1, yn) = f(y0; yn−1 + 1, yn − 1). This contradicts
the minimality of |xn−1 − yn−1| + |xn − yn|.

Case 2. Suppose that ξ = η. It suffices to show that if ỹ = 0 and x̃ = (1, 1, 1, 1; 0),
(2, 1, 1; 0), (3, 1; 0), (2, 2; 0), or (4; 0), there exists an (x̃, ỹ)-increment pair (s, t) satis-
fying (∗). This is shown in section 7.2.

Case 3. Suppose that ξ = η+1. It suffices to show that if ỹ = 0 and x̃ = (1, 1, 1; 1),
(2, 1; 1), or (3; 1), there exists an (x̃, ỹ)-increment pair (s, t) satisfying (∗). This is
shown in section 7.3.

7.2. Case 2 in the proof of Lemma 19. In this section, we deal with Case
2 in the proof of Lemma 19. First we show the essential case when x̃ = (1, 1, 1, 1; 0),
whereas the other cases can be derived from this using the splitting technique discussed
in section 4.

7.2.1. The main lemma. Let f : Z6 → R ∪ {+∞} be an M-convex function
with a bounded effective domain, and define

f̃(x1, x2, x3, x4; ξ) = inf {f(x1, x2, x3, x4;x5, x6) | x5 + x6 = ξ} .

We now show that if ỹ = 0 ∈ J̃ and x̃ = (1, 1, 1, 1; 0) ∈ J̃ , then there exists
an (x̃, ỹ)-increment pair (s, t) satisfying (∗). We may assume that f̃(0, 0, 0, 0; 0) =
f(0, 0, 0, 0; 0, 0) and f̃(1, 1, 1, 1; 0) = f(1, 1, 1, 1; k,−k) with k > 0. We denote 0 =
(0, 0, 0, 0; 0, 0), 1k = (1, 1, 1, 1; k,−k), and χ1234 = χ1 + χ2 + χ3 + χ4.

Lemma 20. Suppose that f̃(0, 0, 0, 0; 0) = f(0) and f̃(1, 1, 1, 1; 0) = f(1k) with
k > 0. Then we have

(2) f(0) + f(1k) ≥ min

⎧⎨
⎩
f̃(1, 1, 0, 0; 0) + f̃(0, 0, 1, 1; 0),

f̃(1, 0, 1, 0; 0) + f̃(0, 1, 0, 1; 0),

f̃(1, 0, 0, 1; 0) + f̃(0, 1, 1, 0; 0)

⎫⎬
⎭ .

Proof. First, by (MJ-EXC) for f with s = χ1, we have

f(0) + f(1k) ≥ min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f(1, 1, 0, 0; 0, 0) + f(0, 0, 1, 1; k,−k),
f(1, 0, 1, 0; 0, 0) + f(0, 1, 0, 1; k,−k),
f(1, 0, 0, 1; 0, 0) + f(0, 1, 1, 0; k,−k),

f(1, 0, 0, 0; 1, 0) + f(0, 1, 1, 1; k − 1,−k),
f(1, 0, 0, 0; 0,−1) + f(0, 1, 1, 1; k,−k + 1)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

If one of the first three terms achieves the minimum, the desired inequality holds.
Otherwise, we have

(3) f(0) + f(1k) ≥ min

{
f(1, 0, 0, 0; 1, 0) + f(0, 1, 1, 1; k − 1,−k),
f(1, 0, 0, 0; 0,−1) + f(0, 1, 1, 1; k,−k + 1)

}
.

We consider the following bipartite digraph G = (UG, VG;AG). The vertex sets
UG and VG are defined by

UG = {u(p,i) | 1 ≤ p ≤ k, 1 ≤ i ≤ 4, f(χ1234 − χi + pχ5 − (p− 1)χ6) < +∞},
VG = {v(r,j) | 1 ≤ r ≤ k, 1 ≤ j ≤ 4, f(χj + rχ5 − (r − 1)χ6) < +∞}.

The arc set AG is defined as follows. For u(p,i) ∈ UG an arc exists from u(p,i) to v(r,j)

with r ∈ {1, . . . , k} and j ∈ {1, 2, 3, 4} \ {i} if there exists q such that 0 ≤ q ≤ k and

f(0) + f(χ1234 − χi + pχ5 − (p− 1)χ6)

≥ f(χj + rχ5 − (r − 1)χ6) + f(χ1234 − χi − χj + qχ5 − qχ6).
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Note that this inequality guarantees v(r,j) ∈ VG. Similarly, for v(r,j) ∈ VG an arc
exists from v(r,j) to u(p,i) with p ∈ {1, . . . , k} and i ∈ {1, 2, 3, 4} \ {j} if there exists q
such that 0 ≤ q ≤ k and

f(1k) + f(χj + rχ5 − (r − 1)χ6)

≥ f(χ1234 − χi + pχ5 − (p− 1)χ6) + f(χi + χj + qχ5 − qχ6).

Note that this inequality guarantees u(p,i) ∈ UG.

Then the following lemma holds, which we prove in section 7.2.2.

Lemma 21. The out-degree of each vertex in G is at least one.

We mention here that UG �= ∅ and VG �= ∅. For it follows from the inequality (3)
that u(k,1) ∈ UG or v(1,1) ∈ VG. Then Lemma 21 implies that UG �= ∅ and VG �= ∅.

By Lemma 21, G has a directed cycle

C = (u(p1,i1), v(p2,i2), u(p3,i3), v(p4,i4), . . . , u(p2m−1,i2m−1), v(p2m,i2m)).

This means, by the definition of AG, that there exist q1, q2, . . . , q2m such that

f(0) + f(χ1234 − χi1 + p1χ5 − (p1 − 1)χ6)

≥ f(χi2 + p2χ5 − (p2 − 1)χ6) + f(χ1234 − χi1 − χi2 + q1χ5 − q1χ6),

f(1k) + f(χi2 + p2χ5 − (p2 − 1)χ6)

≥ f(χ1234 − χi3 + p3χ5 − (p3 − 1)χ6) + f(χi3 + χi2 + q2χ5 − q2χ6),

f(0) + f(χ1234 − χi3 + p3χ5 − (p3 − 1)χ6)

≥ f(χi4 + p4χ5 − (p4 − 1)χ6) + f(χ1234 − χi3 − χi4 + q3χ5 − q3χ6),

f(1k) + f(χi4 + p4χ5 − (p4 − 1)χ6)

≥ f(χ1234 − χi5 + p5χ5 − (p5 − 1)χ6) + f(χi5 + χi4 + q4χ5 − q4χ6),

. . .

f(0) + f(χ1234 − χi2m−1
+ p2m−1χ5 − (p2m−1 − 1)χ6)

≥ f(χi2m + p2mχ5 − (p2m − 1)χ6)

+ f(χ1234 − χi2m−1 − χi2m + q2m−1χ5 − q2m−1χ6),

f(1k) + f(χi2m + p2mχ5 − (p2m − 1)χ6)

≥ f(χ1234 − χi1 + p1χ5 − (p1 − 1)χ6) + f(χi1 + χi2m + q2mχ5 − q2mχ6).

By adding these inequalities, we obtain

m(f(0) + f(1k)) ≥ f(χ1234 − χi1 − χi2 + q1χ5 − q1χ6)

+ f(χi3 + χi2 + q2χ5 − q2χ6)

+ f(χ1234 − χi3 − χi4 + q3χ5 − q3χ6)

+ f(χi5 + χi4 + q4χ5 − q4χ6)

+ · · ·
+ f(χ1234 − χi2m−1 − χi2m + q2m−1χ5 − q2m−1χ6)

+ f(χi1 + χi2m + q2mχ5 − q2mχ6).

Then we have
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m(f(0) + f(1k)) ≥ f̃(χ̃1234 − χ̃i1 − χ̃i2) + f̃(χ̃i3 + χ̃i2)

+ f̃(χ̃1234 − χ̃i3 − χ̃i4) + f̃(χ̃i5 + χ̃i4)

+ · · ·
+ f̃(χ̃1234 − χ̃i2m−1

− χ̃i2m) + f̃(χ̃i1 + χ̃i2m),

where χ̃1234 = χ̃1 + χ̃2 + χ̃3 + χ̃4.

Here we note that

mχ̃1234 = (χ̃1234 − χ̃i1 − χ̃i2) + (χ̃i3 + χ̃i2)

+ (χ̃1234 − χ̃i3 − χ̃i4) + (χ̃i5 + χ̃i4)

+ · · ·
+ (χ̃1234 − χ̃i2m−1 − χ̃i2m) + (χ̃i1 + χ̃i2m).

Then the desired inequality (2) follows from Lemma 22 below.

Lemma 22. If

(4) mχ̃1234 =
∑

1≤i<j≤4

mij(χ̃i + χ̃j)

and

m(f(0) + f(1k)) ≥
∑

1≤i<j≤4

mij f̃(χ̃i + χ̃j)

for some nonnegative integers mij and m, then

f(0) + f(1k) ≥ min

⎧⎨
⎩
f̃(χ̃1 + χ̃2) + f̃(χ̃3 + χ̃4),

f̃(χ̃1 + χ̃3) + f̃(χ̃2 + χ̃4),

f̃(χ̃1 + χ̃4) + f̃(χ̃2 + χ̃3)

⎫⎬
⎭ .

Proof. On the right-hand side of (4), the sum of the coefficients of χ̃1 and χ̃2 is
2m12 +m13 +m14 +m23 +m24. Meanwhile, that of χ̃3 and χ̃4 is 2m34 +m13 +m14 +
m23 + m24. Hence m12 = m34. We can show m13 = m24, m14 = m23 in the same
way. Thus we have

m(f(0) + f(1k)) ≥ m12(f̃(χ̃1 + χ̃2) + f̃(χ̃3 + χ̃4))

+ m13(f̃(χ̃1 + χ̃3) + f̃(χ̃2 + χ̃4))

+ m14(f̃(χ̃1 + χ̃4) + f̃(χ̃2 + χ̃3))

and

m12 + m13 + m14 = m,

which imply the desired inequality.

7.2.2. Proof of Lemma 21. The out-degree of vertex u(p,i) is nonzero by
Lemma 24 below, which relies on the following lemma.

Lemma 23. For any integers p ≤ q and for any i ∈ {1, 2, 3, 4}, (A) or (B) holds.
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(A) There exists an integer r such that p ≤ r ≤ q + 1 and

f((p + 2)χ5 − pχ6) + f(χ1234 − χi + qχ5 − (q + 1)χ6)

≥ min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f(χj1 + (p + q + 2 − r)χ5 − (p + q + 1 − r)χ6)

+ f(χj2 + χj3 + rχ5 − rχ6),

f(χj2 + (p + q + 2 − r)χ5 − (p + q + 1 − r)χ6)

+ f(χj3 + χj1 + rχ5 − rχ6),

f(χj3 + (p + q + 2 − r)χ5 − (p + q + 1 − r)χ6)

+ f(χj1 + χj2 + rχ5 − rχ6)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

where {j1, j2, j3} = {1, 2, 3, 4} \ {i}.
(B) There exists an integer r such that p + 1 ≤ r ≤ q + 1 and

f((p + 2)χ5 − pχ6) + f(χ1234 − χi + qχ5 − (q + 1)χ6)

≥ f(rχ5 − rχ6) + f(χ1234 − χi + (p + q + 2 − r)χ5 − (p + q + 1 − r)χ6).

Proof. We show the proof by induction on q − p.
If q − p = 0, then, by (MJ-EXC) with s = −χ6, we have

f((p + 2)χ5 − pχ6) + f(χ1234 − χi + qχ5 − (q + 1)χ6)

≥ min

⎧⎪⎪⎨
⎪⎪⎩
f(χj1 + (p + 2)χ5 − (p + 1)χ6) + f(χ1234 − χj1 − χi + qχ5 − qχ6),
f(χj2 + (p + 2)χ5 − (p + 1)χ6) + f(χ1234 − χj2 − χi + qχ5 − qχ6),
f(χj3 + (p + 2)χ5 − (p + 1)χ6) + f(χ1234 − χj3 − χi + qχ5 − qχ6),

f((p + 1)χ5 − (p + 1)χ6) + f(χ1234 − χi + (q + 1)χ5 − qχ6)

⎫⎪⎪⎬
⎪⎪⎭ ,

where {j1, j2, j3} = {1, 2, 3, 4} \ {i}. If one of the first three terms achieves the
minimum, then (A) holds with r = q; otherwise (B) holds with r = p + 1.

If q − p = 1, then, by (MJ-EXC) with s = −χ5, we have

f((p + 2)χ5 − pχ6) + f(χ1234 − χi + qχ5 − (q + 1)χ6)

≥ min

⎧⎪⎪⎨
⎪⎪⎩
f(χj1 + (p + 1)χ5 − pχ6) + f(χ1234 − χj1 − χi + (q + 1)χ5 − (q + 1)χ6),
f(χj2 + (p + 1)χ5 − pχ6) + f(χ1234 − χj2 − χi + (q + 1)χ5 − (q + 1)χ6),
f(χj3 + (p + 1)χ5 − pχ6) + f(χ1234 − χj3 − χi + (q + 1)χ5 − (q + 1)χ6),

f((p + 1)χ5 − (p + 1)χ6) + f(χ1234 − χi + (q + 1)χ5 − qχ6)

⎫⎪⎪⎬
⎪⎪⎭ ,

where {j1, j2, j3} = {1, 2, 3, 4} \ {i}. If one of the first three terms achieves the
minimum, then (A) holds with r = q + 1; otherwise (B) holds with r = p + 1.

Suppose that q − p ≥ 2. By (MJ-EXC) with s = −χ6, we have

f((p + 2)χ5 − pχ6) + f(χ1234 − χi + qχ5 − (q + 1)χ6)

≥ min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f(χj1 + (p + 2)χ5 − (p + 1)χ6) + f(χ1234 − χj1 − χi + qχ5 − qχ6),
f(χj2 + (p + 2)χ5 − (p + 1)χ6) + f(χ1234 − χj2 − χi + qχ5 − qχ6),
f(χj3 + (p + 2)χ5 − (p + 1)χ6) + f(χ1234 − χj3 − χi + qχ5 − qχ6),

f((p + 3)χ5 − (p + 1)χ6) + f(χ1234 − χi + (q − 1)χ5 − qχ6),
f((p + 2)χ5 − (p + 2)χ6) + f(χ1234 − χi + qχ5 − (q − 1)χ6)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

where {j1, j2, j3} = {1, 2, 3, 4}\{i}. Note that the fourth term exists only if q−p ≥ 3.
If one of the first three terms achieves the minimum, then (A) holds with r = q, and
if the last term achieves the minimum, then (B) holds with r = p + 2 ≤ q. To the
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fourth term, the induction applies and yields (A) with p + 1 ≤ r ≤ q or (B) with
p + 2 ≤ r ≤ q.

Lemma 24. For any integer 1 ≤ p ≤ k and for any i ∈ {1, 2, 3, 4}, there exist
integers q and r such that 0 ≤ q ≤ k − 1, 1 ≤ r ≤ k, and

f(0) + f(χ1234 − χi + pχ5 − (p− 1)χ6)

≥ min

⎧⎨
⎩
f(χj1 + rχ5 − (r − 1)χ6) + f(χj2 + χj3 + qχ5 − qχ6),
f(χj2 + rχ5 − (r − 1)χ6) + f(χj3 + χj1 + qχ5 − qχ6),
f(χj3 + rχ5 − (r − 1)χ6) + f(χj1 + χj2 + qχ5 − qχ6)

⎫⎬
⎭ ,

where {j1, j2, j3} = {1, 2, 3, 4} \ {i}.
Proof. It suffices to consider p which minimizes f(χ1234 − χi + pχ5 − (p− 1)χ6).

Let p be the minimum minimizer. By (MJ-EXC) with s = χ5, we have

f(0) + f(χ1234 − χi + pχ5 − (p− 1)χ6)

≥ min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f(χj1 + χ5) + f(χj2 + χj3 + (p− 1)χ5 − (p− 1)χ6),
f(χj2 + χ5) + f(χj3 + χj1 + (p− 1)χ5 − (p− 1)χ6),
f(χj3 + χ5) + f(χj1 + χj2 + (p− 1)χ5 − (p− 1)χ6),
f(χ5 − χ6) + f(χ1234 − χi + (p− 1)χ5 − (p− 2)χ6),

f(2χ5) + f(χ1234 − χi + (p− 2)χ5 − (p− 1)χ6)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

Note that the last two terms exist only if p ≥ 2.
If one of the first three terms achieves the minimum, the claim holds with q = p−1

and r = 1.
To consider the fourth term, suppose that p ≥ 2 and

f(0) + f(χ1234 − χi + pχ5 − (p− 1)χ6)

≥ f(χ5 − χ6) + f(χ1234 − χi + (p− 1)χ5 − (p− 2)χ6).

Then, since f(0) = f̃(0, 0, 0, 0; 0) ≤ f(χ5 − χ6), we have

f(χ1234 − χi + pχ5 − (p− 1)χ6) ≥ f(χ1234 − χi + (p− 1)χ5 − (p− 2)χ6),

which contradicts the definition of p.
To consider the fifth term, suppose that p ≥ 2 and

f(0) + f(χ1234 − χi + pχ5 − (p− 1)χ6)

≥ f(2χ5) + f(χ1234 − χi + (p− 2)χ5 − (p− 1)χ6).

By Lemma 23, at least one of (A) and (B) holds.
(A) There exists an integer r′ such that 0 ≤ r′ ≤ p− 1 and

f(2χ5) + f(χ1234 − χi + (p− 2)χ5 − (p− 1)χ6)

≥ min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f(χj1 + (p− r′)χ5 − (p− r′ − 1)χ6)

+ f(χj2 + χj3 + r′χ5 − r′χ6),

f(χj2 + (p− r′)χ5 − (p− r′ − 1)χ6)

+ f(χj3 + χj1 + r′χ5 − r′χ6),

f(χj3 + (p− r′)χ5 − (p− r′ − 1)χ6)

+ f(χj1 + χj2 + r′χ5 − r′χ6)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

.
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(B) There exists an integer r′ such that 1 ≤ r′ ≤ p− 1 and

f(2χ5) + f(χ1234 − χi + (p− 2)χ5 − (p− 1)χ6)

≥ f(r′χ5 − r′χ6) + f(χ1234 − χi + (p− r′)χ5 − (p− r′ − 1)χ6).

In case of (A) we have

f(0) + f(χ1234 − χi + pχ5 − (p− 1)χ6)

≥ min

⎧⎨
⎩
f(χj1 + (p− r′)χ5 − (p− r′ − 1)χ6) + f(χj2 + χj3 + r′χ5 − r′χ6),
f(χj2 + (p− r′)χ5 − (p− r′ − 1)χ6) + f(χj3 + χj1 + r′χ5 − r′χ6),
f(χj3 + (p− r′)χ5 − (p− r′ − 1)χ6) + f(χj1 + χj2 + r′χ5 − r′χ6)

⎫⎬
⎭ ,

which implies the desired claim with q = r′ and r = p− r′.
In case of (B) we have 1 ≤ r′ ≤ p− 1 and

f(0) + f(χ1234 − χi + pχ5 − (p− 1)χ6)

≥ f(r′χ5 − r′χ6) + f(χ1234 − χi + (p− r′)χ5 − (p− r′ − 1)χ6).

Since f(0) = f̃(0, 0, 0, 0; 0) ≤ f(r′χ5 − r′χ6), we have

f(χ1234 − χi + pχ5 − (p− 1)χ6) ≥ f(χ1234 − χi + (p− r′)χ5 − (p− r′ − 1)χ6),

which contradicts the definition of p.
In the same way as Lemma 24, we have the following lemma, which means that

the out-degree of vertex v(r,j) is nonzero.
Lemma 25. For any integer 1 ≤ r ≤ k and for any j ∈ {1, 2, 3, 4}, there exist

integers p and q such that 1 ≤ p ≤ k, 1 ≤ q ≤ k, and

f(1k) + f(χj + rχ5 − (r − 1)χ6)

≥ min

⎧⎨
⎩
f(χ1234 − χi1 + pχ5 − (p− 1)χ6) + f(χi1 + χj + qχ5 − qχ6),
f(χ1234 − χi2 + pχ5 − (p− 1)χ6) + f(χi2 + χj + qχ5 − qχ6),
f(χ1234 − χi3 + pχ5 − (p− 1)χ6) + f(χi3 + χj + qχ5 − qχ6)

⎫⎬
⎭ ,

where {i1, i2, i3} = {1, 2, 3, 4} \ {j}.
Proof. We consider the coordinate transformation from (x1, x2, x3, x4;x5, x6) to

(1 − x1, 1 − x2, 1 − x3, 1 − x4; k + x6,−k + x5). Applying Lemma 24 in the new
coordinate system, we see the following fact:

For any integer 1 ≤ p′ ≤ k and for any j ∈ {1, 2, 3, 4}, there exist
integers q′ and r′ such that 0 ≤ q′ ≤ k − 1, 1 ≤ r′ ≤ k, and

f(1k) + f(χj + (k − p′ + 1)χ5 − (k − p′)χ6)

≥ min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f(χ1234 − χi1 + (k − r′ + 1)χ5 − (k − r′)χ6)

+ f(χi1 + χj + (k − q′)χ5 − (k − q′)χ6),

f(χ1234 − χi2 + (k − r′ + 1)χ5 − (k − r′)χ6)

+ f(χi2 + χj + (k − q′)χ5 − (k − q′)χ6),

f(χ1234 − χi3 + (k − r′ + 1)χ5 − (k − r′)χ6)

+ f(χi3 + χj + (k − q′)χ5 − (k − q′)χ6)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

where {i1, i2, i3} = {1, 2, 3, 4} \ {j}.
By setting p = k − r′ + 1, r = k − p′ + 1, and q = k − q′, we obtain the claim.

Lemma 21 immediately follows from Lemmas 24 and 25.



OPERATIONS ON M-CONVEX FUNCTIONS ON JUMP SYSTEMS 125

7.2.3. Other cases in Case 2. The other cases in Case 2 are treated here with
the aid of the splitting technique.

Lemma 26. If ỹ = 0 and x̃ = (1, 1, 1, 1; 0), (2, 1, 1; 0), (3, 1; 0), (2, 2; 0), or (4; 0),

then there exists an (x̃, ỹ)-increment pair (s, t) satisfying f̃(x̃)+ f̃(ỹ) ≥ f̃(x̃+s+ t)+
f̃(ỹ − s− t).

Proof. If x̃ = (1, 1, 1, 1; 0), then the claim follows from Lemma 20.
Suppose that x̃ = (2, 1, 1; 0). In this case, we may assume f̃(0, 0, 0; 0) = f(0, 0, 0; 0, 0)

and f̃(2, 1, 1; 0) = f(2, 1, 1; k,−k) with k > 0. We define f ′ as f ′(x1, x2, x3, x4;x5, x6) =
f(x1 + x2, x3, x4;x5, x6), and f̃ ′ as

f̃ ′(x1, x2, x3, x4; ξ) = inf {f ′(x1, x2, x3, x4;x5, x6) | x5 + x6 = ξ} .

Then f̃ ′(x1, x2, x3, x4; 0) = f̃(x1 + x2, x3, x4; 0). Since f ′ is a splitting of f , it is
M-convex by Theorem 7. By Lemma 20, we have

f(0, 0, 0; 0, 0) + f(2, 1, 1; k,−k) = f ′(0, 0, 0, 0; 0, 0) + f ′(1, 1, 1, 1; k,−k)

≥ min

⎧⎨
⎩
f̃ ′(1, 1, 0, 0; 0) + f̃ ′(0, 0, 1, 1; 0),

f̃ ′(1, 0, 1, 0; 0) + f̃ ′(0, 1, 0, 1; 0),

f̃ ′(1, 0, 0, 1; 0) + f̃ ′(0, 1, 1, 0; 0)

⎫⎬
⎭

= min

⎧⎨
⎩
f̃(2, 0, 0; 0) + f̃(0, 1, 1; 0),

f̃(1, 1, 0; 0) + f̃(1, 0, 1; 0),

f̃(1, 0, 1; 0) + f̃(1, 1, 0; 0)

⎫⎬
⎭ ,

which means that there exists an (x̃, ỹ)-increment pair (s, t) satisfying f̃(x̃) + f̃(ỹ) ≥
f̃(x̃ + s + t) + f̃(ỹ − s− t).

Suppose that x̃ = (3, 1; 0). In this case, we may assume f̃(0, 0; 0) = f(0, 0; 0, 0)
and f̃(3, 1; 0) = f(3, 1; k,−k) with k > 0. We define f ′ as f ′(x1, x2, x3, x4;x5, x6) =
f(x1 + x2 + x3, x4;x5, x6), and f̃ ′ as

f̃ ′(x1, x2, x3, x4; ξ) = inf {f ′(x1, x2, x3, x4;x5, x6) | x5 + x6 = ξ} .

Then f̃ ′(x1, x2, x3, x4; 0) = f̃(x1 + x2 + x3, x4; 0). Since f ′ is a splitting of f , it is
M-convex by Theorem 7. By Lemma 20, we have

f(0, 0; 0, 0) + f(3, 1; k,−k) = f ′(0, 0, 0, 0; 0, 0) + f ′(1, 1, 1, 1; k,−k)

≥ min

⎧⎨
⎩
f̃ ′(1, 1, 0, 0; 0) + f̃ ′(0, 0, 1, 1; 0),

f̃ ′(1, 0, 1, 0; 0) + f̃ ′(0, 1, 0, 1; 0),

f̃ ′(1, 0, 0, 1; 0) + f̃ ′(0, 1, 1, 0; 0)

⎫⎬
⎭

= min

⎧⎨
⎩
f̃(2, 0; 0) + f̃(1, 1; 0),

f̃(2, 0; 0) + f̃(1, 1; 0),

f̃(1, 1; 0) + f̃(2, 0; 0)

⎫⎬
⎭

= f̃(2, 0; 0) + f̃(1, 1; 0),

which means that there exists an (x̃, ỹ)-increment pair (s, t) satisfying f̃(x̃) + f̃(ỹ) ≥
f̃(x̃ + s + t) + f̃(ỹ − s− t).

Suppose that x̃ = (2, 2; 0). In this case, we may assume f̃(0, 0; 0) = f(0, 0; 0, 0)
and f̃(2, 2; 0) = f(2, 2; k,−k) with k > 0. We define f ′ as f ′(x1, x2, x3, x4;x5, x6) =
f(x1 + x2, x3 + x4;x5, x6), and f̃ ′ as

f̃ ′(x1, x2, x3, x4; ξ) = inf {f ′(x1, x2, x3, x4;x5, x6) | x5 + x6 = ξ} .
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Then f̃ ′(x1, x2, x3, x4; 0) = f̃(x1 + x2, x3 + x4; 0). Since f ′ is a splitting of f , it is
M-convex by Theorem 7. By Lemma 20, we have

f(0, 0; 0, 0) + f(2, 2; k,−k) = f ′(0, 0, 0, 0; 0, 0) + f ′(1, 1, 1, 1; k,−k)

≥ min

⎧⎨
⎩
f̃ ′(1, 1, 0, 0; 0) + f̃ ′(0, 0, 1, 1; 0),

f̃ ′(1, 0, 1, 0; 0) + f̃ ′(0, 1, 0, 1; 0),

f̃ ′(1, 0, 0, 1; 0) + f̃ ′(0, 1, 1, 0; 0)

⎫⎬
⎭

= min

⎧⎨
⎩
f̃(2, 0; 0) + f̃(0, 2; 0),

f̃(1, 1; 0) + f̃(1, 1; 0),

f̃(1, 1; 0) + f̃(1, 1; 0)

⎫⎬
⎭ ,

which means that there exists an (x̃, ỹ)-increment pair (s, t) satisfying f̃(x̃) + f̃(ỹ) ≥
f̃(x̃ + s + t) + f̃(ỹ − s− t).

Suppose that x̃ = (4; 0). In this case, we may assume f̃(0; 0) = f(0; 0, 0) and
f̃(4; 0) = f(4; k,−k) with k > 0. We define f ′ as f ′(x1, x2, x3, x4;x5, x6) = f(x1 +
x2 + x3 + x4;x5, x6), and f̃ ′ as

f̃ ′(x1, x2, x3, x4; ξ) = inf {f ′(x1, x2, x3, x4;x5, x6) | x5 + x6 = ξ} .

Then f̃ ′(x1, x2, x3, x4; 0) = f̃(x1 + x2 + x3 + x4; 0). Since f ′ is a splitting of f , it is
M-convex by Theorem 7. By Lemma 20, we have

f(0; 0, 0) + f(4; k,−k) = f ′(0, 0, 0, 0; 0, 0) + f ′(1, 1, 1, 1; k,−k)

≥ min

⎧⎨
⎩
f̃ ′(1, 1, 0, 0; 0) + f̃ ′(0, 0, 1, 1; 0),

f̃ ′(1, 0, 1, 0; 0) + f̃ ′(0, 1, 0, 1; 0),

f̃ ′(1, 0, 0, 1; 0) + f̃ ′(0, 1, 1, 0; 0)

⎫⎬
⎭

= f̃(2; 0) + f̃(2; 0),

which means that there exists an (x̃, ỹ)-increment pair (s, t) satisfying f̃(x̃) + f̃(ỹ) ≥
f̃(x̃ + s + t) + f̃(ỹ − s− t).

7.3. Case 3 in the proof of Lemma 19. In this section, we deal with Case 3
in the proof of Lemma 19. First we focus on the case of x̃ = (1, 1, 1; 1), whereas the
other cases are treated later using the splitting technique discussed in section 4.

Let f : Z5 → R ∪ {+∞} be an M-convex function, and put

f̃(x1, x2, x3; ξ) = inf {f(x1, x2, x3;x4, x5) | x4 + x5 = ξ} .

We now show that if ỹ = 0 ∈ J̃ and x̃ = (1, 1, 1; 1) ∈ J̃ , then there exists an (x̃, ỹ)-
increment pair (s, t) satisfying (∗). We may assume f̃(0, 0, 0; 0) = f(0, 0, 0; 0, 0) and
f̃(1, 1, 1; 1) = f(1, 1, 1; k + 1,−k) with k > 0.

Lemma 27. Suppose that f̃(0, 0, 0; 0) = f(0, 0, 0; 0, 0) and f̃(1, 1, 1; 1) = f(1, 1, 1;
k + 1,−k) with k > 0. Then we have

f(0, 0, 0; 0, 0) + f(1, 1, 1; k + 1,−k) ≥ min

⎧⎨
⎩
f̃(1, 1, 0; 0) + f̃(0, 0, 1; 1),

f̃(1, 0, 1; 0) + f̃(0, 1, 0; 1),

f̃(0, 1, 1; 0) + f̃(1, 0, 0; 1)

⎫⎬
⎭ .

Proof. We define f ′ : Z6 → R ∪ {+∞} as

f ′(x1, x2, x3, x4;x5, x6) =

{
f(x1, x2, x3;x5, x6) if x4 = 0,

+∞ otherwise.
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Since f is M-convex, f ′ is also M-convex. By Lemma 24 applied to f ′ with i = 4, we
have the following fact:

For any integer 1 ≤ p ≤ k′, there exist integers q and r such that
0 ≤ q ≤ k′ − 1, 1 ≤ r ≤ k′, and

f ′(0, 0, 0, 0; 0, 0) + f ′(1, 1, 1, 0; p,−(p− 1))

≥ min

⎧⎨
⎩
f ′(1, 0, 0, 0; r,−(r − 1)) + f ′(0, 1, 1, 0; q,−q),
f ′(0, 1, 0, 0; r,−(r − 1)) + f ′(1, 0, 1, 0; q,−q),
f ′(0, 0, 1, 0; r,−(r − 1)) + f ′(1, 1, 0, 0; q,−q)

⎫⎬
⎭ .

By taking k′ ≥ k + 1 and p = k + 1 in the above, we have

f(0, 0, 0; 0, 0) + f(1, 1, 1; k + 1,−k)

= f ′(0, 0, 0, 0; 0, 0) + f ′(1, 1, 1, 0; k + 1,−k)

≥ min

⎧⎨
⎩
f ′(1, 0, 0, 0; r,−(r − 1)) + f ′(0, 1, 1, 0; q,−q),
f ′(0, 1, 0, 0; r,−(r − 1)) + f ′(1, 0, 1, 0; q,−q),
f ′(0, 0, 1, 0; r,−(r − 1)) + f ′(1, 1, 0, 0; q,−q)

⎫⎬
⎭

= min

⎧⎨
⎩
f(1, 0, 0; r,−(r − 1)) + f(0, 1, 1; q,−q),
f(0, 1, 0; r,−(r − 1)) + f(1, 0, 1; q,−q),
f(0, 0, 1; r,−(r − 1)) + f(1, 1, 0; q,−q)

⎫⎬
⎭

≥ min

⎧⎨
⎩
f̃(1, 0, 0; 1) + f̃(0, 1, 1; 0),

f̃(0, 1, 0; 1) + f̃(1, 0, 1; 0),

f̃(0, 0, 1; 1) + f̃(1, 1, 0; 0)

⎫⎬
⎭ ,

which implies the lemma.
Lemma 28. If ỹ = 0 and x̃ = (1, 1, 1; 1), (2, 1; 1), or (3; 1), then there exists an

(x̃, ỹ)-increment pair (s, t) satisfying f̃(x̃) + f̃(ỹ) ≥ f̃(x̃ + s + t) + f̃(ỹ − s− t).
Proof. If x̃ = (1, 1, 1; 1), then the claim follows from Lemma 27.
Suppose that x̃ = (2, 1; 1). In this case, we may assume f̃(0, 0; 0) = f(0, 0; 0, 0)

and f̃(2, 1; 1) = f(2, 1; k + 1,−k) with k > 0. We define f ′ as f ′(x1, x2, x3;x4, x5) =
f(x1 + x2, x3;x4, x5), and f̃ ′ as

f̃ ′(x1, x2, x3; ξ) = inf {f ′(x1, x2, x3;x4, x5) | x4 + x5 = ξ} .

Then f̃ ′(x1, x2, x3; ξ) = f̃(x1 + x2, x3; ξ). Since f ′ is a splitting of f , it is M-convex
by Theorem 7. By Lemma 27, we have

f(0, 0; 0, 0) + f(2, 1; k + 1,−k) = f ′(0, 0, 0; 0, 0) + f ′(1, 1, 1; k + 1,−k)

≥ min

⎧⎨
⎩
f̃ ′(1, 0, 0; 1) + f̃ ′(0, 1, 1; 0),

f̃ ′(0, 1, 0; 1) + f̃ ′(1, 0, 1; 0),

f̃ ′(0, 0, 1; 1) + f̃ ′(1, 1, 0; 0)

⎫⎬
⎭

= min

⎧⎨
⎩
f̃(1, 0; 1) + f̃(1, 1; 0),

f̃(1, 0; 1) + f̃(1, 1; 0),

f̃(0, 1; 1) + f̃(2, 0; 0)

⎫⎬
⎭ ,

which means that there exists an (x̃, ỹ)-increment pair (s, t) satisfying f̃(x̃) + f̃(ỹ) ≥
f̃(x̃ + s + t) + f̃(ỹ − s− t).
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Suppose that x̃ = (3; 1). In this case, we may assume f̃(0; 0) = f(0; 0, 0) and
f̃(3; 1) = f(3; k+1,−k). We define f ′ as f ′(x1, x2, x3;x4, x5) = f(x1+x2+x3;x4, x5),

and f̃ ′ as

f̃ ′(x1, x2, x3; ξ) = inf {f ′(x1, x2, x3;x4, x5) | x4 + x5 = ξ} .

Then f̃ ′(x1, x2, x3; ξ) = f̃(x1 + x2 + x3; ξ). Since f ′ is a splitting of f , it is M-convex
by Theorem 7. By Lemma 27, we have

f(0; 0, 0) + f(3; k + 1,−k) = f ′(0, 0, 0; 0, 0) + f ′(1, 1, 1; k + 1,−k)

≥ min

⎧⎨
⎩
f̃ ′(1, 0, 0; 1) + f̃ ′(0, 1, 1; 0),

f̃ ′(0, 1, 0; 1) + f̃ ′(1, 0, 1; 0),

f̃ ′(0, 0, 1; 1) + f̃ ′(1, 1, 0; 0)

⎫⎬
⎭

= f̃(1; 1) + f̃(2; 0),

which means that there exists an (x̃, ỹ)-increment pair (s, t) satisfying f̃(x̃) + f̃(ỹ) ≥
f̃(x̃ + s + t) + f̃(ỹ − s− t).

7.4. Case of unbounded effective domain. We now deal with the general
case of Lemma 10 without assuming boundedness on the effective domain.

Proof of Lemma 10. For R = 1, 2, . . ., we define f (R) : Zn → R ∪ {+∞} by

f (R)(x) =

{
f(x) if maxv∈V |x(v)| ≤ R

+∞ otherwise
(x ∈ Zn),

which is an M-convex function with a bounded effective domain, provided that R is
large enough for domf (R) �= ∅. For each R an elementary aggregation f̃ (R) of f (R) is
M-convex by Lemma 19. Take x, y ∈ domf̃ . There exists R0 = R0(x, y), depending
on x and y, such that x, y ∈ domf̃ (R) for every R ≥ R0. Since f̃ (R) is M-convex, there
exists an (x, y)-increment pair (sR, tR) such that

f̃ (R)(x) + f̃ (R)(y) ≥ f̃ (R)(x + sR + tR) + f̃ (R)(y − sR − tR).

Since the set of all (x, y)-increment pairs is finite, at least one (x, y)-increment pair
appears infinitely many times in the sequence (sR0

, tR0), (sR0+1, tR0+1), . . . . More
precisely, there exist an (x, y)-increment pair (s, t) and an increasing subsequence
R1 < R2 < · · · such that (sRi , tRi) = (s, t) for i = 1, 2, . . . . By letting R → ∞ along
this subsequence in the above inequality, we obtain

f̃(x) + f̃(y) ≥ f̃(x + s + t) + f̃(y − s− t).

Thus f̃ satisfies (MJ-EXCloc). This completes the proof of Lemma 10.
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Abstract. A flag matroid can be viewed as a chain of matroids linked by quotients. Flag
matroids, of which relatively few interesting families have previously been known, are a particular
class of Coxeter matroids. In this paper we give a family of flag matroids arising from an enumeration
problem that is a generalization of the tennis ball problem. These flag matroids can also be defined
in terms of lattice paths, and they provide a generalization of the lattice path matroids of [J. Bonin,
A. de Mier, and M. Noy, J. Combin. Theory Ser. A, 104 (2003), pp. 63–94].
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1. Introduction and preliminaries. Flag matroids are a subclass of Coxeter
matroids, but they can also be described in pure matroid-theoretical terms. Roughly
speaking, a flag matroid is a collection of matroids on the same ground set that form
a chain in the strong order (i.e., they are quotients of each other). Flag matroids play
an important role in the theory of Coxeter matroids and also shed light on ordinary
matroid theory. Nevertheless, not many classes of flag matroids have been studied up
to now. The goal of this paper is to introduce a new family of flag matroids based
on an enumeration problem and show how these flag matroids can be interpreted in
terms of lattice paths. We refer to [4], especially to Chapter 1, for an introduction to
flag matroids and the ideas behind them.

We assume the reader is familiar with the basic concepts of matroid theory; we
follow the notation of Oxley’s book [8]. We recall here only the notion of quotient.
Given two matroids M and N on the same ground set, M is a quotient of N if every
flat of M is a flat of N (one can also say that M is a strong map image of N). In this
case, the rank of M is at most the rank of N , with equality holding if and only if M
and N are equal.

We also need to say a few words about lattice path matroids. We do not need
lattice path matroids in general as defined in [2], but only the subclass of nested
matroids. These matroids have independently arisen several times in the literature
since at least 1965, and have been given a variety of names; see [1, 2] and the refer-
ences therein for definitions and results (in these papers, nested matroids are called
“generalized Catalan matroids”).

Let P be a lattice path from (0, 0) to (m, r) with steps E = (1, 0) and N = (0, 1).
Let P be the set of paths from (0, 0) to (m, r) with steps E and N and that do not
go above P . For each path Q ∈ P, let QN = {i : step i in Q is N}. We denote by [n]
the set {1, 2, . . . , n}.

Theorem 1.1. The set {QN : Q ∈ P} is the collection of bases of a matroid
M [P ] on the ground set [m + r].

A matroid is nested if it is isomorphic to M [P ] for some path P . Hence, the
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bases of a nested matroid are in bijection with the lattice paths that do not go above
a certain fixed path P (see the left side of Figure 1 for an example of a nested matroid
on the set [15]; the path highlighted corresponds to the basis {2, 5, 8, 11, 12, 15}). The
name nested comes from the fact that a nested matroid can also be defined as a
transversal matroid whose presentation consists of nested sets, and also because of
the following characterization of nested matroids in terms of cyclic flats (recall that
a flat is cyclic if it is a union of circuits).

Theorem 1.2. A matroid is nested if and only if its cyclic flats form a chain
under inclusion. Furthermore, the proper nontrivial cyclic flats of the matroid M [P ]
are the initial segments [t] of [m + r], where t is such that step t of P is E and step
t + 1 is N .

Our view on flag matroids is slightly different from that of [4], but it is easy to
see that the two perspectives are equivalent. The definition in [4] is in terms of flags
of sets, whereas ours relies on what we call ordered partitions of a set. For the reader
already familiar with the theory of flag matroids, changing from one definition to the
other should be straightforward.

Definition 1.3. An ordered k-partition of a set S is a k-tuple (A1, . . . , Ak) of
nonempty sets with A1 ∪ A2 ∪ · · · ∪ Ak = S and Ai ∩ Aj = ∅ whenever i �= j. For
positive integers r1, . . . , rk such that r1 + · · · + rk = |S|, an (r1, r2, . . . , rk)-partition
of S is an ordered k-partition (A1, . . . , Ak) of S such that |Ai| = ri for all i with
1 ≤ i ≤ k.

The bases of a matroid M on a set S trivially determine a collection of ordered
2-partitions of S: take all pairs of the form (B,S−B), where B is a basis of M . The
first axiom for flag matroids generalizes this idea; the other two axioms arise from the
definition of a flag matroid in terms of Coxeter groups (see [4]). Given an ordered
k-partition B, we denote by Bi the ith set in the k-tuple B.

Definition 1.4. A flag matroid F is a pair (S,F) such that F is a collection of
ordered k-partitions of the set S satisfying the following properties:

(F1) For 1 ≤ i ≤ k, the set Bi = {∪1≤j≤i Bj : B ∈ F} is the set of bases of a
matroid Mi;

(F2) for 1 ≤ i ≤ k − 1, Mi is a quotient of Mi+1;
(F3) if (A1, . . . , Ak) is an ordered k-partition of S such that, for all i with 1 ≤

i ≤ k, the set A1 ∪ · · · ∪Ai is a basis of the matroid Mi, then (A1, . . . , Ak) is
in F .

Because of the similarity with matroids, we call the elements of F the flag bases of
F . Note that it follows from property (F1) that there exist integers r1, . . . , rk adding
up to |S| such that all ordered partitions in F are in fact (r1, . . . , rk)-partitions. The
k-tuple (r1, . . . , rk) will be called the flag rank of F . The matroids M1, . . . ,Mk above
are called the constitutents of the flag matroid F . Notice that Mk is the free matroid
on S and that Mi has rank r1 + · · · + ri.

A trivial example of a flag matroid is the uniform flag matroid, having as flag
bases all possible (r1, . . . , rk)-partitions of a set S. Other examples come from chains
of subspaces of a vector space, giving rise to representable flag matroids. Also, given a
matroid M , the underlying flag matroid has as constituents the matroids Mi = T i(M),
the truncations of M to ranks 1 to r(M). A flag matroid with flag rank (1, 1, . . . , 1)
can also be viewed as a Gaussian greedoid [5].

Flag matroids, as is true of Coxeter matroids in general, are usually viewed in
terms of their polytopes. For instance, the polytope of the uniform flag matroid of flag
rank (1, 1, . . . , 1) is the permutahedron; the polytope of the underlying flag matroid
is studied in [3].
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2. The tennis ball problem. The tennis ball problem is a problem in enumer-
ation that can be phrased in terms of balls-and-bins and in terms of lattice paths.
We need both approaches here. We first define the original problem and show that
its solution amounts to counting bases of a certain type of nested matroid. Then we
generalize the problem and show that it gives rise to a family of flag matroids.

Definition 2.1. Let l1 and l2 be positive integers. Suppose we have infinitely
many balls numbered 1, 2, . . . and two bins labeled A and B. In the first turn, balls
1, 2, . . . , l1 + l2 go into bin A, and then l2 of those are moved to bin B. In the second
turn, balls l1 + l2 +1, . . . , 2(l1 + l2) go into bin A, and of the 2l1 + l2 balls there, l2 are
moved to bin B. At each turn, the next l1 + l2 balls go into bin A, and of the balls in
A, l2 are moved to bin B. An n-configuration is an ordered 2-partition of [(l1 + l2)n]
giving a possible distribution of balls in the bins after n turns. The (l1, l2)–tennis ball
problem asks for the number of n-configurations.

This problem was solved in [7] using the following relationship with nested ma-
troids.

Theorem 2.2. The number of n-configurations of the (l1, l2)–tennis ball problem
is the number of bases of the nested matroid M [(N l1El2)n].

The proof is straightforward by the bijection that sends a basis {n1, . . . , nr} of
M [(N l1El2)n] to the configuration having the balls {n1, . . . , nr} in bin A (see Fig-
ure 1). For nonnegative integers a, b, in what follows we call the matroid M [(NaEb)n]
the nth (a, b)-tbp matroid.

1

5 8

10

15

52 3

2

2 5 8

43

7 9

1

6

11 12

4

1 3 4 6

77 9 10

1413

Fig. 1. A diagram representing the matroid M [(N2E3)3]. The path highlighted corresponds to
the 3-configuration shown on the right.

Theorem 2.2 can be rephrased by saying that the tennis ball problem with two
bins gives the bases of a matroid. The main result of this section is that the tennis
ball problem with k bins, which we next define, gives the flag bases of a flag matroid.

Definition 2.3. Let (l1, l2, . . . , lk) be a k-tuple of positive integers; let L =
l1 + l2 + · · ·+ lk. Suppose we have infinitely many balls numbered 1, 2, . . . and k bins
labeled Γ1,Γ2, . . . ,Γk. In the first turn, balls 1, 2, . . . , L go into bin Γ1; of those, L−l1
are moved to bin Γ2; of those, L − l1 − l2 are moved to bin Γ3, and so on until lk
balls are moved to bin Γk. In the second turn, balls L + 1, . . . , 2L go into bin Γ1,
and of the l1 + L balls there, L− l1 are moved to bin Γ2; of the balls now in bin Γ2,
L − l1 − l2 are moved to bin Γ3, and so on. At each turn, the next L balls go into
bin Γ1, and of the balls in Γ1, L − l1 are moved to bin Γ2, etc. An n-configuration
is an ordered k-partition of [Ln] corresponding to a possible distribution of the balls
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in the bins after n turns. The (l1, . . . , lk)–tennis ball problem asks for the number of
n-configurations, that is, the number of (nl1, nl2, . . . , nlk)-partitions of the set [nL]
that we can obtain after n turns.

Note that we are interested only in n-configurations, not in the movements of
the balls that lead to them; an n-configuration can typically be obtained by several

different movements of the balls. Let F
(l1,...,lk)
n be the collection of (nl1, . . . , nlk)-

partitions of [nL] that we get as n-configurations. These ordered partitions are the
flag bases of a flag matroid whose constituent matroids are nested matroids.

Theorem 2.4. The set F
(l1,...,lk)
n is the collection of flag bases of a flag matroid

on the set [nL]. Moreover, for i with 1 ≤ i ≤ k, the ith constituent of the flag matroid
is the nth (l1 + · · · + li, li+1 + · · · + lk)-tbp matroid.

Proof. We need to check that axioms (F1)–(F3) hold for F = F
(l1,...,lk)
n . It is easy

to see that the set Bi = {∪1≤j≤i Bj : B ∈ F} is the set of bases of the nth (l1+ · · ·+ li,
li+1 + · · · + lk)-tbp matroid, so (F1) holds.

To show that (F2) holds it is enough to prove that if a + b = a′ + b′ and a < a′,
then the nth (a, b)-tbp matroid M is a quotient of the nth (a′, b′)-tbp matroid M ′.
We show that each flat F of M is a flat of M ′. If F is a cyclic flat, this follows from
the characterization of cyclic flats of nested matroids in Theorem 1.2. Otherwise, F
is F ′ ∪ I, where F ′ is a cyclic flat of M and I is the set of isthmuses of F . So F ′ is an
initial segment of [(a+ b)n] whose length is a multiple of a+ b. Since a+ b = a′ + b′,
by Theorem 1.2 again we have that F ′ is a cyclic flat of M ′. For F ′ ∪ I to be a flat of
M , the set I has to be such that |I ∩ [t(a+ b)]| < a for all t. Since a+ b = a′ + b′ and
a < a′, we also have that |I ∩ [t(a′ + b′)]| < a′ for all t; hence F ′ ∪ I is a flat of M ′.

To show that (F3) holds, let (A1, . . . , Ak) be an (nl1, . . . , nlk)-partition of [nL]
such that for all i, ∪1≤j≤i Aj is a basis of the nth (l1 + · · · + li, li+1 + · · · + lk)-tbp
matroid. We show that (A1, . . . , Ak) is in the collection F by showing how to get
the n-configuration (A1, . . . , Ak) by suitably moving the balls. Let Ci be ∪i

j=1 Aj .
To avoid wordiness, we identify balls with the integers of their labels. We start with
all bins empty and explain how to perform n turns with the condition that at the
end of each turn, the set of balls in bin Γi is a subset of [nL] − Ci−1 for all i with
2 ≤ i ≤ k. Suppose we have performed t − 1 such turns, for t with 0 < t ≤ n, and
let us describe turn t. The assumption that Ck−1, Ck−2, . . . , C1 are bases of their
respective tbp matroids gives the following facts:

(1) At least tlk of the elements of [tL] are in [tL] − Ck−1;
(2) at least t(lk + lk−1) of the elements of [tL] are in [tL] − Ck−2;

...
(a) at least t(lk + · · · + l3) of the elements of [tL] are in [tL] − C2;
(b) at least t(lk + · · · + l2) of the elements of [tL] are in [tL] − C1.

Since after the first t− 1 turns there are (t− 1)lj elements in bin Γj , we can deduce
from facts (b)–(1) that at this point, for all i with 1 ≤ i ≤ k−1, at least li+1 + · · ·+ lk
integers from [tL] are in [tL] − Ci but not in Γi+1 ∪ · · · ∪ Γk.

Now move (t− 1)n+ 1, (t− 1)n+ 2, . . . , tn to bin Γ1. From all the integers in Γ1,
choose L− l1 to be moved to bin Γ2, starting with as many integers as possible from
among those in [tL]−Ck−1 that are still in Γ1, then take as many integers as possible
from among those in [tL] − Ck−2, and so on until L − l1 integers are obtained. The
remarks in the previous paragraph show that it is possible to choose integers in this
way. We move them to bin Γ2. Since [tL]−Ck−1 ⊂ [tL]−Ck−2 ⊂ · · · ⊂ [tL]−C1, the
integers now in Γ2 are a subset of [tL] − C1, as required. Moreover, by the way the
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balls are chosen, we have that among the balls that are at this point in Γ2, at least
l3 + · · · + lk are in [tL] − C2.

We describe generally how to move li + · · · + lk balls to bin Γi from bin Γi−1 in
a way such that the balls in Γi are a subset of [tL] − Ci−1, and, moreover, at least
li+1 + · · · + lk of them are in [tL] − Ci. From the balls in bin Γi−1, pick li + · · · + lk
starting with as many as possible from [tL] −Ck−1; if there are not still li + · · · + lk,
then take as many as possible from [tL] − Ck−2, and so on, until taking as many
as possible from [tL] − Ci−1. By the same reason as above, such integers exist; the
integers now in Γi are a subset of [tL] − Ci−1 and at least li+1 + · · · + lk of them are
in [tL] − Ci.

At the end of n turns, we have nli balls in bin Γi, and these are a subset of
[nL] − Ci−1 for all i. This implies that bin Γk contains exactly the balls in Ak, and
hence bin Γk−1 contains the balls in Ak−1, and so on. Therefore the ordered partition

(A1, . . . , Ak) is an n-configuration, thus it belongs to the collection F
(l1,...,lk)
n , and

(F3) follows.

3. Interpretation in terms of lattice paths. The tennis ball problem with
two bins has a simple interpretation in terms of lattice paths: we associate bin A
with steps N and bin B with steps E, and then each n-configuration corresponds to
a path that does not go above (N l1El2)n. For the tennis ball problem with k bins,

we can associate with each bin a direction in N

k. Then the flag bases of F
(l1,...,lk)
n are

in bijection with certain paths in N

k. We characterize those paths combinatorially,
and for k = 3 we describe them as the set of lattice paths that do not cross a certain
border.

Let e1, . . . , ek be the unit coordinate vectors in R

k. With each n-configuration
of the (l1, . . . , lk)–tennis ball problem, we associate a path s1s2 · · · snL from (0, . . . , 0)
to (nl1, . . . , nlk) with steps defined as si = ej if ball i is in bin Γj . We call this path
an n-configuration path. Hence, an n-configuration path can be seen as a sequence
of elements from {e1, . . . , ek}. It is easy to characterize which such sequences give
configuration paths.

Lemma 3.1. A path from (0, . . . , 0) to (nl1, . . . , nlk) is an n-configuration path
for the (l1, . . . , lk)–tennis ball problem if and only if, for all t with 1 ≤ t ≤ n and all
i with 1 ≤ i ≤ k − 1, among the first tL steps there are at most t(l1 + · · · + li) whose
type belongs to {e1, . . . , ei}.

Proof. After t turns, for 1 ≤ t ≤ n, there are exactly t(l1 + · · · + li) balls of [tL]
in the first i bins. Since balls can move only to bins with a higher index, at the end
of n turns there are at most t(l1 + · · ·+ li) balls of [tL] in Γ1 ∪ · · · ∪Γi. Hence, among
the first tL steps of a configuration path there are at most t(l1 + · · ·+ li) steps whose
type is in {e1, . . . , ei}.

For the converse, assume we have a path π that satisfies the condition. Let Ai be
the set of integers s such that step s in π is of type ei. Consider the (nl1, . . . , nlk)-
partition (A1, . . . , Ak) of [nL] obtained in this way. The condition on the path implies
that the set ∪i

j=1 Aj is a basis of the (l1 + · · · + li, li+1 + · · · + lk)-tbp matroid, for
all i with 1 ≤ i ≤ k − 1. Therefore (A1, . . . , Ak) is a flag basis of the flag matroid

F
(l1,...,lk)
n , and hence π is an n-configuration path, as required.

The following is an immediate corollary.
Corollary 3.2. Given an n-configuration path π, the path obtained by switching

a pair of steps si = el and sj = em is a configuration path if i < j and l ≤ m.
Moreover, let π′ be an initial segment of π with t′j steps of type ej for all 1 ≤ j ≤ k.
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Let n′ be the minimum integer such that t′j ≤ n′lj for all j. For n′′ ≥ 0, consider the

path obtained from π′ followed by (n′ + n′′)lk − t′k steps ek, then (n′ + n′′)lk−1 − t′k−1

steps ek−1, and so on, until finishing with (n′ + n′′)l1 − t′1 steps e1. Then this path is
an (n′ + n′′)-configuration path.

The n-diagram for the (l1, . . . , lk)–tennis ball problem is the set of points in N

k

that are contained in some n-configuration path. Our goal is to study what these
diagrams look like for k = 3. The following is another corollary of Lemma 3.1.

Corollary 3.3. If (x, y, z) is in the n-diagram, then (x′, y, z′) is in the n-
diagram for all z ≤ z′ ≤ nl3 and all x′ ≤ x.

A direct consequence of this corollary is that to describe the n-diagram it is
enough to give, for each (x, y), the minimum value of z such that (x, y, z) is a point of
the n-diagram; this minimum is denoted mn(x, y) (trivially the maximum value of z is
nl3). If no such z exists, because no point of the form (x, y, ∗) is in the n-diagram, we
set mn(x, y) = ∗. So the n-diagram is described by an (nl1 +1)×(nl2 +1) matrix Mn

with entries in the set {0, 1, . . . , nl3} ∪ {∗} and such that in row x and column y we
have mn(x−1, y−1). If n = 1, then trivially M1 is the zero matrix; the corresponding
1-diagram is represented in Figure 2. In all figures below, the direction of the third
coordinate has been reversed for a better view of the picture, and, as pointed out
above, all points under a point that is shown are in the diagram as well.

z

y

x

Fig. 2. The 1-diagram for the (2, 4, 3)–tennis ball problem.

The 2-diagram for the (2, 4, 3)–tennis ball problem is shown in Figure 3. We first
give the matrices Mn and then prove that they give the right diagrams.

The matrix M2 is made up of four blocks,

M2 =

(
A B
C D

)
,

where A is the (l1 + 1) × (l2 + 1) matrix, all of whose entries are zero (hence, it is
M1); D is an l1 × l2 matrix, all of whose entries are l3; B is an (l1 + 1) × l2 matrix
with

bi,j =

{
0 if i ≤ l1 + 1 − j,
l3 otherwise;

and C is the l1× (l2 +1) matrix with min{l2, l3}+1 non-∗ columns, with the elements
in the last column being l3 and every other non-∗ column being obtained by adding +1
to the next, that is,⎛

⎜⎝
∗ · · · ∗ 2l3 2l3 − 1 2l3 − 2 · · · l3 + 1 l3
...

. . .
...

...
...

...
. . .

...
...

∗ · · · ∗ 2l3 2l3 − 1 2l3 − 2 · · · l3 + 1 l3

⎞
⎟⎠ .
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z

y

x

Fig. 3. The 2-diagram for the (2, 4, 3)–tennis ball problem.

We now define recursively the (nl1 + 1) × (nl2 + 1) matrix Mn that gives the
n-diagram. The matrix Mn also decomposes into four blocks,

Mn =

(
An Bn

Cn Dn

)
,

where An has (n− 1)l1 + 1 rows and (n− 1)l2 + 1 columns. The matrix An is Mn−1.
The entry in row i and column j of the matrix Bn, for 1 ≤ i ≤ (n − 1)l1 + 1 and
1 ≤ j ≤ l2, is given by (n−s)l3, where s is the only integer for which (n−s)(l1 + l2) <
i− 1 + j + (n− 1)l2 ≤ (n− s+ 1)(l1 + l2). Roughly speaking, Bn consists of diagonal
stripes of width l1 + l2; see the examples below. The matrix Cn has l1 rows and
(n− 1)l2 + 1 columns; all entries in the last column are (n− 1)l3 and each column is
obtained by adding one to the next, until we reach nl3; hence the matrix is given by⎛

⎜⎝
∗ · · · ∗ nl3 nl3 − 1 nl3 − 2 · · · (n− 1)l3 + 1 (n− 1)l3
...

. . .
...

...
...

...
. . .

...
...

∗ · · · ∗ nl3 nl3 − 1 nl3 − 2 · · · (n− 1)l3 + 1 (n− 1)l3

⎞
⎟⎠ .

Finally, Dn is the l1 × l2 matrix all of whose entries are (n− 1)l3. The matrix M3 is
shown below for the (2, 4, 3)– and (3, 2, 2)–tennis ball problems, and the corresponding
3-diagrams are shown in Figures 4 and 5.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 3 3 3 3 3 3
0 0 0 0 0 0 3 3 3 3 3 3 6
0 0 0 0 0 3 3 3 3 3 3 6 6
∗ 6 5 4 3 3 3 3 3 3 6 6 6
∗ 6 5 4 3 3 3 3 3 6 6 6 6
∗ ∗ ∗ ∗ ∗ 9 8 7 6 6 6 6 6
∗ ∗ ∗ ∗ ∗ 9 8 7 6 6 6 6 6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 2
0 0 0 0 0 2 2
0 0 0 0 2 2 2
0 0 0 2 2 2 2
4 3 2 2 2 2 2
4 3 2 2 2 2 4
4 3 2 2 2 4 4
∗ ∗ 6 5 4 4 4
∗ ∗ 6 5 4 4 4
∗ ∗ 6 5 4 4 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We now show that the matrix Mn gives the n-diagram and, moreover, that all
paths contained in the n-diagram are n-configuration paths.
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z

y

x

Fig. 4. The 3-diagram for the (2, 4, 3)–tennis ball problem.

z

y

x

Fig. 5. The 3-diagram for the (3, 2, 2)–tennis ball problem.

Theorem 3.4. The n-diagram for the (l1, l2, l3)–tennis ball problem is given by
the matrix Mn. Furthermore, the n-configuration paths are exactly those contained
in the n-diagram.

Proof. The proof is by induction on n. As seen above, the case n = 1 is trivial.
Assume Mn−1 is the matrix of the (n − 1)-diagram for the (l1, l2, l3)–tennis ball
problem. Let N be the matrix of the n-diagram; we prove that N = Mn. The
matrix N has dimensions (nl1 + 1) × (nl2 + 1).

Recall that the entry in row x + 1 and column y + 1 of N is mn(x, y). Given x
and y with 0 ≤ x ≤ nl1 and 0 ≤ y ≤ nl2, let z be mn(x, y). We show that z is the
entry in row x + 1 and column y + 1 of the matrix Mn. The proof has three cases.

Case 1. x ≤ (n− 1)l1 and y ≤ (n− 1)l2.

In this case we need to show that z = mn−1(x, y). Let π be an (n−1)-configuration
path that contains the point (x, y,mn−1(x, y)). By Corollary 3.2, π can be extended
to an n-configuration path; hence z ≤ mn−1(x, y). To show equality, assume z <
mn−1(x, y) ≤ (n − 1)l3 and let ρ be an n-configuration path that contains the point
(x, y, z). Let ρ′ be the initial segment corresponding to the first x + y + z steps. By
Corollary 3.2 again, ρ′ can be extended to an (n−1)-configuration path contradicting
the induction hypotheses.

Case 2. x > (n− 1)l1.
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We want to show in this case that z is given by the entries of the matrices Cn

and Dn, depending on the value of y. Observe first that Lemma 3.1 implies that
x + y + z > (n− 1)L, and hence also that y + z ≥ (n− 1)(l2 + l3).

We discuss now the subcase y ≥ (n− 1)l2, showing that z = (n− 1)l3. Let π be
any (n − 1)-configuration path. Extend π by adding y − (n − 1)l2 steps e2 followed
by x − (n − 1)l1 steps e1 and then l3 steps e3, and add the remaining steps in any
way. This path clearly satisfies the condition on Lemma 3.1; hence z ≤ (n− 1)l3. To
complete the proof of the claim, suppose that z < (n − 1)l3. Then by Lemma 3.1,
x+ y + z < (n− 1)L. This contradicts the first conclusion of the previous paragraph.

The other subcase left is y < (n−1)l2. We show that in this case z = (n−1)(l2 +
l3)−y. Since we already know that z is at least (n−1)(l2+ l3)−y it is enough to show
that there is an n-configuration path containing the point (x, y, (n− 1)(l2 + l3) − y).
Consider the path

σ = (e3)
(n−1)(l2+l3)−y(e2)

y(e1)
x(e3)

nl3−(n−1)(l2+l3)+y(e2)
nl2−y(e1)

nl1−x.

It is easy to check that this path satisfies the condition of Lemma 3.1, and hence it is
an n-configuration path containing the point (x, y, (n− 1)(l2 + l3) − y), as required.

Case 3. x < (n− 1)l1 and y > (n− 1)l2.
In this case the value of z has to be the one given by the matrix Bn. We have

to show that if s is such that (n − s)(l1 + l2) ≤ x + y < (n − s + 1)(l1 + l2), then
z = (n− s)l3.

Since from Case 2 we have that the point (nl1, y, (n − 1)l3) is in the n-diagram,
by Corollary 3.3 it follows that the point (x, y, (n− 1)l3) is in the n-diagram as well;
hence z ≤ (n−1)l3. If x+y > (n−1)(l1+ l2), then by Lemma 3.1 x+y+z > (n−1)L,
and hence z ≥ (n− 1)l3, so in this case z = (n− 1)l3.

Now suppose (n − s)(l1 + l2) < x + y ≤ (n − s + 1)(l1 + l2). As in the previous
paragraph, Lemma 3.1 implies that z ≥ (n− s)l3. To show that we have equality, we
give an n-configuration path containing the point (x, y, (n− s)l3). Consider the path

σ = (e3)
(n−s)l3(e2)

y(e1)
x(e3)

sl3(e2)
nl2−y(e1)

nl1−x.

By using that y > (n − 1)l2 and that x + y ≤ (n − s + 1)(l1 + l2) it is easy to show
that σ satisfies the condition of Lemma 3.1, and hence it is an n-configuration path.

To finish the proof we have to show that any path contained in the n-diagram is an
n-configuration path. Let π be such a path; we check that π satisfies the condition in
Lemma 3.1. Let (X,Y, Z) be a point in the path with X+Y +Z = tL for some t with
1 ≤ t ≤ n− 1; our goal is to show that X ≤ tl1 and X + Y ≤ t(l1 + l2). Consider the
point p = (X,Y,mn(X,Y )). The proof above shows that there is an n-configuration
path π′ that goes through p; since Z ≥ mn(X,Y ), we can apply Corollary 3.2 to
obtain from π′ an n-configuration path containing the point (X,Y, Z). Since all n-
configuration paths satisfy the condition in Lemma 3.1, we have that X ≤ tl1 and
X + Y ≤ t(l1 + l2).

4. Concluding remarks. The results of the previous section show that some
sets of lattice paths in three dimensions can be interpreted in terms of flag matroids;
hence, the flag matroids one obtains from the tennis ball problem naturally generalize
lattice path matroids. This might lead to the suspicion that any set of paths in
N

k with a “reasonable” border also gives rise to flag matroids. Unfortunately, it is
very easy to produce counterexamples to this. For instance, consider the diagram in
Figure 6. If the paths contained in that diagram were in correspondence with the
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z

y

x

Fig. 6. The set of paths contained in the diagram does not give rise to a flag matroid.

flag bases of a flag matroid F , we would have that B1 = {2, 6} and B2 = {4, 5} are
cobases of the second constituent of F . Hence, it should be possible to replace 2 in
B1 with either 4 or 5. But no path contained in the diagram has {4, 6} or {5, 6} as
its set of steps in the direction e3.

A question that remains open is to solve the (l1, . . . , lk)–tennis ball problem, or
even the (1, 1, 1)–tennis ball problem. The approaches used previously to solve the
case k = 2 do not seem to generalize easily. In particular, the strategy from [7] would
suggest the use of a Tutte polynomial-like invariant to count flag bases. There are
some generalizations of the Tutte polynomial to pairs of matroids and to chains of
matroids related by strong maps [6, 11], but unfortunately they do not seem to include
the number of flag bases as a specialization. Following the Tutte polynomial approach
for flag matroids would require defining first the suitable generalization.

We finish with some easy bounds. A trivial upper bound for the number of n-
configurations is given by the total number of (nl1, . . . , nlk)-partitions of [nL], which
is the multinomial coefficient(

nL

nl1, . . . , nlk

)
=

(nL)!

(nl1)! · · · (nlk)!
.

The following connection with Young tableaux gives a lower bound on the number
of n-configurations of the (l1, . . . , lk)–tennis ball problem when lk ≥ lk−1 ≥ · · · ≥ l1.
Consider sequences of length n(l1 + · · ·+ lk) over the alphabet {e1, . . . , ek} containing
nli copies of ei and such that in any initial subsequence the number of symbols ei
is greater than or equal to the number of symbols ei−1 for all i with 2 ≤ i ≤ k.
Since all these sequences trivially satisfy the condition in Lemma 3.1, they give n-
configuration paths. The number of such sequences equals the number of standard
Young tableaux of shape (nlk, . . . , nl1), and this is given by the hook-length formula
(see [9, Chapter 7]). In the case l1 = · · · = lk = l, this is

(nlk)!

(nl)!k
∏k−1

i=1 (nli + 1)k−i
.

The general case gets more involved and we omit it since not much insight is gained
from it.

For the (1, 1, 1)–tennis ball problem, the first order approximation of the lower
and upper bounds are C27nn−7/2 and C ′27nn−1/2, respectively, for some constants
C and C ′. Computational evidence seems to suggest that the right number lies closer
to the lower bound, and that the exponent in the term on n is −3 [10].
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A general lower bound for the (l1, . . . , lk)–tennis ball problem can be obtained
as follows. Let t(a, b, n) be the number of n-configurations of the (a, b)–tennis ball
problem. Then the number of n-configurations of the (l1, . . . , lk)–tennis ball problem
is at least

t(l1, l2 + · · · + lk, n)t(l2, l3 + · · · + lk, n) · · · t(lk−1, lk, n),

since we can think of the (l1, . . . , lk)–tennis ball problem as n turns of the (l1,
l2+· · ·+lk)–tennis ball problem, followed by n turns of the (l2, l3+· · ·+lk)–tennis ball
problem on the result of the first, and so on. The bound is strict since each t(a, b, n)
counts the number of n-configurations of the (a, b)–tennis ball problem, but each of
these can usually be reached by several movements of the balls, and that is relevant
for the version with k bins.
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Abstract. In this paper we consider the k edge-disjoint paths problem (k-EDP), a generalization
of the well-known edge-disjoint paths problem. Given a graph G = (V,E) and a set of terminal pairs
(or requests) T , the problem is to find a maximum subset of the pairs in T for which it is possible
to select paths such that each pair is connected by k edge-disjoint paths and the paths for different
pairs are mutually disjoint. To the best of our knowledge, no nontrivial result is known for this
problem for k > 1. To measure the performance of our algorithms we use the recently introduced
flow number F of a graph. This parameter is known to fulfill F = O(Δα−1 logn), where Δ is the
maximum degree, α is the edge expansion of G, and n is the number of vertices in G. We show that
a simple greedy online algorithm achieves a competitive ratio of O(k3F ) which naturally extends the
best known bound of O(F ) for k = 1 to higher k. To achieve this competitive ratio, we introduce
a new method of converting a system of k disjoint paths into a system of k length-bounded disjoint
paths. We also show that any deterministic online algorithm has a competitive ratio of Ω(kF ). In
addition, we study the k disjoint flows problem (k-DFP), which is a generalization of the previously
studied unsplittable flow problem. The difference between the k-DFP and the k-EDP is that now
we consider a graph with edge capacities and our requests are allowed to have arbitrary demands di.
The aim is to find a subset of requests of maximum total demand for which it is possible to select flow
paths such that all the capacity constraints are maintained and each selected request with demand
di is connected by k disjoint paths, each of flow value di/k. The k-EDP and k-DFP problems have
important applications in fault-tolerant (virtual) circuit switching, which plays a key role in optical
networks.

Key words. edge-disjoint paths, fault-tolerant routing, flow number, greedy algorithms, multi-
commodity flow
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1. Introduction. This paper was motivated by a talk given by Rakesh Sinha
from Ciena Inc. The speaker pointed out in his talk that standard problems such as
the edge-disjoint paths problem (EDP) and the unsplittable flow problem (UFP) are
insufficient for practical purposes: They do not allow a rapid adaptation to edge faults
or heavy load conditions. Instead of having just one path for each request, it would
be much more desirable to determine a collection of alternative independent paths
for each accepted request that can flexibly be used to ensure rapid adaptability. The
paths, however, should be chosen so that not too much bandwidth is wasted under
normal conditions. Keeping this in mind, we introduce two optimization problems
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which have not been studied before, to the best of our knowledge: the k edge-disjoint
paths problem (k-EDP) and the k disjoint flows problem (k-DFP).

In the k-EDP we are given an undirected graph G = (V,E) and a set of terminal
pairs (or requests) T . The problem is to find a maximum subset of the pairs in T
such that each chosen pair can be connected by k disjoint paths and, moreover, the
paths for different pairs are mutually disjoint.

Similarly, in the k-DFP we are given an undirected network G = (V,E) with edge
capacities and a set of terminal pairs T with demands di, 1 ≤ i ≤ |T |. The problem
is to find a subset of the pairs of maximum total demand such that each chosen pair
can be connected by k disjoint paths, each path is carrying di/k units of flow and no
capacity constraint is violated.

In order to demonstrate that the k-DFP can be used to achieve fault tolerance
together with a high utilization of the network resources and rapid adaptability, con-
sider a network G in which new edge faults may occur continuously, but the total
number of faulty edges at the same time is at most f . In this case, given a request
with demand d, the strategy is to reserve k + f disjoint flow paths for it for some
k ≥ 1 with total demand (1 + f/k)d. As long as at most f edge faults appear at
the same time, it will still be possible to ship a demand of d along the remaining
paths. Furthermore, under fault-free conditions, only a fraction f/k of the reserved
bandwidth is wasted, which can be made as small as required by setting k sufficiently
large, within the constraints placed by the properties of the network.

Regarding the connectivity properties of the networks we consider, note that we
do not require the network to be k-edge connected.

1.1. Previous results. Since we are not aware of previous results for the k-EDP
and the k-DFP for k > 1, we will just survey the heavily studied case of k = 1, i.e.,
the EDP and the more general UFP. We denote by m the number of edges and by n
the number of vertices in the graph G.

Several results are known about the approximation ratio and competitive ratio
achievable for the UFP under the assumption that the maximum demand of a com-
modity, dmax, does not exceed the minimum edge capacity, cmin, often referred to as
the no-bottleneck assumption [1, 15, 5, 8, 13, 18, 17]. Baveja and Srinivasan [5] present
a polynomial time algorithm with an approximation ratio O(

√
m). A recent paper

by Chekuri, Khanna, and Shepherd [10] presents an O(
√
n) approximation algorithm.

On the lower bound side, it was shown by Guruswami et al. [13] that on directed
networks the UFP is NP-hard to approximate within a factor of n1/2−ε for any ε > 0.
Using a new parameter called the flow number F of a network, Kolman and Schei-
deler [17] show that a simple online algorithm has a competitive ratio of O(F ); they
also prove that F = O(Δα−1 log n), where, for the EDP, Δ is the maximal degree
of the network, α is the edge expansion, and n is the number of nodes and, for the
UFP, Δ has to be defined as the maximal node capacity of the network and α as the
expansion with respect to the the edge capacities. Combining the approach of Kolman
and Scheideler [17] with the randomized rounding technique, Chakrabarti et al. [8]
recently proved a randomized approximation ratio of O(ΔGα

−1
G log2 n) for the more

general UFP with profits, where ΔG and αG stand for the maximum degree and the
expansion of the given network when ignoring the capacities.

We also consider two related problems, the integral splittable flow problem (ISF) [13]
and the k-splittable flow problem (k-SFP). In both cases, the input and the objective
(i.e., to maximize the sum of accepted demands) are the same as in the UFP. The
difference is that in the ISF all demands are integral and a flow satisfying a demand
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can be split into several paths, each carrying an integral amount of flow. In the k-SFP
a flow of a single commodity may be split into at most k flow paths (of not neces-
sarily integral values). Under the no-bottleneck assumption Guruswami et al. [13]
give an O(

√
mdmax log2 m) approximation for the ISF. The k-SFP was independently

introduced by Baier, Köhler, and Skutella [4]. Since that time several approxima-
tion and hardness results about the k-SFP appeared [20, 21, 16]. The techniques
of Kolman and Scheideler [17] allow us to achieve an O(F ) randomized competitive
ratio and an O(F ) deterministic approximation ratio for both of these problems on
unit-capacity networks. Although the ISF and the k-SFP on one side and the k-DFP
on the other seem very similar at first glance, there is a serious difference between
the two. Whereas the ISF and the k-SFP are relaxations of the UFP (they allow the
use of more than one path for a single request, and the paths are not required to be
disjoint), the k-DFP is actually a more complex version of the UFP since it requires
several disjoint paths for a single request.

1.2. New results. This paper’s main results are
• a deterministic online algorithm for the k-EDP with competitive ratio O(k3F )

(subsequent work yields an improved competitive ratio O(k2F ),
• a deterministic offline algorithm for the k-DFP on unit-capacity networks

with an approximation ratio of O(k3F log(kF )),
• a lower bound Ω(kF ) for the competitive ratio of any deterministic online

algorithm for the k-EDP (and thus, obviously, for the k-DFP).
Thus, for constant k, we have matching upper and lower bounds for the k-EDP.

Furthermore, we demonstrate that disjointness of the k paths for every single
request seems to be the crucial condition that makes these problems harder than
other problems such as the ISF or the k-SFP.

We also show, using previously known techniques, how to transform the online
algorithm for the k-EDP into an offline algorithm for the k-EDP with profits and how
to convert the offline algorithm for the k-DFP into a randomized online algorithm for
the k-DFP with an expected competitive ratio of O(k3F log(kF )).

Our algorithms for the k-EDP and k-DFP are based on a simple concept, a natural
extension of the bounded greedy algorithm (BGA) that has already been studied in
several papers [15, 18, 17]: For a given request if we can find k disjoint flow paths of
total length at most L, without violating capacity constraints given the connections
we have already made, select any such system of k paths for this request. The core
of this paper is in the analysis of this simple algorithm. The problem is to show that
this strategy works even if the optimal offline algorithm connects many requests via
k disjoint paths of total length more than L. In order to solve this problem we use a
new technique, based on Menger’s theorem and the Lovász local lemma that converts
large systems of k disjoint paths into small systems of k disjoint paths. Previously,
shortening strategies were known only for k = 1 [18, 17].

1.3. Basic notation and techniques. Many of the previous techniques for
the EDP and related problems do not allow us to prove strong upper bounds on
approximation or competitive ratios due to the use of inappropriate parameters. If n
is the only parameter used, the upper bound of O(

√
n) is essentially the best possible

for the case of directed networks [13, 10]. Much better ratios can be shown if the
expansion or the routing number [22] of a network are used. These measures give very
good bounds for low-degree networks with uniform edge capacities but are usually very
poor when applied to networks of high-degree or highly nonuniform degrees or edge
capacities. To get more precise bounds for the approximation and competitive ratios
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of algorithms, Kolman and Scheideler [17] introduced a new network measure, the
flow number F . Not only does the flow number lead to more precise results, it also
has the major advantage that, in contrast to the expansion or the routing number, it
can be computed exactly in polynomial time. Hence we use the flow number in this
paper as well.

Before we introduce the flow number, we need some notation. In a concurrent
multicommodity flow problem there are k commodities, each with two terminal nodes
si and ti and a demand di. A feasible solution is a set of flow paths for the com-
modities that obey capacity constraints but need not meet the specified demands.
An important difference between this problem and the UFP is that the commodity
between si and ti can be routed along multiple paths. The (relative) flow value of a
feasible solution is the maximum f such that at least f · di units of commodity i are
simultaneously routed for each i. The max-flow for a concurrent multicommodity flow
problem is defined as the maximum flow value over all feasible solutions. For a path p
in a solution, the flow value of p is the amount of flow routed along it. A special class
of the concurrent multicommodity flow problems is the product multicommodity flow
problem (PMFP). In a PMFP, a nonnegative weight π(u) is associated with each node
u ∈ V , and there is a commodity with demand π(u)·π(v) for every pair of nodes (u, v).

Suppose we have a network G = (V,E) with arbitrary nonnegative edge capacities.
For every node v, let the capacity of v be defined as c(v) =

∑
w:{v,w}∈E c(v, w) and

the capacity of G be defined as Γ =
∑

v c(v). Given a concurrent multicommodity
flow problem with feasible solution S, let the dilation D(S) of S be defined as the
length of the longest flow path in S and the congestion C(S) of S be defined as
the inverse of its flow value (i.e., the congestion tells us how many times the edge
capacities would have to be increased in order to fully satisfy all the original demands
along the paths of S). Let I0 be the PMFP in which π(v) = c(v)/

√
Γ for every

node v; i.e., each pair of nodes (v, w) has a commodity with demand c(v) · c(w)/Γ.
The flow number F (G) of a network G is the minimum of max{C(S), D(S)} over
all feasible solutions S of I0. When there is no risk of confusion, we simply write F
instead of F (G). Note that the flow number of a network is invariant to scaling of
capacities.

The smaller the flow number, the better are the communication properties of the
network. For example, F (line) = Θ(n), F (mesh) = Θ(

√
n), F (hypercube) = Θ(logn),

F (butterfly) = Θ(logn), and F (expander) = Θ(logn), where the expanders we refer
to are constant degree graphs of constant edge expansion.

The shortening lemma [17] will be a useful tool for the analysis of our algorithms.
Lemma 1.1 (shortening lemma). For any network with flow number F , the

following holds: For any ε ∈ (0, 1] and any feasible solution S to an instance of the
concurrent multicommodity flow problem with a flow value of f , there exists a feasible
solution with flow value f/(1 + ε) that uses paths of length at most 2 · F (1 + 1/ε).
Moreover, the flow through any edge e not used by S is at most ε · c(e)/(1 + ε).

Another useful class of concurrent multicommodity flow problems is the balanced
multicommodity flow problem (BMFP). A BMFP is a multicommodity flow problem
in which the sum of the demands of the commodities originating and the commodities
terminating in a node v is at most c(v) for every v ∈ V . We make use of the following
property of the problem [17].

Lemma 1.2. For any network G with flow number F and any instance I of
a BMFP for G, there is a feasible solution for I with congestion and dilation at
most 2F .
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Apart from the flow number we also need Chernoff bounds [14], the symmetric
form of the Lovász local lemma [12], and Menger’s theorem [7, p. 75].

Lemma 1.3 (Chernoff bound). Consider any set of n independent binary random
variables X1, . . . , Xn. Let X =

∑n
i=1 Xi and μ be chosen so that μ ≥ E[X]. Then it

holds for all δ ≥ 0 that

Pr[X ≥ (1 + δ)μ] ≤ e−min[δ2, δ]·μ/3 .

Lemma 1.4 (Lovász local lemma). Let A1, . . . , An be “bad” events in an arbitrary
probability space. Suppose that each event is mutually independent of all other events
but is at most b, and that Pr[Ai] ≤ p for all i. If ep(b + 1) ≤ 1, the probability of no
bad event occurring is greater than 0.

Lemma 1.5 (Menger’s theorem). Let s and t be distinct vertices of G. The
minimal number of edges separating s from t is equal to the maximal number of edge-
disjoint s-t paths.

In the following, a k-system is a set of k edge-disjoint paths connecting the same
pair of vertices. A k-system is small if it uses at most L edges for some fixed parameter
L depending on network properties. The flow value of a k-system is the total amount
of flow routed along the k paths in it. We require the flow to be the same along all
the k paths. For a set M of k-systems, let ||M || denote the total amount of flow sent
along all of them, i.e., the sum of the flow values. For a path p let |p| denote the
number of edges of p, i.e., its length.

1.4. Organization of this paper. In section 2 we present our upper and lower
bounds for the k-EDP and some related problems, and in section 3 we present our
upper bounds for the k-DFP. The paper ends with a conclusion and open problems.

2. Algorithms for the k-EDP. Consider the following extension of the BGA:
Let L be a suitably chosen parameter. Given a request, if it is possible to find a small
k-system for it that is disjoint with all previously selected k-systems, then accept the
request, and select any such k-system for it. Otherwise, reject the request. Let us call
this algorithm the k bounded greedy algorithm (k-BGA).

Note that the problem of finding k edge-disjoint paths of total length at most L
between the same pair of nodes, i.e., the problem of finding a small k-system, can
be reduced to the classical min-cost (integral) flow problem, which can be solved by
standard methods in polynomial time [11, Chapter 4]. The k-BGA can therefore also
be used offline as an approximation algorithm. It is worth mentioning that if there
were a bound of L/k on the length of every path (instead of the bound L/k on the
average path length), the problem would not be tractable (cf. [6]).

2.1. The upper bound.
Theorem 2.1. Given a network G of flow number F , the competitive ratio of

the k-BGA with parameter L = 24k3F is O(k3F ).
Proof. Let B be the solution obtained by the k-BGA and O be the optimal

solution. For notational simplicity we allow a certain ambiguity. Sometimes B and
O refer to the subsets of T of the satisfied requests, and sometimes B and O refer to
the actual k-systems that realize the satisfied requests. We say that a k-system q ∈ B
is a witness for a k-system p if p and q share an edge. Obviously, a request with a
small k-system in the optimal solution that was rejected by the k-BGA must have a
witness in B.

Let O′ ⊆ O denote the set of all k-systems in O that are larger than L and that
correspond to requests not accepted by the k-BGA and that do not have a witness in
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B. Then each k-system in O−O′ either has a witness or was accepted by the k-BGA.
Since the k-systems in O−O′ are edge-disjoint, each request accepted by the k-BGA
can be a witness to at most L requests in O −O′. Hence, |O − O′| ≤ (1 + L)|B|.

It remains to prove an upper bound on |O′|. To achieve this, we transform the
k-systems in O′ into a set P of possibly overlapping but small k-systems. Since these
small k-systems would have been candidates for the k-BGA but were not picked, each
of them has at least one witness in B. Then we show that the small k-systems in P
do not overlap much, and thus many k-systems from B are needed in order to provide
a witness for every k-system in P.

Note that the set O′ of k-systems can be viewed as a feasible solution of relative
flow value 1 to the set of requests O′ of the concurrent multicommodity flow problem
where each request has demand k. The shortening lemma with parameter ε = 1/(2k)
immediately implies the following fact.

Fact 2.2. The k-systems in O′ can be transformed into a set R of flow systems
transporting the same amount of flow such that every flow path has a length of at
most 5kF . Furthermore, R has the property that the flow at every edge that is used
by some k-system in O′ is at most 1 + 1/(2k) and the flow at every other edge is at
most 1/(2k).

This does not immediately provide us with small k-systems for the requests in
O′. However, it is possible to extract small k-systems from the flow system R.

Lemma 2.3. For every request in O′, a set of small k-systems can be extracted
out of its flow system in R with a total flow value of at least 1/4.

Proof. Let (si, ti) be a fixed request from O′, and let Ei be the set of all edges
that are traversed by the flow system for (si, ti) in R. Consider any set of k− 1 edges
in Ei. Since the flow through any edge in R is at most 1 + 1/(2k), the total amount
of flow in the flow system for (si, ti) in R that traverses the k − 1 edges is at most
(k − 1)(1 + 1/(2k)) < k − 1/2. Thus, the minimal si − ti-cut in the graph (V,Ei)
consists of at least k edges. Hence, Menger’s theorem [7] implies that there are k
edge-disjoint paths between si and ti in Ei. We take any such k paths and denote
them as the k-system σ1. We associate a weight (i.e., total flow) of k · ε1 with σ1,
where ε1 is the minimum flow from si to ti through an edge in Ei belonging to the
k-system σ1.

Assume now that we have already found � k-systems σ1, σ2, . . . , σ� for some � ≥ 1.
If
∑�

j=1 k ·εj ≥ 1
2 we stop the process of defining σj . Otherwise, the minimal si−ti-cut

in (V,Ei) must still be at least k, because the total flow along any k − 1 edges in Ei

is still less than the total remaining flow from si to ti. Thus, we can apply Menger’s
theorem again. This allows us to find another k-system σ�+1 between si and ti, and
in the same way as above we associate with it a weight ε�+1. Let �̂ be the number of
k-systems at the end of the process.

So far there is no guarantee that any of the k-systems defined above will be small
nor that they will transport enough flow between the terminal pair si and ti. However,
after a simple procedure they will satisfy our needs.

According to Fact 2.2, all flow paths in R have a length of at most 5kF . Hence,
the total amount of edge capacity consumed by a flow system in R representing a
request in O′ is at most 5k2F . If there were k-systems in σ1, . . . , σ�̂ of total weight
at least 1/4 that use more than 20k3F edges each, then they would not fit into the
available edge capacity, because 20k3F · 1/(4k) = 5k2F . Thus, there exists a subset
of the k-systems σ1, . . . , σ�̂ with total weight at least 1/4 such that each of them is
small, i.e., each of them uses at most 20k3F edges.



FAULT-TOLERANT ROUTING 147

We are ready to bound |O′|, the number of k-systems in O′, in terms of |B|. Let
Si denote the set of small k-systems for request (si, ti) ∈ O′, given by Lemma 2.3,
and let S be the set of all Si. By the definition of S,

||O′|| ≤ 4k · ||S|| .(1)

Since the k-systems in S connect requests from O′ and they are small, each of them
must have a witness in B. Let ES denote the set of all edges on which a k-system
from S has a witness. According to the definition of O′, no edge in ES can be part
of a k-system in O′. It follows from Fact 2.2 that the flow belonging to k-systems in
S on any one of the edges in ES is at most 1/(2k). Thus, it holds for the total flow
along k-systems in S that

||S|| ≤ k ·
(

1
2k · |ES |

)
.(2)

Let EB be the set of all edges used by B. Then

|ES | ≤ |EB| ≤ L · |B| .(3)

Since |O′| = 1
k ·||O′||, combining inequalities (1)–(3) gives |O′| ≤ 2L·|B| and completes

the proof.
The above upper bound on the competitive ratio for the k-BGA with parameter

L = 20k3F is the best possible, since a k-system of size Θ(k3F ) may prevent Θ(k3F )
other k-systems from being selected.

Stronger bound. In a subsequent work [3], the ideas from the previous proof were
exploited in the proof of the following lemma (a kind of shortening lemma for flow
along k-systems).

Lemma 2.4. Given a unit network with flow number F , a set T of pairs of
vertices, and a feasible flow F such that there are k units of flow between each pair
from T , there exists a k-flow F̄ such that

• there are k units of flow between each pair from T ,
• the flow through every edge is at most 4,
• each k-system used in F̄ has size at most 20 · k2F .

Moreover, if the k-flow F is integral (i.e., each pair from T is connected by a unit
k-system), stronger bounds hold:

• The flow in F̄ through every edge is at most 2, and
• each k-system used in F̄ has size at most 8 · k2F .

The lemma provides an alternative way to analyze the k-BGA algorithm. Given
the optimal solution O, we apply Lemma 2.4 and transform it into a fractional solution
O′ with flow at most 2 on every edge that consists of small k-systems only. Then we
use the witnessing argument again and obtain the stronger bound.

Theorem 2.5. Given a network G of flow number F , the competitive ratio of
the k-BGA with parameter L = 8k2F is O(k2F ).

2.2. General online lower bound. We show there is a lower bound on the
competitive ratio of any deterministic online algorithm for the k-EDP problem which
is not far away from the performance of the k-BGA.

Theorem 2.6. For any n, k, and F ≥ logk n with n ≥ k2 ·F , there is a graph G of
size Θ(n) with maximum degree O(k) and flow number Θ(F ) such that the competitive
ratio of any deterministic online algorithm on G is Ω(k · F ).

Proof. A basic building block of our construction is the following simple graph.
Let Dk (diamond) denote the graph consisting of two bipartite graphs K1,k and Kk,1
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Fig. 2.1. The graph for the lower bound.

glued naturally together at the larger sides. The two k-degree nodes in Dk are its
endpoints. Let C (chaplet) denote the graph consisting of F diamond graphs attached
one to the other at the endpoints, like in an open chaplet.

The core of the graph G consists of m = n/(k · F ) ≥ k disjoint copies of the
chaplet graph C attached to the inputs of a k-ary multibutterfly (Figure 2.1). In
addition, a node s is connected to the first k chaplet graphs and a node t is connected
to the first k output nodes of the multibutterfly. Let si,j denote the first endpoint of
a diamond j in a chaplet i, and let ti,j(= si,j+1) denote the other endpoint. We use
the fact that a k-ary multibutterfly with n′ inputs and outputs (which is a network
of degree O(k)) can route any r-relation from the inputs to the outputs with edge
congestion and dilation at most O(max[r/k, logk n

′]) [22].
First, we show that our graph G has a flow number of Θ(F ). Since the diameter

of G is Ω(F ), it is sufficient to prove that a PMFP with π(u) = c(u)/Γ for the given
graph can be solved with congestion and dilation O(F ). Consider each node v of
degree δv to consist of δv copies of itself, and let V ′ be the set of all of these copies.
Then the PMFP reduces to the problem of sending a packet of size 1/N for any
pair of nodes in V ′, where N = |V ′|. Such a routing problem can be split into N
permutations σi with σi(v) = (v + i) mod N for all i ∈ {0, . . . , N − 1} and v ∈ V ′.
Each such permutation represents a routing problem ρ in the original network where
each node is the starting point and endpoint of a number of packets that is equal to
its degree. We want to bound the congestion and dilation for routing such a problem.

In order to route ρ, we first move all packets to the inputs of the k-ary multi-
butterfly in such a way that every input node of the multibutterfly will have O(kF )
packets. This can clearly be done with edge congestion O(F ) and dilation O(F ).
Next, we use the multibutterfly to send the packets to the rows of their destinations.
Since every input has O(k · F ) packets, this can also be done with congestion and
dilation O(F ). Finally, all packets are sent to their correct destinations. This too
causes a congestion and dilation of at most O(F ). Hence, routing ρ requires only a
total congestion and dilation of O(F ).

Combining the fact that all packets are of size 1/N with the fact that we have N
permutations σi, it follows that the congestion and dilation of routing the PMFP in
the given graph is O(F ). Hence, its flow number is Θ(F ).

Now consider the following two sequences of requests:
1. (s, t), and
2. (s, t), (s1,1, t1,1), (s1,2, t1,2), . . . , (s1,F , t1,F ), (s2,1, t2,1),

. . . , (sk,F , tk,F )
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Obviously, every deterministic online algorithm has to accept (s, t) to ensure a finite
competitive ratio for the sequence 1. However, in this case none of the other requests
in 2 can be satisfied. But the optimal solution for 2 is to reject (s, t) and to accept
all other requests. Hence, the competitive ratio of any deterministic online algorithm
is Ω(k · F ).

2.3. Requests with profits. In the k edge-disjoint paths with profits problem
(k-EDPP) we are given an undirected graph G = (V,E) and a set of requests T . Each
request ri = (si, ti) has a positive profit b(ri). The problem is to find a subset S of
the pairs in T of maximum profit for which it is possible to select disjoint paths such
that each pair is connected by k disjoint paths.

It turns out that a simple offline variant of the k-BGA gives the same approxima-
tion ratio for the k-EDPP as we have for the k-EDP. The algorithm involves sorting
the requests in decreasing order of their profits and running the k-BGA on this sorted
sequence. We call this algorithm the sorted k-BGA.

Theorem 2.7. Given a network G of flow number F , the approximation ratio of
the sorted k-BGA with parameter L = 20k3F is O(k3F ) for the k-EDPP.

Proof. The proof is almost identical to the proof of Theorem 2.1. The only
additional observation is that, since the sorted k-BGA proceeds through the requests
from the most profitable, every small k-system in O −O′ and in the modified set P
has a witness in B with larger or equal profit.

Again, via Lemma 2.4 we can get a better bound O(k2F ) for k-BGA with pa-
rameter L = 8k2F .

2.4. The multiple EDP. Another variant of the k-EDP our techniques can be
applied to is the multiple EDP (multi-EDP) which is defined as follows: Given a graph
G and a set of terminal pairs with integral demands di, 1 ≤ di ≤ Δ, find a maximum
subset of the pairs for which it is possible to select disjoint paths so that every selected
pair i has di disjoint paths. Let dmax denote the maximal demand over all requests.

A variant of the k-BGA, the multiple BGA (multi-BGA), can be used here as well:
Given a request with demand di, reject it if it is not possible to find di edge-disjoint
paths between the terminal pairs of total length at most 20did

2
maxF . Otherwise, select

any such di paths for it.
Theorem 2.8. Given a network G of flow number F , the competitive ratio of

the multi-BGA is O(d3
maxF ).

Proof. The proof goes along the same lines as the proof of Theorem 2.1: First,
the shortening lemma with parameter ε = 1/(2dmax) is applied, and afterwards, the
extraction procedure is used. The difference is that now we extract only di-systems
for a request with demand di, not dmax-systems.

As in previous sections, a better bound is possible using Lemma 2.4.

2.5. All-or-nothing multicommodity flow problem. Chekuri, Khanna, and
Shepherd [9] introduced the all-or-nothing multicommodity flow problem, a relaxation
of the EDP. A version of the problem that is relevant for flows along k-systems is as
follows: Given a graph G and a set of terminal pairs T , find a maximum subset U
of T such that there exist k-systems of total flow value k for each pair in U and the
cumulative flow of all commodities through every edge is at most one.

Since this problem is only a relaxation of the k-EDP problem and since in our
analysis of the k-BGA algorithm we did not use the integrality of the optimal solution
(apart from the constants in Lemma 2.4), our results for k-EDP apply also for the
above version of the all-or-nothing multicommodity flow problem.
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3. Algorithms for the k-DFP. We now turn to capacitated networks and
consider requests with arbitrary demands. Throughout this section we will assume
that the maximal demand is at most k times larger than the minimal edge capacity,
which is analogous to assumptions made in almost all papers about the UFP. We call
this the weak bottleneck assumption. Moreover, we assume that all edge capacities
are the same. Since F is invariant to scaling, we simply set all edge capacities to 1.
The minimal demand of a request will be denoted by dmin. We first give an offline
algorithm for the k-DFP and prove that it has a good approximation ratio, and then
we mention how to convert it into a competitive online algorithm.

To solve the offline k-DFP, we first sort the requests in decreasing order of their
demands. On this sorted sequence of requests we use an algorithm that is very similar
to the k-BGA: Let L be a suitably chosen parameter. Given a request with a demand
of d, accept it if it is possible to find for it a small k-system with flow value d that
fits into the network without violating the capacity constraints. Otherwise, reject it.
This extension of the k-BGA will be called k-flow BGA.

The next theorem demonstrates that the performance of the k-flow BGA for the
k-DFP is comparable to the performance of the k-BGA for the k-EDP. It is slightly
worse due to a technical reason: It is much harder to use our technique for extracting
small k-systems for the k-DFP than for the k-EDP.

Theorem 3.1. Given a unit-capacity network G with flow number F , the approx-
imation ratio of the k-flow BGA for the k-DFP with parameter L = γ · k3F log(kF )
for an appropriately large constant γ, when run on requests sorted in nonincreasing
order, is O(k3F log(kF )).

Proof. As usual, let B denote the set of k-systems for the requests accepted by
the BGA and O be the set of k-systems in the optimal solution. Each k-system
consists of k disjoint flow paths which we call streams. For notational simplicity we
will sometimes think about B and O as a set of streams (instead of k-systems).

For each stream q ∈ B or q ∈ O, let f(q) denote the flow along that stream. If
q belongs to the request (si, ti) with demand di, then f(q) = di/k. For a set Q of
streams, let ||Q|| =

∑
q∈Q f(q). Also, for an edge e ∈ E and a stream q, let F (e, q)

denote the sum of flow values of all streams in B passing through e whose flow is at
least as large as the flow of q, i.e., F (e, q) = ||{p | p ∈ B, e ∈ p, f(p) ≥ f(q)}||. A
stream p ∈ B is a witness for a stream q if f(p) ≥ f(q) and p and q intersect in an
edge e with F (e, q) + f(q) > 1. For each edge e let W(e,B) denote the set of streams
in B that serve as witnesses on e. Similarly, for each edge e let V(e,Q) denote the
set of streams in Q that have witnesses on e. We also say that a k-system has a
witness on an edge e if any of its k streams has a witness on e. We start with a simple
observation.

Claim 3.2. For any stream q ∈ O and edge e, if q has a witness on e, then
‖W(e,B)‖ ≥ 1/2.

Proof. Let p be a witness of q on e. Assume, by contradiction, that F (e, q) < 1/2.
It easily follows that f(p) < 1/2. Since f(q) ≤ f(p) and F (e, q) + f(q) > 1 by the
definition of a witness, we have a contradiction.

Let O′ ⊂ O be the set of k-systems that are larger than L, that correspond to
requests not accepted by the k-flow BGA, and that do not have a witness in B. The
next two bounds on ||O \ O′|| and ||O′|| complete the proof.

Lemma 3.3. ||O \ O′|| ≤ (1 + 2L) · ||B||.
Proof. We partition O \ O′ into two sets. Let O1 ⊆ O \ O′ consist of all the k-

systems corresponding to requests accepted by the BGA, and let O2 = (O \O′) \O1.
Obviously, ||O1|| ≤ ||B||. Note that each k-system in O2 must have a witness in B.
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Let E′ ⊆ E denote the set of all edges on which some k-system from O2 has a witness.
We then have

‖O2‖ ≤
∑
e∈E′

k · ‖V(e,O2)‖ ≤
∑
e∈E′

k ≤
∑
e∈E′

k · 2‖W(e,B)‖.

The first inequality follows from the definition of V(e,Q) and the above observation
that each q ∈ O2 has a witness in B. The second inequality holds due to the unit
capacities, and the last one follows from Claim 3.2.

Since all k-systems in B are of length at most L, we have∑
e∈E′

‖W(e,B)‖ ≤
∑

streams p∈B
|p| · f(p)

≤
∑

k−systems s∈B
L · d(s)/k ≤ L · ‖B‖/k .

This completes the proof of Lemma 3.3.
In the next lemma we bound ‖O′‖ by first transforming the large k-systems in

O′ into a set S of small k-systems and then bounding ‖S‖ in terms of ‖B‖.
Lemma 3.4. ‖O′‖ = O(L · ‖B‖).
Proof. In order to prove the lemma, we will transform the k-systems in O′ into a

set of k-systems S in which each k-system has a length at most L and therefore must
have a witness in B. To achieve this, we perform a sequence of transformations:

1. First, we scale the demands and edge capacities so that each edge in G has
a capacity of C = 	3k/dmin
 and all requests have demands that are integral
multiples of k. More precisely, the demand of each request of original demand
d is set to d′ = k ·	C ·d/k
. Since d′/C ∈ [d, (1+1/3)d], this slightly increases
the demands, and therefore it also increases the flows along the streams so
that the total flow along an edge is now at most (1 + 1/3)C. Note that
slightly increasing the demands increases only ‖O′‖ and therefore makes only
the bound on the relationship between ‖O′‖ and ‖B‖ more pessimistic.

2. Next, we replace each request (si, ti) in O′ by d′i/k elementary requests of
demand k each, shipped along the same k-system as for (si, ti). For every
k-system of such a request, we keep only the first 8c · kF and the last 8c · kF
nodes along each of its k streams for some c = O(log(kF )). The resulting
set of (possibly disconnected) streams of a k-system will be called a k-core.
As shown in Claim 3.5, it is possible to distribute the elementary requests
into C/c sets S1, . . . , SC/c so that the congestion caused by the k-cores within
each set is at most 2c at each edge.

3. Afterwards, we consider each Si separately. We will reconnect disconnected
streams in each k-core in Si with flow systems derived from the flow number.
The reconnected k-cores will not yet consists of k disjoint streams. We will
show in Claim 3.6 how to extract k-systems of length at most L from each
reconnected k-core.

4. Once we have found the small k-systems, we will be able to compare ‖O′‖
with ‖B‖ with the help of witnesses.

Next we present two vital claims. The proof of the first claim requires the use of
the Lovász local lemma, and the proof of the second claim is similar to the proof of
Theorem 2.1.

Claim 3.5. The elementary requests can be distributed into C/c sets S1, . . . , SC/c

for some c = O(log(kF )) so that for each set Si the edge congestion caused by its k-
cores is at most 2c.
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Proof. We first prove the claim for c = O(log(kCF )) and then demonstrate how
to get to c = O(log(kF )).

Consider the random experiment of assigning a number i ∈ {1, . . . , C/c} to each
elementary request uniformly and independently at random, and let Si be the set of all
requests that got number i. For every edge e let the random variable Xe,i denote the
number of streams assigned to Si that traverse e. Since the maximal edge congestion
is at most 4C/3, we have E[Xe,i] ≤ 4c/3 for every edge e. Every edge e can be used
by at most one stream of any k-core. Hence, a k-core can contribute a value of at
most 1 to Xe,i, and the contributions of different k-cores are independent. We can
use Chernoff bounds to derive

Pr[Xe,i ≥ (1 + 1/3) · 4c/3] ≤ e−(1/3)2·(4c/3)/3 = e−4c/34

.

For every edge e and every i ∈ {1, . . . , C/c}, let Ae,i be the event that Xe,i > 2c. Since
(4/3)2 ≤ 2, the above probability estimate bounds the probability that the event Av,i

appears. Our aim is to show, with the help of the Lovász local lemma, that it is
possible in the random experiment to assign numbers to the requests so that none of
these events appears, which would yield our claim. To apply the Lovász local lemma
we have to bound the dependencies among the events Ae,i.

Each edge e can be used by at most 4C/3 < 2C k-cores, and these are the
only k-cores that affect the values Xe,i, i ∈ {1, . . . , C/c}. Realizing that each of
the k-cores contains at most 2k(8c · kF ) edges and that the k-cores choose their sets
Si independently at random, we conclude that the event Ae,i depends on at most
32ck2CF other events Af,j .

To be able to use the Lovász local lemma, we have only to choose the value c so
that

e · e−4c/34

(32ck2CF + 1) ≤ 1 .

This can certainly be achieved by setting c = Θ(ln(kCF )) large enough.
The above procedure is sufficient for proving the lemma only if C = (kF )O(1). If

C = (kF )Ω(1) a more involved technique will be used. The k-cores will be distributed
into the sets Si not in a single step but in a sequence of refinements (an approach
first used by Leighton, Maggs, and Rao [19] and subsequently by Scheideler [22]). In
the first refinement, our aim is to show that for c1 = O(ln3 C) the k-cores can be
distributed into the sets S1, . . . , SC/c1 so that the edge congestion in each Si is at
most (1 + O(1/ lnC))4c1/3. For this we use the same random experiment as for c
above. It follows that E[Xe,i] = 4c1/3 and that

Pr[Xe,i ≥ (1 + 1/ 3
√
c1) · 4c1/3] ≤ e−(1/ 3

√
c1)

2·(4c1/3)/3

= e−4 3
√
c1/9 .

Hence, to be able to use the Lovász local lemma, we have to choose the value c1 so
that

e · e−4 3
√
c1/9(32c1k

2CF + 1) ≤ 1 .

This can certainly be achieved by setting c1 = Θ(ln3 C) large enough, which completes
the first refinement step.

In the second refinement step, each Si is refined separately. Consider some fixed
Si. Our aim is to show that for c2 = O(ln3 c1) the k-cores in Si can be distributed
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into the sets Si,1, . . . , Si,c1/c2 so that the edge congestion in each Si,j is at most
(1+1/ 3

√
c2)(1+1/ 3

√
c1)4c2/3. The proof for this follows exactly the same lines as for c1.

Thus, overall C/c2 sets Si,j are produced in the second step, with the corresponding
congestion bound.

In general, in the (�+ 1)st refinement step, each set S established in refinement �
is refined separately, using c�+1 = O(ln3 c�), until c�+1 = O(ln(kF )) for the first time.
Note that in this case, c� = ω(ln(kF )) and c� = (kF )O(1). At this point we use the
method presented at the beginning of the proof for the parameter c to obtain C/c′

sets S1, . . . , SC/c′ for some c′ = O(ln(kF )) with a congestion of at most⎛
⎝ �∏

j=1

(1 + 1/ 3
√
cj)

⎞
⎠ · (4/3)2 · c′,

where l is the total number of refinement steps. Using the facts that 1 + x ≤ ex for
all x ≥ 0 and ex ≤ 1 + 2x for all 0 ≤ x ≤ 1/2, it holds for the product that

�∏
j=1

(1 + 1/ 3
√
cj) ≤ e

∑�

j=0
1/ 3

√
cj ≤ eε ≤ 1 + 2ε

for a constant 0 < ε ≤ 1/2 that can be made arbitrarily small by making sure that c�
is above a certain constant value depending on ε. Hence, it is possible to select the
values c1, . . . , c�, c

′ so that the congestion in each Si at the end is at most 2c′.
Claim 3.6. For every set Si, every elementary request in Si can be given k-

systems of total flow value at least 1/4 such that each of them consists of at most L
edges. Furthermore, the congestion of every edge used by an original k-system in Si

is at most 2c + 1/(2k), and the congestion of every other edge is at most 1/(2k).
Proof. For an elementary request r let pr1, . . . , p

r
�r

be all the disconnected streams
in its k-core, 1 ≤ �r ≤ k. Let the first 8c·kF nodes in pri be denoted by ari,1, . . . , a

r
i,8c·kF

and the last 8c · kF nodes in pri be denoted by bri,1, . . . , b
r
i,8c·kF . Consider the set of

pairs

L =
⋃

r∈S1

�r⋃
i=1

8c·kF⋃
j=1

{(ari,j , bri,j)} .

Due to the congestion bound in Claim 3.5, a node v of degree δ can be a starting
point or an endpoint of at most 2cδ pairs in L. From Lemma 1.2 we know that for
any network G with flow number F and any instance I of the BMFP on G there is a
feasible solution for I with congestion and dilation at most 2F . Hence, it is possible
to connect all of the pairs in L by flow systems of length at most 2F and flow value
f(pri ) so that the edge congestion is at most 2c · 2F . Let the flow system between ari,j
and bri,j be denoted by fr

i,j . For each elementary request r = (s, t), each 1 ≤ i ≤ �r,
and each 1 ≤ j ≤ 8c · kF , we define a flow system gri,j : First, it moves from s to ari,j
along pri , then from ari,j to bri,j along fr

i,j , and finally from bri,j to t along pri , and we
assign to it a flow value of f(pri )/(8c · kF ). This ensures that a total flow of f(pri ) is
still being shipped for each pri . Furthermore, this allows us to reduce the flow along
fr
i,j by a factor of 1/(8c · kF ). Hence, the edge congestion caused by the fr

i,j for all
r, i, j reduces to at most 4c·F/(8c·kF ) = 1/(2k). Therefore, the additional congestion
at any edge is at most 1/(2k), which proves the congestion bounds in the claim.

Now consider any given elementary request r = (s, t). For any set of k− 1 edges,
the congestion caused by the flow systems for r is at most (k−1)(1+1/(2k)) ≤ k−1/2.
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Hence, according to Menger’s theorem there are k edge-disjoint flows in the system
from s to t. Continuing with the same arguments as in Theorem 2.1, we obtain a set
of k-systems for r with properties as stated in the claim.

Now that we have small k-systems for every elementary request, we combine them
back into the original requests. For a request with demand d this results in a set of
k-systems of size at most L each and total flow value at least d/(4k) (Claim 3.6). Let
the set of all these k-systems for all requests be denoted by S. Since every k-system
has a size at most L, it could have been a candidate for the BGA. Thus, each of these
k-systems must have a witness. Crucially, every edge that has witnesses for these
k-systems must be an edge that is not used by any of the original k-systems in O′.
(This follows directly from the definition of O′.) According to Claim 3.6, the amount
of flow from S traversing any of these edges is at most 1/(2k). Let E′ be the set of
all witness edges.

For each request we now choose one of its k-systems independently at random,
with probability proportional to the flow values of the k-systems. This will result in
a set of k-systems P in which each request has exactly one k-system and in which
the expected amount of flow traversing any edge in E′ is at most 1/(2k). Next, we
assign the original demand of the request to each of these k-systems. This causes the
expected amount of flow that traverses any edge in E′ to increase from at most 1/(2k)
to at most 4k · 1/(2k) = 2.

We are now ready to bound ‖P‖ in terms of ‖B‖. For every k-system h ∈ S, let
the indicator variable Xh take the value 1 if and only if h is chosen to be in P. We
shall look upon ‖P‖ as a random variable (though it always has the same value) and
bound its value by bounding its expected value E[‖P‖]. In the following we assume
that f(h) is the flow along a stream of the k-system h and d(h) is the demand of the
request corresponding to h. Also, recall that the total flow value of k-systems in S
belonging to a request with demand d is at least d/(4k).

E[‖P‖] ≤ E

[∑
e∈E′

k · ‖V(e,P)‖
]

≤
∑
e∈E′

k · E

⎡
⎣ ∑
p∈S: e∈p

Xp ·
d(p)

k

⎤
⎦

≤
∑
e∈E′

k ·
∑

p∈S: e∈p

k · f(p)

d(p)/(4k)
· d(p)

k

≤
∑
e∈E′

k · 4k
∑

p∈S: e∈p

f(p)

≤
∑
e∈E′

4k2 · 1

2k
≤

∑
e∈E′

2k

≤ 4k
∑
e∈E′

‖W(e,B)‖ ≤ · · · ≤ 4L · ‖B‖,

where the last calculations are done in the same way as in the proof of Lem-
ma 3.3.

Combining the two lemmas proves the theorem.
We note that if the minimum demand of a request, dmin, fulfills dmin ≥ k/ log(kF ),

then one would not need Claim 3.5. In particular, if dmin were known in advance,
then the k-flow BGA could choose L = O(k3F/(dmin/k)) to achieve an approximation
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ratio of O(k3F/(dmin/k)). This would allow a smooth transition from the bounds for
the k-EDP (where dmin = k) to the k-DFP.

3.1. An online algorithm for the k-DFP. In this section we present a ran-
domized online algorithm for the k-DFP. This algorithm, which we shall call the
randomized k-flow BGA, is an extension of the k-flow BGA algorithm for the offline
k-DFP. The technique we present for making offline algorithms online has been used
before [2, 17].

Consider, first, the set O of k-systems for requests accepted by the optimal al-
gorithm. Let O1 ⊆ O consist of k-systems each with demand at least k/2, and let
O2 = O \ O1. Either ||O1|| ≥ 1/2 · ||O||, or ||O2|| > 1/2 · ||O||.

The randomized k-flow BGA begins by guessing which of these two events will
happen. If it guesses the former, it ignores all requests with demand less than k/2
and runs the regular k-flow BGA on the rest of the requests. If it guesses the latter,
it ignores all requests with demand at least k/2 and runs the k-flow BGA on the rest.

Theorem 3.7. Given a unit-capacity network G with flow number F , the expected
competitive ratio of the randomized k-flow BGA for the online k-DFP is O(k3F log(kF ))
when run with parameter L = γ ·k3F log(kF )) for an appropriately large constant γ.

Proof. The proof runs along exactly the same lines as the proof for Theorem 3.1,
but we have to prove Claim 3.2 for the changed situation. Note that the original
proof for Claim 3.2 relies on the fact that requests are sorted in a nondecreasing order
before being considered. That need not be true here. Let B denote, as usual, the
k-systems for requests accepted by the randomized k-flow BGA.

Consider the case when the algorithm guesses that ||O1|| ≥ 1/2 · ||O||. We claim
that, for any stream q ∈ O1 and edge e, if q has a witness on e, then ‖W(e,B)‖ ≥ 1/2.
Let p ∈ B be the stream witnessing q on e. Since the algorithm considers only requests
with demand at least k/2, f(p) ≥ 1/2. The claim follows since ‖W(e,B)‖ ≥ f(p).
Following the rest of the proof for Theorem 3.1, substituting O1 for O, shows that in
this case the randomized k-flow BGA will have a competitive ratio of O(k3F log(kF )).

Now consider the case when the algorithm guesses ||O2|| ≥ 1/2 · ||O||. We claim
that even in this case for any stream q ∈ O2 and edge e, if q has a witness on e, then
‖W(e,B)‖ ≥ 1/2. From the definition of witnessing, we have F (e, q)+f(q) > 1. Next,
from the definition of O2, f(q) < 1/2. The claim follows as ‖W(e,B)‖ ≥ F (e, q). As
in the previous case, the rest of the proof for Theorem 3.1 applies here too; substitute
O2 for O.

The competitive ratio in both cases is O(k3F log(kF )). Note that an incorrect
guess just reduces the expected competitive ratio by a factor of 2.

3.2. Comparison with other flow problems. In this section we demonstrate
that the k-DFP is harder to approximate than other related flow problems because
of the requirement that the k paths for every request must be disjoint.

The k-SFP and the ISF have been defined in the introduction. As already men-
tioned there, previous proof techniques [17] imply the following result under the no-
bottleneck assumption (i.e., the maximal demand is at most equal to the minimal
edge capacity).

Theorem 3.8. For a unit-capacity network G with flow number F , the approx-
imation ratio of the 1-BGA with parameter L = 4F for the k-SFP and for the ISF,
when run on requests ordered according to their demands starting from the largest, is
O(F ).

Proof. The crucial point is that in the analysis of the BGA algorithm for the UFP
problem in the previous work [17] the solution of the BGA is compared with an optimal
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solution of a relaxed problem, namely, the fractional maximum multicommodity flow
problem, and this problem is also a relaxation for both the ISF and the k-SFP. It
follows that the approximation guarantee O(F ) of the BGA proved for the UFP
problem holds for the k-SFP and the ISF problems as well.

Using the standard techniques mentioned earlier, the algorithm can be converted
into a randomized online algorithm with the same expected competitive ratio. If
there is a guarantee that the ratio between the maximal and the minimal demand
is at most 2 (or some other constant) or that the maximal demand is at most 1/2
(or some other constant smaller than 1, the edge capacity), the online algorithm can
be made even deterministic with the same competitive ratio (cf. [18]). Taking into
account the online lower bound of Theorem 2.6, this shows that the k-SFP and the
ISF are indeed simpler problems than the k-DFP.

The techniques of the current paper imply results for the ISF even when the
no-bottleneck assumption does not hold and only the weak bottleneck assumption is
guaranteed (i.e., the maximal demand is at most k times larger than the minimal
edge capacity). Under this assumption, on unit-capacity networks the ISF resembles
the multi-EDP problem from section 2.4, and it is possible to use the multi-BGA
algorithm for it and get the same guarantee as in Theorem 2.8.

Corollary 3.9. Given a unit-capacity network G with flow number F , the
competitive ratio of the multi-BGA for the ISF under the weak bottleneck assumption
is O(d3

maxF ).

4. Conclusion. In this paper we introduced the k-EDP and the k-DFP problems
and presented upper and lower bounds for them as well as for other related problems.
Many questions remain open. For example, what is the best competitive ratio a
deterministic algorithm can achieve for the k-EDP? We suspect that it is O(kF ), but
it seems very hard to prove. Is it possible to simplify the proof for the k-DFP and
improve the upper bound? We suspect that it should be possible to prove an O(kF )
upper bound here as well. Even an improvement of the O(k3F log(kF )) bound k-DFP
to O(k3F ) would be interesting.
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Abstract. The Maximum Independent Set problem in d-box graphs, i.e., in intersection graphs
of axis-parallel rectangles in R

d, is known to be NP-hard for any fixed d ≥ 2. A challenging open
problem is that of how closely the solution can be approximated by a polynomial time algorithm.
For the restricted case of d-boxes with bounded aspect ratio a PTAS exists [T. Erlebach, K. Jansen,
and E. Seidel, SIAM J. Comput., 34 (2005), pp. 1302–1323]. In the general case no polynomial
time algorithm with approximation ratio o(logd−1 n) for a set of n d-boxes is known. In this paper
we prove APX-hardness of the Maximum Independent Set problem in d-box graphs for any fixed
d ≥ 3. We give an explicit lower bound 245

244
on efficient approximability for this problem unless

P = NP. Additionally, we provide a generic method how to prove APX-hardness for other graph
optimization problems in d-box graphs for any fixed d ≥ 3.
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1. Introduction. Many optimization problems like Maximum Clique, Maxi-

mum Independent Set, and Minimum (Vertex) Coloring are NP-hard in gen-
eral graphs but solvable in polynomial time in interval graphs [14]. However, many of
the problems, e.g., Maximum Independent Set [13], [16] and Minimum Coloring

[21], are known to be NP-hard already in 2-dimensional models of geometric intersec-
tion graphs as in unit disk graphs or in intersection graphs of axis-parallel rectangles in
R

d for any fixed d ≥ 2 (for short, d-box intersection graphs or d-box graphs). Among
basic NP-hard graph optimization problems, only Maximum Clique is known to be
solvable in polynomial time in d-box graphs [4], [20], [25]. In most cases geometric
restrictions on input instances allow one to obtain better approximation algorithms
for problems that are extremely hard to approximate in general graphs. On the other
hand, geometric restrictions make the task of achieving hardness results more difficult.

The most studied problem in d-box intersection graphs, Maximum Independent

Set (Max-IS), can be formulated as follows: for a given set R of n axis-parallel d-
dimensional boxes (for short, d-boxes) find a maximum cardinality subset R∗ ⊆ R of
pairwise disjoint boxes. The problem has attracted the attention of many researchers
(e.g., [1], [5], [6], [12], [15], [17], [24]) due to its applications in map labeling, data
mining, VLSI design, image processing, and point location in d-dimensional Euclidean
space. As the problem is NP-hard for any fixed d ≥ 2 [13], [16], attention is focused
on efficient approximation algorithms. Let us briefly describe known approximability
results for it; a more detailed overview of them can be found in [6]. The earliest result
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was a shifting grid method based PTAS by Hochbaum and Maass [15] in the case of
unit d-cubes. This method works for any collection of fat objects in R

d of roughly

the same size, and it requires nO(kd−1) time to guarantee an approximation factor of
(1+ 1

k ). Moreover, this approach can be generalized to objects not necessarily fat but
whose projections to the last (d− 1) coordinates are fat and of roughly the same size.
This was essentially established by Agarwal, van Kreveld, and Suri [1] in their work on
unit-height rectangles in R

2. Generalizing in another direction, Erlebach, Jansen, and
Seidel [12] and Chan [6] obtained a PTAS for fat objects of possibly varying sizes, such
as arbitrary d-cubes or bounded aspect ratio d-boxes. For arbitrary d-boxes, even for
d = 2, the existence of a PTAS or a constant factor approximation is an open problem.
As has been observed in several papers [1], [17], a logarithmic approximation factor
is possible in this case. For example, the results of Agarwal, van Kreveld, and Suri
[1] imply a O(n logd−1

2 n)-time algorithm with factor at most �log2 n�d−1. Nielsen [24]
independently described an algorithm with optimum-sensitive approximation factor
(1 + log2(is(R)))d−1, where is(R) is the maximum number of independent boxes of
R. Currently, no polynomial time algorithm is known with o(logd−1 n)-approximation
factor, although Berman et al. [5] have observed that a logd−1

2 n bound can be reduced
by arbitrary multiplicative constant. However, in spite of many efforts, understanding
the limits on the approximability of the Maximum Independent Set problem in
intersection graphs of d-boxes remains an open problem.

1.1. Our results. In this paper we present the proof of APX-hardness for the
Maximum Independent Set problem in axis-parallel d-dimensional boxes for any
fixed d ≥ 3. It follows, in particular, that for any fixed d ≥ 3 the existence of a
PTAS for the problem restricted to d-boxes with bounded aspect ratio [12] cannot be
generalized to arbitrary axis-parallel d-boxes, unless P = NP.

The idea of our proof is based on the following two results:

(i) In section 3 we observe that Maximum Independent Set, Minimum Ver-

tex Cover, and some other graph optimization problems are APX-hard
even in certain subdivisions of graphs with low maximum degree. For exam-
ple, for any fixed integer k ≥ 0 the Maximum Independent Set problem
is APX-hard in graphs obtained from 3-regular graphs by 2k subdivision of
each edge.

(ii) In section 2 we prove that each graph obtained from another one by at least
2-subdivision of each edge is an intersection graph of axis-parallel d-boxes for
any fixed d ≥ 3. Moreover, a d-box intersection representation of such graphs
can be provided in polynomial time.

Both results (i) and (ii) are very general and can be of independent interest.
Using them we provide a method how to achieve approximation hardness results in
d-box graphs for other graph optimization problems, e.g., for covering and domination
problems. The method used allows us to provide also explicit lower bounds on efficient
approximability. This is demonstrated on the problems Maximum Independent

Set and Minimum Vertex Cover in d-box graphs (for any fixed d ≥ 3) proving
NP-hardness to achieve an approximation factor of 1 + 1

244 and 1 + 1
249 , respectively.

One can notice that the best known approximation algorithms for graph optimization
problems in d-box graphs assume that an intersection representation of an input graph
by d-boxes is given. Therefore it should be emphasized that our hardness results apply
to this setting as well. Moreover, they hold for instances in which no point of R

d is
simultaneously covered by more than two d-boxes and each d-box intersects at most
three others.
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1.2. Definitions and notations. Recall that a d-dimensional box (for short, d-
box) is a subset of R

d that is a Cartesian product of d intervals in R. For convenience,
terms an interval and a rectangle are used for a 1-box and a 2-box, respectively.

Definition 1. The intersection graph of a family of sets Sv, v ∈ V , is a graph
with vertex set V such that for any u, v ∈ V a vertex u is adjacent to a vertex v if and
only if Su ∩ Sv �= ∅. The family {Sv, v ∈ V } is an intersection representation of the
intersection graph. The intersection graphs of families of axis-parallel d-dimensional
boxes are called d-box intersection graphs or simply d-box graphs.

Definition 2. Let G be a simple graph with vertex set V and edge set E. If G
contains a cycle, then the girth of G is the length of its shortest cycle. A vertex v ∈ V
is said to cover itself, all edges incident with v, and all vertices adjacent to v. An
edge {u, v} ∈ E is said to cover itself, vertices u and v, and all edges incident with u
or v. Two elements of V ∪ E are independent if neither covers the other.

For a graph G, a vertex cover is a subset of V that covers all edges E, a domi-
nating set is a subset of V that covers all vertices V , and an edge dominating set is
a subset of E that covers all edges E.

The goal of the Maximum Independent Set problem is to find an independent
set of maximum cardinality in a graph G; let is(G) denote its cardinality. The Mini-

mum Vertex Cover problem (Min-VC) asks us to find a vertex cover of minimum
cardinality in G; let vc(G) denote its optimum value. The problems Minimum Domi-

nating Set (Min-DS), Minimum Independent Dominating Set (Min-IDS), and
Minimum Edge Dominating Set (Min-EDS) ask for a dominating set, an indepen-
dent dominating set, and an edge dominating set of minimum size in G, respectively.
Let ds(G), ids(G), and eds(G) stand, respectively, for the corresponding minima.

Definition 3. Let G = (V,E) be a given graph. For an integer k ≥ 0, a k-
subdivision of an edge e = {u, v} ∈ E in G is defined as a replacement of e by a
path with endvertices u and v and with k new internal vertices. A k-subdivision of
G, denoted by divk(G), is a graph obtained from G by a k-subdivision of each edge e
from E. (All added paths are pairwise disjoint.)

We will consider also subdivisions of G = (V,E) that are not uniform but are edge
dependent. In such case an edge function s := sG from E to nonnegative integers will
be given and the resulting graph will be obtained by s(e)-subdivision of each edge
e ∈ E.

For the basic optimization terminology we refer the reader to Ausiello et al. [3].
For any NPO optimization problem Q, IQ is the set of instances of Q, solQ(x) is the
set of feasible solutions for x ∈ IQ, and for each pair (x, y) such that x ∈ IQ and
y ∈ solQ(x), mQ(x, y) is the value of a feasible solution y. The optimal value for an
instance x ∈ IQ is denoted by OPTQ(x).

Definition 4. Let Q and Q′ be two NPO problems and f be a polynomial
time computable function that maps instances of Q to instances of Q′. Then f is
said to be an L-reduction from Q to Q′, if there are constants α, β ∈ (0,∞) and a
polynomial time computable function g such that for every x ∈ IQ (i) OPTQ′(f(x)) ≤
αOPTQ(x), (ii) for every y′ ∈ solQ′(f(x)), g(x, y′) ∈ solQ(x) so that |OPTQ(x) −
mQ(x, g(x, y′))| ≤ β|OPTQ′(f(x)) −mQ′(f(x), y′)|.

To show APX-completeness of a problem Q ∈ APX it is enough to show that
there is an L-reduction from some APX-complete problem to Q.

Remark 1. Let us recall that all problems Maximum Independent Set, Mini-

mum Vertex Cover, Minimum Dominating Set, Minimum Edge Dominating

Set, and Minimum Independent Dominating Set are APX-complete in bounded
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degree graphs. Their inclusion in APX follows from easy counting arguments, when

restricted to graphs of degree at most B, B ≥ 3, is(G) ≥ ids(G) ≥ ds(G) ≥ |V |
B+1 ,

vc(G) ≥ |V |
B+1 , and eds(G) ≥ |V |

2B . (For some of these inequalities it is necessary to
confine ourselves to graphs without isolated vertices.) Hence for any of the above min-
imization problems in bounded degree graphs any feasible solution approximates the
optimal one within a constant. For Maximum Independent Set, the lower bounds
given above apply to any inclusionwise maximal independent set. This provides a
constant factor approximation in all cases. In most cases the proof of APX-hardness
even in 3-regular graphs is known (see [2], [28], [23], and references therein).

2. Intersection graphs of axis-parallel boxes. Roberts [26] proved that each
graph can be realized as an intersection graph of axis-parallel d-dimensional boxes for
some d depending on the graph. For any fixed d ≥ 2, the recognition of d-box graphs
is NP-hard [18], [27], and hence the reconstruction of their representation by d-boxes
is NP-hard as well. In this section we prove that highly nontrivial subclasses of general
graphs are d-box graphs for any d ≥ 3. Namely, each graph obtained from another
one by at least 2-subdivision of each edge is an intersection graph of d-boxes for any
fixed d ≥ 3 and its intersection representation can be found in polynomial time.

Theorem 1. Let G = (V,E) be a graph, and let an integer s(e) ≥ 2 be given
for each edge e ∈ E. Denote by G′ a graph obtained from G by a s(e)-subdivision
of each edge e. Then for any fixed integer d ≥ 3, the graph G′ can be realized as
an intersection graph of a set of axis-parallel d-dimensional boxes. Moreover, such
realization can be done in time polynomial in |V | +

∑
e s(e).

Proof. Let G = (V,E), s : E → {2, 3, . . . }, and G′ be given as above. First, we
describe the realization of G′ as an intersection graph of a set {R1, R2, . . . , RN} of
axis-parallel boxes in R

3, where N = |V | +
∑

e s(e).
We can assume that V = {1, 2, . . . , |V |} and assign each edge e ∈ E a number ne

using a bijection e ∈ E �→ ne ∈ {1, 2, . . . , |E|} between E and {1, 2, . . . , |E|}. Each
vertex i ∈ {1, 2, . . . , |V |} will be represented by a 3-box Ri = [2i−1, 2i]× [2i−1, 2i]×
[1, 2|E|]} (see Figure 1).

The graph G′ is obtained from G replacing each edge e = {i, j} ∈ E (assume

i < j) by a path with vertices i, A1
e, A

2
e, . . . , A

s(e)
e , j. Now we define the boxes R1

e,

. . . , R
s(e)
e representing vertices A1

e, A
2
e, . . . , A

s(e)
e , respectively. The projection on

the third coordinate axis is chosen to be [2ne−1, 2ne] to ensure that no two boxes Ri
e

and Rj
e′ , which correspond to distinct edges e and e′, intersect. More precisely, define

R1
e := [2i − 1, 2j] × [2i − 1, 2i] × [2ne − 1, 2ne], and further put R′

e := [2j − 1, 2j] ×
[2i− 1, 2j] × [2ne − 1, 2ne] (see Figure 1). If s(e) = 2, one can simply put R2

e := R′
e.

If s(e) ≥ 3, then boxes R2
e, R

3
e, . . . , R

s(e)
e will be taken as subboxes of R′

e of the form
Rl

e := [2j−1, 2j]×[cl, dl]×[2ne−1, 2ne] for l = 2, 3, . . . , s(e), where cl, dl are rationals
such that c2 = 2i−1, ds(e) = 2j, 2i < c3 < d2, cs(e) < ds(e)−1 < 2j−1 and, if s(e) ≥ 4,
cl+1 < dl < cl+2 whenever 2 ≤ l ≤ s(e) − 2 (see Figure 1). One can easily check that

the intersection graph of the set {R1, R2, . . . , R|V |}∪
⋃

e∈E{R1
e, R

2
e, . . . , R

s(e)
e } of axis-

parallel boxes in R

3 is (isomorphic to) G′. Moreover, the time complexity of this
construction is polynomial in |V | +

∑
e s(e).

To obtain the corresponding realization in R

d for d > 3, one can take the set
{Ri × [0, 1]d−3 : i = 1, 2, . . . , N} of d-boxes.

Remark 2. The graph G′ from Theorem 1 is of girth at least 9. In any realization
of G′ by axis-parallel d-dimensional boxes no point of R

d is simultaneously covered by
more than two boxes. For the 2-dimensional case a 4K-approximation algorithm is
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c2 d2c3 c4 d3 c5 d4 d5

R 2
e

R 3
e

R 4
e

R 5
e

R 1

R i

R j

R 1
e

R 0
e

Fig. 1.

known for finding a maximum weighted independent set in a given set R of weighted
axis-parallel rectangles, where K is the maximum number of rectangles in R that
simultaneously cover a point in R

2 [22].

Theorem 1 shows that for every fixed d ≥ 3 the intersection graphs of sets of
d-boxes are from a topological point of view as complex as general graphs. It is far
from clear whether 2-box graphs have much simpler topological structure. However,
the complexity of intersection graphs of axis-parallel lines significantly differs in di-
mensions 2 and 3. In the following theorem we show that, similar to the case of
axis-parallel boxes, highly nontrivial subclasses of general graphs are already inter-
section graphs of sets of axis-parallel lines in R

d for any d ≥ 3. On the other hand, for
the 2-dimensional case intersection graphs of axis-parallel lines are exactly complete
bipartite graphs, for which classical optimization problems are easily solvable.

Theorem 2. Let G = (V,E) be a given graph. Suppose that for each edge e ∈ E
an integer s(e) with s(e) ∈ {2, 3}∪{k : k ≥ 5} is given; denote by G′ a graph obtained
from G by a s(e)-subdivision of each edge e. Then the graph G′ can be realized as an
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(i, i)

(j , j )

L 1
e

L 2
e

(a)

(i, i)

(c, i)

(j , j )

L 1
e

L 3
e

L 2
e

(b)

|V|

(i, i)

i+ c´

i+2 c´

(j , j )

L 1
e

L 3
e

L 2
e

(c)

|V|

(i, i)

i+2 c´

i+3 c´

(j , j )
L 7

e

L 5
e

L 6
e

(d)

|V|

|V| |V|

|V|

|V| |V|

Fig. 2. The realization of lines belonging to an edge e = {i, j} for different values of s(e).
The lines parallel to z-axes are displayed as a circle in the corresponding vertex. (a) s(e) = 2, the
cross-section with the plane z = ne. (b) s(3) = 3, the cross-section with the plane z = ne. (c) and
(d) s(3) = 7, the cross-section with the planes z = ne and z = ne + c′, respectively.

intersection graph of a set of axis-parallel lines in R

3. Moreover, such realization can
be done in time polynomial in |V | +

∑
e s(e).

Proof. Let a graph G = (V,E), s : E → {2, 3, 5, 6, . . . }, and G′ be given as above.
In what follows we describe the realization of G′ as an intersection graph of a set of N
axis-parallel lines in R

3, where N = |V | +
∑

e s(e). Assume that V = {1, 2, . . . , |V |},
and number the edges from E by a bijection e �→ ne between E and {1, 2, . . . , |E|}.
Each vertex i ∈ {1, 2, . . . , |V |} will be represented as the line Li = (i, i, ·) parallel to
the z-axis.

The graph G′ is obtained from G, replacing each edge e = {i, j} ∈ E (assume

i < j) by a path with vertices i, A1
e, A

2
e, . . . , A

s(e)
e , j. Keeping one such e fixed, we

define lines L1
e, L

2
e, . . . , L

s(e)
e representing vertices A1

e, A
2
e, . . . , A

s(e)
e , respectively.

(a) Assume first that s(e) ∈ {2, 3, 7}. In all these three cases, we take as L1
e the

line (·, i, ne). If s(e) = 2, we put L2
e := (j, ·, ne) (see Figure 2(a)). If s(e) = 3, then

we take L2
e = (c, ·, ne) and L3

e = (·, j, ne) for some i < c < i + 1 (see Figure 2(b)).
In case s(e) = 7, let L2

e = (i + c′, ·, ne), L
3
e = (·, i + 2c′, ne), L

4
e = (i + 2c′, i + 2c′, ·),

L5
e = (·, i+2c′, ne +c′), L6

e = (i+3c′, ·, ne +c′), L7
e = (·, j, ne +c′) for some 0 < c′ < 1

4
(see Figure 2(c) and (d)).

(b) Assume now that s(e) = a + 3m for some a ∈ {2, 3, 7} and m ≥ 1. We will
proceed in two steps. In the first one we realize 3m subdivision of e, which reduces the
task to the above case of a-subdivision, where a ∈ {2, 3, 7}. Choose i(1) < i(2) < · · · <
i(m) from (i, i+ 1) (we can ensure that for distinct edges e, e′ these sets are disjoint),
and ne < n(1) < n(2) < · · · < n(m) < ne + 1. Take L1

e := (·, i, ne), L
2
e := (i(1), ·, ne),

L3
e := (i(1), i(1), ·), L4

e := (·, i(1), n(1)), L5
e := (i(2), ·, n(1)), L6

e := (i(2), i(2), ·), . . . ,
L3m−2
e := (·, i(m−1), n(m−1)), L3m−1

e := (i(m), ·, n(m−1)), L3m
e := (i(m), i(m), ·). Now,

in the second step, it suffices to insert a lines, where a ∈ {2, 3, 7}. The construction
is the same as in (i), but the role of (i, i, ·) and ne is now played by (i(m), i(m), ·)
and n(m), respectively. It is also easy to see that parameters can be chosen in such

a way that the intersection graph of set {L1, L2, . . . , L|V |} ∪
⋃

e∈E{L1
e, L

2
e, . . . , L

s(e)
e }

is (isomorphic to) G′. Moreover, time complexity of the construction is polynomial
in |V | +

∑
e s(e).

3. Approximation hardness results in subdivisions of graphs. Let C de-
note the collection of the following problems: Maximum Independent Set, Mini-

mum Vertex Cover, Minimum Dominating Set, Minimum Edge Dominating

Set, and Minimum Independent Dominating Set. Each problem from C is well
known to be APX-complete when restricted to graphs of degree at most 3 or even to
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3-regular graphs (see Remark 1). Moreover, explicit NP-hard gap-type results and
explicit lower bounds on their efficient approximability are known for several of them
[10], [7], [8]. In this section we show APX-completeness for each problem from C even
when restricted to certain subdivisions of low-degree graphs.

First we prove that for Maximum Independent Set and Minimum Vertex

Cover the optimum value for a graph and for its certain subdivisions are in a simple
relation.

Lemma 1. Let G = (V,E) be a graph, and let e ∈ E be a given edge. Denote by
G′ a graph obtained from G by a 2-subdivision of the edge e. Then vc(G′) = vc(G)+1
and is(G′) = is(G) + 1.

Proof. Suppose that the edge e = {u, v} is replaced by a path u, u′, v′, and v
with new vertices u′ and v′. For every vertex cover C in G either C ∪{u′} or C ∪{v′}
is the vertex cover in G′; hence vc(G′) ≤ vc(G) + 1.

Now we prove the opposite inequality vc(G) ≤ vc(G′) − 1. Let C ′ be a vertex
cover in G′. We can modify it to a vertex cover C in G with |C| ≤ |C ′| − 1 as follows.
If C ′ ∩ {u, v} �= ∅, we take C := C ′ \ {u′, v′}. If C ′ ∩ {u, v} = ∅, then clearly both
u′, v′ ∈ C ′ and we take C := {u} ∪ C ′ \ {u′, v′}.

The claim for independent sets follows in a straightforward way.

It is easy to see that the proof of Lemma 1 is constructive and that the cor-
responding algorithm applies to all feasible solutions and not only to optimal ones.
Applying iteratively its steps we can obtain the following theorem.

Theorem 3. Let G = (V,E) be a graph, and for each edge e ∈ E let an integer
s(e) ≥ 0 be given. Denote by G′ a graph obtained from G by a 2s(e)-subdivision of each
edge e ∈ E. Let Q be either the problem Minimum Vertex Cover or Maximum

Independent Set. Then

(A) OPTQ(G′) = OPTQ(G) +
∑

e s(e);
(B) every y ∈ solQ(G) can be transformed in polynomial time (in size of G and∑

e s(e)) to y′ ∈ solQ(G′) such that |y′| = |y| +
∑

e s(e);
(C) every y′ ∈ solQ(G′) can be transformed in polynomial time to y ∈ solQ(G)

such that |y′| −
∑

e s(e) ≤ |y| if Q is a maximization problem (respectively,
|y| ≤ |y′| −

∑
e s(e) if Q is minimization problem).

Proof. We can assume that Q is the Minimum Vertex Cover problem (and for
Maximum Independent Set we can argue analogously).

Let K :=
∑

e s(e) and assume that K > 0. We can find a sequence of graphs
G0 := G, G1, . . . , G′ := GK such that for each i = 1, 2, . . . ,K the graph Gi is
created from Gi−1 as in Lemma 1 (by a 2-subdivision of one of its edge). To prove
the property (B), consider a vertex cover C in G. Put C0 := C and as in the proof of
Lemma 1 find, for each i = 1, 2, . . . , K, a vertex cover Ci in Gi with |Ci| = |Ci−1|+1.
Then C ′ := CK is a vertex cover in G′ with |C ′| = |C| + K. This also shows that
vc(G′) ≤ vc(G) + K. To prove the property (C), consider a vertex cover C ′ in G′.
Now as in the proof of Lemma 1 find, for each i = K, K − 1, . . . , 2, 1, a vertex cover
Ci−1 in Gi−1 with |Ci−1| ≤ |Ci| − 1. Then C := C0 is a vertex cover in G with
|C| ≤ |C ′| −K, and hence vc(G) ≤ vc(G′) −K. Consequently, vc(G′) = vc(G) + K,
and the property (A) is proved as well.

Also the optimum of several other graph optimization problems behaves well un-
der certain subdivision operations, similarly as for Maximum Independent Set and
Minimum Vertex Cover. We will demonstrate that for Minimum Dominating

Set and Minimum Edge Dominating Set.

Lemma 2. Let G = (V,E) be a given graph. Denote by G′ a graph obtained
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from G by a 3-subdivision of an edge e ∈ E. Then (i) ds(G′) = ds(G) + 1 and (ii)
eds(G′) = eds(G) + 1.

Proof. Let G′ be a graph obtained from G by a 3-subdivision of the edge e =
{u, v}, i.e., replacing e by a path u, u′, w, v′, v with new vertices u′, w, and v′.

(i) To prove ds(G′) ≤ ds(G) + 1, consider a dominating set D in G. Adding one
of vertices u′, w, v′ to D we can obtain a dominating set D′ in G′ with |D′| = |D|+1
as follows: (I) If (u ∈ D & v ∈ D) or (u /∈ D & v /∈ D) we take D′ := D ∪ {w}.
(II) If (u ∈ D & v /∈ D) we take D′ := D ∪ {v′}. (III) If (v ∈ D & u /∈ D) we take
D′ := D ∪ {u′}.

Notice that D ⊂ D′ and that the restriction of D′ to the path u, u′, w, v′, v is
an independent set. This observation will be used later in the proof of Theorem 4.

To prove ds(G′) ≥ ds(G)+1, consider a dominating set D′ in G′. We can modify
it to a dominating set D in G with |D| ≤ |D′|−1 as follows. If D′∩V is a dominating
set in G, we take D := D′ ∩ V . If D′ ∩ V is not a dominating set in G then clearly
u, v /∈ D′, |D′ ∩ {u′, w, v′}| ≥ 2, and we take D := {u} ∪D′ ∩ V .

(ii) To prove eds(G′) ≤ eds(G) + 1, consider an edge dominating set M in G
and denote V (M) the set of end vertices of edges in M . We modify M to an edge
dominating set M ′ in G′ with |M ′| = |M | + 1 as follows: (I) If u /∈ V (M) we take
M ′ := M ∪ {{u′, w}}. (II) If v /∈ V (M) and u ∈ V (M) we take M ′ := M ∪ {{v′, w}}.
(III) If u, v ∈ V (M) and e /∈ M we take M ′ := M ∪ {{u′, w}}. (IV) If e ∈ M we take
M ′ := M \ {e} ∪ {{u, u′}, {v, v′}}.

To prove eds(G′) ≥ eds(G) + 1, consider an edge dominating set M ′ in G′ and
put M0 := M ′ ∩ {{u, u′}, {u′, w}, {v′, w}, {v, v′}}. Clearly M0 �= ∅ and if |M0| = 1
then either {u′, w} ∈ M ′ or {v′, w} ∈ M ′. We can modify M ′ to an edge dominating
set M in G with |M | ≤ |M ′| − 1 as follows. If |M0| ≥ 2 we take M := M ′ \M0 ∪ {e}.
If |M0| = 1 we take M := M ′ \M0.

Using steps of the proof of the previous lemma we can obtain the following theo-
rem.

Theorem 4. Let G = (V,E) be a graph, and for each edge e ∈ E let an integer
s(e) ≥ 0 be given. Denote by G′ a graph obtained from G by a 3s(e)-subdivision of
each edge e ∈ E. Then the properties (A)–(C) from Theorem 3 are fulfilled for both
problems Minimum Dominating Set and Minimum Edge Dominating Set.

Moreover, if s(e) > 0 for each e ∈ E, then ids(G′) = ds(G′) and every dominating
set D in G can be transformed in polynomial time to an independent dominating set
D′ in G′ with |D′| = |D| +

∑
e s(e).

Proof. We provide the proof for the Minimum Dominating Set problem; the
proof for the second problem is analogous using the corresponding part of the proof
of Lemma 2. Let G′ be a graph obtained from G by a 3s(e)-subdivision of each edge
e, i.e., replacing the edge e = {u, v} by a path with endvertices u and v, and 3s(e)
new vertices (the paths are pairwise disjoint). Let K :=

∑
e s(e). We can assume

that K > 0, and find G0 := G, G1, . . . , GK := G′ as in the proof of Theorem 3.

To prove the property (B), consider a dominating set D in G. Put D0 := D and
as in the proof of Lemma 2 find, for each i = 1, 2, . . . ,K, a dominating set Di in Gi

such that |Di| = |Di−1| + 1, Di−1 ⊂ Di, and the restriction of Di to the path used
to create Gi from Gi−1 is an independent set. Then D′ := DK is a dominating set
in G′ with |D′| = |D| + K. This also shows that ds(G′) = ds(G) + K. Moreover, if
s(e) > 0 for every e ∈ E, then the set D′ is an independent dominating set in G′,
and ds(G′) = ids(G′) ≤ ds(G) + K in this case. To prove the property (C), consider
a dominating set D′ in G′ and put DK := D′. As in the proof of Lemma 2 find, for
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each i = K,K − 1, . . . , 2, 1, a dominating set Di−1 in Gi−1 with |Di−1| ≤ |Di| − 1.
Then D := D0 is a dominating set in G with |D| ≤ |D′| −K. This also shows that
ds(G) ≤ ds(G′)−K. Consequently, ds(G′) = ds(G)+K. If s(e) > 0 for every e ∈ E,
then as it follows from the proof, there is a minimum dominating set in G′, which is
also independent; hence ids(G′) = ds(G′).

Remark 3. In Theorem 4, if s(e) is an odd integer for each edge e then the graph
G′ is bipartite.

Now using Theorems 3 and 4 we can easily prove APX-completeness of each of
the basic optimization problems Maximum Independent Set, Minimum Vertex

Cover, Minimum Dominating Set, Minimum Edge Dominating Set, and Min-

imum Independent Dominating Set even when restricted to certain subdivisions
of graphs of degree at most 3.

Theorem 5. (i) The problems Maximum Independent Set and Minimum

Vertex Cover are APX-complete when restricted to 2k-subdivisions of 3-regular
graphs for any fixed integer k ≥ 0.

(ii) The problems Minimum Dominating Set, Minimum Edge Dominating

Set, and Minimum Independent Dominating Set are APX-complete when re-
stricted to 3k-subdivisions of degree at most 3 graphs for any fixed integer k ≥ 0.

Proof. Let k ≥ 0 be a fixed integer. Without loss of generality we can consider
only graphs without isolated vertices. As was mentioned in Remark 1, all considered
problems are in APX when restricted to graphs of degree at most 3. Hence, to prove
APX-completeness of each of the problems Maximum Independent Set, Minimum

Vertex Cover, Minimum Dominating Set, Minimum Edge Dominating Set,
and Minimum Independent Dominating Set restricted to certain subdivisions
of low-degree graphs, it is enough to show that such subdivision operations are in
bounded degree graphs in fact L-reductions to the same problems.

(i) Let us start with Max-IS and a 2k-subdivision operation. To verify the first
condition of an L-reduction we have to check that there is a constant c such that
is(div2k(G)) ≤ c · is(G) for every graph G of maximum degree B, B ≥ 3. As follows
from Theorem 3,

is(div2k(G)) = is(G) + |E|k.(3.1)

Recall that for a graph G = (V,E) of maximum degree B the following inequalities

hold: |E| ≤ |V |
2 B and is(G) ≥ |V |

B+1 . Now one can see that the choice α := 1 +
B(B+1)k

2 will do. The second condition from the definition of an L-reduction is satisfied
with β = 1 by Theorem 3. Hence the operation that transforms a graph to its
2k-subdivision is an L-reduction that self-reduces Max-IS restricted to graphs of
maximum degree B.

We can argue similarly for Min-VC using Theorem 3 and simple lower bound

vc(G) ≥ |V |
B+1 .

(ii) The same approach as in (i) can be used also for problems Min-DS, and
Min-EDS, to prove that a 3k-subdivision is an L-reduction for them, when restricted
to graphs of maximum degree B. It is enough to consider Theorem 4 together with

lower bounds is(G) ≥ ids(G) ≥ ds(G) ≥ |V |
B+1 , and eds(G) ≥ |V |

2B . Moreover, a 3k-
subdivision for k > 0 reduces Min-DS to Min-IDS and it is again an L-reduction
when restricted to graphs of maximum degree B.

Remark 4. Notice that the theorem above shows hardness results for graphs with
low maximum degree and large girth. The part (ii) for k odd claims APX-completeness
results in bipartite graphs of maximum degree 3 and of girth at least 9k + 3.
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For the later applications, we formulate also the explicit NP-hard gap-type re-
sults for Maximum Independent Set and Minimum Vertex Cover restricted to
certain subdivisions of low-degree graphs.

Theorem 6. It is NP-hard to approximate
(i) Maximum Independent Set in 2-subdivisions of 3-regular graphs within

1 + 1
387 , and in 2-subdivisions of 4-regular graphs within 1 + 1

244 ;
(ii) Minimum Vertex Cover in 2-subdivisions of 3-regular graphs within 1 +

1
390 , and in 2-subdivisions of 4-regular graphs within 1 + 1

249 .
Proof. (i) We will use the corresponding NP-hard gap results from [10] for Max-

imum Independent Set in B-regular graphs, B ≥ 3. For any ε > 0 it is NP-

hard to decide in B-regular graphs G = (V,E) whether is(G) < |V |
2 (1 − 3δB + ε) or

is(G) > |V |
2 (1−2δB−ε), where δB is a constant for B-regular graphs, δ3 ≈ 0.0103305,

and δ4 ≈ 0.020242915. Using the formula (3.1) we see that this translates to the fol-
lowing NP-hardness result for 2-subdivisions of B-regular graphs: for any ε > 0 it

is NP-hard to decide whether is(div2(G)) < |V |
2 (1 + B − 3δB + ε) or is(div2(G)) >

|V |
2 (1 + B − 2δB − ε). Consequently, the approximation within any constant smaller

than 1 + δB
1+B−3δB

is NP-hard.
(ii) We can argue similarly for Minimum Vertex Cover using NP-hard gap

results for it in B-regular graphs, B ≥ 3 [10]. For any ε > 0 it is NP-hard to

decide in B-regular graphs G = (V,E) whether vc(G) < |V |
2 (1 + 2δB + ε) or vc(G) >

|V |
2 (1 + 3δB − ε), where δ3 and δ4 are as above.

4. Approximation hardness results in d-box graphs. Theorem 1 shows
that any graph obtained from another one by at least 2-subdivision of each edge
is a d-box graph for any d ≥ 3. This immediately implies that many optimization
problems in intersection graphs of d-boxes are as hard to approximate as in general
graphs. It is rather easy to reach this conclusion for such problems as Minimum

Steiner Tree or Minimum Traveling Salesman. For these problems, replacing
edges by pairwise disjoint paths (and splitting edge weights properly) cannot make the
problem easier to approximate. But for some optimization problems the algorithms
with better approximation ratios have been designed in d-box graphs rather than in
general graphs.

In this section we prove APX-hardness and hence nonexistence of a PTAS (unless
P = NP) for some basic graph optimization problems in d-box graphs for any d ≥ 3.
Moreover, all our hardness results apply as well to the setting when a representation
by d-boxes is given as an input, not merely its intersection graph. This makes hardness
results stronger, as the problem to find a d-box intersection representation of a graph
is known to be NP-hard.

Theorem 7. Let d ≥ 3 be a fixed integer. Each of the problems Maximum Inde-

pendent Set, Minimum Vertex Cover, Minimum Dominating Set, Minimum

Edge Dominating Set, and Minimum Independent Dominating Set is APX-
hard when restricted to intersection graphs of sets of axis-parallel d-dimensional boxes
and hence does not admit PTAS unless P = NP. These hardness results apply also
to instances whose intersection graph is simultaneously of maximum degree 3 and of
girth at least k (for any prescribed constant k) and, except Maximum Independent

Set and Minimum Vertex Cover, is bipartite as well.
Proof. The proof is straightforward using Theorems 1 and 5.
These results could be stated as explicit NP-hard gap type results and provide

explicit lower bounds on its approximability. This is demonstrated on Maximum
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Independent Set and Minimum Vertex Cover to show how large explicit values
can be obtained with the current methods.

Theorem 8. For any fixed d ≥ 3 it is NP-hard to approximate the Maximum

Independent Set problem within 1+ 1
244 and the Minimum Vertex Cover problem

within 1 + 1
249 in sets of axis-parallel d-dimensional boxes.

Proof. We provide the proof for Maximum Independent Set; the proof for
Minimum Vertex Cover is analogous. Let d ≥ 3 be a fixed integer. Assume that
G′ = (V ′, E′) is a 2-subdivision of a 4-regular graph G = (V,E). As follows from
Theorem 1, G′ is an intersection graph of a set R of d-boxes and an intersection
realization of R can be found in polynomial time. Due to Theorem 6 it is NP-hard
to decide whether the maximum number of pairwise disjoint d-boxes of R is less
than 0.49392715|V ′| or greater than 0.495951417|V ′| (under the premise that one
of these two cases occurs). Consequently, it is NP-hard to approximate Maximum

Independent Set within 1 + 1
244 in d-boxes for d ≥ 3.

Remark 5. The results of Theorems 7 and 8 hold also for intersection graphs of
sets of axis-parallel lines for any fixed d ≥ 3. The proofs are the same, only Theorem 2
is used instead of Theorem 1.

The method of this paper is rather general and can provide inapproximability
results also for other combinatorial optimization problems on sets of d-boxes for any
d ≥ 3 (see [9] for more details). The question of approximation hardness of these
problems in the 2-dimensional case is open. However, as shown in [9], using subdivi-
sions of planar graphs provides a generic method of proving NP-hardness of all these
problems on sets of axis-parallel rectangles (even unit squares) in the plane. Similar
methods how to prove NP-hardness for problems in geometric intersection graphs of
planar objects have been already used in [11] for unit disk graphs and in [19] for
intersection graphs of line segments.
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Abstract. In this paper it is shown that if a graph G possesses a spanning subgraph H with a
strong vertex magic total labeling (VMTL) and G−E(H) is even-regular, then G also has a strong
VMTL. Among other things, this is used to conclude that all Hamiltonian regular graphs of odd order
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order n connected by a 2-factor (simple quasi-anti-prisms), and based on this construction VMTLs
are derived for similar regular graphs of any even degree.

Key words. vertex-magic, regular graph, quasi-prism, quasi-anti-prism, sparse magic square
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1. VMTLs of regular graphs. All graphs in this paper are finite, simple, and
undirected. The graph G has vertex-set V (G) and edge-set E(G).

A vertex magic total labeling (VMTL) of a graph G is a mapping of the integers
1, . . . , |V (G)| + |E(G)| onto the vertices and edges of G in such a way that the sum
of the integers assigned to any vertex and its incident edges is the same constant k
regardless of the vertex chosen. The constant k is referred to as the magic constant. A
strong VMTL is a VMTL where the largest integer labels are assigned to the vertices.

Vertex magic total labelings have received a great deal of attention is recent years.
Conditions have been established which rule out VMTLs for several infinite families of
graphs including wheels of order greater than 11 [9] and trees with a high proportion
of leaves [5].

However, it has also been proven that cycles Cn [15], complete graphs Kn [6, 8],
complete bipartite graphs Kn,n and Kn,n+1 [8], generalized Petersen graphs [1], and
a variety of other graphs [5, 9] all possess such labelings. A major conceptual step
forward was McQuillan’s proof [11] that a large class of cubic graphs, referred to in
the present paper as quasi-prisms, could be shown to possess VMTLs without the fine
structure of the graph needing to be known.

MacDougall [10] has conjectured that all regular graphs other than K2 and 2K3

possess VMTLs, and to date, while constructions have been derived for some families
of regular graphs including those previously mentioned, no counterexamples to Mac-
Dougall’s conjecture have been found. This paper adds significant further support to
the conjecture by demonstrating that “almost all” regular graphs of odd order possess
VMTLs, as well as many graphs of even order.
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2. Constructing VMTLs of regular graphs of odd order.
Theorem 2.1. If G is a graph of order n with a spanning subgraph H which

possesses a strong VMTL and G − E(H) is even-regular, then G also possesses a
strong VMTL.

Proof. Let G−E(H) be 2r-regular. Let h = |E(H)| and assign the labels 1, . . . , h
to the edges of H according to its VMTL. The vertices of G will be referred to as
v1, . . . , vn. We proceed to assign labels to sets of n edges at a time in such a way
that after each set of labels is assigned, the sums of the edge-labels at the vertices
form a sequence of consecutive integers. After all edges are labeled, we then assign a
set of consecutive integers to the vertices to complete the VMTL. We do this in the
following way.

We first decompose G− E(H) into r 2-factors, A1, . . . , Ar. (This will always be
possible since every regular graph of even degree has a 2-factor [16, p. 125].) We label
the edges of G − E(H) in r iterations by labeling the 2-factors, as follows: For the
jth iteration, we direct the edges of Aj so that each vertex has one incoming and one
outgoing edge. At the end of the jth iteration, we let Wj(vi) be the sum of the labels
of all labeled edges of G incident to the vertex vi. W0(vi) will be the sum of the labels
of edges of H incident to the vertex vi.

Let Mj = maxi{Wj(vi))} be the maximum weight on any vertex at the end of
the jth iteration. We assign the integer

λj(vi) = Mj−1 + h + 1 + (j − 1)n−Wj−1(vi)

to the outgoing edge of the vertex vi. Clearly, λj(vi) + Wj−1(vi) will be the same
constant for all vertices. Let αj(vi) be the label on the incoming edge. Since an
incoming edge for one vertex is an outgoing edge for another,

{αj(vi) : i = 1, . . . , n} = {λj(vi) : i = 1, . . . , n}
= {h + i + (j − 1)n : i = 1, . . . , n}.

Hence, after any iteration the sums Wj(vi) = αj(vi)+λj(vi)+Wj−1(vi) of the labeled
edges incident to each vertex will form a set of consecutive integers. Thus when all of
the edges have been labeled, the Wr(vi) will also be a set of consecutive integers.

The edges have now been assigned the labels 1, . . . , h + rn, and it remains to
assign the consecutive labels h + rn + 1, . . . , h + rn + n to the vertices. In order to
obtain the VMTL, to each vertex vi we assign the complementary integer: λ(vi) =
Mr + h+ 1 + rn−Wr(vi), and the final labeling is strong since the largest labels are
on the vertices.

Corollary 2.2. Every Hamiltonian regular graph of odd order has a strong
VMTL.

Proof. By definition, a Hamiltonian graph has a spanning cycle Cn, and Cn has
a strong VMTL [15]. The specifics of this construction are given in section 5.

To illustrate the application of this theorem, let Figure 2.1(b) be the graph G
and Figure 2.1(a) be H, a spanning cycle of G with the given VMTL, with G−E(H)
directed as shown. If we consider the vertex with label 13 in Figure 2.1(a), the initial
weight at that vertex W0 = 6. Reassigning the vertex labels, the outgoing edge is
labeled with the vertex label 13 and the incoming edge with 11, so W1 = 30. The
vertex is now relabeled with 18 to give a magic constant k = 48. A similar process is
carried out with each of the other vertices to give the final VMTL.

In [2], it is shown that every 2-connected k-regular graph of order v ≤ 3k + 1 is
Hamiltonian, so clearly this corollary applies to all such graphs. In [13], it is shown
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Fig. 2.1. An example of the construction of Theorem 2.1.

that almost all regular graphs are Hamiltonian. However, this is an asymptotic result,
of course, so it is relatively easy to find examples of non-Hamiltonian graphs of odd
order; in particular, any graph with a cut vertex is not Hamiltonian, the quartic of
order 11, Q350 in [12], being an example. However, this graph possesses the 2-factor
C5 ∪ C6 which has a strong VMTL as shown in Figure 2.2(a) and we can use this
labeling and apply Theorem 2.1 to construct a VMTL as shown in Figure 2.2(b).

27

32

3123

25

6 12

20

8

1

18

2

22 5

9 13

14

11

33 28

30

26

24

29

4

15
7

19

3 10

21

17
16

6

12

20

8

1

18

2

22

5

9

1314

11 4

15

7

19

3 10

21

17

16

(a) A strong VMTL of C5 U C6

(b) A strong VMTL of Q350

Fig. 2.2. Q350 from C5 ∪ C6.

One way of establishing that every regular graph of odd order has a VMTL would
be to show that every regular graph of odd order greater than 7 possesses a 2-factor
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with a strong VMTL. We don’t know whether this is true, and while we do not pursue
this question in the present paper, the following partial result is already known.

Corollary 2.3. Every regular graph of odd order with a spanning subgraph
consisting of isomorphic cycles has a strong VMTL.

Proof. If a and b are both odd, then the graph aCb has been shown in [14] to
have a strong VMTL. If n = ab, then we let H = aCb in the theorem, and the result
follows.

However, the graph C3 ∪C4 does not have a strong VMTL, and so we must have
the restriction on order mentioned above.

In [3], constructions are given for sparse antimagic squares, which are shown there
to be equivalent to strong VMTLs of certain families of incomplete bipartite graphs
of order 0 mod 4. Clearly, there are large classes of irregular graphs which have these
bipartite graphs as spanning subgraphs to which Theorem 2.1 can also be applied.

3. Strong VMTLs of even-regular graphs and sparse magic squares. A
sparse semimagic square Sn(d, r) is a square array of order n containing the integers
1, . . . , nd − r once each and n2 − (nd − r) 0’s arranged so that the row and column
sums are all the same. The parameter d is referred to as the density of the square,
and the parameter r is the deficiency.

These squares were first introduced in [4], which provides constructions for regular
sparse semimagic squares for any order n ≥ 3, i.e., where the number of entries in
each row and column is the same, as well as for some classes of sparse magic squares.

The inspiration to investigate semimagic squares came from [8], where semimagic
squares are used to construct a labeling for Kn,n. Curiously, the converse relationship
also holds, as seen in the following theorem.

Theorem 3.1. Every even-regular graph with a strong VMTL gives rise to a
family of sparse semimagic squares.

Proof. Without loss of generality, consider a 2r-regular graph G of order n. Since
G is even-regular, it possesses a (nonunique) factorization into 2-factors [7, p. 127]. We
first obtain an orientation of G by orienting each 2-factor and let A be the adjacency
matrix of the resulting digraph. Clearly, each vertex will have an in-degree of r and
an out-degree of r; hence A will contain r 1’s in each row and in each column, and
since G is simple, A(i, j) + A(j, i) ≤ 1.

Let Mn(2r) be the matrix representing the VMTL of the graph. Since the VMTL
is strong, the edge labels will be 1, . . . , nr, and the vertex labels will be nr+1, . . . , nr+
n. The edge label in cell (i, j) will equal the edge label in (j, i), so each edge label
will occur once above and once below the principal diagonal. Let M = Mn(2r) +
n(r + 1)A. We claim that this is a sparse semimagic square. The addition of n(r +
1)A adds nr(r + 1) to each row and column; hence the rows and column sums of
M are constant. It also adds n(r + 1) to one of each nonzero pair of symmetric
entries. Since these entries are labeled by 1, . . . , nr, this gives us a set of labels
{1, . . . , nr, n(r + 1) + 1, . . . , n(r + 1) + nr}, which with the diagonal entries gives us
the set of integers 1, . . . , n(2r+1). Hence M is a regular semimagic square Sn(2r+1, 0)
of order n and density 2r + 1. Since the factorization is not unique, M is just one
member of a family of such squares. The result follows.

4. Constructing VMTLs of odd-regular graphs of even order. Let us
define a quasi-prism as a cubic graph of order 2n which can be partitioned into two
2-factors, each of order n with a 1-factor between them. We will call the 2-factors
cycle-sets and the edges of the 1-factor struts. Particular examples of quasi-prisms
are prisms and generalized Petersen graphs.
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In [11], McQuillan provided a construction for vertex magic total labelings of
quasi-prisms. The following is a simple explanation of this construction. We will refer
to one cycle-set as the outer-set and the other as the inner-set.

First, we orient the two cycle-sets and direct the struts from the outer to the
inner set. We then denote the edges and vertices as follows, for i = 1, . . . , n:

ei will be an edge of the outer-set.
vi will be the vertex of the outer-set which is the tail of ei.
si will be the strut which has the head of ei as its tail.
fi will be the edge of the inner-set which has the head of si as its tail.
ui will be the vertex of the inner-set which is the head of fi.

We then label the edges and vertices as follows. Let σ(i) be any permutation of the
integers 1, . . . , n. Then

λ(ei) = σ(i),
λ(si) = 4n + 1 − λ(ei),
λ(fi) = λ(ei) + n,
λ(vi) = 5n + 1 − λ(ei),
λ(ui) = 3n + 1 − λ(ei).

Each vertex-sum will equal 9n + 2, so the labeling is a VMTL.

In this labeling, the vertices receive distinct labels from the set {2n + i, 4n + i :
i = 1, . . . , n}, and the struts receive distinct labels from the set {3n+ i : i = 1, . . . , n}.
This fact is important in a later construction.

We now proceed to prove that any (2t+3)-regular graph having a quasi-prism as
a spanning subgraph has a VMTL. The proof is constructive and relies on beginning
with a labeling on the spanning cubic subgraph which has properties similar to that
above.

Lemma 4.1. Let G be a (2r + 1)-regular graph of order 2m with a VMTL such
that either

(i) its vertices are assigned distinct labels from {(2r − 2)m + i, 2rm + i : i =
1, . . . ,m} and it has a 1-factor whose labels are distinct members of {(2r − 1)m + i :
i = 1, . . . ,m} or

(ii) its vertices are assigned distinct labels from {(2r− 3)m+ i, (2r− 1)m+ i : i =
1, . . . ,m} and it has a 1-factor whose labels are distinct members of {2rm + i : i =
1, . . . ,m}
If a 2-factor is added to the graph, the resulting (2r + 3)-regular graph has a VMTL.

Proof. Consider first case (i). We add the 2-factor and orient it. For each vertex
we remove the label from that vertex and reassign it instead to the outgoing edge of
that vertex. For each vertex, the new vertex sum will be a constant plus the label
on its incoming edge. We now add 3m to each label on the 1-factor, increasing each
vertex sum by 3m. Thus the set of vertex-sums is {a+(2r+1)m+ i, a+(2r+3)m+ i :
i = 1, . . . ,m}, where a is the magic constant of the original graph. We now have the
labels {(2r− 1)m+ i, (2r + 1)m+ i : i = 1, . . . ,m} available to assign to the vertices.
We can assign the label λi to the vertex with sum a + (2r + 1)2m + m + 1 − λi to
obtain a constant vertex sum. The result follows. If we let r∗ = r + 1, then the
vertex-labels become {(2r∗ − 3)m + i, (2r∗ − 1)m + i : i = 1, . . . ,m} and the labels
on the 1-factor become {2r∗m + i : i = 1, . . . ,m}, and the result is a VMTL (which
satisfies the conditions of case (ii)).

For case (ii), we carry out the same procedure as for case (i), but instead of adding
3m to the labels of the 1-factor, we only add m to the labels of the 1-factor. The
resulting set of vertex-sums will be {a + (2r − 2)m + i, a + (2r)m + i : i = 1, . . . ,m}.
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We now have the labels {2rm + i, (2r + 2)m + i : i = 1, . . . ,m} available to assign to
the vertices. We can assign the label λi to the vertex with sum a+(2r)2m+m+1−λi

to obtain a constant vertex sum. The result follows. If we let r∗ = r + 1, then the
vertex-labels become {(2r∗ − 2)m + i, 2r∗m + i : i = 1, . . . ,m}, the labels on the
1-factor become {(2r∗ − 1)m + i : i = 1, . . . ,m}, and the result is a VMTL (which
satisfies the conditions of case (i)).

Theorem 4.2. Every (2t+3)-regular graph which has a quasi-prism as a spanning
subgraph has a VMTL.

Proof. In [11], McQuillan provides a construction with the properties of case (i)
for any quasi-prism, as previously described. Let G be the (2t+ 3)-regular graph and
Q be the quasi-prism. Then G − E(Q) is 2t-regular and hence has a 2-factorization
[7]. We can arbitrarily order these 2-factors and alternate between the procedures for
cases (i) and (ii) in Lemma 4.1 until no 2-factors remain to be labeled. The result
follows.

Since every complete graph of even order has a quasi-prism as a spanning sub-
graph, this theorem permits an alternative construction for a VMTL of K2n to that
found in [6].

We also have the following result.

Theorem 4.3. (Cn)C has a VMTL for all n ≥ 5.

Proof. If n is odd, then (Cn)C is Hamiltonian for n ≥ 5 and hence by Corollary
2.2 has a VMTL. For even n ≥ 6, let n = 2t + 6 and let Q be any quasi-prism of
order 2t + 6. Clearly, Q ⊂ K2t+6. The degree for each vertex of K2t+6 − E(Q) is
2t+ 2. If 2t+ 2 ≥ t+ 3, then K2t+6 −E(Q) is Hamiltonian [16]. Hence, if t ≥ 1, then
C2t+6 ⊆ K2t+6 − E(Q). Hence C2t+6 ∩ E(Q) = ∅ and so Q ⊆ (C2t+6)

C . (C2t+6)
C

is (2t + 3)-regular and hence by the previous construction possesses a VMTL which
can be built from Q. Thus the result holds for t ≥ 1. It can be easily determined
by inspection that (C6)

C is a quasi-prism; hence the result also holds for t = 0. The
result follows.

5. VMTLs of even-regular graphs of even order. The general question
of whether all even-regular graphs of even order possess VMTLs seems to be much
harder. As mentioned earlier, constructions are known for C2m, K2m, and K2m,2m

but for few other families of graphs. In this section, we show how to construct families
of 2r-regular graphs of even order 2m with a VMTL for all 3 ≤ r ≤ m− 1.

We define a quasi-anti-prism as a 4-regular graph of order 2n which can be de-
composed into two 2-factors A1 and A2, each of order n plus a 2-factor of order 2n
in which each edge is incident to one vertex of A1 and one vertex of A2. A simple
quasi-anti-prism will be a quasi-anti-prism in which the two 2-factors of order n are
cycles. We will construct labelings of simple quasi-anti-prisms of twice-odd order (i.e.,
which contain 2Cn as a spanning subgraph).

A simple way of constructing VMTLs for cycles of odd order is as follows. Consider
Cn = C2t+1. We direct the cycle so that each vertex has one incoming and one
outgoing edge. We assign the integer 1 to any edge, and for i = 1, . . . , n if an edge
has a label i, then we assign the label μ(i) to the edge to which it points, where

μ(i) =

{
i + n+1

2 if i < n+1
2 ,

i− n−1
2 if i ≥ n+1

2 .
(5.1)



176 IAN D. GRAY

This gives us the vertex weights,

wt(vi) = i + μ(i) =

{
2i + n+1

2 if i < n+1
2 ,

2i− n−1
2 if i ≥ n+1

2 .
(5.2)

If vi is the vertex to which the edge labeled i points, then we can assign vi the label
λ(vi) = 1

2 (5n + 3) − (i + μ(i)). The edges will be labeled with 1, . . . , n, the vertices
will be labeled with n + 1, . . . , 2n, and the labeling is a strong VMTL.

Theorem 5.1. If a quartic graph G of twice-odd order 2n has 2Cn as a spanning
subgraph, then it has a VMTL.

Proof. The proof is by construction. We begin with the above labeling for a cycle
and construct a labeling of 2Cn as follows: We label both copies of 2Cn as above
and then add 3n to the vertex labels of one copy. We then add n to both the edge
labels and vertex labels of the other copy. Clearly, both copies have the same vertex-
sums, which we will call k. However, the result is not a VMTL since we have used the
integers 1, . . . , 2n for the edges and 2n+1, . . . , 3n, 4n+1, . . . , 5n for the vertices, which
leaves the integers 3n+1, . . . , 4n unused. G−E(2Cn) is a 2-factor, and we now orient
this 2-factor so that each vertex has one incoming and one outgoing edge. For each
vertex vi we re-assign λ(vi) to its outgoing edge. If we call the label on the incoming
edge α(vi), then the weight on each vertex will be W (vi) = k + α(vi), and these
weights constitute the set of integers {k + 2n+ 1, . . . , k + 3n, k + 4n+ 1, . . . , k + 5n}.
We can then assign the complementary label 8n+ 1−α(vi) to vi to give the required
VMTL.

Corollary 5.2. If a 2r-regular graph G of twice-odd order 2n has a simple
quasi-anti-prism as a spanning subgraph, then it has a VMTL.

Proof. In the case of a simple quasi-anti-prism, the labeling given by the con-
struction above satisfies the requirements of case (i) of Lemma 4.1.

Corollary 5.3. K4m+2 − f has a VMTL, where f is a 1-factor.

Proof. Begin with any simple quasi-anti-prism of order 4m + 2 and construct its
VMTL. Apply the methods of Lemma 4.1 alternately and iteratively to obtain the
required result.

It should be noted that the method of Theorem 5.1 can be applied more generally
to the case where instead of 2Cn, we have any two 2-factors of order n, each possessing
a strong VMTL. For example, if a quasi-anti-prism has C9 ∪ 3C3 or 3C3 ∪ 3C3 as its
order 9 2-factors, then it possesses a VMTL since both C9 and 3C3 possess strong
VMTLs. Similarly, by the same argument as Corollary 5.2, a 2r-regular graph which
contains such a quasi-anti-prism as a spanning subgraph will also possess a VMTL.
These results can be summarized as follows.

Theorem 5.4. If the two 2-factors of odd order n of a quasi-anti-prism G each
possess a strong VMTL, then G has a VMTL.

Corollary 5.5. If a 2r-regular graph G of twice-odd order 2n has such a quasi-
anti-prism as a spanning subgraph, then it has a VMTL.

These final results highlight the importance of determining whether every 2-factor
of odd order greater than 7 possesses a strong VMTL. On the one hand, such a result
would establish that every regular graph of odd order possessed a VMTL, as previously
mentioned in section 2, while on the other hand it would establish that a large class of
even regular graphs of twice-odd order also possessed VMTLs. While the author has
found constructions for C3 ∪C2t−2 and C4 ∪C2t−3, a general construction for strong
VMTLs of 2-factors of odd order has proven to be elusive.
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SIMPLEX-ALGORITHM∗
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Abstract. We prove that the Random-Edge simplex-algorithm requires an expected number
of at most 13n/

√
d pivot steps on any simple d-polytope with n vertices. This is the first nontrivial

upper bound for general polytopes. We also describe a refined analysis that potentially yields much
better bounds for specific classes of polytopes. As one application, we show that for combinatorial
d-cubes the trivial upper bound of 2d on the performance of Random-Edge can asymptotically be
improved by the factor 1/d(1−ε) log d for every ε > 0.
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1. Introduction. Dantzig’s simplex method [8] is a widely used tool for solving
linear programs (LP). The feasible region of an LP is a polyhedron; any algorithm
implementing the simplex method traverses a sequence of vertices such that (i) con-
secutive vertices are equal (the degenerate case) or connected by a polyhedron edge
and (ii) the objective function strictly improves along any traversed edge. In both
theory and practice, we may assume that some initial vertex is available and that the
optimal solution to the LP is attained at a vertex, if there is an optimum at all. It
follows that if the algorithm does not cycle, it will eventually find an optimal solution
or discover that the problem is unbounded. For a comprehensive introduction to the
simplex method, see, e.g., Chvátal’s book [7].

For most (complexity-)theoretic investigations, one can safely assume that the LPs
that are considered are bounded as well as being both primally and dually nondegen-
erate [23]. Thus, we will deal only with simple polytopes, i.e., bounded d-dimensional
polyhedra, where at each vertex exactly d facets meet, and with objective functions
that are nonconstant along any edge of the polytope.

The distinguishing feature of each simplex-algorithm is the pivot rule according
to which the next vertex in the sequence is selected in case there is a choice. Many
popular pivot rules are efficient in practice, meaning that they induce a short vertex
sequence in typical applications. The situation in theory is in sharp contrast to
this: for most of the deterministic pivot rules proposed in the literature, the simplex-
algorithm in the worst case is forced to traverse a number of vertices that is exponential
in the number of variables and constraints of the LP. This includes most of the rules
that are used in practice. It is open whether there is a pivot rule that always induces
a sequence of polynomial length.

To explain simplex’s excellent behavior in practice, the tools of average case anal-
ysis [5] and smoothed analysis [24] have been devised. Recently, Kelner and Spielman
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developed an algorithm that uses the shadow vertex simplex algorithm as the main
subroutine. Similar to ellipsoid- and interior-point algorithms [17, 16], its running
time is polynomial in the bit size of the input [18]. While this is a major step for-
ward, it does not yield a bound in the sense we are interested in here: in view of the
unsolved question for a strongly polynomial time algorithm for linear programing, we
are looking for bounds that involve only the dimension d and the number of facets n.
Moreover, in our context simplex-algorithm means an algorithm that proceeds along
(improving) edges of a single polyhedron.

To make progress on such bounds, research has turned to randomized pivot rules.
Indeed, Kalai [14, 15] as well as Matoušek, Sharir, and Welzl [21] could prove that
the expected number of steps taken by the Random-Facet pivot rule is only subex-
ponential in the worst case. These results hold under our above assumption that the
feasible region of the LP is a simple and full-dimensional polytope.

Much less is known about the perhaps most natural randomized pivot rule: choose
the next vertex in the sequence uniformly at random among the neighbors of the cur-
rent vertex with better objective function value. This rule is called Random-Edge,
and unlike Random-Facet, it has no recursive structure to peg an analysis to. Non-
trivial upper bounds on its expected number of pivot steps on general polytopes do
not exist. Results are known for 3-polytopes [6, 13], d-polytopes with d+ 2 facets [9],
and for linear assignment problems [25]. Only recently, Balogh and Pemantle solved
the long standing problem of finding a tight bound for the expected performance
of Random-Edge on the d-dimensional Klee–Minty cube [3]. This polytope is the
“mother” of many worst-case inputs for deterministic pivot rules [19, 2].

None of the existing results exclude the possibility of both Random-Facet and
Random-Edge being the desired polynomial-time pivot rules. In the more general
and well-studied setting of abstract objective functions on polytopes [1, 26, 27, 15],
superpolynomial lower bounds are known for both rules, where the construction
for Random-Edge [22] is very recent and much more involved than the one for
Random-Facet [20]. Both approaches inherently use objective functions on cubes
that are not linearly induced.

In this paper, we derive the first nontrivial upper bound for the expected per-
formance of Random-Edge on simple polytopes, with edge orientations induced by
abstract objective functions. Even when we restrict to linear objective functions on
combinatorial cubes, the result is new. The general bound itself is rather weak and
also achieved, e.g., by the deterministic Greatest-Decrease rule. The emphasis
here is on the fact that we are able to make progress at all, given that Random-Edge

has turned out to be very difficult to attack in the past. Also, our new bound sep-
arates Random-Edge from many deterministic rules (e.g., Dantzig’s rule, Bland’s
rule, or the shadow vertex rule) that may visit all vertices in the worst case [2].

In the second part of the paper, we refine the analysis, with the goal of obtaining
better bounds for specific classes of polytopes. Roughly speaking, these are poly-
topes with large and regular local neighborhoods. Our prime example is the class
of combinatorial cubes, for which we improve the general upper bound by the factor
1/d(1−ε) log d for every ε > 0.

As before, this also works for abstract objective functions and thus complements
the recent lower bound of Matoušek and Szabó [22] with a first nontrivial upper bound.

Our results can also be interpreted in the general framework of random walks
on graphs. While results concerning stationary distributions and mixing times are
known for many classes of undirected graphs, or more generally, strongly connected
digraphs [11], random walks on acyclic digraphs cannot usually be analyzed by stan-
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dard methods. Our paper provides some new techniques for polytope graphs induced
by abstract objective functions.

2. A bound for general polytopes. Throughout this section, P is a d-dimen-
sional simple polytope with a set V of n vertices. A directed graph D = (V,A) is
called an acyclic unique sink orientation (AUSO) of P if

(i) its underlying undirected graph is the vertex-edge graph of P ,
(ii) D is acyclic, and
(iii) any subgraph of D induced by the vertices of a nonempty face of P has a

unique sink.
Any linear function ϕ : V → R that is generic (nonconstant on edges of P ) induces
an AUSO in a natural way: there is a directed edge v → w between adjacent vertices
if and only if ϕ(v) > ϕ(w). The global sink of the AUSO is the unique vertex that
minimizes ϕ over P . If ϕ is any generic (not necessarily linear) function inducing an
AUSO that way, ϕ is called an abstract objective function. For a given AUSO D of P ,
any function ϕ that maps vertices to their ranks w.r.t. a fixed topological sorting of D
is an abstract objective function that induces D. In general, D need not be induced
by a linear function, e.g., if D fails to satisfy the necessary Holt–Klee condition for
linear realizability [12]. For the remainder of this section, we fix an AUSO D of P ,
an abstract objective function ϕ that induces D and some vertex s ∈ V .

Let π be the random variable defined as the directed path in D, starting at s
and ending at the sink vopt of D, induced by the Random-Edge pivot rule. From
each visited vertex v �= vopt, π proceeds to a neighbor w of v along an outgoing edge
chosen uniformly at random from all outgoing edges.

For each v ∈ V , denote by

out(v) := {w ∈ V : (v, w) ∈ A}

the set of all smaller (w.r.t. ϕ) neighbors of v. If | out(v)| = k, then v is called a
k-vertex. We denote by Vk the set of all k-vertices.

For every vertex v �= vopt on the path π, let v′ be its successor on π. For such a
pair (v, v′) we say that π skips the vertices

S(v) := {w ∈ out(v) : ϕ(v′) < ϕ(w)}

at v. Note that nodes that are skipped by π do not lie on π. For every 0 ≤ k ≤ d let

ηk(π) :=
∣∣{v ∈ π ∩ Vk : |S(v)| ≥ � | out(v)|

2 	}
∣∣

be the number of k-vertices on π at which π skips at least �k
2 	 neighbors. Here, as

in the following, we write, depending on the context, π for the set of vertices on the
path π.

If we denote by nk(π) the total number of k-vertices on the path π, then we obtain

E[ηk(π)] ≥ 1
2E[nk(π)] .(1)

Indeed, we have

E[ηk(π)] =
∑
v∈Vk

P[v ∈ π and |S(v)| ≥ �k
2 	]

and

E[nk(π)] =
∑
v∈Vk

P[v ∈ π] .
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The claim then follows from

P
[
|S(v)| ≥ � | out(v)|

2 	 | v ∈ π
]

≥ 1
2 .

Due to ϕ(v) > ϕ(w) > ϕ(v′) for all w ∈ S(v), the sets S(v) are pairwise disjoint.
Thus, exploiting the linearity of expectation, we obtain for the number length(π) of
vertices on π

E[length(π)] ≤ n−
d∑

k=0

E[ηk(π)]�k
2 	 ≤ n−

d∑
k=0

1
2�

k
2 	E[nk(π)],

where we used (1) for the second inequality. Clearly, we have E[length(π)] =∑d
k=0 E[nk(π)]. Therefore, we obtain (note 1

2�
k
2 	 ≥

k−1
4 )

E[length(π)] ≤ min

{
d∑

k=0

E[nk(π)], n−
d∑

k=0

k−1
4 E[nk(π)]

}
.(2)

If hk denotes the total number of k-vertices in V , then we clearly have 0 ≤
E[nk(π)] ≤ hk. Thus, (2) yields

E[length(π)] ≤ max

{
min

{
d∑

k=0

xk, n−
d∑

k=0

k−1
4 xk

}
: 0 ≤ xk ≤ hk for all k

}
.(3)

In (3), the maximum must be attained by some x ∈ Rd+1 for which the minimum
is attained by both

∑
xk and n−

∑
k−1
4 xk. Indeed, if

∑
xk < n−

∑
k−1
4 xk, then due

to n =
∑

hk, not all xk can be at their respective upper bounds hk. Thus one of them
can be slightly increased in order to increase the minimum. If

∑
xk > n−

∑
k−1
4 xk,

then not all xk can be zero, since this would yield 0 > n. Therefore, one of them can
be decreased in order to increase the minimum. Thus we conclude

E[length(π)] ≤ max

{
d∑

k=0

xk :

d∑
k=0

k+3
4 xk = n, 0 ≤ xk ≤ hk for all k

}
.(4)

By weak linear programming duality and exploiting n =
∑d

k=0 hk once more, we
can derive from (4) the estimate

E[length(π)] ≤
d∑

k=0

hk · max{y, 1 − k−1
4 y}(5)

for every y ∈ R.
In the following discussion, we need two important results from the theory of

convex polytopes. The parameters hk are independent of the actual AUSO of the
polytope. The h-vector formed by them is a linear transformation of the f-vector of
the polytope, storing for each i the number of i-dimensional faces of the polytope.

The first classical result we need is the Dehn–Sommerville equations

hk = hd−k for all 0 ≤ k ≤ d(6)

(see [28, sect. 8.3]). The second one is the unimodality of the h-vector :

h0 ≤ h1 ≤ · · · ≤ h�d/2�.(7)
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The latter is equivalent to the nonnegativity of the g-vector, which is one of the hard
parts of the g-theorem for simplicial polytopes; see [28, sect. 8.6].

From (6) and (7) we can derive

n =

d∑
k=0

hk ≥
(
d− 8

√
d
)
h�4

√
d� ,

which yields (for d > 64)

h�4
√
d� ≤ n

d− 8
√
d
.(8)

Now we choose y := 1/
√
d in (5). We have

1√
d
≥ 1 − k − 1

4
√
d

⇔ k ≥ 4
√
d− 3 .

Thus, (5) gives

E[length(π)] ≤
�4

√
d−3�∑

k=0

hk

(
1 − k − 1

4
√
d

)
+

d∑
k=�4

√
d−3�+1

hk√
d
.(9)

By the unimodality of the h-vector and (8), the first sum in (9) can be estimated
by

4
√
d · h�4

√
d� ≤ 4n√

d− 8
≤ 12n√

d
, d ≥ 144 .

Clearly, the second sum in (9) is bounded by n/
√
d. The resulting total bound

of 13n/
√
d also holds for d < 144, because n is a trivial upper bound. Thus we have

proved the following result.
Theorem 1. The expected number of vertices visited by the Random-Edge simplex-

algorithm on a d-dimensional simple polytope with n ≥ d + 1 vertices, equipped with
an abstract (in particular, a linear) objective function is bounded by

13 · n√
d
.

A similar analysis reveals that the number of vertices that are visited when using
the Greatest-Decrease-rule is bounded by

C · n√
d

for some constant C. In each step, this rule selects the neighboring vertex with
smallest ϕ-value, thus skipping all other neighbors of the current vertex v.

For general simple polytopes, our analysis of the bound for Random-Edge stated
in (3) is essentially the best possible. This can be seen through the examples of duals
of stacked simplicial polytopes (see, e.g., [4]), which are simple d-polytopes with
n-vertices, h0 = hd = 1, and hk = n−2

d−1 for all 1 ≤ k ≤ d− 1.
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3. A bound for cubes. The core argument of the analysis presented in section 2
is the following: for every vertex on the Random-Edge path π with out-degree k, we
know that π in expectation skips k/2 vertices in the single step from v to its successor.
We then exploited the Dehn–Sommervile equations as well as the unimodality of the h-
vector in order to argue that many vertices on π must have large out-degree—unless π
is “short” anyway.

For the d-dimensional cube, we have much more information on the h-vector:
hk =

(
d
k

)
for every k. Thus, “most” vertices have out-degree roughly d/2 in the case

of cubes. We will exploit this stronger knowledge in a sharper analysis for cubes, which
relies on studying larger structures around vertices than just their out-neighbors. We
actually do the analysis for general polytopes and obtain a bound on the expected
path length in terms of two specific quantities. Later we bound these quantities for
the case of cubes.

3.1. The general approach. Within this subsection, let P be a d-dimensional
simple polytope with a set V of n-vertices, D = (V,A), an AUSO of P , ϕ : V → R
an abstract objective function inducing D, and s ∈ V a fixed vertex. We denote by
dist→(v, w) the length (number of arcs) of a shortest directed path from v to w. If
there is no such path, then dist→(v, w) is defined to be ∞.

Definition 1 (t-reach and k-good). Let t, k ∈ N and v ∈ V .
(1) We call

Rt(v) := {w ∈ V : dist→(v, w) ≤ t}

the t-reach of v. The boundary of Rt(v), denoted by ∂ Rt(v), is the set of
all w ∈ Rt(v) for which there is a directed (not necessarily shortest) path of
length precisely t from v to w.

(2) The t-reach Rt(v) is k-good if

| out(w)| ≥ k

holds for all w ∈ Rt(v) with dist→(v, w) ≤ t− 1.
(3) A vertex v is (t, k)-good if its t-reach is k-good. The set of all (t, k)-good

vertices is denoted by G(t, k).
If v is (t, k)-good for k > 0, the optimal vertex vopt may occur in the boundary

of Rt(v) but not in its interior. For t, k ∈ N, we define

g(t, k) := min{|∂ Rt(v)| : v ∈ G(t, k)} .

For every vertex v ∈ V and some t ∈ N, denote by the random variable wt(v) the
vertex that is reached by the Random-Edge simplex-algorithm, started at v, after t
steps. Let wt(v) := vopt in case the sink is reached before step t. Generalizing the
notion from section 2, we denote by

S̃t(v) := {u ∈ Rt(v) : ϕ(wt(v)) < ϕ(u)}

the set of vertices in Rt(v) left behind while walking from v to wt(v).
Lemma 1. For every t, k ∈ N with t ≥ 1 and v ∈ G(t, k), we have

P
[
|S̃t(v)| ≥ g(t,k)

2

]
≥ g(t, k)

2dt
.

Proof. Let ∂ Rt(v) = {u1, . . . , uq} with ϕ(u1) > · · · > ϕ(uq). Let i� be the random
variable for the index of wt(v) in ∂ Rt(v), i.e., wt(v) = ui� . Note that wt(v) ∈ ∂ Rt(v)
indeed (and so wt(v) �= vopt) since v is (t, k)-good.



184 BERND GÄRTNER AND VOLKER KAIBEL

Since the out-degree at every vertex is at most d, we have for every 1 ≤ i ≤ q

P[i� = i] ≥ 1

dt
.

Therefore,

P[i� > q/2] ≥ q

2dt

holds. Now i� > q/2 ≥ g(t, k)/2 implies that at least �g(t, k)/2	 vertices from ∂ Rt(v)
are left behind, and since v is left behind as well (we have t ≥ 1), we get |S̃t(v)| ≥
g(t, k)/2. The claim follows.

Now let us consider the path π followed by the Random-Edge simplex-algorithm
started at s and ending in vopt. For t, k ∈ N, t ≥ 1, we subdivide π into subpaths with
the property that every subpath has either length one and starts at a non-(t, k)-good
vertex or length t and starts at a (t, k)-good vertex (a long subpath).

Let nt,k(π) be the number of long subpaths in our subdivision. We denote the
pairs of start and end vertices of these long paths by (x1, y1), . . . , (xnt,k(π), ynt,k(π)).
Let

St(xi) := {u ∈ Rt(xi) : ϕ(yi) < ϕ(u)},

and define

ηt,k(π) :=
∣∣{i ∈ {1, . . . , nt,k(π)} : |St(xi)| ≥ g(t,k)

2

}∣∣
to be the number of those long subpaths which leave behind at least g(t,k)

2 vertices
from Rt(xi).

The distribution of St(xi) conditioned on the event that xi is the start vertex of
a long subpath in the partitioning of π equals the distribution of S̃t(xi). Thus, using
Lemma 1, we can deduce the following similarly to our derivation of (1):

E[ηt,k(π)] ≥ g(t, k)

2dt
E[nt,k(π)].(10)

Also here, the sets St(xi) (for 1 ≤ i ≤ nt,k(π)) are pairwise disjoint. Thus, for
each long subpath (consisting of t arcs) starting at some xi with |St(xi)| ≥ g(t, k)/2,
we can count at least g(t, k)/2 − t vertices that are not visited by π. Therefore, we
can conclude

E[length(π)] ≤ n−
( g(t,k)

2 − t
)
E[ηt,k(π)] .

Using (10) and defining

g̃(t, k) :=
( g(t,k)

2 − t
) g(t,k)

2dt ,

this yields

E[length(π)] ≤ n− g̃(t, k)E[nt,k(π)] .(11)

We assume that g̃(t, k) > 0—this will be satisfied by the values of t and k we use in
our application to cubes below.
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On the other hand, denote by

f(t, k) := |V \ G(t, k)|(12)

the total number of non-(t, k)-good vertices. From the definition of our path subdivi-
sion, we immediately obtain

E[length(π)] ≤ f(t, k) + t · E[nt,k(π)] .(13)

Adding up nonnegative multiples of (11) and (13) in such a way that E[nt,k(π)]
cancels out, one obtains the following bound:

E[length(π)] ≤ tn + g̃(t, k)(f(t, k))

g̃(t, k) + t
≤ t

g̃(t, k)
n + f(t, k).

Using the definition of g̃, this yields the following estimation.
Lemma 2. For t, k ∈ N with t ≥ 1, we have

E[length(π)] ≤ 4tdt

g(t, k)(g(t, k) − 2t)
n + f(t, k) .

A general way to bound the function f(t, k) is as follows.
Lemma 3. For t, k ∈ N, we have

f(t, k) ≤ dt − 1

d− 1
h<k ,

where h<k :=
∑k−1

j=0 hj is the number of vertices with out-degree less than k.
Proof. If v ∈ V \ G(t, k), then there is some w ∈ Rt−1(v) with | out(w)| < k. On

the other hand, each such w is contained in at most
∑t−1

i=0 d
i = dt−1

d−1 (t − 1)-reaches
since the undirected graph is d-regular. The claim follows.

The following describes a way of bounding the function g(t, k) by studying the
undirected graph of the polytope.

Definition 2 ((t, k)-neighborhood, γ(t, k)). Let t, k ∈ N.
(1) A subset N ⊂ V is called a (t, k)-neighborhood of v ∈ V if N = {v} in case

of t = 0 or, if t ≥ 1, there are k neighbors w1, . . . , wk of v in the graph of P
together with (t − 1, k)-neighborhoods N1, . . . , Nk of w1, . . . , wk, respectively,

such that N =
⋃k

i=1 Ni.
(2) We define γ(t, k) as the minimum cardinality of {w ∈ N : dist(v, w) = t},

taken over all v ∈ V and all (t, k)-neighborhoods of v. Here, dist(v, w) denotes
the graph-theoretical distance between v and w in the undirected graph of P .

If v is (t, k)-good, then it follows right from the definitions that the boundary
∂ Rt(v) of its t-reach contains a (t, k)-neighborhood N of v.

Lemma 4. For t, k ∈ N, we have

g(t, k) ≥ γ(t, k) .

3.2. Specialization to cubes. In order to obtain from Lemma 2 an explicit
bound for the expected number of vertices visited by the Random-Edge simplex-
algorithm on the d-cube, we will derive estimates on the functions f(·, ·) and γ(·, ·)
for the case of cubes.
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Lemma 5. For 0 < β < 1
2 , k(d) = �βd�, and t(d) = o( d

log d ), there is some
0 < α < 1 such that

f(t(d), k(d)) ≤ 2αd+o(d)

holds (where f is the function defined in (12) for the case of the d-cube).
Proof. For the d-cube, we have

h<k(d) =


βd�−1∑
i=0

(
d

i

)
= 2h(β)d+o(d) ,

where h(x) = x log 1
x + (1 − x) log 1

1−x is the binary entropy function (see, e.g., [10,

Chap. 9, Ex. 42]). By Lemma 3, this implies (with α := h(β) < 1 due to β < 1
2 )

f(t(d), k(d)) ≤ dt(d)2αd+o(d) ,

which proves the claim because of t(d) = o( d
log d ).

The final building block of our bound for the special case of cubes is the following.
Here, we denote by ab the product a(a− 1) . . . (a− b + 1) for a, b ∈ N.

Lemma 6. If the polytope P considered in section 3.1 is a d-cube, then the
following is true:

(1) For each t, k ∈ N with 1 ≤ t, k ≤ d, we have

γ(t, k) ≥ kt

t!
−

t−1∑
i=1

ki

ti

(
d− 1

t− i− 1

)
.(14)

(2) For all δ > δ′ > 0 there is some 0 < β < 1
2 such that

γ(t(d), k(d)) = Ω(2(1−δ) log2 d)

holds for t(d) = �(1 − δ′) log d� and k(d) = �βd�.
Proof. Let us prove (1) for each fixed k, by induction on t, where the case t = 1

holds due to γ(1, k) = k. Thus, let us consider the case t ≥ 2 and look at a (t, k)-
neighborhood of size γ(t, k).

We may assume that the vertex v and its neighbors w1, . . . , wk are v = 0 and wi =
ei (1 ≤ i ≤ k). For each i, the (t− 1, k)-neighborhood Ni of ei has at least γ(t− 1, k)
vertices w with dist(ei, w) = t − 1, by definition. All of them have distance t − 2
or t from 0 (note that in the cube case, dist is simply the Hamming distance). More
precisely, for all w ∈ Ni, we have

dist(0, w) = t− 2 ⇔ wi = 0,
dist(0, w) = t ⇔ wi = 1.

In total, there are only
(
d−1
t−2

)
vertices with dist(0, w) = t−2 and wi = 0, meaning

that ∣∣{w ∈ Ni : dist(0, w) = t}
∣∣ ≥ γ(t− 1, k) −

(
d− 1

t− 2

)
.

On the other hand, every vertex w with dist(0, w) = t has wi = 1 if w ∈ Ni.

Therefore, a vertex w ∈
⋃k

i=1 Ni counted for γ(t, k) is contained in at most t of the
neighborhoods N1, . . . , Nk. Thus, we conclude

γ(t, k) ≥
k
(
γ(t− 1, k) −

(
d−1
t−2

))
t

,
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and thus,

γ(t, k) ≥ k

t
γ(t− 1, k) −

k
(
d−1
t−2

)
t

.(15)

Using the induction hypothesis and (15) we derive

γ(t, k) ≥ k

t

(
kt−1

(t− 1)!
−

t−2∑
i=1

ki

(t− 1)
i

(
d− 1

t− i− 2

))
− k

t

(
d− 1

t− 2

)

=
kt

t!
−

t−2∑
i=1

ki+1

ti+1

(
d− 1

t− i− 2

)
− k0+1

t0+1

(
d− 1

t− 0 − 2

)

=
kt

t!
−

t−2∑
i=0

ki+1

ti+1

(
d− 1

t− i− 2

)
,

which, after an index shift in the sum, yields the claim.
In order to establish part (2), denote the ith summand of the sum in (14) by si.

We first show that (for t = t(d) and k = k(d) as specified in the statement of part (2))

s1 ≥ 2s2 ≥ · · · ≥ 2t−2st−1(16)

holds for large enough d. Indeed, this follows from

si
si+1

=
ki · ti+1 · (d− 1)

t−i−1 · (t− i− 2)!

ti · ki+1 · (t− i− 1)! · (d− 1)
t−i−2

=
t− i

t− i− 1
· d− t + i + 1

k

≥ 1 · 2 ,

where the last inequality holds for large enough d and for our special choices of t
and k.

We now choose some 0 < δ′′ < 1 with δ′′ < δ′ and define β := 2
1

δ′′−1 . In
particular, we have 0 ≤ β < 1

2 . Due to (16), s1 asymptotically dominates the sum of
the si, and it suffices to show

s1 ≤ o

(
k(d)t(d)

t(d)!

)
(17)

and

k(d)t(d)

t(d)!
≥ 2(1−δ) log2 d(18)

for large enough d.
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We prove (17) by the following estimation:

s1

k(d)t(d)

t(d)!

=
k(d) · (d− 1)

t(d)−2 · t(d)!
t(d) · (t(d) − 2)! · k(d)t(d)

≤
(

d

k(d)

)t(d)−2

· t(d)
k(d)

≤ β−(1−δ′) log d · O
(

log d

d

)

= d
1−δ′

1−δ′′ · O
(

log d

d

)
= o(1) ,

where the last equation follows from 1−δ′

1−δ′′ < 1.
We note that this estimate is the best possible in the following sense: if we set

t(d) = log1+θ d for any θ > 0, (17) does not hold anymore.
Finally, (18) holds due to the following chain of inequalities that is valid for large

enough d:

k(d)t(d)

t(d)!
≥

(
k(d)

t(d)

)t(d)

≥
(

βd

log d

)(1−δ′) log d

≥ 2(1−δ′) log2 d+(log β−log log d)(1−δ′) log d

≥ 2(1−δ) log2 d,

where the last inequality is due to δ′ < δ.
Now we can prove our main result. It shows that in comparison to algorithms

that may need to visit essentially all vertices (like, e.g., the simplex-algorithm with
Dantzig’s or Bland’s or the shadow vertex rule), Random-Edge achieves a super-
polynomial speed up (by a factor d(1−ε) log d) on cubes.

Theorem 2. For every ε > 0, the expected number of vertices visited by the
simplex-algorithm using the Random-Edge pivot rule on a d-dimensional cube,
equipped with an abstract (in particular, a linear) objective function, is bounded by

O(2d−(1−ε) log2 d) .

Proof. Let π be the (random) path for some arbitrary start vertex defined by
the Random-Edge simplex-algorithm on a d-cube equipped with an AUSO. Define
δ := ε

2 , choose some δ′ > 0 with δ′ < δ, and let 0 < β < 1
2 as in Lemma 6(2). Let

t(d) := �(1 − δ′) log d� and k(d) := �βd�.
By Lemma 2, we have

E[length(π)] ≤ 4t(d)dt(d)

g(t(d), k(d))(g(t(d), k(d)) − 2t(d))
2d + f(t(d), k(d)) .(19)

Lemmas 4 and 6(2) imply

g(t(d), k(d)) ≥ Ω(2(1−δ) log2 d) ,(20)
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which in particular yields t(d) = o(g(t(d), k(d)), and thus (by (19))

E[length(π)] = O

(
t(d) · dt(d)

g(t(d), k(d))2
· 2d

)
+ f(t(d), k(d)) .(21)

From Lemma 5, we know that there is some constant 0 < α < 1 with

f(t(d), k(d)) ≤ 2αd+o(d) .(22)

Combining (21), (20), and (22), we obtain

E[length(π)] = O(log d · 2(−1−δ′+2δ) log2 d · 2d) + 2αd+o(d)

= O(2d−(1−ε+δ′) log2 d+log log d)) + 2αd+o(d)

= O(2d−(1−ε) log2 d) ,

where we used δ = ε
2 in the second to last and δ′ > 0 in the last inequality. This

proves the claim.

4. Conclusion. Probably one can extend the methods we have used for analyz-
ing Random-Edge on cubes to other classes of polytopes (e.g., general products of
simplices). However, it seems to us that it would be more interesting to find a way of
sharpening our bounds by enhancing our approach with some new ideas. As mentioned
at the end of section 2, the analysis of our approach is sharp in the general setting.
We suspect that one cannot prove a subexponential bound for Random-Edge on
cubes with our methods. Therefore, it would be most interesting to find a way of
combining our kind of analysis with some other ideas.
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QUADRATICALLY MANY COLORFUL SIMPLICES∗

IMRE BÁRÁNY† AND JIŘÍ MATOUŠEK‡

Abstract. The colorful Carathéodory theorem asserts that if X1, X2, . . . , Xd+1 are sets in Rd,
each containing the origin 0 in its convex hull, then there exists a set S ⊆ X1 ∪ · · · ∪ Xd+1 with
|S ∩Xi| = 1 for all i = 1, 2, . . . , d+ 1 and 0 ∈ conv(S) (we call conv(S) a colorful covering simplex).
Deza et al. [Discrete Comput. Geom., 35 (2006), pp. 597–615] proved that if the Xi are in general
position with respect to 0 (consequently, each Xi has at least d + 1 points), then there are at least
2d colorful covering simplices, and they constructed an example with no more than d2 + 1 such
simplices. Under the same assumption, we show that there are at least 1

5
d(d + 1) colorful covering

simplices, thus determining the order of magnitude. A similar result was proved independently by
Stephen and Thomas [http://www.arxiv.org/abs/math.CO/0512400 (2005)]. We also obtain a lower
bound of 3d for d ≥ 3, which is better for small d and, in particular, together with a parity argument
it settles the case d = 3, where the minimum possible number of colorful covering simplices is 10.

Key words. colorful simplicial depth, colorful Carathéodory theorem, convex geometry
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1. Introduction. The following theorem, proved by the first author [1], has
found numerous applications (see [2], [3], and [5]).

Theorem 1.1 (colorful Carathéodory theorem). Let X1, X2, . . . , Xd+1 be finite
sets in Rd such that 0 ∈ conv(Xi) for all i = 1, 2, . . . , d + 1. Then there exists a
(d + 1)-point set S ⊆ X1 ∪ · · · ∪ Xd+1 with |Xi ∩ S| = 1 for each i and such that
0 ∈ conv(S).

If we imagine that the points of Xi have color i, then the theorem asserts the
existence of a colorful set S with 0 ∈ conv(S), where “colorful” means “containing all
colors.” We call the convex hull of such an S a colorful covering simplex.

We will assume throughout this paper that the sets Xi as in the colorful Cara-
théodory theorem are in general position with respect to 0, meaning that Xi ∩Xj = ∅
for i �= j and no k + 1 points of X = X1 ∪ · · · ∪Xd+1 lie in a common k-dimensional
linear subspace of Rd for all k = 0, 1, . . . , d−1. In this situation 0 ∈ conv(Xi) implies
|Xi| ≥ d + 1.

It was shown in [1] that if the Xi are as in the colorful Carathéodory theorem and
in general position with respect to 0, then there are actually at least d + 1 colorful
covering simplices. The minimum possible number of colorful covering simplices was
investigated by Deza et al. [4], who improved the lower bound to 2d; on the other
hand, they exhibited a configuration with only d2+1 colorful covering simplices. They
conjectured that this is actually the minimum possible number.

We prove that this is at least the correct order of magnitude.
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Theorem 1.2. Let X1, . . . , Xd+1 be sets in Rd in general position with respect
to 0, each containing 0 in its convex hull. Then there are at least 1

5d(d + 1) colorful
covering simplices.

We could get a constant little better than 1
5 , but since we have no reason to believe

that an optimal constant could be obtained by our approach, we prefer simplicity of
the numbers appearing in the proof.

Deza et al. [4] show that for d = 2 the smallest possible number of colorful
simplices is 5, and for d = 3 this number is either 8 or 10. The following theorem
shows that the number is 10.

Theorem 1.3. Under the assumptions of Theorem 1.2, the number of colorful
covering simplices is at least 3d if d ≥ 3. For d = 3, the smallest possible number of
colorful covering simplices equals 10.

After submitting this paper for publication, we learned that Tamon Stephen and
Hugh Thomas [6] independently established a result similar to Theorem 1.2, and
actually slightly stronger, with at least 	(d+2)2/4
 colorful covering simplices. Their
proof is considerably simpler than ours.

2. Preparations. From now on, we assume that X1, . . . , Xd+1 ⊂ Rd are (d+1)-
point sets in general position with respect to 0 and with 0 ∈ conv(Xi) for all i. We
may also assume that all points of X lie on the unit sphere Sd−1 (if not, we replace
X by its central projection on Sd−1, which affects neither the assumptions nor the
conclusions of our theorems).

Every d-point subset A ⊂ X generates the convex cone

pos(A) =

{∑
a∈A

taa : ta ≥ 0 for all a ∈ A

}
.

We let σ(A) = pos(A) ∩ Sd−1 be the corresponding spherical simplex spanned by A.
By the general position assumption, each such spherical simplex is contained in an
open hemisphere.

The set Xd+1, the points of the last color, will play a special role in our arguments.
We let Y = X \Xd+1 be the subset made of the first d colors, and we let P = −Xd+1

be the points antipodal to the last color class.
A transversal is any subset T ⊂ Y with |T ∩Xi| = 1 for all i = 1, 2, . . . , d, and a

partial transversal is any subset of a transversal. Let T d(Y ) denote the system of all
transversals of Y , and for Y ′ ⊆ Y , we let T d(Y ′) = {T ∈ T d(Y ) : T ⊆ Y ′}.

If a ∈ Sd−1 is a point and T ∈ T d(Y ), we say that T covers a if a ∈ σ(T ).
Similarly, if F ⊆ T d(Y ) is a system of transversals, we say that F covers a if at least
one S ∈ F covers A.

Colorful covering simplices, the objects of interest in Theorem 1.2, are in one-
to-one correspondence with ordered pairs (p, T ), where p ∈ P , T ∈ T d(Y ), and T
covers p. Indeed, for any such (p, T ), it is easily seen that T ∪ {−p} defines a colorful
covering simplex (and it is equally easy to see that the correspondence is bijective,
but we won’t actually need that). So we aim at bounding the number of such pairs
(p, T ) from below.

We will use the following stronger version of the colorful Carathéodory theo-
rem [1].

Theorem 2.1. Let X1, X2, . . . , Xd be finite sets in Rd such that 0 ∈ conv(Xi)
for all i = 1, 2, . . . , d and let x ∈ Rd be arbitrary. Then there exists a d-point set
S ⊆ X1 ∪ · · · ∪Xd with |Xi ∩ S| = 1 for each i and such that 0 ∈ conv(S ∪ {x}).



QUADRATICALLY MANY COLORFUL SIMPLICES 193

colors 1 2 d

exactly these transversals cover p0

Z

S

AS

Fig. 1. Illustration of Lemma 3.1.

This theorem clearly implies that the set of transversals T d(Y ) covers every point
of the unit sphere, and, in particular, it shows that the number of colorful simplices
is at least d + 1. We will actually apply the following consequence.

Corollary 2.2. For every point y ∈ Y there is p ∈ P and a transversal T ∈
T d(Y ) that contains y and covers p.

Proof. If y is in Xi, say, then apply Theorem 2.1 to the sets Xj , j �= i, and
to the point y. Then 0 ∈ conv(S ∪ {y}) for a suitable S. Setting x = S ∩ Xd+1,
T = S \ {x}∪ {y} is a transversal in T d(Y ). It is easy to see that T covers −x, which
is a point in P .

We will also use the following lemma, with an easy topological proof.

Lemma 2.3 (octahedron lemma; Deza et al. [4]). Let S, T be two disjoint trans-
versals, and let x be a point covered by S. If T d(S ∪ T ) doesn’t cover all of Sd−1,
then there exists T ′ ∈ T d(S ∪ T ), T ′ �= S, that also covers x.

3. Proof of Theorem 1.2. Let Y = X1 ∪ · · ·∪Xd and P = −Xd+1 be as in the
previous section. For every p ∈ P , let k(p) be the number of transversals T ∈ T d(Y )
that cover p. We thus want to bound K :=

∑
p∈P k(p) from below.

Let kmin = minp∈P k(p). If kmin ≥ 1
5 (d+ 1), then K ≥ |P | · 1

5 (d+ 1) > 1
5d(d+ 1),

and the conclusion of Theorem 1.2 holds. So from now on, we assume kmin < 1
5 (d+1).

We let p0 ∈ P be one of the points covered exactly kmin times by T d(Y ). Let
T0 ⊆ T d(Y ) consist of the kmin transversals covering p0, and let Z = Y \

⋃
T0 be

the points of Y not contained in any transversals of T0 (here we mean points that
are elements of the transversals, considered as finite sets, not points covered by the
transversals). Let Zi = Xi ∩ Z. Since |T0| ≤ 1

5 (d + 1), we have |Zi| ≥ 4
5 (d + 1) for

all i.

A key to producing many transversals that cover points of P is the following
lemma (also see Figure 1 for an illustration).

Lemma 3.1 (many associated transversals). Suppose that p ∈ P is a point covered
by fewer than 1

5d(d + 1) transversals of X, and let S ∈ T d(X) \ T0 be a transversal
that covers p but doesn’t cover p0. Let us denote by si the point of S of color i. Then
there is a color i ∈ {1, 2, . . . , d} and a subset AS ⊆ Zi∪{si} of at least 1

3 (d+1) points
such that for every a ∈ AS, the transversal Sa = (S \ {si}) ∪ {a} also covers p.

Proof. Let us set W = Z \S. For every transversal T ∈ T d(W ), we can apply the
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octahedron lemma (Lemma 2.3) to S and T with x = p. Indeed, no T ′ ∈ T d(S ∪ T )
can cover p0, since S /∈ T0 and T is disjoint from all transversals in T0. Hence we get
that there is T ′ ∈ T d(S ∪ T ) different from S and covering p.

For every T ∈ T d(W ) we fix one such T ′ (choosing arbitrarily if there are several
possibilities) and we put U(T ) = T ′ \ S.

Let us consider the set system U0 = {U(T ) : T ∈ T d(W )}. For U ∈ U0, let U
S

be the (unique) transversal T ′ with U = T ′ \ S. The following two properties of U0

are clear from the construction.
(U1) Every U ∈ U0 is a nonempty partial transversal of W such that U

S
covers p.

(U2) Every transversal T ∈ T d(W ) contains some U ∈ U0.
Now we will delete some sets from U0 so that we obtain a system U still satisfying

(U1) and (U2) but minimal with respect to (U2); that is,
(U3) for every U ∈ U there exists T ∈ T d(W ) (a “reason of existence” of U) that

contains U but no other set of U .
The deletion procedure works as follows. We begin with U0 as the current system.

If U is a set in the current system such that every T ∈ T d(W ) containing it also
contains some other set of the current system, we delete U , and we repeat this step
as long as we can. The resulting system U satisfies all of (U1)–(U3).

Each U ∈ U corresponds to the transversal U
S

covering p, so by the assumption
of the lemma we have | U| < 1

5d(d + 1).
In order to prove the lemma, it suffices to show that there is an i such that at

least 1
3 (d + 1) − 1 points in Wi = Xi ∩W form singleton sets in U . Indeed, then the

points of Wi covered by singletons in U plus the point si form the desired AS .
First we observe that for every i, we have either Wi ⊆

⋃
U or Wi ∩

⋃
U = ∅.

Indeed, let U ∈ U contain a point w ∈ Wi, and let T ⊇ U be a “reason of existence”
of U as in (U3) above. Then R = T \ {w} contains no set of U , and hence every
T ′ = R ∪ {w′} ∈ T d(W ), where w′ ∈ Wi, has to contain some U ′ ∈ U with w′ ∈ U ′.

Let I = {i ∈ {1, 2, . . . , d} : Wi ⊆
⋃
U} be the colors covered by U . Let Vi be the

part of Wi not covered by singleton sets of U , and let ni = |Vi|. It suffices to show that
ni ≤ 7

15 (d+ 1) for some i, since then at least |Wi| − |Vi| ≥ 4
5 (d+ 1)− 1− 7

15 (d+ 1) >
1
3 (d + 1) − 1 elements of Wi are covered by singletons as needed. So we assume
ni >

7
15 (d + 1) for all i ∈ I. (We note that this implies |I| ≥ 2, since for I = {i} all

of Wi is covered by singletons.)
There are M =

∏
i∈I ni transversals of V =

⋃
i∈I Vi (here the transversals have

|I| points and they cover only the colors in I). Any U ∈ U contained in V has at
least two elements (since all singletons have been removed), and hence the number of
transversals of V containing it is

M∏
i:U∩Vi �=∅ ni

<
M

( 7
15 (d + 1))2

.

Since every transversal of V contains some U ∈ U , we get | U| ≥ ( 7
15 (d + 1))2 ≥

1
5d(d + 1), contradicting the assumption | U| < 1

5d(d + 1). This finishes the proof of
Lemma 3.1.

Now we are ready to finish the proof of Theorem 1.2. For every point z ∈ Z,
Corollary 2.2 guarantees the existence of a transversal S = S(z) ∈ T d(X) that con-
tains z and covers some p = p(z) ∈ P . For each such S(z), we apply Lemma 3.1 (of
course, we may assume that no p ∈ P is covered by more than 1

5d(d+1) transversals,
since otherwise we are done). This yields the system of at least 1

3 (d+ 1) transversals
S(z)a, a ∈ AS(z), that all cover p and differ from S(z) in at most one point. Let
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Vi Vj

z1

zni

w1

wm

wnj

Fig. 2. The set system U(Vi, Vj ,m).

us denote this system by A(S(z)) and call it the system of associated transversals of
S(z).

Let us put S = {S(z) : z ∈ Z}, and let (S1, S2, . . . , St) be an enumeration of all
sets in S in some arbitrary order (each set occurs only once in the sequence, although
the same set may be obtained for many different z).

We observe that if |Si�Sj | > 2 (with � denoting the symmetric difference), then
A(Si) and A(Sj) have no transversal in common. Indeed, if both T ∈ A(Si) and
T ∈ A(Sj), then |T�Si| ≤ 1 and |T�Sj | ≤ 1, and hence |Si�Sj | ≤ 2. Moreover,
since all Si have the same size, |Si \ Sj | ≥ 2 implies |Si�Sj | > 2.

Let us call an index i ∈ {1, 2, . . . , t} a jump if |Si \ Sj | ≥ 2 for every j < i, and a
nonjump otherwise.

If i is a nonjump, then Si adds at most one point not covered by the union
⋃

j<i Sj .
For a jump, Si may add up to d points. If J denotes the number of jumps and N the
number of nonjumps, we have dJ +N ≥ |Z| ≥ 4

5d(d+ 1) (since the Si cover Z). Now
if N ≥ 1

5d(d+ 1), we are done since t ≥ N and each Si is a transversal covering some
point of P . Otherwise, we have J ≥ 3

5 (d+ 1). By the above observation, the systems
A(Si) for all jumps i are disjoint and each contains at least 1

3 (d + 1) transversals, so
altogether we have at least 3

5 (d+ 1) · 1
3 (d+ 1) > 1

5d(d+ 1) transversals. Theorem 1.2
is proved.

4. Proof of Theorem 1.3. We use the same notation as before. We begin with
a simple lemma about a set system. We let V1, . . . , Vd be disjoint finite sets, we set
ni = |Vi|, and we assume 1 ≤ n1 ≤ · · · ≤ nd. As before, T d(V ) denotes the set of
all transversals S of V = V1 ∪ · · · ∪ Vd; that is, S ⊂ V with |S ∩ Vi| = 1 for all i.
Finally, let U be a system of partial transversals of V satisfying conditions (U2)–(U3)
as in the proof of Lemma 3.1. (Condition (U1) is not relevant here, since there is no
p involved; it would only say that U is a system of partial transversals, which it is by
definition.)

One example of such a U consists of all the singletons of some Vi. We de-
note this system by U(Vi). Another example is the following (Figure 2): Writ-
ing Vi = {z1, . . . , zni} and Vj = {w1, . . . , wnj}, i �= j, and choosing an integer
m ∈ {1, 2, . . . , nj}, we set

U(Vi, Vj ,m) = {{z2}, . . . , {zni
}, {z1, w1}, . . . , {z1, wm}, {wm+1}, . . . , {wnj

}}.

We note that | U(Vi, Vj ,m)| = ni + nj − 1.
Lemma 4.1. Under the above conditions | U| ≥ n1, with equality if and only if

U = U(Vi) for some i with ni = n1. Moreover, if U contains no U(Vi), then | U| ≥
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n1 +n2 − 1 with equality if and only if U = U(Vi, Vj ,m) for some i, j with {ni, nj} =
{n1, n2} and some m (with a suitable numbering of the points of Vi and Vj).

Proof. The first statement follows easily from the fact that T d(V ) contains n1

disjoint transversals.

For the second statement we delete all singletons {v} from U , and with every
deleted {v} we also delete v from the ground set V . The remaining system U∗ satisfies
properties (U2) and (U3) on the remaining ground set V ∗

1 , . . . , V
∗
d , |V ∗

i | = n∗
i . No V ∗

i

is empty and the total number of transversals in T d(V ∗) is M =
∏

n∗
k. We also note

that each U ∈ U∗ has at least two elements.

We fix U ∈ U∗ with U = {z1, w1, . . . }, where z1 ∈ V ∗
i and w1 ∈ V ∗

j . Such a U is
contained in at most

M∏
k:U∩V ∗

k �=∅ n
∗
k

≤ M

n∗
in

∗
j

transversals. It follows that | U∗| ≥ minn∗
in

∗
j , where the minimum is taken over all

pairs i, j, i �= j. We observe that n∗
in

∗
j ≥ n∗

i + n∗
j − 1, with equality if and only if

n∗
i = 1 or n∗

j = 1. Adding back the deleted singletons, we get | U| ≥ mini �=j ni+nj−1,
and if equality holds, then either n∗

i = 1 or n∗
j = 1. It is not hard to check the precise

conditions for equality. We omit the details.

Now we can start the proof of Theorem 1.3. If kmin ≥ 3, then we even have
3(d + 1) colorful covering simplices. It follows from Theorem 2.1 that kmin > 0. So
we have kmin = 1 or kmin = 2, and we consider these two cases separately.

Case 1. kmin = 1. Let p0 ∈ P be a point covered by a single transversal S ∈
T d(Y ), and let p ∈ Sd−1 be a point not covered by S. We may assume that S =
{e1, . . . , ed}, with e1, . . . , ed the standard basis of Rd, because the problem is invariant
under nondegenerate linear transformations. So a coordinate system is introduced.
For a vector x ∈ Rd we write x[j] for its jth coordinate.

The octahedron lemma shows that, for every T ∈ T d(Y ) disjoint from S, the
set T d(S ∪ T ) contains a transversal, to be denoted by T ′, covering p. We write
U(T ) = T ′ \ S and we set U0 = {U(T ) : T ∈ T d(Z)}, where Z = Y \ S. Next we
take, in the same way as in the proof of Lemma 3.1, a minimal subsystem U ⊂ U0.
The new system U satisfies conditions (U1)–(U3). Lemma 4.1 implies that | U| ≥ d,
and so we have k(p) ≥ d whenever p is outside σ(S). Therefore, if k(p) = 1, then
p ∈ σ(S), or, in other words, if k(p) = 1, then p[i] > 0 for each i.

Note that the systems U0 and U depend on p and S, and so in case of need we
will write U = U(p, S).

Claim 4.2. If | U| = d, then p has one negative coordinate and d − 1 positive
coordinates.

Proof. Lemma 4.1 shows in this case that U = U(Zi) for some i. For simpler
notation we assume U = U(Z1), and Xi = {e1, z1, . . . , zd}.

We recall that σ(T ) denotes Sd−1 ∩ pos(T ). For T = {x1, . . . , xd} we will also
use σ(x1, . . . , xd) to denote σ(T ). Since U = U(Z1), we have p ∈ σ(zi, e2, . . . , ed) for
every i = 1, 2, . . . , d.

Let us suppose that p[1] > 0. Then, noticing that U = U(Z1) means p ∈
σ(zi, e2, . . . , ed) for every i = 1, 2, . . . , d, we get zi[1] > 0 for all i. Consequently,
X1 = {e1, z1, . . . , zd} lies in the halfspace {x ∈ Rd : x[1] > 0}, contradicting the
assumption 0 ∈ conv(X1). Since p[1] = 0 is impossible by the general position hy-
pothesis, we have p[1] < 0.
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A similar argument shows that p[j] > 0 for all j > 1. Indeed, if p[2] < 0 (say),
then p ∈ σ(zi, e2, . . . , ed) implies zi[2] < 0 for all i, and then X1 would lie in the
halfspace {x ∈ Rd : x[2] < 0}, which is again impossible.

We recall that k(p) denotes the number of transversals covering p. We want to
show that K =

∑
p∈P k(p) ≥ 3d.

Subcase 1a. k(p) > 1 for at least two p ∈ P . Then

K ≥ 2d + (d + 1 − 2) = 3d− 1.

So K ≥ 3d unless equality holds here. If equality holds, then there are exactly two
points in P with k(p) > 1, let us call them pd−1 and pd, and we have

| U(pd, S)| = | U(pd−1, S)| = d.

By Claim 4.2 both pd and pd−1 have one negative coordinate and d − 1 positive
coordinates. Since d ≥ 3, there is a coordinate j with both pd[j] > 0 and pd−1[j] > 0.
For all p ∈ P \ {pd−1, pd} we have k(p) = 1, which implies p ∈ σ(S) and thus all
coordinates of p are positive. Hence P lies completely in the halfspace x[j] > 0, and
this contradicts the assumption 0 ∈ conv(P ).

Subcase 1b. k(p) > 1 for exactly one p ∈ P , say, for pd ∈ P . Then all other
p ∈ P lie in σ(S), and 0 ∈ conv(P ) implies pd[j] < 0 for all j. Claim 4.2 shows that
| U(pd, S)| = d is impossible, and Lemma 4.1 yields that | U(pd, S)| ≥ 2d − 1. Thus
k(pd) ≥ 2d− 1 and

K ≥ (2d− 1) + d = 3d− 1.

So K ≥ 3d unless equality holds throughout: | U(pd, S)| = 2d − 1 and U(pd, S) is of
the type U(Vi, Vj ,m). For simpler notation we assume it is equal to U(V1, V2,m) with
X1 = {e1, z1, . . . , zd} and X2 = {e2, w1, . . . , wd}, and

U(pd, S) =
{
{z2}, . . . , {zni

}, {z1, w1}, . . . , {z1, wm}, {wm+1}, . . . , {wnj
}
}
.

Now pd ∈ σ(zi, e2, . . . , ed) implies zi[j] < 0 for all i, j. Next, σ(wi, e2, . . . , ed) contains
pd when i > m, showing that all coordinates of wi are negative. Further, z1[j] > 0
for all j > 1 since z1[j] < 0 for some j > 1 would imply that X1 lies in the halfspace
x[j] ≤ 0, and this would contradict 0 ∈ conv(X1), by the general position hypothesis.
Now pd ∈ σ(z1, wi, e3, . . . , ed) holds for i ≤ m, which yields wi[3] < 0 for all i ≤ m.
But then X2 lies in the halfspace x[3] ≤ 0, which is impossible.

So we have K ≥ 3d in Case 1.
Case 2. kmin = 2. Let p0 ∈ P be a point with k(p0) = 2. Thus p0 is covered by

exactly two transversals S1, S2 ∈ T d(Y ). We set Z = Y \(S1∪S2). To fix notation we
suppose p1, p2, . . . , p� ∈ σ(S1) ∩ σ(S2) and p�+1, . . . , pd /∈ σ(S1) ∩ σ(S2). We observe
that � < d, since otherwise P ⊂ σ(S1)∩σ(S2), which would contradict the assumption
0 ∈ conv(P ). For each pr ∈ P with r > � we construct the set systems U0(pr, S1) and
U0(pr, S2) and the minimal subsystems U(pr, S1) and U(pr, S2) (where we work with
Z = Y \ (S1 ∪ S2) in the construction, with |Zi| ≥ d− 1 for all i). Lemma 4.1 shows
that

k(pr) ≥ |U(pr, S1) ∪ U(pr, S2)| ≥ | U(pr, S1)| ≥ d− 1.

Thus

K ≥ 2� + (d− 1)(d− �) = d2 − (d + 1)� + 3� + 1.
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In the range � ∈ {0, 1, . . . , d−1}, the last expression is minimized for � = d−1, which
gives K ≥ d2 − (d + 1)(d− 1) + 3(d− 1) + 1 = 3d− 1.

So K ≥ 3d unless equality holds here, in which case � = d− 1, and | U(pd, S1)| =
d− 1 and U(pd, S1) = U(pd, S2). The last conditions imply that |S1 ∩S2| = d− 1 and
U(pd, S1) is the special system consisting of singletons from Lemma 4.1. As in Case 1,
we fix the coordinate system so that S1 = {e1, e2, . . . , ed}, and let S2 = {w, e2, . . . , ed}
and U(pd, S1) = {{z2} . . . , {zd}}, where X1 = {e1, w, z2, . . . , zd}. In this case, of
course, pr ∈ σ(S1) ∩ σ(S2) for all r < d.

If w[1] < 0, then all of σ(S2) would lie in the halfspace x[1] ≤ 0, while σ(S1) lies
in the halfspace x[1] > 0, and this contradicts p0 ∈ σ(S1) ∩ σ(S2). Hence w[1] > 0.

On the other hand, if all coordinates of w are positive, we have σ(S2) ⊂ σ(S1). So
by possibly interchanging the roles of S1 and S2, we can make sure that at least one
coordinate of w is negative. After renaming the coordinates suitably, we may assume
that w[2] < 0.

Now it is easy to show that K = 3d−1 is impossible. For each i ≥ 2, zi[2] < 0 must
hold since every coordinate of pd is negative and pd ∈ σ(zi, e2, . . . , ed) for each i ≥ 2.
But then X1 = {e1, w, z2, . . . , zd} lies in the halfspace x[2] ≤ 0, which contradicts the
assumption 0 ∈ conv(X1).

Remark. It is perhaps interesting to note that K ≥ 3d−1 is much easier to prove
than K ≥ 3d. In fact, K ≥ 3d does not hold when d = 2 and we had to use d > 2
during the proof.

Acknowledgment. We would like to thank the referees for thoughtful com-
ments.
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Abstract. We study lattice bases where the angle between any basis vector and the linear
subspace spanned by the other basis vectors is at least π

3
radians; we denote such bases as “nearly

orthogonal.” We show that a nearly orthogonal lattice basis always contains a shortest lattice vector.
Moreover, we prove that if the basis vector lengths are “nearly equal,” then the basis is the unique
nearly orthogonal lattice basis up to multiplication of basis vectors by ±1. We also study random
lattices generated by the columns of random matrices with n rows and m ≤ n columns. We show that
if m ≤ c n, with c ≈ 0.071, then the random matrix forms a nearly orthogonal basis for the random
lattice with high probability for large n and almost surely as n tends to infinity. Consequently, the
columns of such a random matrix contain the shortest vector in the random lattice. Finally, we
discuss an interesting JPEG image compression application where nearly orthogonal lattice bases
play an important role.
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1. Introduction. Lattices are regular arrangements of points in space that are
studied in numerous fields, including coding theory, number theory, and cryptography
[1, 15, 17, 21, 25]. Formally, a lattice L in R

n is the set of all linear integer combinations
of a finite set of vectors; that is, L = {u1b1 + u2b2 + · · · + umbm |ui ∈ Z} for some
b1, b2, . . . , bm in R

n. The set of vectors B = {b1, b2, . . . , bm} is said to span the lattice
L. An independent set of vectors that spans L is a basis of L. A lattice is said to be
m-dimensional (m-D) if a basis contains m vectors.

In this paper we study the properties of lattice bases whose vectors are “nearly
orthogonal” to one another. We define a basis to be θ-orthogonal if the angle between
any basis vector and the linear subspace spanned by the remaining basis vectors is
at least θ. A θ-orthogonal basis is deemed to be nearly orthogonal if θ is at least π

3
radians.

We derive two simple but appealing properties of nearly orthogonal lattice bases.
1. A π

3 -orthogonal basis always contains a shortest nonzero lattice vector.

2. If all vectors of a θ-orthogonal (θ > π
3 ) basis have lengths less than

√
3

sin θ+
√

3 cos θ

times the length of the shortest basis vector, then the basis is the unique π
3 -

orthogonal basis for the lattice (up to multiplication of basis vectors by ±1).
Gauss [13] proved the first property for two-dimensional (2-D) lattices. We prove
(generalizations of) the above properties for m-D lattices for arbitrary m.

We also study lattices generated by a set of random vectors; we focus on vectors
comprising Gaussian or Bernoulli (± 1√

n
) entries. The set of vectors and the generated
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lattice are henceforth referred to as a random basis and a random lattice, respectively.
Random bases and lattices find applications in coding [7] and cryptography [28]. We
prove an appealing property of random lattices.

If a random lattice L in R

n is generated by m ≤ c n (c ≈ 0.071) random
vectors, then the random vectors form a π

3 -orthogonal basis of L with high
probability at finite n and almost surely as n → ∞.

Consequently, the shortest vector in L is contained by the random basis with high
probability.

We also exploit properties of nearly orthogonal bases to solve an interesting digital
image processing problem. Digital color images are routinely subjected to compression
schemes such as the JPEG standard [26]. The various settings used during JPEG
compression of an image—termed as the image’s JPEG compression history—are
often discarded after decompression. For recompression of images which were earlier
in JPEG-compressed form, it is useful to estimate the discarded compression history
from their current representation. We call this problem JPEG compression history
estimation (CHEst). The JPEG compression step maps a color image into a set of
points contained in a collection of related lattices [23]. We show that the JPEG
CHEst problem can be solved by estimating the nearly orthogonal bases spanning
these lattices. Then, we invoke the derived properties of nearly orthogonal bases in a
heuristic to solve the JPEG CHEst problem [23].

Lattices that contain nearly orthogonal bases are somewhat special1 because there
exist lattices without any π

3 -orthogonal basis (see (4) for an example). Consequently,
the new properties of nearly orthogonal lattice bases in this paper cannot be exploited
in all lattice problems.

This paper is organized as follows. Section 2 provides some basic definitions and
well-known results about lattices. Section 3 formally states our results on nearly
orthogonal lattice bases, and section 4 furnishes the proofs for the results in section 3.
Section 5 identifies new properties of random lattices. Section 6 describes the role
of nearly orthogonal bases in solving the JPEG CHEst problem. Section 7 discusses
some limitations of our results and future research directions.

2. Lattices. Consider an m-D lattice L in R

n, m ≤ n. By an ordered basis for L,
we mean a basis with a certain ordering of the basis vectors. We represent an ordered
basis by an ordered set and also by a matrix whose columns define the basis vectors and
their ordering. We use the braces (., .) for ordered sets (for example, (b1, b2, . . . , bm))
and {., .} otherwise (for example, {b1, b2, . . . , bm}). For vectors u, v ∈ R

n, we use
both uT v (with T denoting matrix or vector transpose) and 〈u, v〉 to denote the inner
product of u and v. We denote the Euclidean norm of a vector v in R

n by ‖v‖.
Any two bases B1 and B2 of L are related (when treated as n ×m matrices) as

B1 = B2U , where U is a m × m unimodular matrix; that is, U is an integer matrix
with determinant equal to ±1.

The closest vector problem (CVP) and the shortest vector problem (SVP) are two
closely related fundamental lattice problems [1, 2, 10, 15]. Given a lattice L and an
input vector (not necessarily in L), CVP aims to find a vector in L that is closest (in
the Euclidean sense) to the input vector. Even finding approximate CVP solutions
is known to be NP-hard [10]. The SVP seeks a vector in L with the shortest (in
the Euclidean sense) nonzero length λ(L). The decision version of SVP is not known

1However, our random basis results suggest nearly orthogonal bases occur frequently in low-
dimensional lattices.
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to be NP-complete in the traditional sense, but SVP is NP-hard under randomized
reductions [2]. In fact, even finding approximately shortest vectors (to within any
constant factor) is NP-hard under randomized reductions [16, 20].

A shortest lattice vector is always contained by orthogonal bases. Hence, one
approach to finding short vectors in lattices is to obtain a basis that is close (in some
sense) to orthogonal and use the shortest vector in such a basis as an approximate
solution to the SVP. A commonly used measure to quantify the “orthogonality” of a
lattice basis {b1, b2, . . . , bm} is its orthogonality defect [17]:∏m

i=1 ‖bi‖
|det ([b1, b2, . . . , bm]) | ,

with det denoting the determinant. For rational lattices (lattices comprising rational
vectors), the Lovász basis reduction algorithm [17], often called the LLL algorithm,
obtains an LLL-reduced lattice basis in polynomial time. Such a basis has a small
orthogonality defect. There exist other notions of reduced bases due to Minkowski
and to Korkine and Zolotarev (KZ) [15]. Both Minkowski-reduced and KZ-reduced
bases contain the shortest lattice vector, but it is NP-hard to obtain such bases.

We choose to quantify a basis’s closeness to orthogonality in terms of the following
new measures.

• Weak θ-orthogonality: An ordered set of vectors (b1, b2, . . . , bm) is weakly
θ-orthogonal if for i = 2, 3, . . . ,m, the angle between bi and the subspace
spanned by {b1, b2, . . . , bi−1} lies in the range

[
θ, π

2

]
. That is,

cos−1

⎛
⎝ |〈bi,

∑i−1
j=1 αi bi〉|

‖bi‖
∥∥∥∑i−1

j=1 αi bi〉
∥∥∥
⎞
⎠ ≥ θ for all αj ∈ R with

∑
j

|αj | > 0.(1)

• θ-orthogonality: A set of vectors {b1, b2, . . . , bm} is θ-orthogonal if every or-
dering of the vectors yields a weakly θ-orthogonal set.

A (weakly) θ-orthogonal basis is one whose vectors are (weakly) θ-orthogonal. Babai
[4] proved that an n-D LLL-reduced basis is θ-orthogonal where sin θ = (

√
2/3)n; for

large n, this value of θ is very small. Thus the notion of an LLL-reduced basis is quite
different from that of a weakly π

3 -orthogonal basis.
We will encounter θ-orthogonal bases in random lattices in section 5 and weakly

θ-orthogonal bases (with θ ≥ π
3 ) in the JPEG CHEst application in section 6.

3. Nearly orthogonal bases: Results. This section formally states the two
properties of nearly orthogonal lattice bases that were identified in the introduction.
We also identify an additional property characterizing unimodular matrices that relate
two nearly orthogonal bases; this property is particularly useful for the JPEG CHEst
application.

Obviously, in an orthogonal lattice basis, the shortest basis vector is a shortest
lattice vector. More generally, given a lattice basis {b1, b2, . . . , bm}, let θi be the angle
between bi and the subspace spanned by the other basis vectors. Then

λ (L) ≥ min
i∈{1,2,...,m}

‖bi‖ sin θi.(2)

Therefore, a θ-orthogonal basis has a basis vector whose length is no more than

λ (L) / sin θ; if θ = π
3 , this bound becomes 2λ(L)√

3
. This shows that nearly orthogonal

lattice bases contain short vectors.
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Gauss proved that in R

2 every π
3 -orthogonal lattice basis indeed contains a short-

est lattice vector and provided a polynomial time algorithm to determine such a basis
in a rational lattice; see [32] for a nice description. We first show that Gauss’s shortest
lattice vector result can be extended to higher-dimensional lattices.

Theorem 1. Let B = (b1, b2, . . . , bm) be an ordered basis of a lattice L. If B is
weakly

(
π
3 + ε

)
-orthogonal for 0 ≤ ε ≤ π

6 , then a shortest vector in B is a shortest
nonzero vector in L. More generally,

min
j∈{1,2,...,m}

‖bj‖ ≤
∥∥∥∥∥

m∑
i=1

uibi

∥∥∥∥∥ for all ui ∈ Z with

m∑
i=1

|ui| ≥ 1,(3)

with equality possible only if ε = 0 or
∑m

i=1 |ui| = 1.
Corollary 1. If 0 < ε ≤ π

6 , then a weakly
(
π
3 + ε

)
-orthogonal basis contains

every shortest nonzero lattice vector (up to multiplication by ±1).
Theorem 1 asserts that a θ-orthogonal lattice basis is guaranteed to contain a

shortest lattice vector if θ ≥ π
3 . In fact, the bound π

3 is tight because, for any ε > 0,
there exist lattices where some θ-orthogonal basis, with θ = π

3 − ε, does not contain
the shortest lattice vector. For example, consider a lattice in R

2 defined by the basis
{b1, b2}, with ‖b1‖ = ‖b2‖ = 1, and the angle between them equal to π

3 − ε. Obviously
b2 − b1 has length less than 1.

For a rational lattice defined by some basis B1, a weakly π
3 -orthogonal basis

B2 = B1U , with U polynomially bounded in size, provides a polynomial-size certificate
for λ (L). However, we do not expect all rational lattices to have such bases because
this would imply that NP=co-NP, assuming SVP is NP-complete. For example, the
lattice L spanned by the basis

B =

⎡
⎢⎢⎢⎣

1 0 1
2

0 1 1
2

0 0 1√
2

⎤
⎥⎥⎥⎦(4)

does not have any weakly π
3 -orthogonal basis. It is not difficult to verify that [1 0 0]T

is a shortest lattice vector. Thus, λ(L) = 1. Now, assume that L possesses a weakly
π
3 -orthogonal basis B̃ = (b1, b2, b3). Let θ1 be the angle between b2 and b1, and let θ2

be the angle between b3 and the subspace spanned by b1 and b2. Since b1, b2, and b3
have length at least 1,

det(B̃) = ‖b1‖ ‖b2‖ ‖b3‖ | sin θ1| | sin θ2| ≥ sin2 π

3
=

3

4
.(5)

But det(B) = 1√
2
< det(B̃), which shows that the lattice L with basis B in (4) has no

weakly π
3 -orthogonal basis.

Our second observation describes the conditions under which a lattice contains
the unique (modulo permutations and sign changes) set of nearly orthogonal lattice
basis vectors.

Theorem 2. Let B = (b1, b2, . . . , bm) be a weakly θ-orthogonal basis for a lattice
L with θ > π

3 . For all i ∈ {1, 2, . . . ,m}, if

‖bi‖ < η(θ) min
j∈{1,2,...,m}

‖bj‖ ,(6)
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(0,0)

(1,1.5)

<60 deg90 deg

(0,0)

(1,2)

>60 deg90 deg

(a) (b)

Fig. 1. (a) The vectors comprising the lattice are denoted by circles. One of the lattice bases
comprises two orthogonal vectors of lengths 1 and 1.5. Since 1.5 < η(π

2
) =

√
3, the lattice possesses

no other basis such that the angle between its vectors is at least π
3

radians. (b) This lattice contains
at least two π

3
-orthogonal bases. One of the lattice bases comprises two orthogonal vectors of lengths

1 and 2. Here 2 > η(π
2
), and this basis is not the only π

3
-orthogonal basis.

with η(θ) =

√
3

sin θ +
√

3 cos θ
,(7)

then any π
3 -orthogonal basis comprises the vectors in B multiplied by ±1.

In other words, a nearly orthogonal basis is essentially unique when the lengths of
its basis vectors are nearly equal. For example, both Figures 1(a) and 1(b) illustrate
2-D lattices that can be spanned by orthogonal basis vectors. For the lattice in
Figure 1(a), the ratio of the lengths of the basis vectors is less than η

(
π
2

)
=

√
3.

Hence, there exists only one (modulo sign changes) basis such that the angle between
the vectors is greater than π

3 . In contrast, the lattice in Figure 1(b) contains many
distinct π

3 -orthogonal bases.
In the JPEG CHEst application [23], the target three-dimensional (3-D) lattice

bases in R

3 are known to be weakly
(
π
3 + ε

)
-orthogonal but not

(
π
3 + ε

)
-orthogonal.

Theorem 2 addresses the uniqueness of π
3 -orthogonal bases but not weakly π

3 -orthogonal
bases. To estimate the target lattice basis, we need to understand how different weakly
orthogonal bases are related. The following theorem guarantees that for 3-D lattices
a weakly

(
π
3 + ε

)
-orthogonal basis with nearly equal-length basis vectors is related to

every weakly orthogonal basis by a unimodular matrix with small entries.
Theorem 3. Let B = (b1, b2, . . . , bm) and B̃ be two weakly θ-orthogonal bases for

a lattice L, where θ > π
3 . Let U = (uij) be a unimodular matrix such that B = B̃U .

Define

κ (B) =

(
2√
3

)m−1

×
maxi∈{1,2,...,m} ‖bi‖
mini∈{1,2,...,m} ‖bi‖

.(8)

Then, |uij | ≤ κ (B) for all i and j.

For example, if B is a weakly θ-orthogonal basis of a 3-D lattice with
maxi∈{1,2,3}‖bi‖
mini∈{1,2,3}‖bi‖ <

1.5, then the entries of the unimodular matrix relating another weakly θ-orthogonal
basis B̃ to B are either 0 or ±1.

4. Nearly orthogonal bases: Proofs.

4.1. Proof of Theorem 1. We first prove Theorem 1 for 2-D lattices (Gauss’s
result) and then tackle the proof for higher-dimensional lattices via induction.
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4.1.1. Proof for 2-D lattices. Consider a 2-D lattice with a basis B = {b1, b2}
satisfying the conditions of Theorem 1. Let θ′ denote the angle between b1 and b2.
Since π

3 ≤ θ′ ≤ π
2 by assumption,

|〈b1, b2〉| = ‖b1‖ ‖b2‖ cos θ′ ≤ ‖b1‖ ‖b2‖
2

.(9)

The squared-length of any nonzero lattice vector v = u1b1 +u2b2, with u1, u2 ∈ Z and
|u1| + |u2| > 0, equals

‖v‖2 = |u1|2‖b1‖2 + |u2|2‖b2‖2 + 2u1u2〈b1, b2〉

≥ |u1|2‖b1‖2 + |u2|2‖b2‖2 − 2|u1||u2||〈b1, b2〉|

≥ |u1|2‖b1‖2 + |u2|2‖b2‖2 − |u1||u2|‖b1‖ ‖b2‖ (using (9))

= (|u1|‖b1‖ − |u2|‖b2‖)2 + |u1||u2|‖b1‖ ‖b2‖(10)

≥ min
(
‖b1‖2, ‖b2‖2

)
,

with equality possible only if either |u1|+ |u2| = 1 or θ′ = π
3 . This proves Theorem 1

for 2-D lattices.

4.1.2. Proof for higher-dimensional lattices. Let k > 2 be an integer, and
assume that Theorem 1 is true for every (k − 1)-D lattice. Consider a k-D lattice
L spanned by a weakly

(
π
3 + ε

)
-orthogonal basis (b1, b2, . . . , bk), with ε ≥ 0. Any

nonzero vector in L can be written as
∑k

i=1 ui bi for integers ui, where ui �= 0 for

some i ∈ {1, 2, . . . , k}. If uk = 0, then
∑k

i=1 ui bi is contained in the (k − 1)-D lattice
spanned by the weakly

(
π
3 + ε

)
-orthogonal basis (b1, b2, . . . , bk−1). For uk = 0, by the

induction hypothesis, we have∥∥∥∥∥
k∑

i=1

ui bi

∥∥∥∥∥ =

∥∥∥∥∥
k−1∑
i=1

ui bi

∥∥∥∥∥ ≥ min
j∈{1,2,...,k−1}

‖bj‖ ≥ min
j∈{1,2,...,k}

‖bj‖ .

If ε > 0, then the first inequality in the above expression can hold as an equality only
if
∑k−1

i=1 |ui| = 1. If uk �= 0 and ui = 0 for i = 1, 2, . . . , k − 1, then again∥∥∥∥∥
k∑

i=1

ui bi

∥∥∥∥∥ ≥ ‖bk‖ ≥ min
j∈{1,2,...,k}

‖bj‖ .

Again, it is necessary that |uk| = 1 for the equality to hold above.

Assume that uk �= 0 and ui �= 0 for some i ∈ {1, 2, . . . , k − 1}. Now
∑k

i=1 ui bi is

contained in the 2-D lattice spanned by the vectors
∑k−1

i=1 ui bi and ukbk. Since the or-
dered set (b1, b2, . . . , bk) is weakly

(
π
3 + ε

)
-orthogonal, the angle between the nonzero

vectors
∑k−1

i=1 ui bi and ukbk lies in the interval
[
π
3 + ε, π

2

]
. Invoking Theorem 1 for

2-D lattices, we have∥∥∥∥∥
k∑

i=1

ui bi

∥∥∥∥∥ ≥ min

(∥∥∥∥∥
k−1∑
i=1

ui bi

∥∥∥∥∥ , ‖ukbk‖
)

≥ min

(
min

j∈{1,2,...,k−1}
‖bj‖ , ‖ukbk‖

)
≥ min

j∈{1,2,...,k}
‖bj‖ .(11)
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Thus, the set of basis vectors {b1, b2, . . . , bk} contains a shortest nonzero vector in the
k-D lattice. Also, if ε > 0, then equality is not possible in (11), and the second part
of the theorem follows.

4.2. Proof of Theorem 2. Similar to the proof of Theorem 1, we first prove
Theorem 2 for 2-D lattices and then prove the general case by induction.

4.2.1. Proof for 2-D lattices. Consider a 2-D lattice in R

n with basis vectors
b1 and b2 such that the basis {b1, b2} is weakly θ-orthogonal with θ > π

3 . Note that
for 2-D lattices, weak θ-orthogonality is the same as θ-orthogonality. Without loss of
generality (w.l.o.g.), we can assume that 1 = ‖b1‖ ≤ ‖b2‖. Further, by rotating the
2-D lattice, the basis vectors can be expressed as the columns of the n× 2 matrix

⎡
⎢⎢⎢⎢⎢⎣

1 b21
0 b22
0 0
...

...
0 0

⎤
⎥⎥⎥⎥⎥⎦ .

Let θ′ ∈
[
θ, π

2

]
denote the angle between b1 and b2. Clearly,

cos θ′ =
|b21|
‖b2‖

and sin θ′ =
|b22|
‖b2‖

.

Since (6) holds by assumption,

‖b2‖ <

√
3‖b1‖

sin θ +
√

3 cos θ
≤

√
3‖b1‖

sin θ′ +
√

3 cos θ′
=

√
3

|b22|
‖b2‖ +

√
3 |b21|
‖b2‖

,

where we have used the fact that η(θ) is a nondecreasing function of θ for θ ∈
[
π
3 ,

π
2

]
.

Therefore,

|b22| <
√

3(1 − |b21|).(12)

Let {b̃1, b̃2} denote another π
3 -orthogonal basis for the same 2-D lattice. Using

Theorem 1 and Corollary 1, we infer that {b1, b2} contains every shortest lattice vector

(multiplied by ±1) and {b1, b2} and
{
b̃1, b̃2

}
contain a common shortest lattice vector.

Assume w.l.o.g. that b̃1 = ±b1 is a shortest lattice vector. Then, we can write

[
b̃1 b̃2

]
=
[
b1 b2

] [±1 u
0 ±1

]
with u ∈ Z.

To prove Theorem 2, we need to show that u = 0.
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Let θ̃ denote the angle between b̃1 and ±b̃2. Then,

cos2 θ̃ =

∣∣∣〈̃b1, b̃2〉∣∣∣2∥∥∥b̃1∥∥∥2 ∥∥∥b̃2∥∥∥2
=

(u± b21)
2

(u± b21)2 + b222

>
(u± b21)

2

(u± b21)2 + 3(1 − |b21|)2
(using (12))

=
1

1 + 3(1−|b21|)2
(u±b21)2

.(13)

If u �= 0, then

|u± b21| ≥ |u| − |b21| ≥ 1 − |b21| ≥ 0 (from (12)).

Hence,

|u± b21|2 ≥ (1 − |b21|)2.

Therefore, from (13) we have

cos2 θ̃ >
1

4
,(14)

which holds if and only if θ̃ < π
3 . Thus, {b̃1, b̃2} can be π

3 -orthogonal only if u = 0.
This proves Theorem 2 for 2-D lattices.

4.2.2. Proof for higher-dimensional lattices. Let B and B̃ be two n × k
matrices defining bases of the same k-D lattice in R

n. We can write B = B̃ U for
some integer unimodular matrix U = (uij). Using induction on k, we will show that
if B is weakly θ-orthogonal with π

3 < θ ≤ π
2 , if the columns of B satisfy (6), and

if B̃ is π
3 -orthogonal, then B̃ can be obtained by permuting the columns of B and

multiplying them by ±1. Equivalently, we will show every column of U has exactly
one component equal to ±1 and all others equal to 0 (we call such a matrix a signed
permutation matrix).

Assume that Theorem 2 holds for all (k−1)-D lattices with k > 2. Let b1, b2, . . . , bk
denote the columns of B, and let b̃1, b̃2, . . . , b̃k denote the columns of B̃. Since per-
muting the columns of B̃ does not destroy π

3 -orthogonality, we can assume w.l.o.g.

that b̃1 is B̃’s shortest vector. From Theorem 1, b̃1 is also a shortest lattice vector.
Further, using Corollary 1, ±b̃1 is contained in B. Assume that b� = ±b̃1 for some
	 ∈ {1, 2, . . . , k}. Then

B = B̃

⎡
⎢⎢⎢⎢⎣
u11 . . . u1�−1 ±1 u1�+1 . . . u1k

...
U ′

1 0 U ′
2

...

⎤
⎥⎥⎥⎥⎦ .(15)

Above, U ′
1 is a (k−1)× (	−1) submatrix, where as U ′

2 is a (k−1)× (k−	) submatrix.



NEARLY ORTHOGONAL LATTICE BASES 207

We will show that u1j = 0 for all j ∈ {1, 2, . . . , k} with j �= 	. Define

Br =
[
b� bj

]
, B̃r =

[
b̃1
∑k

i=2 uij b̃i

]
.(16)

Then, from (15) and (16),

Br = B̃r

[
±1 u1j

0 1

]
.

Since Br and B̃r are related by a unimodular matrix, they both define bases of the
same 2-D lattice. Further, Br is weakly θ-orthogonal with ||bj || < η(θ)||b�||, and B̃r

is π
3 -orthogonal. Invoking Theorem 2 for 2-D lattices, we can infer that u1j = 0. It

remains to be shown that U ′ = [U ′
1 U ′

2] is also a signed permutation matrix, where

B′ = B̃′U ′,

with B′ = [b1, b2, . . . , b�−1, b�+1, . . . , bk] and B̃′ =
[
b̃2, b̃3, . . . , b̃k

]
. Observe that

det(U ′) = det(U) = ±1. Both B′ and B̃′ are bases of the same (k − 1)-D lattice

as U ′ is unimodular. B̃′ is π
3 -orthogonal, whereas B′ is weakly θ-orthogonal, and its

columns satisfy (6). By the induction hypothesis, U ′ is a signed permutation matrix.
Therefore, U is also a signed permutation matrix.

4.3. Proof of Theorem 3. Theorem 3 is a direct consequence of the following
lemma.

Lemma 1. Let B = (b1, b2, . . . , bm) be a weakly θ-orthogonal basis of a lattice,
where θ > π

3 . Then, for any integers u1, u2, . . . , um,

∥∥∥∥∥
m∑
i=1

uibi

∥∥∥∥∥ ≥
(√

3

2

)m−1

× max
i∈{1,2,...,m}

‖uibi‖ .(17)

Lemma 1 can be proved as follows. Consider the vectors b1 and b2; the angle θ
between them lies in the interval

(
π
3 ,

π
2

)
. Recall from (10) that

‖u1b1 + u2b2‖2 ≥ (|u1| ‖b1‖ − |u2| ‖b2‖)2 + |u1||u2|‖b1‖‖b2‖.

Consider the expression (y − x)
2

+ yx with 0 ≤ x ≤ y. For fixed y this expression
attains its minimum value of

(
3
4

)
y2 when x = y

2 . By setting y = |u1| ‖b1‖ and
x = |u2| ‖b2‖ w.l.o.g, we can infer that

‖u1b1 + u2b2‖ ≥
√

3

2
max

i∈{1,2}
‖uibi‖.

Since B is weakly θ-orthogonal, the angle between ukbk and
∑k−1

i=1 uibi lies in the
interval

(
π
3 ,

π
2

)
for k = 2, 3, . . . ,m. Hence (17) follows by induction.

We now proceed to prove Theorem 3 by invoking Lemma 1. First, we define Δ =
(
√

3/2)m−1. For any j ∈ {1, 2, . . . ,m}, we have

‖bj‖ =

∥∥∥∥∥
m∑
i=1

uij b̃i

∥∥∥∥∥ ≥ Δ max
i∈{1,2,...,m}

∥∥∥uij b̃i

∥∥∥ ≥ Δ min
i∈{1,2,...,m}

‖b̃i‖ max
i∈{1,2,...,m}

|uij |.
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Since B and B̃ are both weakly θ-orthogonal with θ > π
3 , mini∈{1,2,...,m} ‖b̃i‖ =

mini∈{1,2,...,m} ‖bi‖. Therefore,

Δ max
i∈{1,2,...,m}

|uij | ≤
‖bj‖

mini∈{1,2,...,m} ‖b̃i‖
≤

maxi∈{1,2,...,m} ‖bi‖
mini∈{1,2,...,m} ‖bi‖

= Δκ (B) .

Thus, |uij | ≤ κ (B) for all i and j.

5. Random lattices and SVP. In several applications, the orthogonality of
random lattice bases and the length of the shortest vector λ(L) in a random lattice L
play an important role. For example, in certain wireless communications applications
involving multiple transmitters and receivers, the received message ideally lies on a
lattice spanned by a random basis [7]. The random basis models the fluctuations in the
communication channel between each transmitter-receiver pair. Due to the presence
of noise, the ideal received message is retrieved by solving a CVP. The complexity
of this problem is controlled by the orthogonality of the random basis [1]. Random
bases are also employed to perform error correction coding [28] and in cryptography
[28]. The level of achievable error correction is controlled by the shortest vector in
the lattice.

In this section, we determine the θ-orthogonality of random bases. This result
immediately lets us identify conditions under which a random basis contains (with
high probability) the shortest lattice vector.

Before describing our results on random lattices and bases, we first review some
known properties of random lattices and then list some powerful results from random
matrix theory.

5.1. Known properties of random lattices. Consider an m-D lattice gener-
ated by a random basis with each of the m basis vectors chosen independently and
uniformly from the unit ball in R

n (n ≥ m).2 With m fixed and with n → ∞, the
probability that the random basis is Minkowski-reduced tends to 1 [11]. Thus, as
n → ∞, the random basis contains a shortest vector in the lattice almost surely.
Recently, [3] proved that, as n − m → ∞, the probability that a random basis is
LLL-reduced → 1. Further, [3] also showed that a random basis is LLL-reduced with
nonzero probability when n−m is fixed with n → ∞.

5.2. Known properties of random matrices. Random matrix theory, a rich
field with many applications [6, 12], has witnessed several significant developments
over the past few decades [12, 18, 19, 30]. We will invoke some of these results to
derive some new properties of random bases and lattices; the paper [6] provides an
excellent summary of the results we mention below.

Consider an n ×m matrix B with each element of B an independent identically
distributed random variable. If the variables are zero-mean Gaussian distributed with
variance 1

n , then we refer to such a B as a Gaussian random basis. If the variables
take on values in {− 1√

n
, 1√

n
} with equal probability, then we term B to be a Bernoulli

random basis. We say that B is a scaled Gaussian (Bernoulli) basis if it is obtained
by scaling the columns of a Gaussian (Bernoulli) basis arbitrarily.

Gaussian and Bernoulli random bases enjoy the following properties. Below, ψ2
i ,

i = 1, 2, . . . ,m, denote the eigenvalues of BTB.

2The m vectors form a basis because they are linearly independent almost surely.
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1. For both Gaussian and Bernoulli B, BTB’s smallest and largest eigenvalues,
ψ2

min and ψ2
max, converge almost surely to (1−

√
c)2 and (1+

√
c)2, respectively,

as n,m → ∞ and m
n → c < 1 [6, 12, 30].

2. Let ε > 0 be given. Then, there exists an Nε such that, for every n > Nε and
r > 0,

P

(
|ψmin| ≤

(
1 −
√

m

n

)
− (r + ε)

)
≤ e−

nr2

ρ ,(18)

P

(
|ψmax| ≥

(
1 +

√
m

n

)
+ (r + ε)

)
≤ e−

nr2

ρ ,(19)

with ρ = 2 for Gaussian B and ρ = 16 for Bernoulli B [6, 18].
In essence, a random matrix’s largest and smallest singular values converge, respec-
tively, to 1±

√
m
n almost surely as n,m → ∞ and lie close to 1±

√
m
n with very high

probability at finite (but sufficiently large) n.

5.3. New results on random lattices. We now formally state the new prop-
erties of random lattices mentioned in the introduction plus several additional corol-
laries. Our proofs assume that the lattices are generated by Gaussian or Bernoulli
random bases (whose column vectors are essentially unit-length). However, our results
easily extend to lattices generated by Gaussian or Bernoulli random bases because
the θ-orthogonality of a basis does not change upon scaling the basis vectors.

The key step in proving our results is to relate the condition number of a random
basis to its θ-orthogonality (see Lemma 2). A matrix’s condition number is defined
as the ratio of the largest to the smallest singular value. Then we invoke the results
in section 5.2 to quantify the θ-orthogonality of random bases. Finally we invoke
previously deduced properties of nearly orthogonal lattice bases.

We wish to emphasize that we prove our statements only for lattices which are
not full-dimensional. Our computational results suggest these statements are not
true for full-dimensional lattices. Further, Sorkin [31] proves that, with high proba-
bility, Gaussian random matrices are not nearly orthogonal when m > n/4. See the
paragraph after Corollary 3 for more details.

Lemma 2. Consider an arbitrary n×m real-valued matrix B, with m ≤ n, whose
largest and smallest singular values are denoted by ψmax and ψmin, respectively. Then
the columns of B are θ-orthogonal with

θ = sin−1

(
2ψmax ψmin

ψ2
min + ψ2

max

)
.(20)

The proof is given in section 5.4. The value of θ in (20) is the best possible in
the sense that there is a 2× 2 matrix B with singular values ψmin and ψmax such that
the angle between the two columns of B is given by (20). Note that for large ψmin

ψmax

(that is, for a small condition number), the θ in (20) is close to π
2 . Thus, Lemma 2

quantifies our intuition that a matrix with a small condition number should be nearly
orthogonal.

By combining Lemma 2 with the properties of random matrices listed in sec-
tion 5.2, we can immediately deduce the θ-orthogonality of an n ×m random basis.
See section 5.4.2 for the proof.
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Theorem 4. Let B denote an n × m Gaussian or Bernoulli random basis. If
m ≤ cn, 0 ≤ c < 1, then as n → ∞, B is θ-orthogonal almost surely with

θ = sin−1

(
1 − c

1 + c

)
.(21)

Further, given an ε > 0, there exists an Nε such that, for every n > Nε and r > 0, B
is θ-orthogonal,

θ = sin−1

(
1 − c

1 + c
− 3

√
3

4
(r + ε)

)
,(22)

with probability greater than 1 − 2e−
nr2

ρ , where ρ = 2 for Gaussian B and ρ = 16 for
Bernoulli B.

The value of θ in (21) is not the best possible in the sense that, for a given value
of c, a random n × m Gaussian matrix with m ≤ c n would be θ′-orthogonal (with
high probability) for some θ′ > θ (see Figure 2). The reason is that the θ predicted
by Lemma 2 is satisfied by all matrices. However, Theorem 4 is restricted to random
matrices.

Theorem 4 allows us to bound the length of the shortest nonzero vector in a
random lattice.

Corollary 2. Let the n × m matrix B = (b1, b2, . . . , bm), with m ≤ cn and
0 ≤ c < 1, denote a Gaussian or Bernoulli random basis for a lattice L. Then the
shortest vector’s length λ(L) satisfies

λ (L) ≥ 1 − c

1 + c

almost surely as n → ∞.
Each column of a Bernoulli B is unit-length by construction. For Gaussian B, it

is not difficult to show that all columns have length 1 almost surely as n → ∞. Hence
Corollary 2 is an immediate consequence of Theorem 4 and (2). Corollary 2 implies
that, in random lattices that are not full-dimensional, it is easy to obtain approximate
solutions to the SVP (within a constant factor). This is because for random lattices
in R

n with dimension n(1− ε), λ(L) is greater than ε times the length of the shortest
basis vector (approximately). Compare this with Daudé’s and Vallée’s [9] result that
in random full-dimensional lattices in R

n, λ(L) is at least O(1/
√
n) times the length

of the shortest basis vector with high probability.
By substituting θ = π

3 into Theorem 4 and then invoking Corollary 1, we can
deduce sufficient conditions for a random basis to be π

3 -orthogonal.
Corollary 3. Let the n×m matrix B denote a Gaussian or Bernoulli random

basis for lattice L. If m
n ≤ c <

(
7 −

√
48
)

(≈ 0.071), then B is π
3 -orthogonal almost

surely as n → ∞. Further, given an ε > 0, there exists an Nε such that, for every

n > Nε and 4(1−c)

3
√

3(1+c)
− ε− 2

3 > r > 0, B is π
3 -orthogonal with probability greater than

1 − 2e−nr2/ρ, where ρ = 2 for Gaussian B and ρ = 16 for Bernoulli B.
Figure 2 illustrates that, in practice, an n × m Gaussian and Bernoulli random

matrix is nearly orthogonal for much larger values of m
n than our results claim. Our

plots suggest that the probability for a random basis to be nearly orthogonal sharply
transitions from 1 to 0 for m

n values in the interval [0.2, 0.25]. Sorkin [31] has shown
us that if the columns of B represent points chosen uniformly from the unit sphere in
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Fig. 2. Empirical probability that a n × m Gaussian or Bernoulli random matrix is π
3
-

orthogonal. At n = 256, 512, 1024, and 2048 and at m indicated by circles (for Gaussian) and
triangles (for Bernoulli), we tested 200 randomly generated matrices. The empirical probability is
the fraction of random matrices that were π

3
-orthogonal.

R

n (one can obtain such points by dividing the columns of a Gaussian matrix by their
norms), then the best possible m

n value for random n×m matrices to be π
3 -orthogonal

is m
n = 0.25. Further, if m/n > 0.25, B is almost surely not π

3 -orthogonal as n → ∞.
For large n, the columns of a Gaussian matrix almost surely have length 1 and thus
behave like points chosen uniformly from the unit sphere in R

n. Therefore, as n → ∞,
random n× n/4 Gaussian matrices are almost surely π

3 -orthogonal.

5.4. Proof of results on random lattices. This section provides the proofs
for Lemma 2 and Theorem 4.

5.4.1. Proof of Lemma 2. Our goal is to construct a lower-bound for the angle
between any column of B and the subspace spanned by all the other columns in terms
of the singular values of B. Clearly, if ψmin = 0, then the columns of B are linearly
dependent. Hence, (20) holds as B’s columns are θ-orthogonal with θ = 0. For the
rest of the proof, we will assume that ψmin �= 0.
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Consider the SVD of B:

B = XΨY,(23)

where X and Y are n×m and m×m real-valued matrices, respectively, with orthonor-
mal columns and Ψ is a m×m real-valued diagonal matrix. Let bi and xi denote the
ith column of B and X , respectively, let yij denote the element from the ith row and
jth column of Y, and let ψi denote the ith diagonal element of Ψ. Then, (23) can be
rewritten as

[
b1 b2 . . . bm

]
=
[
x1 x2 . . . xm

]
⎡
⎢⎢⎢⎣
ψ1 0 . . . 0
0 ψ2 . . . 0
...

. . .
...

0 . . . . . . ψm

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
y11 y12 . . . y1m

y21 y22 . . . y2m

...
. . .

...
ym1 . . . . . . ymm

⎤
⎥⎥⎥⎦.

We now analyze the angle between b1 (w.l.o.g) and the subspace spanned by
{b2, b3, . . . , bm}. Note that

b1 =

m∑
i=1

ψi yi1 xi.

Let b̃1 denote an arbitrary nonzero vector in the subspace spanned by {b2, b3, . . . , bm}.
Then,

b̃1 =

m∑
k=2

αk bk =

m∑
k=2

αk

m∑
i=1

ψi yik xi =

m∑
i=1

xi ψi

m∑
k=2

αk yik

for some αk ∈ R with
∑

k |αk| > 0. Let ỹi1 =
∑m

k=2 αk yik. Then,

b̃1 =

m∑
i=1

ψiỹi1xi.

Let θ̃ ≥ θ denote the angle between b1 and b̃1. Then,

cos θ̃ =

∣∣∣〈b1, b̃1〉∣∣∣
‖b1‖

∥∥∥b̃1∥∥∥ =
|〈
∑m

i=1 ψi yi1 xi,
∑m

i=1 ψi ỹi1 xi〉|
‖
∑m

i=1 ψi yi1 xi‖ ‖
∑m

i=1 ψi ỹi1 xi‖
(24)

=

∣∣∑m
i=1 ψ

2
i yi1 ỹi1

∣∣√∑m
i=1 ψ

2
i y

2
i1

√∑m
i=1 ψ

2
i ỹ

2
i1

,(25)

where the orthonormality of the X columns is used to obtain (25) from (24). Let yi,
i = 1, 2, . . . ,m, and ỹ1 denote column vectors

yi :=

⎡
⎢⎢⎢⎣
y1i

y2i

...
ymi

⎤
⎥⎥⎥⎦and ỹ1 :=

⎡
⎢⎢⎢⎣
ỹ11

ỹ21

...
ỹm1

⎤
⎥⎥⎥⎦ .

Since ỹ1 =
∑m

k=2 αk yk,

ỹT1 y1 = 0.
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Then (25) can be rewritten using matrix notation as

cos θ̃ =

∣∣yT1 Ψ2 ỹ1

∣∣√
yT1 Ψ2 y1

√
ỹT1 Ψ2 ỹ1

,(26)

with Ψ2 := ΨTΨ. The angle θ̃ is minimized when the right-hand side of (26) is
maximized.

For arbitrary B with only the singular values known (that is, Ψ is known), the θ-
orthogonality of B is given by solving the following constrained optimization problem:

cos θ = max
y1,ỹ1

∣∣yT1 Ψ2ỹ1

∣∣√
yT1 Ψ2 y1

√
ỹT1 Ψ2ỹ1

such that ỹT1 y1 = 0.(27)

Wielandt’s inequality [14, Thm. 7.4.34] states that if A is a positive definite ma-
trix, with γmin and γmax denoting its minimum and maximum eigenvalues (both are
positive), then

|xTAy|2 ≤
(
γmax − γmin

γmax + γmin

)2

(xTAx)(yTAy)

for every pair of orthogonal vectors x and y (equality holds for some pair of orthogonal
vectors). In our problem, A = Ψ2, x = ỹ1, y = y1, γmax = ψ2

max, and γmin = ψ2
min.

Therefore, using Wielandt’s inequality and (27), we have

cos θ =
ψ2

max − ψ2
min

ψ2
max + ψ2

min

.

Hence

sin θ =
2ψmaxψmin

ψ2
max + ψ2

min

,(28)

which proves (20).

5.4.2. Proof of Theorem 4. The first part of Theorem 4 follows easily. From
section 5.2, we can infer that with m ≤ cn, 0 ≤ c < 1, both ψmin ≥ 1 −

√
c and

ψmax ≤ 1 +
√
c almost surely as n → ∞. Invoking Lemma 2 and substituting ψmin =

1 −
√
c and ψmax = 1 +

√
c into (20), it follows that, as n → ∞, B is θ-orthogonal

almost surely with θ given by (21).
We now focus on proving the second part of Theorem 4. Let d =

√
c, and define

G(d) :=
1 − d2

1 + d2
.

We first show that, for δ ≥ 0,

G(d + δ) ≥ G(d) − 3
√

3

4
δ.(29)

Using the mean value theorem,

G(d + δ) = G(d) + G′
(
d + δ̃

)
δ for some δ̃ ∈ (0, δ),(30)
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with G′ denoting the derivative of G with respect to d. Further,

G′(d) =
−4d

(1 + d2)
2 ≥ −3

√
3

4
for d > 0.(31)

One can verify the inequality above by differentiating G′(d) and observing that G′(d)
is minimized when 3d4+2d2−1 = 0. The only positive root of this quadratic equation
is d2 = 1/3 or d = 1/

√
3. Combining (30) and (31), we obtain (29).

From the results in section 5.2, it follows that the probability that both minimum
and maximum singular values of B satisfy

|ψmin| ≥ 1 −
(√

c + r + ε
)

and |ψmax| ≤ 1 +
(√

c + r + ε
)

(32)

is greater than 1 − 2e−
nr2

ρ . When (32) holds, B is at least sin−1 (G (
√
c + r + ε))-

orthogonal. This follows from (20). Invoking (29), we can infer that B is θ-orthogonal
with θ as in (22).

6. JPEG CHEst. In this section, we review the JPEG CHEst problem that
motivates our study of nearly orthogonal lattices and describe how we use this pa-
per’s results to solve this problem. We first touch on the topic of digital color image
representation and briefly describe the essential components of JPEG image compres-
sion.

6.1. Digital color image representation. Traditionally, digital color images
are represented by specifying the color of each pixel, the smallest unit of image repre-
sentation. According to the trichromatic theory [29], three parameters are sufficient to
specify any color perceived by humans.3 For example, a pixel’s color can be conveyed
by a vector w

RGB
= (w

R
, w

G
, w

B
) ∈ R

3, where w
R
, w

G
, and w

B
specify the intensity

of the color’s red (R), green (G), and blue (B) components, respectively. Call w
RGB

the RGB encoding of a color. RGB encodings are vectors in the vector space where
the R, G, and B colors form the standard unit basis vectors; this coordinate system
is called the RGB color space. A color image with M pixels can be specified using
RGB encodings by a matrix P ∈ R

3×M .

6.2. JPEG compression and decompression. To achieve color image com-
pression, schemes such as JPEG first transform the image to a color encoding other
than the RGB encoding and then perform quantization. Such color encodings can be
related to the RGB encoding by a color-transform matrix C ∈ R

3×3. The columns of
C form a different basis for the color space spanned by the R, G, and B vectors. Hence
an RGB encoding w

RGB
can be transformed to the C encoding vector as C−1w

RGB
;

the image P is mapped to C−1P . For example, the matrix relating the RGB color
space to the ITU.BT-601 Y CbCr color space is given by [27]⎡

⎣wY

w
Cb

w
Cr

⎤
⎦ =

⎡
⎣ 0.299 0.587 0.114
−0.169 −0.331 0.5

0.5 −0.419 −0.081

⎤
⎦
⎡
⎣wR

w
G

w
B

⎤
⎦ .(33)

The quantization step is performed by first choosing a diagonal positive (nonzero
entries are positive) integer quantization matrix Q and then computing the quan-
tized (compressed) image from C−1P as Pc =

⌈
Q−1C−1P

⌋
, where .� stands for

3The underlying reason is that the human retina has only three types of receptors that influence
color perception.
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the operation of rounding to the nearest integer. JPEG decompression constructs
Pd = CQPc = CQ

⌈
Q−1C−1P

⌋
. Larger Q’s achieve more compression but at the cost

of greater distortion between the decompressed image Pd and the original image P .
In practice, the image matrix P is first decomposed into different frequency com-

ponents P = {P1, P2, . . . , Pk} for some k > 1 (usually k = 64) during compression.
Then, a common color transform C is applied to all the submatrices P1, P2, . . . , Pk,
but each submatrix Pi is quantized with a different quantization matrix Qi. The
compressed image is Pc = {Pc,1, Pc,2, . . . , Pc,k} =

{⌈
Q−1

1 C−1P1

⌋
,
⌈
Q−1

2 C−1P2

⌋
, . . . ,⌈

Q−1
k C−1Pk

⌋}
, and the decompressed image is Pd = {CQ1Pc,1, CQ2Pc,2, . . . , CQkPc,k}.

During compression, the JPEG-compressed file format stores the matrix C and the
matrices Qi along with Pc. These stored matrices are utilized to decompress the JPEG
image but are discarded afterward. Hence we refer to the set {C,Q1, Q2, . . . , Qk} as
the compression history of the image.

6.3. JPEG CHEst problem statement. This paper’s contributions are mo-
tivated by the following question: Given a decompressed image Pd =

{
CQ1Pc,1,

CQ2Pc,2, . . . , CQkPc,k

}
and some information about the structure of C and the Qi’s,

can we estimate the color transform C and the quantization matrices Qi? As
{C,Q1, Q2, . . . , Qk} comprises the compression history of the image, we refer to this
problem as JPEG CHEst. An image’s compression history is useful for applications
such as JPEG recompression [5, 22, 23].

6.4. Near-orthogonality and JPEG CHEst. The columns of CQiPc,i lie on
a 3-D lattice with basis CQi because Pc,i is an integer matrix. The estimation of
CQi’s comprises the main step in JPEG CHEst. Since a lattice can have multiple
bases, we must exploit some additional information about practical color transforms
to correctly deduce the CQi’s from the CQiPc,i’s. Most practical color transforms
aim to represent a color using an approximately rotated reference coordinate system.
Consequently, most practical color transform matrices C (and, thus, CQi) can be
expected to be almost orthogonal. We have verified that all C’s used in practice are
weakly

(
π
3 + ε

)
-orthogonal, with 0 < ε ≤ π

6 .4 Thus, nearly orthogonal lattice bases
are central to JPEG CHEst.

6.5. Our approach. Our approach is to first estimate the products CQi by
exploiting the near-orthogonality of C and to then decompose CQi into C and Qi.
We will assume that C is weakly

(
π
3 + ε

)
-orthogonal, 0 < ε ≤ π

6 .

6.5.1. Estimating the CQi’s. Let Bi be a basis of the lattice Li spanned by
CQi. Then, for some unimodular matrix Ui, we have

Bi = CQiUi.(34)

If Bi is given, then estimating CQi is equivalent to estimating the respective Ui.
Thanks to our problem structure, the correct Ui’s satisfy the following constraints.

Note that these constraints become increasingly restrictive as the number of frequency
components k increases.

1. The Ui’s are such that BiU−1
i is weakly

(
π
3 + ε

)
-orthogonal.

2. The product UiB−1
i BjU−1

j is diagonal with positive entries for any i, j ∈
{1, 2, . . . , k}. This is an immediate consequence of (34).

4In general, the stronger assumption of π
3
-orthogonality does not hold for some practical color

transform matrices.
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Table 6.1

Number of unimodular matrices satisfying constraints 3 and 4 for small κ.

κ Constraint 4 Constraints 3 and 4
1 6960 5232
2 135408 43248
3 1281648 197616
4 5194416 513264
5 20852976 1324272

If, in addition, Bi is weakly
(
π
3 + ε

)
-orthogonal, then the following hold.

3. The columns of Ui corresponding to the shortest columns of Bi are the stan-
dard unit vectors times ±1. This follows from Corollary 1 because the
columns of both Bi and CQi indeed contain all shortest vectors in Li up
to multiplication by ±1.

4. All entries of Ui are ≤ κ(Bi) in magnitude. This follows from Theorem 3.
We now outline our heuristic.
(i) Obtain bases Bi for the lattices Li, i = 1, 2, . . . , k. Construct a weakly(

π
3 + ε

)
-orthogonal basis B� for at least one lattice L�, 	 ∈ {1, 2, . . . , k}.

(ii) Compute κ(B�).
(iii) For every unimodular matrix U� satisfying constraints 1, 3, and 4, go to step

(iv).
(iv) For U� chosen in step (iii), test if there exist unimodular matrices Uj for

each j = 1, 2, . . . , k, j �= 	, that satisfies constraint 2. If such a collection of
matrices exists, then return this collection; otherwise, go to step (iii).

For step (i), we simply use the LLL algorithm to compute LLL-reduced bases
for each Li. Such bases are not guaranteed to be weakly

(
π
3 + ε

)
-orthogonal, but in

practice, this is usually the case for a number of the Li’s. Instead of LLL, the method
proposed in [24] could be also employed (as suggested by the referees). In contrast
to the LLL, [24] always finds a basis that contains the shortest lattice vector in low-
dimensional lattices (up to four dimensions) such as the Li’s in our problem. In step
(iv), for each frequency component j �= 	, we compute the diagonal matrix Dj with

smallest positive entries such that Ũj = B−1
j B�U−1

� Dj is integral, and then we test

whether Ũj is unimodular. If not, then for the given U� no appropriate unimodular
matrix Uj exists.

The overall complexity of the heuristic is determined mainly by the number of
times we repeat step (iv), which equals the number of distinct choices for U� in step
(iii). This number is typically not very large because in step (i) we are usually able
to find some weakly

(
π
3 + ε

)
-orthogonal basis Bl with κ < 2. In fact, we enumerate

all unimodular matrices satisfying constraints 3 and 4 and then test constraint 1. (In
practice, one can avoid enumerating the various column permutations of a unimodular
matrix). Table 6.1 provides the number of unimodular matrices satisfying constraint 4
alone and also constraints 3 and 4. Clearly, constraints 3 and 4 help us to significantly
limit the number of unimodular matrices we need to test, thereby speeding up our
search.

Our heuristic returns a collection of unimodular matrices {Ui} that satisfy con-
straints 1 and 2; of course, they also satisfy constraints 3 and 4 if the corresponding
Bi’s are weakly

(
π
3 + ε

)
-orthogonal. From the Ui’s, we compute CQi = BiU−1. If

constraints 1 and 2 can be satisfied by another solution {U ′
i}, then it is easy to see

that U ′
i �= Ui for every i = 1, 2, . . . , k. In section 6.5.3, we will argue (without proof)

that constraints 1 and 2 are likely to have a unique solution in most practical cases.



NEARLY ORTHOGONAL LATTICE BASES 217

6.5.2. Splitting CQi into C and Qi. Decomposing the CQi’s into C and
Qi’s is equivalent to determining the norm of each column of C because the Qi’s are
diagonal matrices. Since the Qi’s are integer matrices, the norm of each column of
CQi is an integer multiple of the corresponding column norm of C. In other words,
the norms of the jth column (j ∈ {1, 2, 3}) of different CQi’s form a sublattice of
the one-dimensional lattice spanned by the jth column norm of C. As long as the
greatest common divisor of the jth diagonal values of the matrices Qi is 1, we can
uniquely determine the jth column of C; the values of Qi follow trivially.

6.5.3. Uniqueness. Does JPEG CHEst have a unique solution? In other words,
is there a collection of matrices

(C ′, Q′
1, Q

′
2, . . . , Q

′
k) �= (C,Q1, Q2, . . . , Qk)

such that C ′Q′
i is a weakly

(
π
3 + ε

)
-orthogonal basis of Li for all i ∈ {1, 2, . . . , k}? We

believe that the solution can be nonunique only if the Qi’s are chosen carefully. For
example, let Q be a diagonal matrix with positive diagonal coefficients. Assume that,
for i = 1, 2, . . . , k, Qi = αiQ, with αi ∈ R and αi > 0. Further, assume that there
exists a unimodular matrix U not equal to the identity matrix I such that C ′ = CQU
is weakly

(
π
3 + ε

)
-orthogonal. Define Q′

i = αiI for i = 1, 2, . . . , k. Then C ′Q′
i is also

a weakly
(
π
3 + ε

)
-orthogonal basis for Li. Typically, JPEG employs Qi’s that are not

related in any special way. Therefore, we believe that for most practical cases JPEG
CHEst has a unique solution.

6.5.4. Experimental results. We tested the proposed approach using a wide
variety of test cases. In reality, the decompressed image Pd is always corrupted with
some additive noise. Consequently, to estimate the desired compression history, the
approach described above was combined with some additional noise mitigation steps.
Our algorithm provided accurate estimates of the image’s JPEG compression history
for all the test cases. We refer the reader to [22, 23] for details on the experimental
setup and results.

7. Discussion and conclusions. In this paper, we derived some interesting
properties of nearly orthogonal lattice bases and random bases. We chose to directly
quantify the orthogonality of a basis in terms of the minimum angle θ between a basis
vector and the linear subspace spanned by the remaining basis vectors. When θ ≥ π

3
radians, we say that the basis is nearly orthogonal. A key contribution of this paper
is to show that a nearly orthogonal lattice basis always contains a shortest lattice
vector. We also investigated the uniqueness of nearly orthogonal lattice bases. We
proved that if the basis vectors of a nearly orthogonal basis are nearly equal in length,
then the lattice essentially contains only one nearly orthogonal basis. These results
enable us to solve a fascinating digital color imaging problem called JPEG CHEst.

The applicability of our results on nearly orthogonal bases is limited by the fact
that every lattice does not necessarily admit a nearly orthogonal basis. In this sense,
lattices that contain a nearly orthogonal basis are somewhat special.

However, in random lattices, nearly orthogonal bases occur frequently when the
lattice is sufficiently low-dimensional. Our second main result is that an m-D Gaussian
or Bernoulli random basis that spans a lattice in R

n, with m < 0.071n, is nearly
orthogonal almost surely as n → ∞ and with high probability at finite but large n.
Consequently, a random n × 0.071n lattice basis contains the shortest lattice vector
with high probability. In fact, based on [31], the bound 0.071 can be relaxed to 0.25,
at least in the Gaussian case.
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We believe that analyzing random lattices using some of the techniques developed
in this paper is a fruitful area for future research. For example, we have recently
realized (using Corollary 3) that a random n × 0.071n lattice basis is Minkowski-
reduced with high probability [8].
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Abstract. We introduce variants of Barvinok’s algorithm for counting lattice points in poly-
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1. Introduction. Thirteen years have passed since Alexander Barvinok’s amaz-
ing algorithm for counting lattice points in polyhedra was published [2]. In the mean-
time, efficient implementations [14, 24] have been designed, which helped to make
Barvinok’s algorithm a practical tool in many applications in discrete mathematics.
The implications of Barvinok’s technique, of course, reach far beyond the domain
of combinatorial counting problems: For example, De Loera et al. [11] pointed out
applications in integer linear programming, and De Loera et al. [12, 13] obtained a
fully polynomial-time approximation scheme (FPTAS) for optimizing arbitrary poly-
nomial functions over the mixed-integer points in polytopes of fixed dimension.

Barvinok’s algorithm first triangulates the supporting cones of all vertices of a
polytope, to obtain simplicial cones. Then, the simplicial cones are recursively de-
composed into unimodular cones. It is essential that one uses signed decompositions
here; triangulating these cones is not good enough to give a polynomiality result. The
rational generating functions of the resulting unimodular cones can then be written
down easily. Adding and subtracting them according to the inclusion-exclusion prin-
ciple and Brion’s theorem [7] gives the rational generating function of the polytope.
The number of lattice points in the polytope can finally be obtained by applying
residue techniques on the rational generating function.

The algorithm in the original paper [2] worked explicitly with all the lower-
dimensional cones that arise from the intersecting faces of the subcones in an inclusion-
exclusion formula. Later it was pointed out that it is possible to simplify the algorithm
by computing with full-dimensional cones only, by making use of Brion’s “polariza-
tion trick” (see [3, Remark 4.3]): The computations with rational generating functions
are invariant with respect to the contribution of nonpointed cones (cones containing
a nontrivial linear subspace). By operating in the dual space, i.e., by computing
with the polars of all cones, lower-dimensional cones can be safely discarded, because
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this is equivalent to discarding nonpointed cones in the primal space. The practical
implementations also rely heavily on this polarization trick.

In practical implementations of Barvinok’s algorithm, one observes that in the
hierarchy of cone decompositions, the index of the decomposed cones quickly descends
from large numbers to fairly low numbers. The “last mile,” i.e., decomposing many
cones with fairly low index, creates a huge number of unimodular cones and thus is
the bottleneck of the whole computation in many instances.

The idea of this paper is to stop the decomposition when the index of a cone
is small enough, and to compute with generating functions for the integer points in
cones of small index rather than unimodular cones. When we try to implement this
simple idea in Barvinok’s algorithm, as outlined in section 3, we face a major difficulty,
however: Polarizing back a cone of small index can create a cone of very large index,
because determinants of d× d matrices are homogeneous of order d.

To address this difficulty, we avoid polarization altogether and perform the signed
decomposition in the primal space instead. To avoid having to deal with all the lower-
dimensional subcones, we use the concept of irrational decompositions of rational
polyhedra. Beck and Sottile [6] introduced this notion to give astonishingly simple
proofs for three theorems of Stanley on generating functions for the integer points
in rational polyhedral cones. Using the same technique, Beck, Haase, and Sottile [4]
gave simplified proofs of theorems of Brion and Lawrence–Varchenko. An irrational
decomposition of a polyhedron is a decomposition into polyhedra whose proper faces
do not contain any lattice points. Counting formulas for lattice points based on irra-
tional decompositions therefore do not need to take any inclusion-exclusion principle
into account.

We give an explicit construction of a uniform irrational shifting vector s for a cone
v +K with apex v such that the shifted cone (v + s) +K has the same lattice points
and contains no lattice points on its proper faces (section 4). More strongly, we prove
that all cones appearing in the signed decompositions of (v + s) + K in Barvinok’s
algorithm contain no lattice points on their proper faces. Therefore, discarding lower-
dimensional cones is safe. Despite its name, the vector s only has rational coordinates,
so after shifting the cone by s, large parts of existing implementations of Barvinok’s
algorithm can be reused to compute the irrational primal decompositions.

In section 5, we show the precise algorithm. We also show that the same tech-
nique can be applied to the “homogenized version” of Barvinok’s algorithm that was
proposed in [9].

In section 6, we extend the irrationalization technique to nonsimplicial cones. This
gives rise to an “all-primal” Barvinok algorithm, where triangulation of nonsimplicial
cones is also performed in the primal space. This allows us to handle problems where
the triangulation of the dual cones is hard, e.g., in the case of cross polytopes.

Finally, in section 7, we report on computational results. Results on benchmark
problems show that the new algorithms are faster than the existing algorithms by
orders of magnitude. We also include results for problems that could not previously
be solved with Barvinok techniques.

2. Barvinok’s algorithm. Let P ⊆ Rd be a rational polyhedron. The gener-
ating function of P ∩ Zd is defined as the formal Laurent series

g̃P (z) =
∑

α∈P∩Zd

zα ∈ Z[[z1, . . . , zd, z
−1
1 , . . . , z−1

d ]],
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using the multiexponent notation zα =
∏d

i=1 z
αi
i . If P is bounded, g̃P is a Laurent

polynomial, which we consider as a rational function gP . If P is not bounded but is
pointed (i.e., P does not contain a straight line), there is a nonempty open subset
U ⊆ Cd such that the series converges absolutely and uniformly on every compact
subset of U to a rational function gP . If P contains a straight line, we set gP ≡ 0.
The rational function gP ∈ Q(z1, . . . , zd) defined in this way is called the rational
generating function of P ∩ Zd.

Barvinok’s algorithm computes the rational generating function of a polyhe-
dron P . It proceeds as follows. By Brion’s theorem [7], the rational generating
function of a polyhedron can be expressed as the sum of the rational generating
functions of the supporting cones of its vertices. Let vi ∈ Qd be a vertex of the
polyhedron P . Then the supporting cone vi+Ci of vi is the (shifted) polyhedral cone
defined by vi + cone(P − vi). Every supporting cone vi + Ci can be triangulated to
obtain simplicial cones vi + Cij . Let K = v + BRd

+ be a simplicial full-dimensional
cone, whose basis vectors b1, . . . ,bd (i.e., representatives of its extreme rays) are
given by the columns of some matrix B ∈ Zd×d. We assume that the basis vectors
are primitive vectors of the standard lattice Zd. Then the index of K is defined to
be indK = |detB|; it can also be interpreted as the cardinality of Π∩Zd, where Π is
the fundamental parallelepiped of K, i.e., the half-open parallelepiped

Π = v +

{
d∑

i=1

λibi : 0 ≤ λi < 1

}
.

We remark that the set Π∩Zd can also be seen as a set of representatives of the cosets
of the lattice BZd in the standard lattice Zd; we shall make use of this interpretation
in section 3. Barvinok’s algorithm now computes a signed decomposition of the sim-
plicial cone K to produce other simplicial cones with smaller index. To this end, the
algorithm constructs a vector w ∈ Zd such that

w = α1b1 + · · · + αdbd with |αi| ≤ |detB|−1/d ≤ 1.(1)

This can be accomplished using integer programming or lattice basis reduction. The
cone is then decomposed into cones spanned by d vectors from the set {b1, . . . ,bd,w};
each of the resulting cones then has an index bounded above by (indK)(d−1)/d. In
general, these cones form a signed decomposition of K (see Figure 2); if w lies in-
side K, they form a triangulation of K (see Figure 1). The resulting cones and their
intersecting proper faces (arising in an inclusion-exclusion formula) are recursively
processed until unimodular cones, i.e., cones of index 1, are obtained. Finally, for a
unimodular cone v + BRd

+, the rational generating function can be easily written as

za∏d
j=1(1 − zbj )

,(2)

where a is the unique integer point in the fundamental parallelepiped of the cone. We
summarize Barvinok’s algorithm below.

Algorithm 1 (Barvinok’s original (primal) algorithm).

Input: A polyhedron P ⊂ Rd given by rational inequalities.
Output: The rational generating function for P ∩ Zd in the form

gP (z) =
∑
i∈I

εi
zai∏d

j=1(1 − zbij )
,(3)

where εi ∈ {±1}, ai ∈ Zd, and bij ∈ Zd.
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b1

5

b2

w w

b1

b2

�

⊕

2

⊕
3

Fig. 1. A triangulation of the cone of index 5 generated by b1 and b2 into the two cones spanned
by {b1,w} and {b2,w}, having an index of 2 and 3, respectively. We have the inclusion-exclusion
formula gcone{b1,b2}(z) = gcone{b1,w}(z) + gcone{b2,w}(z)− gcone{w}(z); here the one-dimensional
cone spanned by w needed to be subtracted.

1. Compute all vertices vi and corresponding supporting cones Ci of P .
2. Triangulate Ci into simplicial cones Cij , keeping track of all the intersecting

proper faces.
3. Apply signed decomposition to the cones vi+Cij to obtain unimodular cones

vi + Cijl, keeping track of all the intersecting proper faces.
4. Compute the unique integer point ai in the fundamental parallelepiped of

every resulting cone vi + Cijl.
5. Write down the formula (3).

The recursive decomposition of cones defines a decomposition tree. Due to the
descent of the indices in the signed decomposition procedure, the following estimate
holds for its depth.

Lemma 2 (see Barvinok [2]). Let BRd
+ be a simplicial full-dimensional cone,

whose basis is given by the columns of the matrix B ∈ Zd×d. Let D = |detB|. Then
the depth of the decomposition tree is at most

k(D) =

⌊
1 +

log2 log2 D

log2
d

d−1

⌋
.(4)

Because at each decomposition step at most O(2d) cones are created and the
depth of the tree is doubly logarithmic in the index of the input cone, Barvinok could
obtain a polynomiality result in fixed dimension.

Theorem 3 (see Barvinok [2]). Let d be fixed. There exists a polynomial-time
algorithm for computing the rational generating function of a polyhedron P ⊆ Rd

given by rational inequalities.
Later the algorithm was improved by making use of Brion’s “polarization trick”

(see [3, Remark 4.3]): The computations with rational generating functions are
invariant with respect to the contribution of nonpointed cones (cones containing a
nontrivial linear subspace). The reason is that the rational generating function of
every nonpointed cone is zero. By operating in the dual space, i.e., by computing
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b1
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Fig. 2. A signed decomposition of the cone of index 5 generated by b1 and b2 into the
two unimodular cones spanned by {b1,w} and {b2,w}. We have the inclusion-exclusion formula
gcone{b1,b2}(z) = gcone{b1,w}(z) − gcone{b2,w}(z) + gcone{w}(z).

with the polars of all cones, lower-dimensional cones can be safely discarded, because
this is equivalent to discarding nonpointed cones in the primal space.

Algorithm 4 (dual Barvinok algorithm).

Input: A polyhedron P ⊂ Rd given by rational inequalities.
Output: The rational generating function for P ∩ Zd in the form

gP (z) =
∑
i∈I

εi
zai∏d

j=1(1 − zbij )
,(5)

where εi ∈ {±1}, ai ∈ Zd, and bij ∈ Zd.
1. Compute all vertices vi and corresponding supporting cones Ci of P .
2. Polarize the supporting cones Ci to obtain C◦

i .
3. Triangulate C◦

i into simplicial cones C◦
ij , discarding lower-dimensional cones.

4. Apply Barvinok’s signed decomposition to the cones vi +C◦
ij to obtain cones

vi + C◦
ijl, stopping decomposition when a unimodular cone is obtained. Dis-

card all lower-dimensional cones.
5. Polarize back C◦

ijl to obtain cones Cijl.
6. Compute the unique integer point ai in the fundamental parallelepiped of

every resulting cone vi + Cijl.
7. Write down the formula (5).

This variant of the algorithm is much faster than the original algorithm because
in each step of the signed decomposition at most d, rather than O(2d), cones are
created. The practical implementations LattE [14], by J. A. De Loera et al., and
barvinok [24], by S. Verdoolaege, also rely heavily on this polarization trick.

3. The Barvinok algorithm with stopped decomposition. We start out
by introducing a first variant of Barvinok’s algorithm that stops decomposing cones
before unimodular cones are reached. As we will see in the computational results
in section 7, the simple modification that we propose can already give a significant
improvement of the running time for some problems, at least in low dimension.
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Algorithm 5 (dual Barvinok algorithm with stopped decomposition).
Input: A polyhedron P ⊂ Rd given by rational inequalities; the maximum enu-

merated cone index �.
Output: The rational generating function for P ∩ Zd in the form

gP (z) =
∑
i∈I

εi

∑
a∈Ai

za∏d
j=1(1 − zbij )

,(6)

where εi ∈ {±1}, Ai ⊆ Zd with |Ai| ≤ �, and bij ∈ Zd.
1. Compute all vertices vi and corresponding supporting cones Ci of P .
2. Polarize the supporting cones Ci to obtain C◦

i .
3. Triangulate C◦

i into simplicial cones C◦
ij , discarding lower-dimensional cones.

4. Apply Barvinok’s signed decomposition to the cones vi +C◦
ij to obtain cones

vi + C◦
ijl, stopping decomposition when a polarized-back cone Cijl = (C◦

ijl)
◦

has index at most �. Discard all lower-dimensional cones.
5. Polarize back C◦

ijl to obtain cones Cijl.
6. Enumerate the integer points in the fundamental parallelepipeds of all result-

ing cones vi + Cijl to obtain the sets Ai.
7. Write down the formula (6).

As mentioned above, the integer points in the fundamental parallelepiped of a
cone vi + BijlR

d
+ can be interpreted as representatives of the cosets of the lattice

BijlZ
d in the standard lattice Zd. Hence they can be easily enumerated in step 6 by

computing the Smith normal form of the generator matrix Bijl; see Lemma 5.2 of [1].
The Smith normal form can be computed in polynomial time, even if the dimension
is not fixed [19].

We remark that both triangulation and signed decomposition are done in the
dual space, but the stopping criterion is the index of the polarized-back cones (in
the primal space). The reason for this stopping criterion is that we wish to control
the maximum number of points in the fundamental parallelepipeds that need to be
enumerated. Indeed, when the maximum � is chosen as a constant or polynomially in
the input size, then Algorithm 5 clearly runs in polynomial time (in fixed dimension).

Each step of Barvinok’s signed decomposition reduces the index of the decom-
posed cones. When the index of a cone C◦

ijl is Δ, in the worst case the polarized-back

cone Cijl has index Δd−1, where d is the dimension. If the dimension is too large, the
algorithm often needs to decompose cones down to a very low index or even index 1,
so the speed-up of the algorithm will be very limited. This can be seen from the
computational results in section 7.

4. Construction of a uniform irrational shifting vector. In this section,
we will give an explicit construction of an irrational shifting vector s for a simplicial
cone v + K with apex v such that the shifted cone (v + s) + K has the same lattice
points and contains no lattice points on its proper faces. The “irrationalization” (or
perturbation) will be uniform in the sense that also every cone arising during the
Barvinok decomposition does not contain any lattice points on its proper faces. This
will enable us to perform the Barvinok decomposition in the primal space, discarding
all lower-dimensional cones.

To accomplish this goal, we shall first describe a subset of the stability region of
a cone v + K with apex at v, i.e., the set of apex points ṽ such that ṽ + K contains
the same lattice points as v + K; see Figure 3.

Lemma 6 (stability cube). Let v + BRd
+ be a simplicial full-dimensional cone

with apex at v ∈ Qd, whose basis is given by the columns of the matrix B ∈ Zd×d.
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v̂

v

Fig. 3. The stability region of a cone.

Let b∗
1, . . . ,b

∗
d be a basis of the dual cone, given by the columns of the matrix B∗ =

−(B−1)�.
Let D = |detB|. Let λ ∈ Qd and λ̂ ∈ Qd be defined by

λi = 〈b∗
i ,v〉 and λ̂i =

1

D

(
�Dλi +

1

2

)
for i = 1, . . . , d.

Let

v̂ = −Bλ̂ and ρ =
1

2D · maxd
i=1 ‖b∗

i ‖1

.

Then, for every ṽ with ‖ṽ − v̂‖∞ < ρ, the cone ṽ + BRd
+ contains the same

integer points as the cone v + BRd
+ and does not have integer points on its proper

faces.
In the proof of the lemma, we will use the H-representation (inequality descrip-

tion) of the simplicial cone v + BRd
+. It is given by the basis vectors of the dual

cone

v + BRd
+ =

{
x ∈ Rd : 〈b∗

i ,x〉 ≤ 〈b∗
i ,v〉 for i = 1, . . . , d

}
.(7)

Proof of Lemma 6. Let λ̃ be defined by λ̃i = 〈b∗
i , ṽ〉. Then we have

∣∣λ̃i − λ̂i

∣∣ ≤ ‖b∗
i ‖1 · ‖ṽ − v̂‖∞ < ‖b∗

i ‖1 · ρ ≤ 1

2D
.(8)

By (7), a point x ∈ Zd lies in the cone v + BRd
+ if and only if

〈b∗
i ,x〉 ≤ 〈b∗

i ,v〉 = λi for i = 1, . . . , d.

Likewise, x ∈ ṽ + BRd
+ if and only if

〈b∗
i ,x〉 ≤ 〈b∗

i , ṽ〉 = λ̃i for i = 1, . . . , d.

Note that for x ∈ Zd, the left-hand sides of both inequalities are an integer multiple
of 1

D . Therefore, we obtain equivalent statements by rounding down the right-hand
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sides to integer multiples of 1
D . For the right-hand side of (4) we have by (8),

λ̃i = λ̂i + (λ̃i − λ̂i) <
1

D

(
�Dλi +

1

2

)
+

1

2D
=

1

D
�Dλi + 1,(9a)

λ̃i = λ̂i + (λ̃i − λ̂i) >
1

D

(
�Dλi +

1

2

)
− 1

2D
=

1

D
�Dλi ,(9b)

so λi and λ̃i are rounded down to the same value 1
D �Dλi. Thus, the cone ṽ +BRd

+

contains the same integer points as the cone v + BRd
+. Moreover, since the inequal-

ities (9) are strict, the cone ṽ + BRd
+ does not have integer points on its proper

faces.
For nonsimplicial cones, we will give an algorithmic construction for a stability

cube in section 6.
Next we make use of the estimate for the depth of the decomposition tree in Barvi-

nok’s algorithm given in Lemma 2. On each level of the decomposition, the entries in
the basis matrices can grow, but not by much. We then obtain the following lemma.

Lemma 7. Let BRd
+ be a simplicial full-dimensional cone, whose basis is given

by the columns of the matrix B ∈ Zd×d. Let D = |detB|. Let C ∈ Z+ be a number
such that |Bi,j | ≤ C.

Then all the basis matrices B̄ of the cones that appear in the recursive signed de-
composition procedure of Barvinok’s algorithm applied to BRd

+ have entries bounded

above by dk(D)C, where k(D) is defined by (4).
Proof. Given a cone spanned by the columns b1, . . . ,bd of the matrix B, Barvi-

nok’s algorithm constructs a vector w ∈ Zd such that

w = α1b1 + · · · + αdbd with |αi| ≤ |detB|−1/d ≤ 1.(10)

Thus ‖w‖∞ ≤ dC. The cone is then decomposed into cones spanned by d vectors
from the set {b1, . . . ,bd,w}. Thus the entries in the corresponding basis matrices
are bounded by dC. The result follows then by Lemma 2.

If we can bound the entries of an integer matrix with nonzero determinant, we
can also bound the entries of its inverse.

Lemma 8. Let B ∈ Zd×d be a matrix with |Bi,j | ≤ C. Let D = |detB|. Then the
absolute values of the entries of B−1 are bounded above by

1

D
(d− 1)!Cd−1.

Proof. We have
∣∣(B−1)k,l

∣∣ = 1
D

∣∣detB(k,l)

∣∣, where B(k,l) is the matrix obtained
from deleting the kth row and lth column from B. Now the desired estimate follows
from a formula for detB(k,l) and from |Bi,j | ≤ C.

Thus, we obtain a bound on the norm of the basis vectors of the polars of all
cones occurring in the signed decomposition procedure of Barvinok’s algorithm.

Corollary 9 (a bound on the dual basis vectors). Let BRd
+ be a simplicial

full-dimensional cone, whose basis is given by the columns of the matrix B ∈ Zd×d.
Let D = |detB|. Let C be a number such that |Bi,j | ≤ C.

Let B̄∗ = −(B̄−1)� be the basis matrix of the polar of an arbitrary cone B̄Rd
+

that appears in the recursive signed decomposition procedure applied to BRd
+. Then,

for every column vector b̄∗
i of B̄∗ we have the estimate∥∥det B̄ · b∗

i

∥∥
∞ ≤ (d− 1)!

(
dk(D)C

)d−1

=: L,(11)

where k(D) is defined by (4).
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Proof. By Lemma 7, the entries of B̄ are bounded above by dk(D)C. Then the
result follows from Lemma 8.

The construction of the “irrational” shifting vector is based on the following
lemma.

Lemma 10 (the irrational lemma). Let M ∈ Z+ be an integer. Let

q =

(
1

2M
,

1

(2M)2
, . . . ,

1

(2M)d

)
.(12)

Then 〈c,q〉 /∈ Z for every c ∈ Zd \ {0} with ‖c‖∞ < M .
Proof. The proof follows from the principle of representations of rational numbers

in a positional system of base 2M .
Theorem 11. Let v + BRd

+ be a simplicial full-dimensional cone with apex at
v ∈ Qd, whose basis is given by the columns of the matrix B ∈ Zd×d. Let D = |detB|,
C be a number such that |Bi,j | ≤ C, and let v̂ ∈ Qd and ρ ∈ Q+ be the data from
Lemma 6 describing the stability cube of v+BRd

+. Let 0 < r ∈ Z such that r−1 < 1
2ρ.

We define a vector w by rounding each coordinate of v̂ to the nearest integer multiple
of r−1. Using

k =

⌊
1 +

log2 log2 D

log2
d

d−1

⌋
,(13)

L = (d− 1)!(dkC)d−1, and M = 2L, define

s =
1

r
·
(

1

(2M)1
,

1

(2M)2
, . . . ,

1

(2M)d

)
.

Finally, let ṽ = w + s.
(i) We have (ṽ+BRd

+)∩Zd = (v+BRd
+)∩Zd; i.e., the shifted cone has the same

set of integer points as the original cone.
(ii) The shifted cone ṽ + BRd

+ contains no lattice points on its proper faces.
(iii) More strongly, all cones appearing in the signed decompositions of the shifted

cone ṽ +BRd
+ in Barvinok’s algorithm contain no lattice points on their proper

faces.
Proof. Part (i). This follows from Lemma 6 because ṽ clearly lies in the open

stability cube.
Parts (ii) and (iii). Every cone appearing in the course of Barvinok’s signed

decomposition algorithm has the same apex ṽ as the input cone and a basis B̄ ∈ Zd×d

with
∣∣det B̄

∣∣ ≤ D. Let such a B̄ be fixed and denote by b̄∗
i the columns of the dual

basis matrix B̄∗ = −(B̄−1)�. Let z ∈ Zd be an arbitrary integer point. We shall
show that z is not on any of the facets of the cone, i.e.,

〈b̄∗
i , z − ṽ〉 �= 0 for i = 1, . . . , d.(14)

Let i ∈ {1, . . . , d} arbitrary. We will show (14) by proving that

〈det B̄ · b̄∗
i , ṽ〉 /∈ Z.(15)

Clearly, if (15) holds, we have 〈b̄∗
i , ṽ〉 /∈ (det B̄)−1Z. But since 〈b̄∗

i , z〉 ∈ (det B̄)−1Z,
we have 〈b̄∗

i , z − ṽ〉 /∈ Z; in particular it is nonzero, which proves (14).
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To prove (15), let c = det B̄ · b̄∗
i . By Corollary 9, we have ‖c‖∞ ≤ L < M . Now

Lemma 10 gives 〈c, s〉 /∈ 1
rZ. By the construction of w, we have

〈c,w〉 ∈ 1
rZ.

Therefore, we have 〈c, ṽ〉 = 〈c,w + s〉 /∈ 1
rZ. This proves (15), and thus completes

the proof.

5. The irrational algorithms. The following is our variant of the Barvinok
algorithm.

Algorithm 12 (primal irrational Barvinok algorithm).

Input: A polyhedron P ⊂ Rd given by rational inequalities; the maximum enu-
merated cone index �.

Output: The rational generating function for P ∩ Zd in the form

gP (z) =
∑
i∈I

εi

∑
a∈Ai

za∏d
j=1(1 − zbij )

,(16)

where εi ∈ {±1}, Ai ⊆ Zd with |Ai| ≤ �, and bij ∈ Zd.
1. Compute all vertices vi and corresponding supporting cones Ci of P .
2. Polarize the supporting cones Ci to obtain C◦

i .
3. Triangulate C◦

i into simplicial cones C◦
ij , discarding lower-dimensional cones.

4. Polarize back C◦
ij to obtain simplicial cones Cij .

5. Irrationalize all cones by computing new apex vectors ṽij ∈ Qd from vi and
Cij as in Theorem 11.

6. Apply Barvinok’s signed decomposition to the cones ṽij + Cij , discarding
lower-dimensional cones, until all cones have index at most �.

7. Enumerate the integer points in the fundamental parallelepipeds of all result-
ing cones to obtain the sets Ai.

8. Write down the formula (16).
Theorem 13. Algorithm 12 is correct and runs in polynomial time when the

dimension d is fixed and the maximum index � is bounded by a polynomial in the
input size.

Proof. This is an immediate consequence of the analysis of Barvinok’s algorithm.
The irrationalization (step 5 of the algorithm) increases the encoding length of the
apex vector only by a polynomial amount, because the dimension d is fixed and the
depth k only depends doubly logarithmic on the initial index of the cone.

The same technique can also be applied to the “homogenized version” of Barvi-
nok’s algorithm that was proposed in [9]; see also [14, Algorithm 11].

Algorithm 14 (irrational homogenized Barvinok algorithm).

Input: A polyhedron P ⊂ Rd given by rational inequalities in the form Ax ≤ b;
the maximum index �.

Output: A rational generating function in the form (16) for the integer points in
the homogenization of P , i.e., the cone

C = { (ξx, ξ) : x ∈ P, ξ ∈ R+ } .(17)

1. Consider the inequality description for C; it is given by Ax − bξ ≤ 0. The
polar C◦ then has the rays (Ai,·,−bi), i = 1, . . . ,m.

2. Triangulate C◦ into simplicial cones C◦
j , discarding lower-dimensional cones.

3. Polarize back the cones C◦
j to obtain simplicial cones Cj .
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4. Irrationalize the cones Cj to obtain shifted cones ṽj + Cj .
5. Apply Barvinok’s signed decomposition to the cones ṽj +Cj , discarding lower-

dimensional cones, until all cones have index at most �.
6. Write down the generating function.

6. Extension to the nonsimplicial case. For polyhedral cones with few rays
and many facets, it is usually much faster to perform triangulation in the primal space
than in the dual space; cf. [8]. In this section, we show how to perform both Barvinok
decomposition and triangulation in the primal space.

The key idea is to use linear programming to compute a subset of the stability
region of the nonsimplicial cones.

Lemma 15. There is a polynomial-time algorithm that, given the vertex v ∈ Qd

and the facet vectors b∗
i ∈ Zd, i = 1, . . . ,m, of a full-dimensional polyhedral cone

C = v + BRn
+, where n ≥ d, computes a point v̂ ∈ Qd and a positive scalar ρ ∈ Q

such that for every ṽ in the open cube with ‖ṽ − v̂‖∞ < ρ, the cone ṽ +BRn
+ has no

integer points on its proper faces and contains the same integer points as v +BRn
+.

Proof. We maximize ρ subject to the linear inequalities

〈b∗
i , v̂〉 + ‖b∗

i ‖1 ρ ≤ �〈b∗
i ,v〉 + 1,(18a)

−〈b∗
i , v̂〉 + ‖b∗

i ‖1 ρ ≤ −�〈b∗
i ,v〉 ,(18b)

where v̂ ∈ Rd and ρ ∈ R+. We can solve this linear optimization problem in poly-
nomial time. Let (v̂, ρ) be an optimal solution. Let ṽ ∈ Rd with ‖ṽ − v̂‖∞ < ρ. Let
x ∈ (ṽ + BRd

+) ∩ Zd. Then we have for every i ∈ {1, . . . ,m}

〈b∗
i ,x〉 ≤ 〈b∗

i , ṽ〉
= 〈b∗

i , v̂〉 + 〈b∗
i , ṽ − v̂〉

≤ 〈b∗
i , v̂〉 + ‖b∗

i ‖1 ‖ṽ − v̂‖∞
< 〈b∗

i , v̂〉 + ‖b∗
i ‖1 ρ

≤ �〈b∗
i ,v〉 + 1 by (18a).

Because 〈b∗
i ,x〉 is an integer, we actually have 〈b∗

i ,x〉 ≤ �〈b∗
i ,v〉. Thus, x lies in the

cone v +BRd
+. Conversely, let x ∈ (v +BRd

+) ∩Zd. Then, for every i ∈ {1, . . . ,m},
we have 〈b∗

i ,x〉 ≤ 〈b∗
i ,v〉. Since x ∈ Zd, we can round down the right-hand side and

obtain

〈b∗
i ,x〉 ≤ �〈b∗

i ,v〉
≤ 〈b∗

i , v̂〉 − ‖b∗
i ‖1 ρ by (18b)

< 〈b∗
i , v̂〉 − ‖b∗

i ‖1 ‖ṽ − v̂‖∞
≤ 〈b∗

i , v̂〉 + 〈b∗
i , ṽ − v̂〉

= 〈b∗
i , ṽ〉.

Thus, x ∈ ṽ + BRd
+. Moreover, since the inequality is strict, x does not lie on the

face 〈b∗
i ,x〉 = 〈b∗

i , ṽ〉 of the cone ṽ + BRd
+.

Lemma 16 (bound on the index of all subcones). Let bi ∈ Zd, i = 1, . . . , n, be
the generators of a full-dimensional polyhedral cone K ⊆ Rd. Then the cones of any
triangulation of K have an index bounded by

D =
(
maxn

i=1 ‖bi‖2
)n/2

.(19)
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Proof. Let B ∈ Zd×d be the generator matrix of a full-dimensional cone of a
triangulation of K; then the columns B form a subset {bi1 , . . . ,bid} ⊆ {b1, . . . ,bn}.
Therefore

|detB| ≤
d∏

k=1

‖bik‖ ≤
(
maxn

i=1 ‖bi‖2
)n/2

,

giving the desired bound.
With these preparations, the following corollary is immediate.
Corollary 17. Let v + BRn

+ be a full-dimensional polyhedral cone with apex
at v ∈ Qd, whose basis is given by the columns of the matrix B ∈ Zd×d. Let D be
defined by (19). Let v̂ ∈ Qd and ρ ∈ Q+ be the data from Lemma 15 describing the
stability cube of v+BRn

+. Using these data, construct ṽ as in Theorem 11. Then the
assertions of Theorem 11 hold.

Algorithm 18 (all-primal irrational Barvinok algorithm).

Input: A polyhedron P ⊂ Rd given by rational inequalities; the maximum enu-
merated cone index �.

Output: The rational generating function for P ∩ Zd in the form (16).
1. Compute all vertices vi and corresponding supporting cones Ci of P .
2. Irrationalize all cones by computing new apex vectors ṽi ∈ Qd from vi by

Corollary 17.
3. Triangulate ṽi +Ci into simplicial cones ṽi +Cij , discarding lower-

dimensional cones.
4. Apply Barvinok’s signed decomposition to the cones ṽi +Cij , until all cones

have index at most �.
5. Enumerate the integer points in the fundamental parallelepipeds of all result-

ing cones to obtain the sets Ai.
6. Write down the formula (16).

7. Computational experiments. Algorithms 12 and 18 have been imple-
mented in a new version of the software package LattE, derived from the official
LattE release 1.2 [10]. The new version, called LattE macchiato, is freely available on
the Internet [20]. In this section, we discuss some implementation details and show
the results of the first computational experiments.

7.1. Two substitution methods. When the generating function gP has been
computed, the number of lattice points can be obtained by evaluating gP (1). However,
1 is a pole of every summand of the expression

gP (z) =
∑
i∈I

εi

∑
a∈Ai

za∏d
j=1(1 − zbij )

.

The method implemented in LattE 1.2 [14] is to use the polynomial substitution

z = ((1 + s)λ1 , . . . , (1 + s)λd)

for a suitable vector λ. Then the constant coefficient of the Laurent expansion of
every summand about s = 0 is computed using polynomial division. The sum of all
the constant coefficients finally gives the number of lattice points.

Another method from the literature (see, for instance, [3]) is to use the exponential
substitution

z = (exp{τλ1}, . . . , exp{τλd})
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for a suitable vector λ. By letting τ → 0, one then obtains the formula

|P ∩ Zd| =
∑
i∈I

εi

d∑
k=0

tdd−k(〈λ,bi1〉, . . . , 〈λ,bid〉)
k! · 〈λ,bi1〉 · · · 〈λ,bid〉

∑
a∈Ai

〈λ,a〉k,(20)

where tdd−k is the so-called Todd polynomial. In LattE macchiato, the exponential
substitution method has been implemented in addition to the existing polynomial
substitution; see [15] for implementation details.

7.2. Implementation details. We enumerate the lattice points in the funda-
mental parallelepiped by computing the Smith normal form of the generator matrix B;
see Lemma 5.2 of [1].1 For computing Smith normal forms, we use the library LiDIA,
version 2.2.0 [21]. For solving the linear program in Lemma 15, we use the imple-
mentation of the revised dual simplex method in exact rational arithmetic in cddlib,
version 0.94a [16]. All other computations are done using the libraries NTL, ver-
sion 5.4 [22], and GMP, version 4.1.4 [17] for providing exact integer and rational
arithmetic.

7.3. Evaluation of variants of the algorithms. We compare the variants of
the algorithms using test instances that can also be solved without the proposed irra-
tionalization techniques. We consider the test instances hickerson-12, hickerson-13,
and hickerson-14, related to the manuscript [18]. They describe simplices in R6 and
R7 that contain 38, 14, and 32 integer points, respectively. The examples are good
test cases for our algorithms because the vertices and cones are trivially computed,
and all computation time is spent in the Barvinok decomposition. We show the results
in Tables 1, 2, and 3. The tables show results for the following methods.

1. Methods without irrationalization, using polarization to avoid computing
with lower-dimensional cones:
(a) LattE 1.2 [10], decomposing down to unimodular cones in the dual space

(Algorithm 5 with � = 1).
(b) Likewise, but using the implementation in the library barvinok 0.21 [23].
(c) LattE macchiato, decomposing cones in the dual space, until all cones in

the primal space have at most index � (Algorithm 5), then using polyno-
mial substitution. We show the results for different values of �.

(d) Likewise, but using exponential substitution.
2. Methods with irrationalization, performing triangulation in the dual space

and Barvinok decomposition in the primal space (Algorithm 12):
(a) LattE macchiato with polynomial substitution.
(b) LattE macchiato with exponential substitution.

The tables show computation times in CPU seconds on a PC with a Pentium M
processor with 1.4 GHz. They also show the total number of simplicial cones created
in the decomposition, using the different variants of LattE; note that we did not
measure the number of simplicial cones that the library barvinok produced.

We can make the following observations.
1. By stopping Barvinok decomposition before the cones are unimodular, it is

possible to significantly reduce the number of simplicial cones. This effect is
much stronger with irrational decomposition in the primal space than with
decomposition in the dual space.

1The author wishes to thank Susan Margulies for prototyping the enumeration code.
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Table 1

Results for hickerson-12.

Without irrationalization With irrationalization

Time (s) Time (s)

LattE macchiato LattE macchiato
Max.
index Cones

LattE
v 1.2

barv.

v 0.21 Poly Exp Cones Poly Exp

1 11625 17.9 11.9 10.0 16.7 7929 7.8 12.7
10 4251 6.9 7.0 803 1.9 1.6

100 980 6.9 2.1 84 1.3 0.3
200 550 9.1 1.5 76 1.3 0.3
300 474 9.9 1.4 58 1.4 0.3
500 410 11.7 1.3 42 1.6 0.3

1000 130 7.2 0.7 22 1.7 0.2
2000 7 2.2 0.2 22 1.8 0.2
5000 7 2.8 0.2 7 2.8 0.2

Table 2

Results for hickerson-13.

Without irrationalization With irrationalization

Time (s) Time (s)

LattE macchiato LattE macchiato
Max.
index Cones

LattE
v 1.2

barv.

v 0.21 Poly Exp Cones Poly Exp

1 466 540 793 589 421 707 483 507 479 770
10 272 922 345 428 55 643 117 109

100 142 905 489 249 9 158 83 22
200 122 647 625 222 6 150 93 17
300 98 654 903 199 4 674 105 14
500 90 888 1056 193 3 381 137 13

1000 73 970 1648 190 2 490 174 13
2000 66 954 2166 201 1 857 237 14
5000 49 168 5040 286 1 488 354 18

10000 43 511 7278 370 1 011 772 34

2. The newly implemented exponential substitution has a computational over-
head compared to the polynomial substitution that was implemented in LattE
1.2.

3. However, when we compute with simplicial, nonunimodular cones, the expo-
nential substitution becomes much more efficient than the polynomial substi-
tution. Hence the break-even point between enumeration and decomposition
is reached at a larger cone index. The reason is that the inner loops are
shorter for the exponential substitution; essentially, only a sum of powers of
scalar products needs to be evaluated in the formula (20). This can be done
very efficiently.

4. The best results are obtained with the irrational primal decomposition down
to an index of about 500 to 1000 and exponential substitution.

7.4. Results for challenge problems. In Table 4 we show the results for some
larger test cases related to [18]. We compare LattE 1.2 with our implementation
of irrational primal decomposition (Algorithm 12) with maximum index 500. The
computation times are given in CPU seconds. The computations with LattE 1.2 were
done on a PC Pentium M, 1.4 GHz; the computations with LattE macchiato were
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Table 3

Results for hickerson-14.

Without irrationalization With irrationalization

Time (s) Time (s)

LattE macchiato LattE macchiato
Max.
index Cones

LattE
v 1.2

barv.

v 0.21 Poly Exp Cones Poly Exp

1 1 682 743 4 017 15 284 2 053 3 466 552 065 792 1 244
10 1 027 619 1736 2 177 49 632 168 143

100 455 474 2 294 1 089 8 470 128 29
200 406 491 2 791 990 5 554 157 22
300 328 340 4 131 875 4 332 187 19
500 303 566 4 911 842 3 464 235 18

1000 236 626 8 229 807 2 384 337 18
2000 195 368 12 122 817 1 792 481 21
5000 157 496 22 972 1 034 1 276 723 27

10000 128 372 31 585 1 270 956 1 095 38

Table 4

Results for larger Hickerson problems.

LattE v 1.2 LattE macchiato

n d
Lattice
points Cones Time Cones Time

15 7 20 293 000 10 min 55 s 2 000 22 s
16 8 54 3 922 000 3 h 35 min 19 000 3 min 56 s
17 8 18 2 655 000 7 h 59 min
18 9 44 61 500 000 77 h 00 min 200 000 49 min 12 s
20 10 74 2 742 000 13 h 05 min

done on a slightly slower machine, a Sun Fire V890 with UltraSPARC-IV processors,
1.2 GHz.

Both the traditional Barvinok algorithm (Algorithm 5 with � = 1) and the ho-
mogenized variant of Barvinok’s algorithm [9] do not work well for cross polytopes.
The reason is that triangulation is done in the dual space, so hypercubes need to
be triangulated. We show the performance of the traditional Barvinok algorithm in
Table 5. We also show computational results for the all-primal irrational algorithm
(Algorithm 18 with � = 500), using exponential substitution. The computation times
are given in CPU seconds on a Sun Fire V440 with UltraSPARC-IIIi processors,
1.6 GHz.

A challenge problem related to the paper [5], case m = 42, could be solved using
the all-primal irrational decomposition algorithm (Algorithm 18) with exponential
substitution. The method decomposed the polyhedron to a total of 1.1 million sim-
plicial cones of index at most 500. The computation took 66,000 CPU seconds on
a Sun Fire V440 with UltraSPARC-IIIi processors, 1.6 GHz. The problem could not
be solved previously because the traditional algorithms first tried to triangulate the
polar cones, which does not finish within 17 days of computation.

8. Conclusions and future work. The above computational results with our
preliminary implementation have shown that the proposed irrationalization techniques
can speed up the Barvinok algorithm by large factors.

A further speed-up can be expected from a refined implementation. For example,
the choice of the irrational shifting vector is based on worst-case estimates. It may be
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Table 5

Results for cross polytopes.

Without irrationalization All-primal irrational

d Cones Time (s) Cones Time (s)

4 384 1.1 0.9
5 3 840 6.5 1.4
6 46 264 91.7 2.7
7 653 824 1688.7 5.5
8 1 000 12.3
9 2 000 29.6

10 5 000 74.8
11 11 000 189.1
12 24 000 483.0
13 53 000 1 231.2
14 114 000 3 145.6
15 245 000 8 180.9

worthwhile to implement a randomized choice of the shifting vector (within the sta-
bility cube), using shorter rational numbers than those constructed in the paper. The
randomized choice, of course, would not give the same guarantees as our deterministic
construction. However, it is easy and efficient to check, during the decomposition, if
the generated cones are all irrational; when they are not, one could choose a new
random shifting vector (or resort to the one constructed in this paper) and restart
the computation.
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pp. 653–663.
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ADJACENT VERTEX DISTINGUISHING EDGE-COLORINGS∗
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Abstract. An adjacent vertex distinguishing edge-coloring of a simple graph G is a proper
edge-coloring of G such that no pair of adjacent vertices meets the same set of colors. The minimum
number of colors χ′

a(G) required to give G an adjacent vertex distinguishing coloring is studied for
graphs with no isolated edge. We prove χ′

a(G) ≤ 5 for such graphs with maximum degree Δ(G) = 3
and prove χ′

a(G) ≤ Δ(G) + 2 for bipartite graphs. These bounds are tight. For k-chromatic graphs
G without isolated edges we prove a weaker result of the form χ′

a(G) = Δ(G) + O(log k).

Key words. proper edge-colorings, chromatic number, bipartite graphs
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1. Introduction. Let G be a simple graph. We say a proper edge-coloring of G
is adjacent vertex distinguishing, or an avd-coloring, if for any pair of adjacent vertices
x and y, the set of colors incident to x is not equal to the set of colors incident to y.
It is clear that an avd-coloring exists provided G contains no isolated edge. A k-avd-
coloring is an avd-coloring using at most k colors. Let χ′

a(G) be the minimum number
of colors in an avd-coloring of G. In [7] the following conjecture was made.

Conjecture 1. If G is a simple connected graph on at least 3 vertices and
G �= C5 (a 5-cycle), then Δ(G) ≤ χ′

a(G) ≤ Δ(G) + 2.

Since χ′
a(G) is at least as large as the edge-chromatic number of G it is clear that

χ′
a(G) ≥ Δ(G), where Δ(G) is the maximum degree of any vertex in G. There are

many examples of graphs for which χ′
a(G) > Δ(G)+1. For example, consider a graph

of the form G = Kn,n − H, where H is a 2-factor of the complete bipartite graph
Kn,n containing no C4. Assume we have an avd-coloring of G using Δ(G) + 1 colors.
Then each vertex is not incident to precisely one color, and assigning this missing
color to each vertex gives a proper vertex-coloring of G with Δ(G)+1 colors. Since G
is bipartite with equal class sizes, the set of edges of a given color must miss the same
number of vertices in each class. Hence each color occurs the same number of times
on the vertices of each class. Since Δ(G) + 1 = n − 1 there is a color that occurs at
least twice in each class, but the vertices with this color do not form an independent
set in G. Hence χ′

a(G) > Δ(G) + 1.

More generally, if G is regular, then both χ′
a(G) and the total chromatic number

χT (G) are at least Δ + 1, and the above argument shows that χ′
a(G) = Δ + 1 if and

only if χT (G) = Δ+1. Hence any regular graph with χT (G) > Δ+1 gives an example
of a graph with χ′

a(G) > Δ + 1.

We shall prove the following upper bounds for χ′
a(G).

∗Received by the editors September 5, 2002; accepted for publication (in revised form) August
25, 2005; published electronically April 6, 2007.

http://www.siam.org/journals/sidma/21-1/41410.html
†Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152-3240

(pbalistr@memphis.edu, gyori@renyi.hu, jlehel@memphis.edu, rschelp@memphis.edu). The work of
the first author was partially supported by NSF grant EIA-0130352. The second author is on leave
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Theorem 1.1. If G is a graph with no isolated edges and Δ(G) = 3, then
χ′
a(G) ≤ 5.

Theorem 1.2. If G is a bipartite graph with no isolated edges, then χ′
a(G) ≤

Δ(G) + 2.
Theorem 1.3. If G is a k-chromatic graph with no isolated edges, then χ′

a(G) ≤
Δ(G) + O(log k).

In particular, Conjecture 1 holds for all bipartite graphs and all graphs with
Δ(G) ≤ 3. Note that even for bipartite graphs, Conjecture 1 is best possible, as
the example above shows. Theorem 1.3 is not best possible; indeed, Hatami [5] has
recently shown using probabilistic methods that χ′

a(G) ≤ Δ(G) + 300 for sufficiently
large Δ(G), which is stronger than Theorem 1.3 for graphs with an extremely high
chromatic number. Theorem 1.1 will be proved in section 2, Theorem 1.2 will be
proved in section 3, and Theorem 1.3 will be proved in section 4.

Adjacent vertex distinguishing colorings are related to vertex distinguishing col-
orings in which every pair of vertices sees distinct color sets. This concept has been
studied in many papers; see, for example, [1, 2, 3, 4, 5, 6].

2. Graphs with Δ(G) = 3. We start with the special case of regular graphs
having a Hamiltonian cycle. Our coloring scheme is based on the idea of using the
four elements of the Klein group Z2 × Z2 to color the Hamiltonian cycle, defining
the colors used algebraically, and a new fifth color for the chords forming a 1-factor.
Local adjustments will be made to complete the colorings.

Lemma 2.1. If G is a 3-regular Hamiltonian graph, then G has a 5-avd-coloring.
Proof. Let the five colors be the elements {0, a, b, c} of the Klein group K = Z2×Z2

together with the extra color 5. We have a commutative and associative addition
defined on K such that x + x = 0 for all x and a + b = c. Let C = x1 . . . xn be a
Hamiltonian cycle of G and let I be the remaining 1-factor of G. We may assume
G �= K4 (see Figure 1 for a 5-avd-coloring of K4), so by Brooks’ theorem, G has a
vertex 3-coloring f : V (G) → {a, b, c}. We may also assume that each of the three
colors occurs at least once on G; otherwise a single vertex can be recolored to introduce
the missing color. Let S =

∑n
i=1 f(xi) ∈ K.

If S = 0, then label xnx1 with 0 and inductively label xixi+1 for i = 1, . . . , n −
1 so that f(xi) is the sum (in the group K) of the colors on xi−1xi and xixi+1.
Equivalently, the color on xixi+1 is the sum of the color on xi−1xi and f(xi). Then
f(xn) is the sum of the colors on xnx1 and xn−1xn. Color the 1-factor I with color 5.
Each vertex x sees color 5 and two colors from K summing to f(x). Since f(x) �= 0
these two colors from K are distinct, and since f(x) �= f(y) for any two adjacent
vertices x and y, the color sets at x and y must be distinct. Thus the coloring is a
5-avd-coloring of G.

Now suppose S �= 0. Without loss of generality we may assume S = c. Pick any
vertex xi with f(xi) = c. Let xixj ∈ I. Then f(xj) is either a or b. Recolor xj with
b or a, respectively. Now S = 0 and we can recolor the edges of the Hamiltonian
cycle as above (see Figure 1). Coloring I with 5 gives a proper edge-coloring that
distinguishes adjacent vertices, except possibly at xj . Since f(xi) �= f(xj) the pair of
colors from K meeting xi cannot be disjoint from the pair meeting xj . Hence there
must be some color of K missing from the edges incident to xi or xj . Recoloring the
edge xixj with this missing color gives a 5-avd-coloring of G. The vertices xi and xj

are distinguished from each other since f(xi) �= f(xj) and are distinguished from all
other vertices since all other vertices meet color 5.

We shall now assume that G is 3-regular with a 1-factor, but is not necessarily
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Fig. 1. Colorings in Lemma 2.1. Dotted edges are colored 5.

.x1

.x2

.x3 .x4

.x5

.x6

.
x7

.
x8

................

................

................

................

................

................

................

................

................

................

................

.................
.......................
.......................
.......................
.......................
......................
.......................
.......................
...................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
.......................

.......................
.......................

.......................
.......................

.......................
.......................

...

.......................................................................................................................................................................................................................................................................................................................................................................................................................................................................

............................................................................................................................................................................................

.............................................
..............................................

.............................................
.........................

..................................................................................................................................................................
x′
2.

.

............................................................................................................................................................................................

.................................................................................................................................................................

..............................................
..............................................

..............................................
........................
x′
1

.

. ............................................................................................................................................................................................

.................................................................................................................................................................

..............................................
..............................................

..............................................
........................

x′
6

.

.

Fig. 2. Graph H with VY = {x1, x2, x6}, VC = {x5, x8}, VS = {x3, x4, x7}.

Hamiltonian. Since G has a 1-factor, G can be written as a union of this 1-factor and
a collection of cycles. We shall show that under certain conditions we can extend a
partial coloring to each cycle in turn.

We shall first find suitable colorings of graphs H of the following form. Let H
be a cycle C = x1 . . . xn with some extra 3-stars and chords added. To be precise,
partition V (C) as VY ∪VC ∪VS . For xi ∈ VY , H will contain an edge xix

′
i, x

′
i /∈ V (C),

where x′
i is joined to two degree 1 vertices. For xi ∈ VC , H will contain a chord xixj ,

where xj ∈ VC . For xi ∈ VS , dH(xi) = 2 (see Figure 2).

We shall color such graphs so that adjacent degree 3 vertices are distinguished.
We shall specify the colors incident to the x′

i for all xi ∈ VY , and try to extend the
coloring to the rest of H.

Lemma 2.2. Let H be a graph as above with |VS | ≥ 2. Suppose the edges incident
to each x′

i with xi ∈ VY are properly colored with colors from K ∪ {5} and xix
′
i is

colored 5. Then we can properly color the remaining edges of H with colors from
K ∪ {5} so that adjacent degree 3 vertices are distinguished. Moreover, if xi ∈ VS,
then we can ensure that either xi meets color 5 or both neighbors of xi meet color 5.

Proof. We partition VS into two sets VI and VM as follows. If x, y ∈ VS are
adjacent on C, color the edge xy with color 5 and place x and y in the set VM . Repeat
with other adjacent pairs of VS (that have not been used already) until VI = VS \VM

is an independent set. We shall now 3-color the degree 3 vertices of H with {a, b, c}.
For xi ∈ VY , set the color of x′

i to be the sum of the two colors of K incident to x′
i.

Extend this vertex-coloring to a proper vertex-coloring of V (H) \ VS using a greedy
algorithm—proceed around C, starting at any vertex immediately after a vertex of
VS , coloring each vertex of VY ∪ VC in turn with any color from {a, b, c} that ensures
that the coloring is still proper.
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If VM = ∅, then |VI | ≥ 2. By coloring vertices of VI (not necessarily properly)
with colors from {a, b, c}, we can ensure that the sum of the vertex colors on C is
0 ∈ K. If VM �= ∅, color VI arbitrarily with {a, b, c}. Color the uncolored edges
around C as in Lemma 2.1. At each vertex we add the vertex color in the Klein group
to get the color of the next edge. The edge after any pair of vertices from VM can be
colored arbitrarily with any color from K. Color each chord of C with color 5. The
resulting coloring satisfies the conditions of the lemma.

Note that if we add an edge xix
′
i to H for some xi ∈ VS , then we can color xix

′
i

with some color from K so that the new coloring is still proper and distinguishes
degree 3 vertices. Indeed, if xi meets color 5 in a coloring given by Lemma 2.2, then
there are three colors which make the coloring proper and at most two of these will
fail to distinguish xi from xi+1 or xi−1. If xi does not meet color 5, then xix

′
i may

be colored with either of the remaining colors of K since both xi+1 and xi−1 meet
color 5.

Lemma 2.3. Let H be a graph as above with VS = ∅ and x1 ∈ VY . Suppose the
edges incident to each x′

i with xi ∈ VY \ {x1} are properly colored with colors from
K ∪ {5}, xix

′
i is colored 5, and either of the following two conditions holds:

(a) All the edges incident to x′
1 are colored, and one of the two edges that are

incident to x′
1 but not x1 is colored 5.

(b) The edges incident to x′
1 are colored, except for x1x

′
1 which remains uncolored.

Then the coloring can be completed to form a 5-avd-coloring of H. Moreover, in this
coloring, x1x

′
1 is not colored 5, but either x1 meets color 5, or both x2 and xn meet

color 5.

Proof. We shall provisionally color all chords xixj of C with color 5. As in the
proof of Lemma 2.1 we shall 3-color the vertices of H with {a, b, c}. Each x′

i for
xi ∈ VY is assigned the sum of the colors of K meeting it in H. We 3-color the
vertices x2, . . . , xn in turn so that the coloring is proper using a greedy algorithm.
The vertex x1 will remain uncolored. Let this coloring be denoted by f and write
S =

∑n
i=2 f(xi). If S �= 0, then assign x1x2 any color of K, and color the edges

around the cycle as in the proof of Lemma 2.1. This gives four possible avd-colorings
of H − x′

1, depending on the choice of color for x1x2, and yields either {0, S} or
K \ {0, S} as the pair of colors on xnx1 and x1x2.

Assume that there is a chord xixj of C which does not meet either x2 or xn.
Suppose without loss of generality that f(xi) = a and f(xj) = b. Recolor either
xi or xj with c and change the color of xixj to some color of K as in the proof of
Lemma 2.1 so as to keep the coloring proper. Note that the coloring distinguishes xi

and xj from all their neighbors, since their neighbors all meet color 5. In this way
we can construct colorings with three distinct values of S (the original coloring, the
coloring changing f(xi), and the coloring changing f(xj)). At least two of these will
have S �= 0, and by varying the choice of color on x1x2 as above, we obtain colorings
with four possible values for the pair of colors on xnx1 and x1x2. These four pairs
form the edges of a C4 inside KK—the complete graph on the color set K. Moreover,
both x2 and xn meet color 5, so are distinguished from x1 regardless of the color (in
K) of x1x

′
1. In case (a) we are done since we can choose a coloring for which the pair

of colors on xnx1 and x1x2 avoids the color of x1x
′
1. In case (b) we are done since we

can choose a coloring for which the pair of colors on xnx1 and x1x2 is neither equal
nor disjoint from the pair that meet x′

1. Then there is at least one remaining color of
K with which to color x1x

′
1.

Assume now that x2xj is a chord of C. In case (b) color x1x
′
1 arbitrarily with
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Fig. 3. The case when x2xj is a chord of H.

Table 1

Values of S.

f(x2) f(x3) S (j even) S (j odd)
a c a 0 c b b c∗ 0 a
a b a 0 c b c b a 0
b c b c 0 a a 0 c b
c b c b a 0 a 0 c b

some color of K so that the coloring is proper at x′
1. Restart from scratch and 3-color

the vertices of H with {a, b, c} as follows. As before, x′
i gets the sum of the colors of

K meeting it when xi ∈ VY . For the cycle C, we start the coloring at xj−1, working
backwards greedily until we reach x2. The vertex x2 can be colored in two ways. We
pick one that ensures that S′ =

∑j−1
i=2 f(xi) �= 0. Now continue coloring greedily with

x1, and then xn, . . . , xj+1. The vertex xj will remain uncolored.

Starting at x1 and working backwards around C, color the edges so that f(xi)
is the sum of the colors of K meeting xi. For the edge xjxj−1 pick either color of
K that is not the same as the color of xj+1xj , or the sum of this color and S′. We
continue coloring the edges of C as in Lemma 2.1 until we get to x2. Color x1x2 with
color 5 and color x2xj with the sum of f(x2) and the color on x2x3 (see Figure 3).
This color will be the sum of S′ and the color on xjxj−1, so it is distinct from the
colors on xj+1xj and xjxj−1. The resulting coloring satisfies the conditions of the
lemma.

A similar argument deals with the case when there is a chord of the form xnxj ,
so we may now assume there are no chords, VC = ∅. Restart by coloring the vertices
of C − x1 with {a, b, c} as follows. Assume f(x′

3) = · · · = f(x′
j) = a �= f(x′

j+1) (or
j = n). Color xj+1 with a and greedily color xi for i > j + 1. The vertices x3, . . . ,xj

can be colored alternately by b and c, starting with either b or c. The vertex x2 will
be colored a, b, or c (possibly equal to the color of x′

2, but not equal to the color of
x3). Let S =

∑n
i=2 f(xi).

We now list the possible colorings. For each choice of colorings of x2 and x3,
there are four possible values of S depending on the value of S′ =

∑n
i=j+1 f(xi) and

j. Table 1 lists the various possibilities. Each value of S′ and j has a column in
the table for S. Since f(x2) and f(x3) can be changed independently of S′ we have
several choices for the vertex-coloring for each S′ and j. We describe several cases in
which we can find a suitable corresponding edge-coloring.

Case A. f(x2) �= f(x′
2), S �= 0.
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As in Lemma 2.1, we can edge color C starting at x1x2. Since S �= 0, the colors
on x1xn and x1x2 will be distinct. Depending on the choice of x1x2, the pair of colors
meeting x1 can be chosen to be either {0, S} or K \ {0, S}. (We assume x1x

′
1 is

uncolored for now.)

Case B. f(x2) = f(x′
2) �= S, S �= 0.

As before we color the edges of C. However, this time only two choices for x1x2

are allowed since we must ensure that x2 is distinguished from x′
2 (either color not

meeting x′
2 will do for x1x2). These choices differ by the addition of f(x2) to every

edge of C, and since f(x2) /∈ {0, S}, this swaps the pairs of colors {0, S} and K\{0, S}
on xnx1 and x1x2.

Case C. f(x2) = f(x′
2) = S, S �= 0.

Unfortunately, both choices above of the color for x1x2 give the same pair of
colors on xnx1 and x1x2. Hence we can only guarantee that colorings exist making
x1 meet one of the pairs {0, S} or K \ {0, S}.

For each S′ and j (corresponding to a column in Table 1) there are always at
least two possible nonzero values for S. Moreover, for any choice of f(x′

2), we can find
two choices of f(x2) and f(x3) with distinct values of S �= 0, at least one of which
has either f(x2) �= f(x′

2) or f(x2) = f(x′
2) �= S (the second case occurs only in the

column indicated by ∗). Hence the set of pairs of colors meeting x1 can be chosen as
any edge of a path of edge length 3 in KK (one value of S gives a matching in KK ,
the other value gives at least one more edge in KK).

In case (a) we are now done, since there is always a choice of the pair of colors
that does not include the color on x1x

′
1. Also, x1 and x′

1 are distinguished since only
x′

1 meets color 5. In case (b) there is some choice for this pair of colors that is not
equal or disjoint from the pair of colors meeting x′

1. Hence there is a choice of color
in K for x1x

′
1 which makes the coloring proper and distinguishes x1 and x′

1.

Theorem 2.4. If G is a 3-regular graph containing a 1-factor, then there exists
a 5-avd-coloring of G.

Proof. Without loss of generality we may assume G is connected. Decompose
G as a 1-factor I and a union of cycles Ci. If there is only one cycle, then G is
Hamiltonian and we are done by Lemma 2.1. Otherwise construct a new graph M
with vertex set V (M) equal to the set of cycles Ci and edges joining Ci and Cj when
there is an edge of I joining some vertex of Ci to some vertex of Cj . Since G is
connected, M is also connected. Pick a spanning tree T of M . Decompose T as a
vertex disjoint union of stars Sj , |V (Sj)| ≥ 2. For each Sj let Gj be the subgraph of
G with an edge set made up of the edges of the cycles Ci of Sj , together with their
chords in G and one edge of I joining Ci and Ci′ for each edge CiCi′ of Sj . Color G
in the following way. Each edge (of I) that does not lie in any Gj will be colored 5.
Now color each Gj in turn. If the star Sj has at least 3 vertices in M , use Lemma 2.2
to color the central cycle Ci0 of Sj . The graph H of Lemma 2.2 consists of Ci0 , its
chords in G, and some 3-stars. The vertices of Ci0 incident to an edge joining Ci0 to
another cycle in Gj will be placed in VS , and we attach a 3-star to each remaining
vertex of Ci0 that does not meet a chord of Ci0 . The edges of this 3-star correspond
in an obvious way to some of the edges of G (although the degree 1 vertices and the
edges incident with degree 1 vertices of H may not necessarily be distinct in G). We
color the edges of the 3-stars with the corresponding colors already assigned in G, or
arbitrarily (but properly) if no color has been assigned yet. Note that the edge of a
3-star incident to Ci0 will be colored 5. Lemma 2.2 now extends the coloring to the
edges and chords of Ci0 . Now color the edges xiyi joining Ci0 to the other cycles Ci
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Fig. 4. The case when G contains adjacent degree 2 vertices.

of Gj with some color of K if xi meets color 5 on C in such a way that the coloring is
avd on C (see note after Lemma 2.2). Otherwise leave xiyi uncolored. We now color
the other cycles Ci of Gj using Lemma 2.3 in a similar manner using the edge xiyi
as the edge x1x

′
1 of Lemma 2.3. The conditions of Lemma 2.3 ensure that we can

find a coloring that is a 5-avd-coloring regardless of the choices of colors on the edges
already colored. If the star Sj consists of just two vertices, use Lemma 2.3 on both
constituent cycles. For the first cycle we use case (b) of Lemma 2.3. This will result
in the edge x1x

′
1 between the cycles being colored. If x1 does not meet color 5, then

uncolor x1x
′
1. Now color the other cycle using case (a) or (b) of Lemma 2.3. If x1x

′
1

is recolored with a new color, then x1 does not meet color 5, but both its neighbors
on the first cycle do. Hence the coloring is still avd on the first cycle.

Proof of Theorem 1.1. We shall prove Theorem 1.1 by induction on |E(G)|. Paths
and cycles on at least 3 vertices have 5-avd-colorings [7], so we may assume that G is
connected with maximum degree 3.

Assume x is a vertex of degree 1 in G. Let y be the neighbor of x. Then y is of
degree 2 or 3. Since G �= P3 we can find a 5-avd-coloring of G′ = G− x by induction.
In G′, y has degree at most 2, so there are at least three colors not incident to y. At
most two of these colors cannot be used to color xy, as they may result in y meeting
the same set of colors as some neighbor in G′. However, there is still at least one color
that can be given to xy so that the coloring is avd. Hence we may assume G contains
no degree 1 vertex.

Assume two vertices of degree 2 are adjacent in G. Let x0x1x2 . . . xn, n > 2, be
a suspended trail in G, i.e., a trail with dG(x0) = dG(xn) = 3 and dG(xi) = 2 for
0 < i < n. If x0 �= xn, let G′ be the graph obtained by contracting this path to
x0yxn. If x0 = xn, let G′ be the graph obtained by deleting the vertices x1, . . . , xn−1

and adding two degree 1 vertices y, z to x0 = xn (see Figure 4). By induction G′ has
a 5-avd-coloring. We may assume without loss of generality that the edge x0y has
color 1 and xny (or xnz) has color 2. The edges xixi+1 of G can be colored with 1
for i = 0, 2 for i = n− 1, and cyclically with the colors {3, 4, 5} for other values of i.

Hence we can assume that any vertex of degree 2 is adjacent only to vertices of
degree 3. If G contains a bridge xy, let G1 and G2 be components of G − xy with
x ∈ V (G1) and y ∈ V (G2). Give G1 ∪ xy and G2 ∪ xy 5-avd-colorings by induction.
(These graphs have smaller edge counts than G since G has no degree 1 vertices.) By
permuting the colors on G2 ∪ xy, we can assume the edge xy receives the same color
in each coloring and the color set incident to x in G1 ∪xy is not the same as the color
set incident to y in G2 ∪ xy. This now gives a 5-avd-coloring of G (see Figure 5).

Hence we can assume that G is a graph with maximum degree 3, no vertices of
degree 1, no pair of adjacent degree 2 vertices, and is bridgeless. By Tutte’s 1-factor
theorem, any cubic graph without a 1-factor must contain at least three bridges, so if
G contains no degree 2 vertices, we are done by Theorem 2.4. If G contains degree 2
vertices, then let G′ be the graph obtained by taking two copies of G and joining their
corresponding degree 2 vertices by an edge. Then G′ is 3-regular and contains at most
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Fig. 5. The case when G contains a bridge.

one bridge. Hence G′ has a 1-factor and so by Theorem 2.4 G′ has a 5-avd-coloring.
This coloring of G′ induces a 5-avd-coloring of G since no two vertices of degree 2 are
adjacent in G.

3. Bipartite graphs. If G has an edge-coloring with colors c1, . . . , ck, write
G{c1, . . . , cr} for the subgraph of G consisting of all the vertices of G together with
the edges of G that are colored with a color in {c1, . . . , cr}. Write S(v) for the set of
colors incident to v and χ′ = χ′(G) for the edge-chromatic number of G.

The bound χ′
a(G) ≤ Δ(G) + 3 for regular bipartite graphs comes rather easily

using the 1-factorization of regular bipartite graphs. To see this, observe that a 2-
regular bipartite graph H with bipartition V (H) = A ∪ B has a straightforward
5-avd-coloring along each cycle such that S(a) ∈ {{1, 2}, {3, 4}, {3, 5}} and S(b) ∈
{{1, 4}, {2, 3}, {4, 5}, {1, 3}} for every a ∈ A and b ∈ B. For Δ(G) > 2 use this
coloring for a 2-factor H ⊆ G and give G \H any proper coloring with the remaining
Δ(G) − 2 colors. To obtain the bound χ′

a(G) ≤ Δ(G) + 2 for any bipartite graph,
however, much more effort will be required.

Lemma 3.1. If G is a bipartite graph with no isolated edges, then there exists a
proper edge-coloring with colors {1, . . . , χ′(G)} such that

A. if uv ∈ E(G) \ E(G{1, 2}), then either {1, 2} ⊆ S(u) or {1, 2} ⊆ S(v);
B. if C is a cycle in G{1, 2} which does not meet color 3 in G, then {1, 2, 3} ⊆

S(v) for every neighbor v in G \ C of any vertex of C;
C. if C is a cycle in G{1, 2} which does meet color 3 in G, then there exists a

u ∈ V (C) and uv ∈ E(G{3}) with {1, 2} ⊆ S(v) (we allow v ∈ V (C)); and
D. if uv is an isolated edge in G{1, 2, 3}, then S(u) �= S(v).
Proof. Consider the set of edge-colorings of G with χ′ colors. For all such colorings

pick one such that
(1) G{1, 2} has maximal edge count;
(2) subject to (1), G{1, 2} has the minimum number of components (counting

isolated vertices as components);
(3) subject to (1)–(2), G{3} has maximal edge count; and
(4) subject to (1)–(3), the number of edges uv in G failing condition D is minimal.

We shall show that such a coloring satisfies conditions A–D.
Condition A. Let uv ∈ E(G) \ E(G{1, 2}) be an edge with {1, 2} �⊆ S(u), S(v).

Then u and v are either isolated vertices or the end-vertices of paths in G{1, 2}. By
recoloring uv with either color 1 or 2 (and possibly interchanging colors 1 and 2 in
the component of v in G{1, 2}) we obtain a proper edge-coloring with more edges
colored {1, 2}, contradicting (1). Note that if u and v are end-vertices of the same
path in G{1, 2}, then since G is bipartite, the edge uv can be recolored without
changing any colors on this path.

Condition B. Assume uv ∈ E(G) with u ∈ V (C), v /∈ V (C), and {1, 2, 3} �⊆ S(v).
Note that uv is not colored with 1, 2, or 3. If 3 /∈ S(v), then we can recolor uv with 3,
contradicting (3). Hence without loss of generality 1 /∈ S(v). Recolor uv with 1 and
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Fig. 6. Proof of Condition C.

recolor the color 1 edge on C meeting u with color 3. This contradicts condition (2).

Condition C. Suppose u ∈ V (C) meets color 3 on an edge uv with 1 /∈ S(v).
Clearly v /∈ V (C). Let w be the neighbor of u on C with uw colored 1. If 3 /∈ S(w),
then recolor uw with 3 and uv with 1. This gives a coloring contradicting (2). If
3 ∈ S(w), let zw be the edge incident to w colored 3. If {1, 2} ⊆ S(z), then we are
done; otherwise we can assume z is either an isolated vertex or the end of a path in
G{1, 2}. Recolor uv and wz with 1, uw with 3, and, if necessary, swap colors 1 and
2 on the path from z in G{1, 2} so as to make the coloring proper (see Figure 6). If
the paths in G{1, 2} meeting v and z are the same, then recoloring this path will be
unnecessary since G is bipartite. We now have a new coloring with more edges in
G{1, 2}, contradicting (1).

Condition D. Let u1v1 be an isolated edge of G{1, 2, 3}. By Condition A, u1v1

is colored with either 1 or 2. Since G contains no isolated edge, we can assume
that dG(u1) ≥ 2 and that u1 meets another color k > 3 on some edge of G. Swap
colors 3 and k along a Kempe chain (component path of G{3, k}) starting at u1

in G. By condition (3) we may assume that the last edge of this chain is recolored k.
This reduces the number of edges failing condition D unless after the recoloring the
other end-vertex v2 of this chain lies in some isolated edge u2v2 of G{1, 2, 3} and
S(u2) = S(v2). In this case u2 also meets color k, so we can form a new Kempe chain
starting at u2 using colors 3 and k, disjoint from the u1-v2 chain. Repeating this
process we get a sequence of Kempe chains on colors 3 and k from ui to vi+1. Note
that properties (1)–(3) still hold after these recolorings. Eventually this process must
terminate with a coloring reducing the number of edges failing condition D. Note that
all the Kempe chains are vertex disjoint, and none end at v1 since otherwise some
recoloring would increase the number of edges colored 3, contradicting (3).

Proof of Theorem 1.2. Color G as in Lemma 3.1. We shall recolor the edges of
G{1, 2, 3} with the five colors from K ∪{3}, where K = {0, a, b, c} is the Klein group.
This will give an avd-coloring with χ′(G)+2 = Δ(G)+2 colors. In addition, a vertex
v will meet color 3 in the new coloring only if it met 3 in the original coloring, so
|S(v) ∩K| will be at least as large as the original degree of v in G{1, 2}.

The edges of G{1, 2} form a set of vertex disjoint paths and even cycles. Construct
a new graph M with a vertex set equal to the nonsingleton components Ci of G{1, 2}
and edges joining Ci and Cj when either

1. there is an edge of G{3} joining a vertex of degree 2 in Ci to a vertex of
degree 2 in Cj ; or

2. either Ci or Cj is a single edge and there is an edge of G{3} joining any vertex
of Ci to any vertex of Cj .

As in the proof of Theorem 2.4, we take a star decomposition {Sj} of a spanning
forest of M and consider a corresponding subgraph G′ of G{1, 2, 3} in G consisting of
the induced subgraphs in G{1, 2, 3} of each cycle Ci and a choice of edges from G{3}
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as above, joining Ci and Ci′ when CiCi′ is an edge of one of the stars in the star
decomposition. Note that the graph M may contain isolated vertices, so some of the
stars may be isolated vertices as well. We shall color every edge that does not lie in
G′ with its original color in G. The colors 1 and 2 do not appear on these edges. The
subgraph G′ will be colored with colors from K ∪ {3} so as to obtain an avd-coloring
of G using at most two more colors.

We say a component Ci of G{1, 2} is bad if it is either a single edge where the
end-vertices are not distinguished in the coloring of G, or a cycle of length congruent
to 2 mod 4 that meets color 3, but has no color 3 chord. All other Ci’s will be called
good.

If Ci is a bad cycle, then by condition C, Ci is adjacent by an edge of G{3} to
a vertex of degree 2 in G{1, 2}. In particular, Ci is not isolated in M . If Ci is a
bad edge, then by condition D it meets an edge of G{3}, and so once again Ci is not
isolated. Thus all isolated components are good.

Now we consider the stars Sj . Suppose we have a star with central component
C0 and end-components C1, . . . , Cr. If r ≥ 2, delete the edge of G′ from C0 to good
components Ci in Sj , i > 0, until either r = 1 or all Ci, i > 0, are bad. If r = 1 and
C0 and C1 are good, delete the edge joining them in Sj . If C0 is bad and C1 is good,
we consider C1 to be the center of the star. Furthermore, if C0 is an edge, then C1

is not an edge (otherwise we would have two adjacent vertices of degree 1 in G{1, 2},
contradicting condition A). In this case also we swap C0 and C1, so we can assume
without loss of generality that C0 is not a single edge when r = 1 (or r > 2). Any
edge deleted from G′ will remain colored 3 in our final coloring.

Hence we may assume each star Sj is either an isolated good Ci or a star with
all end-components either bad or single edges. Also, the color 3 edges in G′ joining
C0 to the end-components are incident to degree 2 vertices of C0 except in the case
when r = 2 and C0 is a single edge.

We now recolor G′ with colors from K∪{3}. Let G have bipartition V (G) = A∪B.
We shall provisionally color the vertices of A with a ∈ K and the vertices of B with
b ∈ K. We shall color the edges of G in such a way that (with a few exceptions) each
v ∈ A with dG′(v) ≥ 2 will be colored so that S(v) ∩K ∈ SA, where

SA = { {0, a}, {a, b}, {b, c}, {0, a, c}, {0, b, c} },

while for v ∈ B, S(v) ∩K ∈ SB , where

SB = { {0, b}, {0, c}, {a, c}, {0, a, b}, {a, b, c} }.

This is sufficient, since if uv ∈ E(G), u ∈ A, v ∈ B, and S(u) = S(v), then S(u)∩K =
S(v) ∩K. But SA ∩ SB = ∅, so dG′(u) < 2, say. But then |S(v) ∩K| = |S(u) ∩K| <
2, so S(v) ∩ K /∈ SA, SB and dG′(v) < 2. However, E(G′) ⊇ E(G{1, 2}), so if
uv /∈ E(G{1, 2}), then by condition A we can’t have dG′(u), dG′(v) < 2. Finally, if
uv ∈ E(G{1, 2}), then S(u)∩ {4, . . . , χ′} �= S(v)∩ {4, . . . , χ′} by condition D and the
fact that we do not recolor any edges of G{4, . . . , χ′}.

We shall now color each component of G′ independently.
Case 1. Good isolated paths. Using the elements of K, color the edges of a

good path arbitrarily so that the sum of the two colors meeting a degree 2 vertex
of the path is equal to the color of this vertex. Any degree 2 vertex v will have
S(v) ∩ K ∈ {{0, a}, {b, c}} ⊆ SA if v ∈ A and S(v) ∩ K ∈ {{0, b}, {a, c}} ⊆ SB if
v ∈ B.
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Case 2. Good isolated cycles. If the cycle length is divisible by 4, then we can
color the edges from K so that the sum of the two colors meeting a vertex v is equal
to the vertex color in K. Any color 3 chord will remain colored 3. If the cycle length
is not divisible by 4 and there are no color 3 chords, then none of the vertices meets
color 3 in G. However, by condition B of Lemma 3.1 all the neighbors of vertices of
the cycle meet all three colors {1, 2, 3} in G. If we give the cycle any avd-coloring
using colors from K, we are done since every vertex on the cycle will meet only two
colors from K ∪{3}, whereas their neighbors off the cycle will meet three such colors.
(This is one case where we do not insist that S(v)∩K lies in SA or SB .) Finally, if the
cycle has a color 3 chord uv, recolor u and a neighbor w of u on C with color c. Now
color the edges around the cycle so that u meets {0, c} if u ∈ A or {a, b} if u ∈ B.
Then v is still labeled with a or b so the chord uv can be recolored by some color of
K, making the coloring on C proper (see Figure 7). It is easily checked that S(v)∩K,
S(u) ∩K, and S(w) ∩K lie in the correct set SA or SB as required.

Case 3. Stars of components. Remove any edges from G′ that are chords of some
component cycle Ci of the star. These edges will remain colored 3. If the central
component C0 is a cycle of length 2 mod 4, relabel one (and only one) vertex u ∈ C0

that is adjacent to an end-component with b if u ∈ A and a if u ∈ B. Assume now
that C0 is not a single edge. Color the central component so that the sum of two
colors meeting a degree 2 vertex of C0 is the vertex color of this vertex. Now recolor
the color 3 edges uv from C0 to Ci (u ∈ C0, v ∈ Ci) with either 0 or c if u ∈ A, or a
or b if u ∈ B. Now for each degree 2 or 3 vertex u of C0, S(u)∩K ∈ SA if u ∈ A and
S(u) ∩K ∈ SB if u ∈ B (see Figure 8).

Each end-component is either a bad cycle of length 2 mod 4, or a single edge. For
each end-component that is a cycle C, let v be the vertex of C joined to the central
component C0. Recolor v and a neighbor of v on C with color c ∈ K. Now color
the edges of C so that the colors of K meeting v on C are {0, c} if v ∈ A and {a, b}
if v ∈ B. Now for each degree 2 or 3 vertex w of C, S(w) ∩ K ∈ SA if w ∈ A and
S(w) ∩K ∈ SB if w ∈ SB .
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Fig. 9. Central component is a single edge.

For each end-component vw that is a single edge, let uv be the edge joining vw
to C0 (see Figure 8). If v ∈ A, then uv has been colored a or b. For either choice
there is a choice of 0 or c on edge vw for which S(v) ∩K ∈ SA. Similarly, if v ∈ B,
then uv has been colored 0 or c. For either choice there is a choice of a or b on edge
vw for which S(v) ∩K ∈ SB .

Finally, assume C0 is a single edge xy. Then C0 is joined to two components,
which by condition A must be cycles (see Figure 9). Recolor the edge xy with color 3.
(Note that both x and y meet color 3 in the original coloring.) Now if we color
the edges to the end-components and the edges of the end-components as before, we
obtain a coloring with x distinguished from y. In this case S(x) ∩ K and S(y) ∩ K
are not in SA or SB , so we need to check that x and y are distinguished from all
neighbors in G. Clearly x and y are distinguished from their neighbors in G′. If, say,
zx ∈ E(G), then by condition A, {1, 2} ⊆ S(z) in the original coloring. Hence in the
final coloring |S(z) ∩K| ≥ 2 > |S(x) ∩K|, so S(z) �= S(x).

Note that in the proof of Lemma 3.1 we only recolored the edges colored 1, 2, or
3, and for each edge uv, either the vertices u and v are distinguished by the colors in
K ∪ {3}, or uv is one of the isolated edges of G{1, 2, 3} in condition D of Lemma 3.1.

4. General graphs. The bound in Theorem 1.3 will be obtained by decompos-
ing a general graph into bipartite graphs (Lemma 4.1), and by using an extended
version of Lemma 3.1 that makes it possible to color these bipartite graphs “simulta-
neously” (Lemma 4.2).

Lemma 4.1. If G is a k-chromatic graph with no isolated edge or isolated K3,
then G can be written as the edge disjoint union of log2 k� bipartite graphs, each of
which has no isolated edge.

Proof. Let r = log2 k�. Then k ≤ 2r. We first show that G is the union of r
bipartite graphs without the restriction on isolated edges. For r = 1 this is clear. For
r > 1 write V (G) as the union of k independent color classes V1, . . . , Vk. Partition the
classes into two groups V1, . . . , V�k/2� and V�k/2�+1, . . . , Vk. Let G1 be the bipartite
graph formed by taking all edges from the first set of color classes to the second.
Then G \ E(G1) has chromatic number at most k/2� ≤ 2r−1. Hence, by induction,
G\E(G1) can be written as the edge disjoint union of r−1 bipartite graphs G2, . . . , Gr.
Thus G is the union of r bipartite graphs as required.

Write G as a union of r bipartite graphs in such a way that the total number
of isolated edges in the subgraphs Gi is minimized. Suppose there is an isolated
edge xy in G1, say. Since there are no isolated edges in G, there must be some other
bipartite graph G2, with some edge incident to x, say. If we can add xy to G2 without
creating an odd cycle, then by removing xy from G1 and adding it to G2 we reduce
the number of isolated edges. Hence we may assume there is an even length path
from x to y in G2.
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If there are edges xz of G2 with dG2
(z) = 1, then remove one such edge from G2

and add it to G1. Since there is an even length path from x to y, no isolated edges
are formed in G2, but there are fewer isolated edges now in G1. Similarly we are done
if there are edges yz of G2 with dG2(z) = 1. If no such edge xz or yz exists, remove
an edge of an even length path from x to y in G2 and add it to G1. Use the edge
of this path incident to y if dG2

(x) > 1; otherwise use the edge incident to x. This
will reduce the total number of isolated edges, except in the case when G2 contains a
component consisting of a path xzy of length 2 from x to y.

Since G does not contain an isolated K3 there must be some other edge meeting
{x, y, z} in G. Suppose such an edge is incident to either x or y. Then this edge must
lie in some other bipartite subgraph, say G3. Considering G3 in place of G2 we may
assume G3 has a component xwy which is a path of length 2 from x to y. In this case
put edge wx in G1 and wy in G2. Both G1 and G2 remain bipartite and G3 loses a
component. The number of isolated edges in G1 decreases, contradicting our choice
of decomposition into bipartite graphs.

Hence we may assume G has some other edge meeting z, but dG(x) = dG(y) = 2.
The edge meeting z lies in Gi where i = 1 or i > 2. In this case we can move zx to
Gi and xy to G2. Both Gi and G2 remain bipartite and G1 loses the isolated edge
xy. This reduces the number of isolated edges and contradicts the assumption that
there is an isolated edge in some Gj . Hence there is a decomposition into r bipartite
graphs, each of which has no isolated edge.

Lemma 4.2. Assume G is a graph which is the edge disjoint union of bipartite
graphs G1, . . . , Gr, each of which has no isolated edge. Then there exists a proper
edge-coloring with colors {11, . . . , 1r, 21, . . . , 2r, 31, . . . , 3r, 4, . . . , χ

′} such that colors
1i, 2i, and 3i occur only on the edges of Gi and

A. if uv ∈ E(Gi) \E(Gi{1i, 2i}), then either {1i, 2i} ⊆ S(u) or {1i, 2i} ⊆ S(v);
B. if C is a cycle in G{1i, 2i} which does not meet color 3i in G, then {1i, 2i, 3i} ⊆

S(v) for every neighbor v in Gi \ C of any vertex of C;
C. if C is a cycle in G{1i, 2i} which does meet color 3i in G, then there exists

a u ∈ V (C) and uv ∈ E(G{3i}) with {1i, 2i} ⊆ S(v); and
D. if uv is an isolated edge in G{1i, 2i, 3i}, then either S(u) ∩ {4, . . . , χ′} �=

S(v)∩ {4, . . . , χ′} or there is an edge in G incident to u colored with color 4.

Proof. By coloring G with {1, . . . , χ′} and splitting colors 1, 2, and 3 into 1i, 2i,
and 3i according to which Gi the edge belongs to, we can find a coloring with the
given set of colors so that edges colored 1i, 2i, or 3i occur only in Gi. For all such
colorings pick one such that

(1) G{11, . . . , 1r, 21, . . . , 2r} has maximal edge count;
(2) subject to (1), the sum over i of the number of components of G{1i, 2i} is

minimal;
(3) subject to (1)–(2), G{31, . . . , 3r} has maximal edge count; and
(4) subject to (1)–(3), the number of edges uv failing condition D (for any i) is

minimal.

As in the proof of Lemma 3.1, we see that conditions A–C hold for each i. It remains
to prove condition D. Let u1v1 be an isolated edge of G{1i, 2i, 3i}. Since Gi contains
no isolated edge, we can assume that dGi(u1) ≥ 2 and that u1 meets another color
k > 4 on some edge of Gi. Swap colors 4 and k along a Kempe chain (in G) starting
at u1. This will reduce the number of edges failing condition D unless the other end-
vertex v2 of this chain lies in some isolated edge u2v2 of G{1j , 2j , 3j} and after the
recoloring u2v2 fails condition D. In this case u2 also meets color k, so we can form a
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new Kempe chain starting at u2 using colors 4 and k. Repeating this process we get a
sequence of Kempe chains on colors 4 and k from ui to vi+1. Eventually this process
must terminate with a coloring reducing the number of edges failing condition D, or
with some vr = v1. However, in this last case recoloring all these Kempe chains makes
both v1 and u1 meet color 4.

Proof of Theorem 1.3. Since K3 has a 3-avd-coloring, we can assume G contains
no K3 component. Decompose G using Lemma 4.1 and color G as in Lemma 4.2. Now
recolor each bipartite subgraph Gi, replacing 1i, 2i, 3i with a set of five colors Ki =
{0i, ai, bi, ci, 3i}, disjoint for each i, as in the proof of Theorem 1.2. Some edges uv of
Gi may be isolated in Gi{1i, 2i, 3i}, so u and v will not necessarily be distinguished in
Gi; however, for all other edges uv ∈ E(Gi), S(u)∩Ki �= S(v)∩Ki by the comment at
the end of section 3. Also, this recoloring does not change any of the colors 4, . . . , χ′

on G. Hence by condition D, if uv ∈ E(Gi) and S(u) ∩Ki = S(v) ∩Ki, then either
S(u) ∩ {4, . . . , χ′} �= S(v) ∩ {4, . . . , χ′} or 4 ∈ S(u). Let H be the subgraph of edges
uv ∈ E(G) such that u and v are not distinguished by the colors in Ki ∪ {4, . . . , χ′},
where uv ∈ E(Gi). Let HI be the subgraph of H consisting of all the isolated edges
of H. Each nonisolated vertex in H meets color 4, so G{4} ∪HI forms a collection
of paths and cycles with all edges of HI on the interior of any path or cycle. Split
color 4 into three colors 4A, 4B , and 4C . By alternately changing 4 into 4A or 4B
along the paths and cycles of G{4} ∪HI we can distinguish the end-vertices of each
edge of HI . If a cycle of length 2 mod 4 occurs, we shall also need to color some
of the color 4 edges of this cycle with 4C . All other color 4 edges in G may become
4C without loss of generality. This increases the number of colors used by 2 and
distinguishes u and v for all uv ∈ E(HI). The graph HC = H \HI has no isolated
edge, and Δ(HC) ≤ r ≤ log2 k�. Pick χ′

a(HC) new colors and recolor HC so that
it has an avd-coloring using these colors. The resulting coloring is avd. To see this,
pick any edge uv of G. If uv ∈ E(Gi) and uv /∈ E(H), then S(u)∩Ki �= S(v)∩Ki or
S(u)∩{4A, 4B , 4C , 5, . . . , χ′} �= S(v)∩{4A, 4B , 4C , 5, . . . , χ′} since the recoloring of HC

removes elements from S(u) ∩Ki only when u is in an isolated edge of Gi{1i, 2i, 3i}.
But in this case |S(v)∩Ki| ≥ 2 (by condition A) and |S(u)∩Ki| = 0. If uv ∈ E(HI),
then S(u)∩ {4A, 4B , 4C} �= S(v)∩ {4A, 4B , 4C}, and if uv ∈ E(HC), then u and v are
distinguished by the χ′

a(HC) new colors.
Thus χ′

a(G) ≤ χ′(G) − 3 + 5r + 2 + χ′
a(HC). Finally, Δ(HC) ≤ χ′(HC) ≤

r < Δ(G). So by induction on Δ(G) we may assume χ′
a(HC) = r + O(log r), and

χ′
a(G) = Δ(G) + O(r) = Δ(G) + O(log k).
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ON THE MINIMUM ORDER OF EXTREMAL GRAPHS TO HAVE A
PRESCRIBED GIRTH∗

C. BALBUENA† AND P. GARCÍA–VÁZQUEZ‡

Abstract. We show that any n-vertex extremal graph G without cycles of length at most k has
girth exactly k+1 if k ≥ 6 and n > (2(k−2)k−2+k−5)/(k−3). This result provides an improvement
of the asymptotical known result by Lazebnik and Wang [J. Graph Theory, 26 (1997), pp. 147–153]

who proved thatthe girth is exactly k+1 if k ≥ 12 and n ≥ 2a
2+a+1ka, where a = k−3−�(k−2)/4�.

Moreover, we prove that the girth of G is at most k + 2 if n > (2(t− 2)k−2 + t− 5)/(t− 3), where
t = �(k+1)/2� ≥ 4. In general, for k ≥ 5 we show that the girth of G is at most 2k−4 if n ≥ 2k−2.

Key words. extremal graphs, girth, forbidden cycles, cages
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1. Introduction. Throughout this paper, only undirected simple graphs with-
out loops or multiple edges are considered. Unless otherwise stated, we follow [2] for
terminology and definitions.

Let V (G) and E(G) denote the set of vertices and the set of edges of a graph G,
respectively. The order of G is denoted by |V (G)| = n and the size by |E(G)| = e(G).
The minimum length of a cycle contained in G is the girth g(G) of G. A cycle of
minimum length is said to be a girdle and if G does not contain a cycle, we set
g(G) = ∞. By Cr we will denote a cycle of length r, r ≥ 3.

Let F be a family of graphs. The extremal number ex(n,F) is the maximum
number of edges in a graph of order n that does not contain any graph of F as a
subgraph. The graphs of order n and size ex(n,F) not containing any F ∈ F as a
subgraph are the extremal graphs and are denoted by EX(n,F). We refer to graphs
from EX(n,F) as extremal F-free graphs of order n, or just extremal.

By ex(n; {C3, C4, . . . , Ck}) we denote the maximum number of edges in a graph
of order n and girth at least k+1, and by EX(n; {C3, C4, . . . , Ck}) we denote the set
of all graphs of order n, girth at least k + 1, and with ex(n; {C3, C4, . . . , Ck}) edges.
Erdös and Sachs [3] showed that an r-regular graph of girth at least k + 1 with the
least possible number of vertices has girth equal to k + 1. (A proof of this result can
be found in Lovász [7, pp. 66, 384, 385, and the references therein].) These graphs
are called (r; k + 1)-cages.

In this paper we consider a similar question asked by Garnick and Nieuwejaar in
[5] on extremal graphs with a relatively large girth. Is there a constant c such that for
all k ≥ 5 and all n ≥ ck, the girth of any extremal graph with girth ≥ k + 1 is k + 1?
They give an affirmative answer for k = 4. Lazebnik and Wang [6] showed that the

∗Received by the editors April 7, 2006; accepted for publication (in revised form) October 11, 2006;
published electronically April 6, 2007. This research was supported by the Ministry of Education and
Science, Spain, and the European Regional Development Fund (ERDF) under project MTM2005-
08990-C02-02.

http://www.siam.org/journals/sidma/21-1/65674.html
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answer is negative for c = 2 and affirmative if k = 5 or if n is large in comparison
with k. More precisely they proved the following result.

Theorem A. Let k≥ 12, a= k − 3 − �(k − 2)/4�, n≥ 2a
2+a+1ka, and

G ∈ EX(n; {C3, C4, . . . , Ck}). Then the girth g(G) = k + 1.
In order to prove Theorem A, Lazebnik and Wang used the following result, which

they also stated in [6].
Theorem B. Let k ≥ 3, G ∈ EX(n; {C3, C4, . . . , Ck}), and the maximum degree

be Δ(G) ≥ k. Then g(G) = k + 1.
Our main contribution to this problem is to provide an improvement of Theorem

A. More precisely we prove that the girth of G ∈ EX(n; {C3, C4, . . . , Ck}) is k + 1
if either k = 3 and n ≥ 5; or k = 4 and n ≥ 9; or k = 5 and n ≥ 8; or k = 6 and
n ≥ 171; or k ≥ 7 and

n ≥ 2(k − 2)k−2 + k − 5

k − 3
+ 1.

This contribution contains the known results for k = 3, 4, 5; see [4, 5, 6]. Further-
more, it gives an answer to the problem for k = 6 posed by Lazebnik and Wang [6],
who asked to prove the girth of an extremal {C3, C4, C5, C6}-free graph is 7.

Moreover, we show that the girth of G ∈ EX(n; {C3, C4, . . . , Ck}) is at most
2k − 4 provided that k ≥ 5 and n ≥ 2k − 2. This clearly implies that for k = 6 the
girth of an extremal graph is at most 8 for 10 ≤ n ≤ 170.

Let t = �(k+1)/2	. We also prove that the girth of G ∈ EX(n; {C3, C4, . . . , Ck})
is at most k + 2 if k ≥ 7 and

n ≥ 2(t− 2)k−2 + t− 5

t− 3
+ 1.

From this result it follows for k = 7 that if n ≥ 64, then g(G) ≤ 9.

2. Main results. The set of neighbors of u ∈ V (G) is denoted by NG(u). The
number of neighbors of u is the degree dG(u) of u in G, or briefly d(u) when it is clear
which graph is meant. The distance dG(x, y) in G of two vertices x, y is the length
of a shortest x− y path in G. The greatest distance between any two vertices in G is
the diameter D(G) of G. Diameter and girth are related by g(G) ≤ 2D(G) + 1. Let
e = xy be an edge of G. As usual we will denote by G/{e} = G/e the graph obtained
from G by contracting the edge e into a new vertex ve, which becomes adjacent to
all the former neighbors of x and y. Taking into account that we dealt with simple
graphs of girth at least 4 the resultant graph by any edge contraction remains simple.

Throughout the paper k ≥ 3 is an integer. We begin by proving a technical and
useful lemma.

Lemma 2.1. Let G ∈ EX (n; {C3, . . . , Ck}) have two distinct edges e1 and e2

such that every cycle of G containing both of them has a length of at least k+3. Then
the girth is g(G) = k + 1 if the diameter is D(G/{e1, e2}) ≥ k − 2.

Proof. Let G ∈ EX (n; {C3, . . . , Ck}) satisfy the hypothesis of the lemma and
suppose that the girth is g(G) ≥ k+ 2. The graph G′ = G/{e1, e2} has g(G′) ≥ k+ 1
because by hypothesis any cycle passing through both edges e1 and e2 has a length
of at least k + 3. Let u′, v′ be two vertices of G′ such that dG′(u′, v′) = D(G′);
then by hypothesis dG′(u′, v′) = D(G′) ≥ k − 2. Let us consider the graph G∗

obtained from G′ by adding two new vertices x1, x2 and the three edges u′x1, x1x2,
and x2v

′. We have g(G∗) = min{g(G′), D(G′) + 3} ≥ k + 1, |V (G∗)| = |V (G′)|
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+ 2 = n, and e(G∗) = e(G) + 1, which contradict the maximality of G. Therefore
g(G) = k + 1.

As a first consequence of the above lemma, we obtain in the next theorem an
upper bound for the girth of any extremal graph which contains the known result
g = k + 1 for k = 5; see [6].

Theorem 2.2. Let G ∈ EX (n; {C3, . . . , Ck}) be for k ≥ 5 and n ≥ 2k−2. Then
G has a girth of g(G) ≤ 2k − 4.

Proof. Let G ∈ EX (n; {C3, . . . , Ck}) satisfy the hypothesis of the theorem, and
assume the girth of G is g ≥ 2k − 2. Let C : u0u1 · · ·ug−1u0 be a girdle in G, and
notice that g ≥ k+ 3 because k ≥ 5. The graph G′ = G/{u0u1, u1u2} clearly has girth
g(G′) ≥ 2k− 4; hence the diameter is D(G′) ≥ �g(G′)/2� ≥ �(2k− 4)/2� = k− 2. By
Lemma 2.1 we have g = g(G) = k+1, yielding 2k−2 ≤ k+1, which is a contradiction
because k ≥ 5. Therefore the girth of G is g ≤ 2k− 3. Assume the girth of G is exactly
g = 2k − 3. As n ≥ 2k − 2 the graph G must contain a vertex y not belonging to C.
Without loss of generality, suppose that u0y is an edge of G. Notice that uk−2 and
uk−1, both belonging to C, satisfy that dC(u0, uk−2) = dC(u0, uk−1) = k− 2. Then
both u0 −uk−2 and u0 −uk−1 paths contained in C must be the unique shortest
u0 − uk−2 and u0 −uk−1 paths in G, because k − 2 = (g − 1)/2. This implies that
dG(y, uk−2) ≥ k − 2 and dG(y, uk−1) ≥ k− 2 so that every cycle, if any, containing
both edges u0y and uk−2uk−1 must have a length of at least g + 1 = 2k − 2, which is
at least k + 3 because k ≥ 5. Now let G′′ = G/{u0y, uk−2uk−1}. Clearly, D(G′′) ≥
dG′′(u1, uk) = dG(u1, uk) = k − 2. By Lemma 2.1 we obtain g(G) = g = k + 1, i.e.,
2k − 3 ≤ k + 1, which is impossible for k ≥ 5. Hence the girth of G is at most 2k − 4
and the theorem is valid.

Next, we obtain the following result which is an improvement of Theorem A and
also contains the known results for k = 3, 4, 5; see [4, 5, 6].

Theorem 2.3. Let G ∈ EX (n; {C3, . . . , Ck}). Then g(G) = k+ 1 if either k = 3
and n ≥ 5; or k = 4 and n ≥ 9; or k = 5 and n ≥ 8; or k = 6 and n ≥ 171; or k ≥ 7
and

n ≥ 2(k − 2)k−2 + k − 5

k − 3
+ 1.

Proof. From Theorem 2.2 it follows that any graph G ∈ EX (n; {C3, C4, C5})
for n ≥ 8 has girth of 6. Therefore we can assume k = 3, 4 or k ≥ 6. Let G ∈
EX (n; {C3, . . . , Ck}) and suppose that its girth is g(G) ≥ k + 2. Then, by Theorem
B we have Δ ≤ k − 1, where Δ denotes the maximum degree of G. Let D be the
diameter of G and let us take two vertices x, y at distance dG(x, y) = D. Then
D ≤ k− 1 because otherwise by adding the edge xy to G we would obtain a graph G′

of order n having girth g(G′) ≥ k + 1 and more edges than G, which contradicts the
maximality of G. Let us consider the two cases D = k − 1 and D ≤ k − 2 separately.

Case 1. D = k − 1. Define the set Nk−1
G (x) = {y ∈ V (G) : dG(x, y) = k − 1}.

Clearly, |Nk−1
G (x)| ≥ 1, because y ∈ Nk−1

G (x). Let us see that |Nk−1
G (x)| = 1.

Let W = {w ∈ V (G) : dG(x,w) + dG(w, y) = k − 1} and suppose that there
exists a vertex u ∈ V (G) \ W . Then dG(x, u) + dG(u, y) ≥ k or, in other words, all
the possible paths passing through u that connect x with y have a length of at least
k. Take any vertex v ∈ NG(u) and consider the graph G′ resulting by contracting
the edge uv in G. The girth of this new graph is g(G′) ≥ k + 1 and the diameter
D(G′) = D = k − 1. So let x′, y′ ∈ V (G′) be such that dG′(x′, y′) = k − 1, and
denote by G∗ the graph obtained from G′ by adding a new vertex x∗ and the edges
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x′x∗ and x∗y′. Clearly, |V (G∗)| = |V (G′)| + 1 = n, and girth g(G∗) = k + 1, but
e(G∗) = e(G′) + 2 = e(G) + 1, which contradicts the maximality of G. Hence,
V (G) = W , which readily implies that y is the only vertex at distance D = k−1 from
x and the number of vertices at distance D − 1 = k − 2 from x is at most Δ, since
these vertices must be neighbors of y.

Therefore, if k = 3, then n ≤ 1 + Δ + 1 ≤ 1 + k = 4, contradicting the hypothesis
for this case. If k = 4, then n ≤ 1 + Δ + Δ + 1 ≤ 2k = 8, contradicting again the
hypothesis for this case. So assume that k ≥ 6. As for 1 ≤ i ≤ D − 2 = k − 3, the
maximum number of vertices at distance i from x is Δ(Δ − 1)i−1, we obtain

n ≤ 1 + Δ

k−4∑
i=0

(Δ − 1)i + Δ + 1 ≤ 1 + (k − 1)

k−4∑
i=0

(k − 2)i + k

=
(k − 1)(k − 2)k−3 − 2

k − 3
+ k

<
(k − 1)(k − 2)k−3 − 2

k − 3
+ (k − 2)k−3 =

2(k − 2)k−2 − 2

k − 3
.

This contradicts the hypothesis of the theorem, so g(G) = k+1 in the case D = k−1.
Case 2. D ≤ k − 2. Notice that k = 3, 4 are impossible for this case because

D ≥ �g/2� ≥ �(k + 2)/2�. So we have k ≥ 6.
Let x∗ be a vertex of G with degree dG(x∗) = δ, where δ is the minimum degree

of G, and let us denote by ε(x∗) = max{dG(x∗, y) : y ∈ V (G)} the eccentricity of
x∗. As the diameter is the maximum of the eccentricities we have ε(x∗) ≤ D ≤ k− 2.
Suppose first that ε(x∗) ≤ k − 3. As for 1 ≤ i ≤ k − 3, the maximum number of
vertices at distance i from x∗ is δ(Δ − 1)i−1, it is immediate that

n ≤ 1 + δ

k−4∑
i=0

(Δ − 1)i ≤ 1 + (k − 1)

k−4∑
i=0

(k − 2)i ≤ (k − 1)(k − 2)k−3 − 2

k − 3
,

which is a contradiction. Therefore ε(x∗) = k − 2, which means D = k − 2. Let
us consider the set Nk−2

G (x∗) = {y ∈ V (G) : dG(x∗, y) = k − 2}. Let us prove the
following claim.

Claim. Given any vertex y ∈ Nk−2
G (x∗), every neighbor of vertex y is at a distance

of k − 3 from x∗.
Otherwise suppose that there exists a vertex y1 ∈ Nk−2

G (x∗) ∩ NG(y). Let us
denote by x∗ = x0x1x2 · · ·xk−2 = y any shortest x∗ − y path. Clearly, every cycle
containing both edges x∗x1 and yy1, if any, has a length of at least k + 3 because
k ≥ 6. Then we consider the new graph G′ obtained from G by contracting the edges
x∗x1 and yy1. If the diameter of G′ is D(G′) = k − 2, then by Lemma 2.1 we would
have g(G) = k + 1, which is a contradiction with our assumption g(G) ≥ k + 2.
Therefore D(G′) = k − 3, which implies that for all z ∈ N(x∗), dG(z, y′) = k − 3 for
all y′ ∈ Nk−2

G (x∗). Consequently, the edge yy1 and any vertex z ∈ NG(x∗) lies on a
cycle in G of length at most 2k − 5, which is impossible for k = 6 because g ≥ k + 2.
Hence every neighbor of vertex y is at a distance of k − 3 from x∗ when k = 6 and
the claim is true for this case.

Furthermore, for k ≥ 7 we have dG′(vx∗x1 , vyy1) = k − 3, where vx∗x1 and vyy1

denote the newly arising vertices by the contraction of the edges x∗x1 and yy1. Be-
sides, dG′(vx∗x1) = dG(x∗) + dG(x1) − 2 ≤ δ + Δ − 2 ≤ 2(Δ − 1) and dG′(vyy1) =
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dG(y) + dG(y1) ≤ 2(Δ − 1). Therefore,

V (G′) = {vx∗x1
} ∪

k−3⋃
i=1

N i
G′(vx∗x1

),

where N i
G′(vx∗x1) denotes the set of vertices of G′ at a distance of i from vertex vx∗x1 .

Thus
∣∣N i

G′(vx∗x1
)
∣∣ ≤ 2(Δ− 1)(Δ− 1)i−1 = 2(Δ− 1)i, for i = 1, . . . , k− 3, and we get

n = 2 + |V (G′)| ≤ 3 + 2

k−3∑
i=1

(Δ − 1)i

≤ 3 + 2

k−3∑
i=1

(k − 2)i

= 3 +
2(k − 2)k−2 − 2(k − 2)

k − 3
=

2(k − 2)k−2 + k − 5

k − 3
,

contradicting the hypothesis of the theorem. Thus, every vertex y ∈ Nk−2
G (x∗) has

all its neighbors at distance k − 3 from x∗ and the claim holds.
Hence, |N i

G(x∗)| ≤ δ(Δ−1)i−1, for i = 1, . . . , k−3, and |Nk−2
G (x∗)| ≤ (Δ−1)k−3.

Then, for k ≥ 6 we have

n ≤ 1 + δ
k−4∑
i=0

(Δ − 1)i + (Δ − 1)k−3

≤ 1 + δ

k−4∑
i=0

(k − 2)i + (k − 2)k−3

≤ (k − 1)(k − 2)k−3 − 2

k − 3
+ (k − 2)k−3 =

2(k − 2)k−2 − 2

k − 3
.

This contradicts the hypothesis of the theorem, so we conclude that g(G) =
k + 1.

Next, the goal is to provide a lower bound on n in order to guarantee that the girth
is at most k+2 for k ≥ 7. To do that first we state that an extremal {C3, . . . , Ck}-free
graph with maximum degree Δ ≥ �(k+1)/2	 has necessarily a girth of at most k+2.

Theorem 2.4. Let k ≥ 7 be an integer. Let G be a graph belonging to the family
EX (n; {C3, . . . , Ck}) with a minimum degree of at least 2 and maximum degree Δ.
Then g(G) ≤ k + 2 if Δ ≥ �(k + 1)/2	.

Proof. Let G ∈ EX (n; {C3, . . . , Ck}) satisfy the hypothesis of the theorem, and
assume g(G) ≥ k + 3. Let x be a vertex of maximum degree Δ and let y1, y2, . . . , yΔ

be all the neighbors of x. Since dG(yi) ≥ 2, for each i = 1, . . . ,Δ, there exists
xi ∈ V (G) − x adjacent to yi. Notice also that xi �= xj for all i �= j, since g(G) > 4.
Taking into account that g(G) ≥ k+ 3, we deduce that dG−x(xi, xj) ≥ g(G)− 4 ≥
k− 1, dG−x(yi, yj) ≥ g(G) − 2 ≥ k+ 1, and dG−x(xi, yj) ≥ g(G) − 3 ≥ k for all
i, j = 1, . . . ,Δ with i �= j. Let G∗ be the graph obtained from G by first deleting the
Δ−1 edges xy2, . . . , xyΔ and second adding the new Δ edges y1x2, . . . , yΔ−1xΔ, yΔx1.
Then G∗ has order n and size e(G∗) = e(G) + 1. Since G is extremal, G∗ must contain
a cycle of length at most k. Let us denote by C∗ a shortest cycle in G∗ (notice that
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x �∈ V (C∗), since x has degree 1 in G∗). We denote by C the cycle x1y1x2y2 · · ·xΔyΔx1

which has length 2Δ ≥ k + 1. Observe that C is an induced cycle of G∗, since xi

is nonadjacent to yj in G, for any i �= j and the only newly introduced edges are
yixi+1 for i = 1, . . . ,Δ − 1 and yΔx1. Moreover, C∗ �= C, since g(C) ≥ k + 1 and
g(C∗) ≤ k. So, we may express C∗ = P1 ∪ P2, where P1 is the longest path whose
edges belong to the set E(C∗)\E(C) ⊆ E(G−x), and P2 is the rest of C∗. Notice that
the endvertices of P1 must belong to {x1, . . . , xΔ} ∪ {y1, . . . , yΔ} by the construction
of P1. Observe also that P2 contains at least one edge of E(C), because otherwise
the cycle C∗ would be contained in G against the assumption g(G) ≥ k+ 3. If the
endvertices of P1 are xi and xj for certain i, j ∈ {1, 2 . . . ,Δ}, then the edge yi−1xi or
xiyi and the edge yj−1xj or xjyj must be contained in P2 and then e(P2) ≥ 2. This
implies that |V (C∗)| = e(C∗) = e(P1) + e(P2) ≥ dG−x(xi, xj) + 2 ≥ k− 1 + 2 = k+ 1;
a contradiction. If the endvertices of P1 are xi and yi, for some i ∈ {1, . . . ,Δ},
then e(P1) ≥ dG−x−{xiyi}(xi, yi) ≥ g(G) − 1 ≥ k + 2 and hence |V (C∗)| = e(C∗) =
e(P1) + e(P2) ≥ k + 3, again a contradiction. Otherwise,

e(P1) ≥ min{dG−x(yi, yj), dG−x(xi, yj) : i, j = 1, . . . ,Δ and i �= j} ≥ k,

which implies |V (C∗)| = e(C∗) = e(P1) + e(P2) ≥ k + 1 > k, arriving at a contradic-
tion. Hence, g(G) ≤ k + 2.

From Theorem 2.4 we derive the following sufficient condition in terms of the
order for an extremal {C3, . . . , Ck}-free graph to have girth at most k + 2.

Theorem 2.5. Let G ∈ EX (n; {C3, . . . , Ck}) be of a minimum degree of at least
2. Then the girth is g(G) ≤ k + 2 if k ≥ 7 and

n ≥ 2(t− 2)k−2 + t− 5

t− 3
+ 1,

where t = �(k + 1)/2	.
Proof. If Δ ≥ �(k + 1)/2	, then g(G) ≤ k + 2 for k ≥ 7 because of Theorem 2.4

and the theorem holds. Hence assume Δ ≤ �(k + 1)/2	 − 1 and g(G) ≥ k + 3. Let
t = �(k + 1)/2	. As in the proof of Theorem 2.3 we consider two cases D = k − 1
and D ≤ k − 2 separately and repeat this proof but taking into account that now
Δ ≤ t−1 instead of Δ ≤ k−1. In this way we arrive at a contradiction, which implies
g(G) ≤ k + 2, and the theorem holds.

As an immediate consequence of Theorems 2.3 and 2.5, the following information
about the girth of any extremal {C3, . . . , C7}-free graph is provided.

Corollary 2.6. Let G be a graph belonging to the family EX (n; {C3, . . . , C7}).
Then the girth g(G) = 8 if n ≥ 783, and the girth is g(G) ≤ 9 if n ≥ 64.

3. Conclusions. Theorem 2.3 can be compared with Theorem A. Both results
give a sufficient condition on the order of an extremal graph to contain a cycle of
minimum length k + 1. Recall that a = k − 3 − �(k − 2)/4�; then for k ≥ 12 we

have 2a > (k − 2)2. Hence 2a
2+a+1 > 2(k − 2)2a+2 ≥ 2(k − 2)(3k−6)/2, and thus

n ≥ 2a
2+a+1ka > 2(k − 2)(3k−6)/2ka (which is much larger than the requirement

obtained in Theorem 2.3), n > (2(k − 2)k−2 + k − 5)/(k − 3).
Moreover, Theorems 2.2 and 2.3 provide information on the girth of any extremal

{C3, C4, C5, C6}-free graph G. The girth is g(G) = 7 if n ≥ 171, and the girth is
g(G) ≤ 8 if n ≥ 10. It is known for r = 3, 4, 5 that each (r; 8)-cage is the incidence
graph of a projective geometry called generalized quadrangle; see the survey by Wong
[8]. The order of each of these graphs is 30, 80, 170, respectively. As a referee suggests,
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it appears that a result of Alon, Hoory, and Linial [1] can be used to show these cages
do belong to EX(n; {C3, C4, C5, C6, C7}). The question is if these cages are also
{C3, C4, C5, C6}-free extremal. We would like to suggest the following open problems.

Problem 1. Prove or disprove that each (r; 8)-cage for r = 3, 4, 5 is a graph
belonging to EX (n; {C3, C4, C5, C6}), for n = 30, 80, 170.

Problem 2. Is it possible to improve the lower bound on n in Theorem 2.3 for
k ≥ 7?

Acknowledgments. We would like to express our thanks to the referees for their
helpful comments and suggestions.
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PRECOLORING EXTENSION FOR 2-CONNECTED GRAPHS∗

MARGIT VOIGT†

Abstract. Let G = G(V,E) be a simple graph, L a list assignment with |L(v)| = Δ(G) for all
v ∈ V , and W ⊆ V an independent subset of the vertex set. Define d(W ) := min{d(v, w) | v, w ∈ W}
to be the minimum distance between two vertices of W . In this paper it is shown that if G is 2-
connected with Δ(G) ≥ 4 and G is not the complete graph KΔ(G)+1, then every precoloring of W
is extendable to a proper list coloring of G provided that d(W ) ≥ 4. An example shows that the
bound is sharp. This extends a result of Axenovich [Electron. J. Combin., 10 (2003), note 1] and
Albertson, Kostochka, and West [SIAM J. Discrete Math., 18 (2004), pp. 542–553], who proved that
d(W ) ≥ 8 guarantees such an extension for all G with Δ(G) ≥ 3 not containing KΔ(G)+1.

Key words. list coloring, precoloring extension, distance constraints
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DOI. 10.1137/05064312X

1. Introduction. Let us consider simple graphs G = (V,E) with maximum
degree k = Δ(G) ≥ 3. The well-known theorem of Brooks [10] states that such a
graph is k-colorable if it does not contain Kk+1 as a component. The aim of this
paper is the generalization of this theorem in two directions.

First, we consider the list version of this problem. That means every vertex has a
set L(v) of available colors. The set L(v) is also called a list of v and the collection of
all lists is called a list assignment L of G. The graph G is L-list colorable if a proper
coloring of the vertices exists where every vertex gets a color from its list in L. This
concept was introduced by Vizing [14] and independently by Erdős, Rubin, and Taylor
[11] at the end of the seventies. A k-assignment is a list assignment L where |L(v)| = k
for all v ∈ V . Among others, in [11, 13] a Brooks-type theorem is proved which says
that a graph G with maximum degree k = Δ(G) ≥ 3 is L-list colorable for every
k-assignment L if G does not contain Kk+1. With regard to this theorem it is natural
to ask what happens if L is a list assignment with |L(v)| = dG(v) for all v ∈ V (G),
where dG(v) is the degree of v in G. Let us define a supervalent list assignment
L being a list assignment with |L(v)| ≥ dG(v) for all v ∈ V (G). Investigating the
mentioned question we need a special class of graphs, the Gallai trees. A Gallai tree
is a connected graph in which every block is a complete graph or an odd cycle. Now
let H be a connected graph. A leaf block of H is a block of H containing at most
one cut vertex and the block-cutpoint graph T of H has a vertex for each block in H
and a vertex for each cut vertex of H, and a cut vertex v is adjacent to a block B if
v ∈ V (B). Note that the block-cutpoint graph of a connected graph H is a tree and
every leaf of T corresponds to a leaf block of H.

An important tool for the proof of the main result of this paper is the following
theorem (see [9] and [11]). A short proof is given in [13].

Theorem 1 (see [9, 11, 13]). If L is a supervalent list assignment for a connected
graph G and there is no L-coloring of G, then

(a) |L(v)| = d(v) for every vertex v ∈ V (G).

∗Received by the editors October 19, 2005; accepted for publication (in revised form) August 23,
2006; published electronically April 6, 2007.
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(b) G is a Gallai tree.

Now we assume additionally that there is a subset W ⊆ V of the vertex set
which is already precolored. Denote by d(W ) the minimum distance between two
components of W in G. We would like to extend the precoloring of W to a proper
coloring of the whole vertex set. Clearly the existence of such an extension depends
on d(W ) and either the number of available colors or the length of the lists of the
list assignment, respectively. First, results in this direction were given by Albertson
in 1998 [1] answering a question of Thomassen from 1997. He stated that if G is
k-colorable and W is independent with d(W ) ≥ 4, then every (k+1)-coloring of W
can be extended to a proper (k + 1)-coloring of V . There were several papers in the
past few years dealing with this topic from different points of view; see, for example,
[2, 3, 4, 5, 6, 7, 8] and [12].

In this paper we ask for the extension of a precoloring of W to a proper list coloring
if every vertex has a list of k = Δ(G) ≥ 4 colors. Axenovich [8] and Albertson, Kos-
tochka, and West [5] proved that for independent W , k = Δ(G) ≥ 3, and d(W ) ≥ 8,
such an extension is always possible if G does not contain a Kk+1 as subgraph. Fur-
thermore, they give an example showing that the bound 8 is sharp. Remarkably, the
mentioned example is a 1-connected graph. So let us consider in this paper graphs
which are 2-connected, which means that the removal of at most one vertex does not
disconnect the graph. For these graphs the bound for d(W ) will be reduced in this
paper to d(W ) ≥ 4 provided that k = Δ(G) ≥ 4 and G is not a Kk+1. Furthermore,
an example shows that this bound is sharp.

For 2-connected graphs with Δ(G) = 3 there is a recent analogous result saying
that d(W ) ≥ 6 ensures an extension of a precoloring (see [15]). An example at the
end of this paper shows that this bound is sharp.

If G is a 2-connected graph with Δ(G) = 2, then G is a cycle. If we forbid odd
cycles as in the original version of Brooks’ theorem, then G is an even cycle C2k. In
this case a bad precoloring of two vertices of distance k does not allow an extension
to a coloring with two colors. Thus there does not exist a similar result for Δ(G) = 2.

Additionally, let us mention that if we allow one color more in the lists, which
means |L(v)| = Δ(G)+1 for every v ∈ V (G) and the precolored set W is independent,
then d(W ) ≥ 3 already guarantees the extension to a proper list coloring. This fact
follows from a result of Albertson [1] and the mentioned Brooks-type theorem for list
colorings.

2. Extension of Brooks’ theorem. The main result of this paper is given in
the following theorem.

Theorem 2. Let G = (V,E) be a 2-connected graph with k = Δ(G) ≥ 4 which
is not Kk+1, W ⊆ V an independent subset of the vertex set, d(W ) ≥ 4, and L a list
assignment with |L(v)| = k for all v ∈ V . Then every precoloring of W extends to a
proper L-list coloring of V .

Proof. The first part of the proof is similar to the proof of [5].

Assume that the statement of Theorem 2 is not true and G is a counterexample
with the smallest number of vertices.

Delete the colors of the precoloring of W from the lists of the corresponding
neighbors. Denote the new list assignment by L′ and the graph induced by V (G)\W
by H. Because of d(W ) ≥ 4 we know that

|L′(v)| ≥ |L(v)| − 1.(1)
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Note, furthermore, that L′ is a supervalent list assignment for H since |L(v)| =
Δ(G) ≥ dG(v) and therefore L′(v) ≥ dH(v) for all v ∈ V (H). By the minimality of
G we may assume that H is connected.

Since G is a counterexample to the statement of Theorem 2 it follows that H is
not list colorable from the lists of L′. Thus H fulfills the assumptions of Theorem 1
and H and L′ have the properties stated there. Hence we have the following claim.

Claim 1. For H and L′ the following holds:

(a) H is a Gallai tree and |L(v)| = dH(v) for all v ∈ V (H).
(b) dG(v) = k for all v ∈ V (H).
(c) Each vertex of H has at most one neighbor in W .
(d) For all v ∈ V (H) we have k − 1 ≤ dH(v) ≤ k and dH(v) = k − 1 if and only

if v has a neighbor in W .

These properties can be derived easily from the assumptions and Theorem 1 and
are proved in [5] too.

In the following claim, denote the set of the noncut vertices of a block B of H by
B′.

Claim 2. Let B be a leaf block of H. Then the following holds:

(a) B = Kk.
(b) H has more than one block.
(c) There exists a unique vertex wB ∈ W which is adjacent to all noncut vertices

of B. Thus wB has exactly k − 1 neighbors in B′.
(d) wB has exactly one neighbor, yB, in V (H) \

⋃
B∈B�

V (B), where B� is the
set of all leaf blocks of H. For two different leaf blocks, B1 and B2, we have
yB1

�= yB2
.

Proof.

(a) Since H is a Gallai tree, B has to be a complete graph or an odd cycle.
Assume B is an odd cycle or a complete graph Ks with s ≤ k − 1. Then for
v ∈ B′ we have dH(v) < k − 1. Using Claim 1 and inequality (1), it follows
for v ∈ B′: k = |L(v)| ≤ |L′(v)| + 1 = dH(v) + 1 < k; a contradiction. Thus
B = Kk since G cannot contain Kk+1.

(b) Assume H has only one block B. Since B = Kk and Δ(G) = k, there exists
a vertex in W which is adjacent to all vertices of B because the lists L′(v)
for all v ∈ V (B) = H have the same cardinality k− 1 (see Claim 1(a)). Thus
G = Kk+1; a contradiction.

(c) Let vB be the cut vertex of H from B which exists because of (b). Using
Claim 1 we obtain dH(vB) = |L(vB)| = k and dH(v) = |L(v)| = k − 1 for
all v ∈ B′. Consequently, there has to be a vertex wB ∈ W adjacent to all
k−1 vertices of B′. Note that a second neighbor of vertices of B′ in W would
violate d(W ) ≥ 4.

(d) Because of (c) wB can have at most one neighbor outside B′ since dG(wB)≤ k.
If wB has no neighbor outside B′, the cut vertex vB of H is a cut vertex of G
too, contradicting the 2-connectedness of G. So wB has exactly one neighbor,
say yB , outside B′. Note that yB �∈ W since otherwise W is not independent.
Assume yB belongs to a second leaf block B1 �= B. If wB = wB1 , then
dG(wB) ≥ 2(k − 1) = 2k − 2 > k; a contradiction. Otherwise we have wB �=
wB1 and both are adjacent to some vertex in B′

1 contradicting Claim 2(c).

Denote the set of all blocks of H which are not leaf blocks by B∗. This set cannot
be empty because of Claim 2(d).

Claim 3. Let B be a leaf block of H and yB be the neighbor of the corresponding
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wB outside B′ (see Claim 2). Furthermore, let B∗ be an element of B∗ containing yB.
If yB belongs to more than one block in B∗, then let B∗ be such a block with largest
order.

(a) If B∗ = Ks with s ≥ 3, then B∗ contains at least three cut vertices of H.
(b) If B∗ = C2s+1 (s ≥ 2), then all vertices of B∗ are cut vertices of H. At most

s of the vertices of C2s+1 have neighbors in W .
(c) If B∗ = K2, then yb is a cut vertex in H.
Proof.
(a) First, note that B∗ cannot contain another cut vertex beside yB which is

adjacent to a vertex of W since d(W ) ≥ 4. Thus for all v �= yB ∈ V (B∗)
we have k = |L(v)| = dH(v). Since B∗ �= Kk+1 all of these vertices have
neighbors outside B∗ in H, which means they are cut vertices of H. If s ≥ 4 we
are done. If s = 3 and yB is not a cut vertex, then dG(yB) = 2+1 = 3 < 4 ≤ k;
a contradiction. Thus for s = 3 the vertex yB is also a cut vertex.

(b) The degree of the vertices in the cycle is 2, so every vertex v must have
neighbors outside B∗ in H because of dH(v) ≥ dG(v) − 1 ≥ 3. Thus all
vertices of the cycle are cut vertices in H.

Clearly, at most s of the vertices of the cycle may have neighbors in W
since otherwise d(W ) ≤ 3.

(c) If the biggest block containing yB is K2, then yB is incident to k − 1 blocks
K2 of H because of k− 1 = |L′(yB)| = dH(yB) by Claim 1. Thus yB is a cut
vertex in H.

We would like to show now that if T is the block-cutpoint graph of H and T has
� leaves, then because of the above claims there is a certain set of inner vertices of the
tree with “high” degree. Let L(T ) denote the set of leaves of T . Then we estimate
the number of leaves using the well-known equality

|L(T )| = 2 +
∑

v∈V (T )\L(T )

(dT (v) − 2)(2)

for trees with |V (T )| ≥ 2. Finally we show that T contains more than � leaves, giving
the contradiction we are looking for.

We know (see Claim 2) that every leaf block B ∈ B� corresponds with a vertex
yB not belonging to a leaf block. Let B∗ be defined as in Claim 3. Denote

• Y1 := {yB | B ∈ B� and B∗ = Ks, s ≥ 3},
V1 := {v ∈ V (T ) | v represents B∗ for a yB ∈ Y1};

• Y2 := {yB | B ∈ B� and B∗ = C2s+1, s ≥ 2},
V2 := {v ∈ V (T ) | v represents B∗ for at least one yB ∈ Y2};

• Y3 := {yB | B ∈ B� and B∗ = K2},
V3 := {v ∈ V (T ) | v represents a cut vertex yB with yB ∈ Y3}.

From Claim 3 we know
• dT (v) ≥ 3 for v ∈ V1,
• dT (v) = 2s + 1 for v ∈ V2, and
• dT (v) = k − 1 ≥ 3 for v ∈ V3.

Note that |Y1| = |V1| and |Y3| = |V3| because of d(W ) ≥ 4. Because of equality
(2) we are looking for an estimation of dT (v) − 2 for v ∈ V2. We obtain dT (v) − 2 =
2s−1 > s, where s is the maximum number of vertices of Y2 belonging to B∗ = C2s+1

because of d(W ) ≥ 4. Thus it follows that
∑

v∈V2
(dT (v) − 2) > |Y2|.

Furthermore, because of the definition we have L(T ) ∩ (V1 ∪ V2 ∪ V3) = ∅. Thus
� := |L(T )| = |B�| and because of Claim 2 we have |Y1∪Y2∪Y3| = |Y1|+|Y2|+|Y3| = �.
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Fig. 1. Nonextendable precoloring for k = Δ(G) = 4 and d(W ) = 3.

Fig. 2. Nonextendable precoloring for Δ(G) = 3 and d(W ) = 5.

With equality (2) we obtain

� ≥ 2 +
∑

v∈V1∪V2∪V3

(dT (v) − 2) ≥ 2 + |V1| + |V3| +
∑
v∈V2

(dT (v) − 2) > |Y1| + |Y2| + |Y3| = �.

Obviously the last line gives a contradiction, the counterexample G does not exist,
and the statement of Theorem 2 is proved.

To see that the distance constraint of the theorem is sharp look for the following
example.

The 4-connected example in Figure 1 shows that for d(W ) = 3 the given precolor-
ing is not extendable. It is obvious that Claim 2(c) is not true in this case. Note that
there are analogous examples for arbitrary k = Δ(G) ≥ 5. Construct a Gallai tree of
maximum degree k consisting of k+1 copies of Kk and k copies of K2, where k of the
copies of Kk are leaf blocks (see Figure 1). Then add k − 1 vertices {w1, . . . , wk−1}
belonging to W , where every wi is adjacent to a private neighbor in each leaf block
of the Gallai tree such that the constructed graph is k-regular (see Figure 1). If the
vertices of W are precolored by the same color a and all other vertices have identical
lists containing a, then the precoloring is not extendable.

In fact there are smaller 2-connected examples where Claim 2(b) does not hold:
let k = 4, H be the K4 with V (H) = {v1, v2, v3, v4}, and W = {w1, w2}, where w1 is
adjacent to v1 and v2 and w2 is adjacent to v3 and v4. Furthermore, assume L(vi) =
(a, b, c, d) for i = 1, . . . , 4 and w1 and w2 are precolored by d. Thus d(W ) = 3 and the
precoloring is not extendable. Note that these examples are examples for ordinary
colorings. Thus the bound d(W ) ≥ 4 given in Theorem 2 is sharp even in this case.

Moreover, for k = Δ(G) = 3 there are examples that d(W ) = 5 does not guarantee
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such an extension (see Figure 2).
However, an extension of every precoloring is possible if G is a 2-connected graph,

Δ(G) = 3, G is not K4, and d(W ) ≥ 6 (see [15]). Thus the above example shows that
the bound is sharp and the problem is completely solved.
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GRAPHS HAVING SMALL NUMBER OF SIZES ON INDUCED
k-SUBGRAPHS∗
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Abstract. Let � be any positive integer, let n be a sufficiently large number, and let G be a
graph on n vertices. Define, for any k, νk(G) = |{|E(H)| : H is an induced subgraph of G on k
vertices}|. We show that if there exists a k, 2� ≤ k ≤ n − 2�, such that νk(G) ≤ �, then G has a
complete or an empty subgraph on at least n− � + 1 vertices and a homogeneous set of size at least
n− 2� + 2. These results are sharp.

Key words. induced subgraphs, reconstruction, homogeneous sets
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1. Introduction. As is customary in graph theory, the order of a graph is the
number of its vertices, and the size of a graph is the number of its edges. Following
standard notation, Kn denotes the complete graph and En the empty (or edgeless)
graph of order n. For a k integer, 1 ≤ k ≤ n, a k-subgraph of G is an induced subgraph
of order k. A trivial set in G is a subset of vertices of G inducing either an empty
or a complete graph. Let t(G) denote the number vertices of a largest trivial set of
G. We define a relation ∼ on V (G) such that u ∼ v iff N(u) − {v} = N(v) − {u}. It
is easy to check that ∼ is an equivalence relation. The equivalence classes are called
the homogeneous sets. Let h(G) denote the maximum size of a homogeneous set in
G. Note that a homogeneous set is also a trivial set, and therefore h(G) ≤ t(G).
Recently, the homogeneous classes of certain graphs were shown to be a powerful tool
handling questions on hereditary graph properties [3, 4, 5].

Vertex graph reconstruction problems are concerned with the conditions on in-
duced subgraphs necessary to determine the original graph. In particular, the graph
reconstruction conjecture, see, for example, [13], states that if one knows all (n− 1)-
subgraphs of a graph G, then a graph G itself can be reconstructed. One of the
examples when a graph can be “almost” reconstructed knowing some facts about its
k-subgraphs is the following result of Akiyama, Exoo, and Harary [1] and Bosák [8].

Proposition 1. Let G be a graph on n vertices. If there is a k, 2 ≤ k ≤ n− 2,
such that all k-subgraphs of G have the same size, then G is either the complete graph
Kn or the empty graph En.

In this work, we investigate the following question. How much information about
the structure of a graph G can we retrieve knowing the sizes of k-subgraphs of G? We
know from Proposition 1 that if all k-subgraphs have the same size, then a graph can
be determined almost uniquely. What if the number of sizes of the k-subgraph of G
is two, or three, or ten? Here we answered this question by showing the existence of a
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large homogeneous subset in G, which allows us to “almost” reconstruct the structure
of G, with the exception of the subgraph induced by a small number of vertices.

Let νk(G) denote the number of sizes of k-subgraphs of G, i.e.,

νk(G) = |{|E(H)| : H is a k-subgraph of G}|.

Let i(G) be the total number of isomorphism classes on induced subgraphs of G,
loosely speaking, the number of induced subgraphs of G.

The parameter i(G) was investigated in multiple papers in attempts to find the
maximum of i(G) over all graphs on n vertices; see Korshunov [10, 11]. It has been
shown by Alon and Bollobás [2] and Erdős and Hajnal [9] that graphs with “small”
i(G) have a large trivial subset of vertices; in particular, if ε < 10−21 and i(G) ≤ εn2,
then G has a trivial subset of vertices of size at least (1 − 4ε)n.

Here we show that graphs G for which νk(G) is “small” exhibit a behavior similar
to graphs for which i(G) is “small.” In particular, we show that in this case, G must
have large trivial and large homogeneous subsets, where “large” is |V (G)| − c, for a
constant c = c(νk(G)). Of course, in order to make such a conclusion, we must require
that k is not too small or too large. For example, when ν2(G) = 2, we cannot draw
any conclusions about the structure of G. Our main result is the following.

Theorem 1. Let � ≥ 2 be any positive integer. Then there is an n(�) such that
the following holds. If n = |V (G)| ≥ n(�) and there exists a k, 2� ≤ k ≤ n− 2�, such
that νk(G) ≤ �, then G has a trivial vertex set of cardinality at least n− � + 1 and a
homogeneous vertex set of cardinality at least n− 2� + 2. These results are sharp.

The graph Mn,�−1 of order n, of size � − 1, and of maximal degree 1 (or its
complement) shows that the bounds on the orders of trivial and homogeneous sets
are best possible, as t(Mn,�−1) = n − � + 1, h(Mn,�−1) = n − 2� + 2, and νk(G) = �
for 2�− 2 ≤ k ≤ n− 2� + 2.

The graph Mn = Mn,�n/2� shows that the condition 2� ≤ k ≤ n− 2� is necessary,
as t(Mn) = �n/2�, h(Mn) = 2, and ν2�−1(Mn) = �.

When � = 2, Theorem 1 gives a precise structural result for large n. We prove
the same result in section 3 for all n.

Theorem 2. Let n ≥ 8 be any integer. Let G be a graph of order n such that
νk(G) = 2 for some k, 4 ≤ k ≤ n− 4. Then G is either a star, a disjoint union of an
edge and n− 2 vertices, or the complement of one of these graphs.

2. Proofs. For two disjoint sets A,B of vertices of a graph G, we denote by
(A,B) the bipartite subgraph of G containing all edges of G with one endpoint in A
and another in B. For two disjoint sets A,B, we write A ∼ B if (A,B) is a complete
bipartite and A �∼ B if (A,B) is an empty bipartite graph. If either A ∼ B or A �∼ B
holds, we say that the pair (A,B) is trivial. If X and Y are either trivial sets or trivial
pairs of sets of vertices, we say that X and Y are of different types if one of them
induces an empty graph (or an empty bipartite subgraph) and the other one induces
a complete graph (or a complete bipartite subgraph). Recall that a homogeneous set
must span a trivial graph; furthermore, if A,B are two homogeneous sets, then either
A ∼ B or A �∼ B. A q-skewchain is a bipartite graph with parts A = {a1, . . . , aq}
and B such that N(ai) � N(ai+1), i = 1, 2, . . . , q − 1. Our main tool is the following
reformulation of a result of Balogh, Bollobás, and Weinreich [3] (for different variants
of this theorem, see [6] or [7]).

Theorem 3. There is a function g(t) such that for every positive integer t, the
following holds. Let G be a bipartite graph with partite sets A,B, |A| = |B| = n,
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Fig. 1. Sets T1, A, and B = B1 ∪B2 ∪B3.

where n ≥ g(t). Suppose that the vertices in A all have distinct neighborhoods. Then
G has either

(i) an induced matching of size t or
(ii) a bipartite complement of an induced matching of size t or
(iii) an induced t-skewchain.
Let

f(�) = 2�R(g(R(8�3))),

where R(n) = R(n, n) is the classical symmetric Ramsey number [14] and g(t) is
the function from Theorem 3. Let the parameters n, k, � satisfy the conditions of
Theorem 1 with n ≥ 3f(�), and let G be a graph of order n. The proof of Theorem 1
will be based on three cases—according to whether G has at least one “very large”
homogeneous set, G has two “relatively large” homogeneous sets, or G has many
“small” distinct homogeneous sets. We shall consider corresponding lemmas, Lemmas
1–3, and complete the proof based on them. Note that we shall need to use Theorem 3
only in the proof of Lemma 3.

Lemma 1. If G, of order n > 3f(�), has a homogeneous set of order at least
n−f(�) and νk(G) ≤ �, then G has a homogeneous set of cardinality at least n−2�+2
and a trivial set of cardinality at least n− � + 1.

Proof. Let T1 be the (maximal) homogeneous set of G of order at least n− f(�).
Without loss of generality, T1 is an independent set. For some sets A and B, we have
that V − T1 = A∪B, where T1 ∼ A and T1 �∼ B. Let B = B1 ∪B2 ∪B3 such that in
G[B], B2 ∪B3 is the set of isolated vertices, and B3 is the set of isolated vertices of G
which are in B. Note that each vertex of B2 ⊂ B − B1 is adjacent only to some but
not all vertices of A (otherwise, that vertex would have belonged to T1), and |B1| �= 1.
Denote r the number of components of the graph G[B1]. Since G[B1] does not have
isolated vertices,

r ≤ 
|B1|/2�.(1)

For an illustration, see Figure 1.
First, assume that A = ∅. Then B2 = B3 = ∅, and G consists of edges in-

duced by B1 and T1, the set of isolated vertices of G. Denote the components
of B1 by C1, . . . , Cr, and order the vertices of Ci as vi,1, vi,2, . . . , vi,qi , such that
Ci−{vi,j , vi,j+1, . . . , vi,qi} is connected for every j, 1 ≤ j ≤ qi, where |Ci| = qi. If k ≤
n−f(�) ≤ n−|B1|, then starting with a k-subset of T1 and changing the vertices one by
one by the vertices of B1 in the order v1,1, v1,2, . . . , v1,q1 , v2,1, v2,2, . . . creates |B1|−r+1
different sizes. If k > n− f(�), then start with a k-set containing B1, and change the
vertices of B1 to the vertices of T1 in the order vr,qr , vr,qr−1, . . . , vr,2, vr−1,qr−1

, . . . ,
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until it is possible, such that either there is no other vertex from B1 to delete, or
there is no other vertex from T1 to add. Note that we leave out from the changing
v1,1, v2,1, . . . , vr,1. This way min{|B1| − r + 1, n− k + 1} distinct sizes are generated.
Using that |T1| + |B1| = n and (1), we obtain that |T1| ≥ n − 2� + 2, and G has a
trivial set of order at least |T1| + r ≥ n− � + 1.

Now we assume that A �= ∅. We shall use the following definition. For sets
F,C,D of vertices, we say that the sets F1, . . . , Ft are obtained from F = F0 by
(C,D)-exchange in t-steps, for t ≤ s := min{|C ∩F |, |D−F |}, if Fi is obtained from
Fi−1 by deleting a vertex from Fi−1 ∩ C and adding a vertex from D − Fi−1. If the
number of steps t in an exchange is equal to s, we say that the exchange is full.

Case 1. n− 2f(�) ≤ k ≤ n− 2�.
Let F0 be a k-set containing all vertices of A, as many vertices from T1 and

as few vertices from B2 ∪ B3 as possible. Since n − |F0| ≥ 2�, we can create
min{|B3| + |B2| + 1, 2�} k-sets of distinct sizes on corresponding subgraphs by (T1,
B3 ∪B2)-exchange performed on F0. Here we used that each vertex of B2 is adjacent
to some, but not all, vertices of A. Therefore, |B2| + |B3| ≤ �− 1.

This makes it possible to choose a k-set F1 such that A∪B1 ⊆ F1, (B2∪B3)∩F1 =
∅. First, perform a full (T1, B2)-exchange on F1. Let the resulting set be F2. Next,
perform an (A, T1)-exchange on F2 for |A| − 1 steps. Let the last set obtained be F3.
We have that B1∪B2 ⊆ F3 and F3∩A = {a}. Next, perform a full (T1, B3)-exchange
on F3. Finally, do an ({a}, T1)-exchange on F3, followed by a (B1, T1)-exchange
producing as many distinct sizes of the resulting subgraphs as possible. As a result
of these exchanges, we have obtained k-subgraphs with decreasing sizes. The total
number of such distinct sizes is at least |B2|+ (|A| − 1) + (|B3|+ 1) + (|B1| − r+ 1) ≤
νk(G) ≤ �. Using (1), we have |A|+|B1|/2+|B2|+|B3|+1 ≤ � and |A|+|B1|−r ≤ �−1.
Applying the first inequality, we conclude that |A| + |B1| + |B2| + |B3| ≤ 2� − 2,
giving that |T1| ≥ n − 2� + 2, and using the second inequality, we conclude that
t(G) ≥ n− |A| − |B1| + r ≥ n− � + 1.

Case 2. 2� ≤ k < n− 2f(�).
First, we shall prove that

|B1| + |A| ≤ � + r − 1.(2)

Let F0 ⊆ T1 be a set of order k. First, construct sets from F0 by (T1, B1)-exchange so
that as many distinct sizes as possible are obtained on the corresponding k-subgraphs,
and denote the last k-set by F1. Note that we have at least (|B1|−r+1) distinct sizes
(including F0’s size), which implies that |B1| − r + 1 ≤ � and, using the inequality
2r ≤ |B1|, that |B1| ≤ 2� − 2 < k, and hence B1 ⊆ F1. Observe that by (1), it also
yields r ≤ �−1, which with (2) implies |B1|+|A| ≤ 2�−2 < k. Next, construct as many
sets as possible from F1 by (T1, A)-exchange so that the sizes of the corresponding
k-subgraphs are increasing. Note that we can always do this until the number of
vertices of a considered set F in A is at most the number of vertices of F in T1.
Thus, this (T1, A)-exchange creates at least min{|A|, 
(k− |B1|)/2�} distinct sizes on
k-subgraphs. Therefore, the total number of distinct sizes created so far is at least
x = |B1| − r+1+min{|A|, 
(k− |B1|)/2�} ≥ |B1| − r+1 +min{|A|, 
(2�− |B1|)/2�}.
It cannot be that |A| > 
(2� − |B1|)/2�; otherwise, using (1), x ≥ |B1| − r + 1 +

(2�−|B1|)/2� = �|B1|/2�−r+1+� > �, a contradiction. Thus, |A| ≤ 
(2�−|B1|)/2�
and x ≥ |B1| − r + 1 + |A|. Since x ≤ �, (2) follows. Also, we obtain that

|B1|/2 + |A| ≤ �− 1.(3)
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Inequality (2) implies that t(G) ≥ n− |A| − |B1| + r ≥ n− � + 1.
Next, we create a sequence of k-subsets with decreasing sizes on the corresponding

subgraphs as follows. Since |B2| + |B3| < f(�), using (2), we can find a k-set, F0,
containing A ∪ B1 and being disjoint from B2 ∪ B3. Let H0 = F0 ∩ T1. Consider
(T1, B2)-exchange on F0 in s steps, where

s = min{|H0| − 1, |B2|}.

This gives us s + 1 sets F0, F1, . . . , Fs with decreasing sizes on the corresponding
k-subgraphs.

Subcase 2a. s = |T1 ∩ F0| − 1.
We have that F0, F1, . . . , Fs induce s + 1 = |H0| = k − |A| − |B1| k-subgraphs

of distinct sizes. Let Fs+1 = (Fs − A) ∪ H1, where |H1| = |A| and H1 ⊆ T1 − Fs.
Note that Fs+1 spans fewer edges than Fs. Create sets Fs+2, Fs+3, . . . from Fs+1 by
(B1, T1)-exchange such that as many distinct sizes on corresponding subgraphs occur
as possible. The number of k-subgraphs with distinct sizes constructed so far is at
least x = (k− |A| − |B1|)+ |B1| − r = k− |A| − r. Using (3), (1), and k ≥ 2�, we have
x ≥ 2�− |A| − r ≥ 2�− � + |B1| − 2r + 1 > �, a contradiction.

Subcase 2b. s = |B2|.
We have that F0, F1, . . . , Fs induce |B2| + 1 k-subgraphs of distinct sizes. Note

that Fs = A ∪ B1 ∪ B2 ∪ H2 for some H2 ⊆ T1. Let us perform a full (T1, B3)-
exchange on Fs. Let the last resulting set be Fp. Let Fp+1 = (Fp − A) ∪H3, where
H3 ⊆ T1 − Fp and Fp+1 = k. Finally, we perform a full (B1, T1)-exchange on Fp+1.
With some work, it can be checked that in each exchange the number of the edges
spanned by the obtained k-sets is strictly decreasing. We have two cases to check.

If |H2| = |T1∩Fs| = k−|A|−|B1|−|B2| ≤ |B3|, then we have obtained all together
at least |B2| + 1 + |H2| + |B1| − r + 1 = 2 + |B2| + k − |A| − |B1| − |B2| + |B1| − r =
2 + k − |A| − r > � distinct sizes (here the last inequality follows from (2), (1), and
k ≥ 2�), a contradiction.

If |F2| = |T1 ∩ Fs| = k − |A| − |B1| − |B2| > |B3|, then we have obtained at
least |B2|+ 1 + |B3|+ 1 + |B1| − r ≤ � distinct sizes on the corresponding subgraphs.
Adding (2) gives us that |A|+2|B1|+ |B2|+ |B3|+2 ≤ 2�+2r−1. Thus, |A|+ |B1|+
|B2|+ |B3| ≤ 2�+2r− 3−|B1| ≤ 2�− 3. Thus, |T1| ≥ n− (|A|+ |B1|+ |B2|+ |B3|) ≥
n− 2� + 2.

Lemma 2. If G has two distinct maximal homogeneous sets of orders at least 2�
each, then νk(G) > �.

Proof. Let T1, T2 be distinct maximal homogeneous sets, |Ti| ≥ 2�, i = 1, 2.
Consider sets A1 ⊆ T1, A2 ⊆ T2 such that |Ai| = 2�, i = 1, 2. Let Ri ⊆ A1, Si ⊆ A2,
|Ri| = |Si| = i, i = 0, 1, . . . , 2�. Let X ⊆ V (G) − (A1 ∪ A2) such that |X| = k − 2�.
Note that such set X exists since |V − (A1 ∪ A2)| = n − 4� ≥ k − 2� for k ≤ n − 2�.
Let X1 ⊆ X, X2 ⊆ X such that Xi ∼ Ai, (X − Xi) �∼ Ai, i = 1, 2. Let |X1| = r,
|X2| = s. We distinguish three cases according to the types of A1, A2, and (A1, A2).

Case (i). G[A1 ∪A2] is trivial.
Without loss of generality, we may assume that G[A1∪A2] is empty. Since T1 and

T2 are distinct (maximal) homogeneous sets, there is a vertex v such that, without
loss of generality, {v} ∼ A1 and {v} �∼ A2 and v /∈ A1 ∪ A2. (Note that this is the
only point where the maximality of T1 and T2 is used.) We may assume that v ∈ X.
Let

Fi = G[Ri ∪ S2�−i ∪X], Hi = G[Ri+1 ∪ S2�−i ∪X − {v}], i = 0, . . . , 2�− 1.(4)
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Then

|E(Fi)| = ir + (2�− i)s + |E(G[X])|,
|E(Hi)| = (i + 1)(r − 1) + (2�− i)s + |E(G[X − {v}])|,

i = 0, . . . , 2� − 1. Simplifying these expressions, we get |E(Fi)| = i(r − s) + (2�s +
|E(G[X])|) and |E(Hi)| = i(r−1−s)+(r−1+2�s+|E(G[X−{v}])|). Either r−s �= 0
or r− s− 1 �= 0, and therefore either the sets Hi or the sets Fi for i = 0, 1, . . . , 2�− 1
give 2� ≥ � + 1 distinct sizes, a contradiction.

Case (ii). A1, A2 are trivial of different types.
We may assume, without loss of generality, that A1 induces a complete graph, A2

induces an empty graph, and (A1, A2) is an empty bipartite graph. Define the sets
Fi as in (4) for 0 ≤ i ≤ 2�. Now we have that

|E(Fi)| = ir + (2�− i)s + |E(G[X])| +
(
i

2

)
, i = 0, . . . , 2�.

|E(Fi)| is a quadratic function of i, and thus for 2� + 1 arguments, it takes at least
� + 1 different values, a contradiction.

Case (iii). A1, A2 are trivial of the same types, and (A1, A2) is trivial of a type
different from the type of A1. Define the sets Fi as in (4) for 0 ≤ i ≤ 2�. If A1 and
A2 are empty, then

|E(Fi)| = |E(G[X])| + ir + (2�− i)s + i(2�− i), i = 0, . . . , 2�.

If A1 and A2 are complete, then

|E(Fi)| = |E(G[X])| +
(
i

2

)
+

(
2�− i

2

)
+ ir + (2�− i)s, i = 0, . . . , 2�.

Each of these expressions is a quadratic function of i producing at least �+1 different
values for i = 0, 1, . . . , 2�.

Lemma 3. If G has at least f(�)/2� distinct maximal homogeneous sets, then
νk(G) > �.

Proof. Let T1, T2, . . . , Tm be the distinct maximal homogeneous sets of G with
m ≥ f(�)/2� = R(g(R(8�2))). Let vi ∈ Ti for i = 1, . . . ,m. Consider a largest
trivial subset Q of {v1, . . . , vm}. Ramsey’s theorem guarantees that |Q| ≥ g(R(8�3)).
Note that the vertices of Q are from different homogeneous sets; hence they have
different neighborhoods, and we can apply Theorem 3 to the bipartite subgraph G′

of G with partite sets Q,V −Q and edges of G with one endpoint in Q and another
in V −Q. Then Theorem 3 implies that there are subsets Q′ ⊆ Q and P ′ ⊆ V −Q,
|Q′| = |P ′| = R(8�3), such that Q′∪P ′ induces in G′ either a matching or the bipartite
complement of a matching or a q-skewchain, where q = |Q′|. By applying Ramsey’s
theorem to G[P ′], we can find a trivial subset P ′′ ⊂ P ′ with |P ′′| = 8�3. Let B = P ′′,
and let A be the set of vertices of Q′, of order 8�3, corresponding to P ′′; i.e., A is a
set such that (A,B) is either a matching, the bipartite complement of a matching, or
a skewchain, respectively.

Let A = {u1, . . . , u8�3} and B = {v1, . . . , v8�3}. By taking graph complements
and relabeling the vertices, we have the following possible structure induced by A and
B: A and B are trivial and either

(a) (A,B) is an induced matching {ui} ∼ {vi}, i = 1, . . . , 8�3, or
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(b) (A,B) is an induced skewchain with {ui} ∼ {vi, vi+1, . . . , v8�3}, i = 1, . . . , 8�3.
For any k satisfying 2� ≤ k ≤ 16�3 − 2� − 1, we shall find � + 1 k-subgraphs

of G[A ∪ B] with distinct sizes as follows. Let a = 
k/2�, b = �k/2�. Let F0 =
{u1, . . . , ua}∪{v1, . . . , vb}, and let Fi = Fi−1 −{vi}∪{v8�3+1−i} for i = 1, . . . , �. It is
easy to check that in case (a) the sets F0, . . . , F� and in case (b) the sets F0, . . . , F�−1

with {u2, . . . , ua+1, v1, . . . , vb} span distinct sizes on the corresponding k-subgraphs.
From now on, we can assume that k ≥ 16�3 − 2�. Let X ⊆ V − A − B with

|X| = k − 16�3 + 2�. Let ai be the number of neighbors of ui in X ∪B, and let bi be
the number of neighbors of vi in X ∪A for i = 1, . . . , 8�3.

By the pigeonhole principle, we have one of the cases (i) or (ii) as follows.
(i) |{a1, . . . , a8�3}| > 2�, or |{b1, . . . , b8�3}| > 2�.
Without loss of generality, a1, . . . , a2�+1 are all distinct integers. Let

Fj := X ∪A ∪B − ({u1, . . . , u2�+1} − {uj}), j = 1, . . . , 2� + 1.

The k-graphs induced by Fjs have 2� + 1 distinct sizes.
(ii) There is a subset of 2� indices, without loss of generality {1, 2, . . . , 2�}, such

that a1 = · · · = a2� and b1 = · · · = b2�.
Let M = {v1, u1, v2, u2, . . . , v2�, u2�}. Now let

Fj := (X ∪A ∪B −M) ∪ {u1, . . . , u�, v1, . . . , vj , v�+1, . . . , v2�−j},

j = 1, . . . , � − 1. Let F0 = (X ∪ A ∪ B − M) ∪ {u1, . . . , u�, v�+1, . . . , v2�}, and F� =
(X∪A∪B−M)∪{u1, . . . , u�, v1, . . . , v�}. In case (a), the k-graphs induced by the sets
Fj , j = 0, . . . , �, and in case (b), the sets F0, . . . , F�−1 with {u�+1, . . . , u2�, v1, . . . , v�}
have � + 1 distinct sizes.

Proof of Theorem 1. Consider a graph G on n vertices with νk(G) ≤ �. Let
T1, T2, . . . , Tm be the maximal homogeneous sets of G such that |T1| ≥ |T2| ≥
· · · ≥ |Tm|.

Case 1. |T1| > n− f(�).
In this case, the conclusions of the theorem follow immediately from Lemma 1.
Case 2. |T2| ≥ 2� + 1.
In this case, we arrive at a contradiction using Lemma 2 with homogeneous sets

T1 and T2.
Case 3. |T1| ≤ n− f(�) and |T2| ≤ 2�.
The conditions |T2 ∪ T3 ∪ · · · ∪ Tm| ≥ f(�) and |Ti| ≤ 2� for i = 2, . . . ,m imply

that m ≥ f(�)/2�. Therefore, we arrive at a contradiction using Lemma 3.

3. Appendix—Proof of Theorem 2. Let G be a graph on n vertices such
that each k-subgraph has size i1 or i2 for some integers i1, i2. We suppose that both
values appear; otherwise, we are done by Proposition 1.

Case 1. i1 = 0 or i1 =
(
k
2

)
.

We may assume, by taking the complement of G if necessary, that i1 = 0. We
have that some of the k-subgraphs are empty and others have size i = i2. Consider
the largest independent set S of order at least k. Let v /∈ S; then N(v) ∩ S = S or
|N(v) ∩ S| = 1; otherwise, it is easy to find two nonempty k-subgraphs with distinct
sizes containing v and k − 1 vertices from S. We also have that i ≤ k − 1, and,
if |N(v) ∩ S| = 1 for some v, then i = 1. It is obvious that if i = 1 and k ≥ 4,
then G must have exactly one edge. Thus, we may assume that for each v /∈ S,
N(v)∩S = S. If there are two vertices u, u′ /∈ S, then consider u, u′ and k−2 vertices
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of S. These k vertices induce a subgraph with at least 2(k − 2) > k − 1 edges for
k ≥ 4, a contradiction. Thus, there is exactly one vertex not in S, and G is a star.

Case 2. i1, i2 /∈ {0,
(
k
2

)
}.

Let i1 < i2 and i2 − i1 = �. Since there are only two sizes of the k-subgraphs of
G, there are two k-sets A and B, |A ∩B| = k − 1, inducing subgraphs of sizes i1 and
i2, respectively. Let b ∈ B−A, a ∈ A−B. Then i2 − i1 corresponds to the difference
between the number of edges sent by b to A ∩ B and the number of edges sent by a
to A ∩B. Since |A ∩B| = k − 1, this difference is at most k − 1, and thus � ≤ k − 1.

Case 2.1. There are vertices u, v, such that |(N(u) − N(v)) ∩ S| ≥ 2, for S =
V − {u, v}.

Let Q = Q(u, v) = S − (N(u)ΔN(v)). Assume that |(N(u) − N(v)) ∩ S| ≥
|(N(v) − N(u)) ∩ S|. Let us find subsets U ′, U ′′ ⊆ (N(u) − N(v)) ∩ S, U ′ ⊆ U ′′,
V ′ ⊆ (N(v) − N(u)) ∩ S such that |V ′| + 1 ≤ |U ′| = |U ′′| − 1 (note that V ′ might
be empty). Consider largest such subsets such that |V ′| + |U ′| + 1 ≤ k. Then choose
Q′, Q′′ ⊆ Q such that |Q′| + |V ′| + |U ′| + 1 = k and |Q′′| + |V ′| + |U ′′| + 1 = k. Note
that |Q′| = |Q′′| + 1.

Note that these subsets can be chosen if Q′ and Q′′ can be chosen, which is
always possible if Q �= ∅. We have that the subgraphs induced by u, V ′, U ′, Q′ and
by v, V ′, U ′, Q′ differ in size by t = |U ′| − |V ′|, t > 0, and the subgraphs induced by
u, V ′, U ′′, Q′′ and by v, V ′, U ′′, Q′′ differ in size by t′ = |U ′′| − |V ′| > t > 0. Thus, we
have that i2 − i1 = t and i2 − i1 = t′, a contradiction.

If Q = ∅ and (N(v) −N(u)) ∩ S = ∅, then νk−1(G[S]) = 1, and thus by Propo-
sition 1, S induces a trivial set. Thus, G is one of the following: (a) a star or its
complement; (b) a star and an isolated vertex; (c) a complement of a star and an
isolated vertex. Note that (b) and (c) are impossible since, in that case, νk(G) ≥ 3.

Finally, if Q = ∅ and (N(v)−N(u))∩S �= ∅, then consider a set A ⊆ S, |A| = k−1,
containing as many vertices of N(u) as possible. Consider B = A− {a} ∪ {b}, where
a ∈ N(u) ∩ S, b ∈ (N(v) − A) ∩ S. Then the k-subgraphs induced by u,A and v,A
differ in size by t, and k-subgraphs induced by u,B and v,B differ in size by t′, where
t > t′, a contradiction.

Case 2.2. For any two vertices u, v ∈ V (G), if S = V − {u, v}, then |(N(u) −
N(v)) ∩ S| ≤ 1.

Then, in particular, it implies that the degrees of any two vertices differ by at
most 1. Thus, V (G) = Vd ∪ Vd+1 such that for each v ∈ Vd, deg(v) = d and for each
v ∈ Vd+1, deg(v) = d + 1. Note also that

if u ∈ Vd, v ∈ Vd+1, then N(u) − {v} ⊆ N(v) − {u}.(5)

Therefore, if A ⊆ Vd induces a nontrivial connected graph in G[Vd], then (A, Vd+1)
forms a complete bipartite subgraph of G. Consider A,B ⊆ Vd inducing two non-
trivial components in G[Vd]. Let a ∈ A, b ∈ B. Then, since for any u, v ∈ V ,
|N(u)−(N(v)∪{u, v})| ≤ 1, we have that |N(a)∩Vd| ≤ 1 and |N(b)∩Vd| ≤ 1. There-
fore, either G[Vd] is connected, or each nontrivial connected component in G[Vd] has
maximum degree 1 and thus is an edge. Note that Vd cannot induce both edges and
isolated vertices. Indeed, the degrees of vertices incident to edges in Vd are |Vd+1|+ 1
(since for an edge xy in Vd, ({x, y}, Vd+1) induces a complete bipartite graph), and
the degrees of vertices isolated in G[Vd] are at most |Vd+1|, which is impossible since
all vertices in Vd have the same degree d.

Subcase a. Vd induces an empty set in G.
Let v ∈ Vd, u ∈ N(v). We have by (5) that each w ∈ Vd+1 is adjacent to u.

Thus, d + 1 = deg(u) ≥ |Vd+1|. We also have that d = deg(v) ≤ |Vd+1|. Therefore,
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d = |Vd+1| or d = |Vd+1| − 1. In the first case, we have that (Vd, Vd+1) forms a
complete bipartite subgraph; thus for any u ∈ Vd, Vd+1 ⊆ N(u), and thus for any
v ∈ Vd+1, Vd+1 ⊆ N(v)∪{v} by (5). Therefore, Vd+1 induces a complete graph. Thus,
|Vd| = 2 and G = Kn − {e} for an edge e. If |Vd+1| = d + 1, then each vertex from
Vd is adjacent to all but one vertex in Vd+1, and thus Vd+1 induces a clique. Since
the degree of each vertex in |Vd+1| is d+ 1, each vertex in Vd+1 is adjacent to exactly
one vertex in Vd. Thus, the number of nonedges between Vd and Vd+1 is |Vd|, and
the number of edges between Vd and Vd+1 is |Vd+1|. Thus, |Vd||Vd+1| = |Vd|+ |Vd+1|,
which is possible only when |Vd| = |Vd+1| = 2, a contradiction to the assumption that
n ≥ 8.

Subcase b. Vd induces a matching.
In this case, we have as before that Vd+1 induces a complete graph and (Vd, Vd+1)

forms a complete bipartite subgraph of G. Then d = |Vd+1| + 1, d + 1 = n − 1.
Therefore, |Vd+1| = n − 3, |Vd| = 3, a contradiction since then Vd cannot induce a
matching.

Subcase c. Vd is connected.
Then (Vd, Vd+1) forms a complete bipartite graph, Vd+1 induces a complete graph,

and thus d + 1 = n − 1 and d = n − 2. Therefore, Vd must induce the complement
of a matching, and the complement of G is a disjoint union of isolated edges and
vertices. Thus, for n ≥ 8, either there is exactly one edge in a complement of G, or
νk(G) > 2.
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Abstract. We determine the structure of a class of graphs that do not contain the complete
graph on five vertices as a “signed minor.” The result says that each graph in this class can be
decomposed into elementary building blocks in which maximum packings by odd circuits can be
found by flow or matching techniques. This allows us to actually find a largest collection of pairwise
edge disjoint odd circuits in polynomial time (for general graphs this is NP-hard). Furthermore it
provides an algorithm to test membership of our class of graphs.
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1. Introduction. The odd circuit packing problem, finding in a graph a largest
collection of pairwise edge disjoint odd circuits, is NP-hard. In this paper we will
present a class of graphs in which this problem can be solved in polynomial time. We
prove that each graph in this class can be decomposed into planar graphs, graphs with
a vertex meeting all odd circuits, and graphs containing at most six vertices. In such
building blocks a maximum packing by odd circuits can be found by flow or matching
techniques. Given a graph G in our class, our decomposition theorem allows us to
combine such packings for the building blocks of G to a maximum packing by odd
circuits in G. With some extra work our decomposition theorem gives an algorithm
to test membership of our class.

We present everything in terms of signed graphs. The results can be stated and
proved in terms of ordinary graphs without any loss of generality, but in those terms
the proofs require extra maneuvering that can be avoided when speaking the language
of signed graphs. A signed graph is a pair (G,Σ) consisting of an undirected graph G
and a collection Σ of its edges. A collection F of edges in G is called odd in (G,Σ) if
|F ∩ Σ| is odd; otherwise, F is called even. In particular, we speak of odd and even
edges, paths, and circuits. We call (G,Σ) Eulerian if G is Eulerian, so if each vertex
has even degree.

Theorem 1. The odd circuit packing problem is polynomially solvable for Eule-
rian signed graphs with no K̃5-, K

1,1
3,3 -, K1,2

3,3 -, or K2
3,3-minor.

We explain the notions used in this result. A minor of (G,Σ) is the result of
a series of the following three operations: deletion of an edge or an isolated vertex,
contraction of an even edge, and resigning. Resigning (on U ⊆ V (G)) means replacing
Σ by the symmetric difference Σ�δG(U) of Σ with the cut δG(U) := {uv ∈ E(G)|u ∈
U, v �∈ U}. Clearly, the collection Ω(G,Σ) of odd circuits in (G,Σ) is invariant under
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K 5 K 3,3

2
K 3,3 K 3,3

1,1 1,2~

Fig. 1. Bold edges are odd; thin edges are even.

Fig. 2. Bold edges are odd; thin edges are even.

resigning. Two signed graphs are isomorphic if they are related through resigning and
graph-isomorphism. We say that (G,Σ) has a (H,Θ)-minor or contains (H,Θ) if it
has a minor isomorphic to (H,Θ).

The definition of the four signed graphs “excluded” in Theorem 1 can be under-
stood from the following (see Figure 1). If G is a graph, then G̃ := (G,E(G)), so K̃5

consists of the complete graph on five vertices with all edges odd. Ki
3,3 := (K3,3,M),

where M is a matching of size i. Finally, K1,1
3,3 and K1,2

3,3 are the two extensions of

K1
3,3 given in Figure 1.

In addition to Theorem 1 we prove that the signed graph property described there
can be recognized in polynomial time.

Theorem 2. There exists a polynomial time algorithm that decides whether or
not a given signed graph has a K̃5-, K

1,1
3,3 -, K1,2

3,3 -, or K2
3,3-minor.

As we shall see in sections 3 and 5 both Theorems 1 and 2 are a consequence of
the following decomposition theorem. It is the main result of this paper.

Theorem 3. Let (G,Σ) be a 3-connected signed graph with no improper 3-vertex
cutset and no K2

3,3-minor.

(i) If (G,Σ) has no K1
3,3-minor and no K̃5-minor, then |V (G)| = 5 or G is planar

or (G,Σ) is isomorphic to one of the signed graphs in Figure 2 or (G,Σ) has
a blockvertex.

(ii) If (G,Σ) has a K1
3,3 minor, but no K1,1

3,3 or K1,2
3,3 minor, then (G,Σ) has a

blockvertex.
Here are the notions used in this result: A blockvertex of (G,Σ) is a vertex that is

contained in every odd circuit. We call (G,Σ) 3-connected if any two vertices in G are
connected by two internally vertex disjoint paths; this allows parallel edges. (G,Σ) has
an improper 3-vertex cutset means that it contains signed graphs (G1,Σ1) and (G2,Σ2)
such that E(G1) and E(G2) are nonempty and partition E(G), |V (G1)∩ V (G2)| = 3
and (G2,Σ2) has no odd circuits and at least four edges. The proof of (i) is in section 6,
and the proof of (ii) is in sections 7–11.

We obtain not only an algorithm for the odd circuit packing problem but also a
min-max relation.
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Theorem 4. Let (G,Σ) be a signed graph with no K̃5-, K1,1
3,3 -, K1,2

3,3 -, or K2
3,3-

minor. If G is Eulerian, then the maximum number of pairwise edge disjoint odd
circuits in (G,Σ) is equal to the minimum number of edges needed to cover all odd
circuits in (G,Σ).

This result has been generalized extensively by Geelen and Guenin [2], who proved

the min-max relation for all Eulerian signed graphs with no K̃5-minor. This was stated
as a conjecture in an earlier version of the present article. Geelen and Guenin do not
use decompostions, and their methods do not seem to provide a polynomial time algo-
rithm for finding maximum odd circuits packings. However, it does follow from their
result and in fact also from the earlier characterization of “weakly bipartite graphs”
by Guenin [5] that by linear programming techniques one can find in polynomial time
a smallest collection of edges that cover all odd circuits in a signed graph with no
K̃5-minor. Note that in K̃5 itself, which is Eulerian, the min-max relation in Theo-
rem 4 does not hold, so the Geelen–Guenin theorem is in a certain sense as strong as
possible.

The min-max relation stated in Theorem 4 may fail to be true if we drop the
condition that the graph is Eulerian; K̃4 is an example. Actually it follows from a
general result of Seymour [10] that the min-max relation does hold for signed graphs

with no K̃4-minor, even if they are not Eulerian.
Theorem 3 also has consequences for the chromatic number of the graphs involved.

In combination with the 4-color theorem it can be used to prove that if G̃ has none of
the forbidden minors of Theorem 1, then G is 4-colorable. (It has been conjectured

by one of the authors that G is 4-colorable if G̃ has no K̃5-minor, see Jensen and
Toft [8]. Recently Guenin [6] announced a proof of this conjecture.)

Theorem 3 can be regarded as a first step towards a constructive characterization
of graphs with no K̃5-minor, a small step though; there are quite a few other infinite
families of “highly connected” graphs with no K̃5-minor known that are not covered
by Theorem 3 (see Gerards [4]). The exclusion of K2

3,3, K1,1
3,3 , and K1,2

3,3 is quite
restrictive. For each Σ ⊆ E(K3,3), the signed graph (K3,3,Σ) is isomorphic to exactly

one of K0
3,3, K

1
3,3, and K2

3,3. For instance, K̃3,3 is isomorphic to K0
3,3 and K3

3,3 to K2
3,3.

So up to isomorphism K2
3,3 is the only signed K3,3 with a K̃4 minor. K1,1

3,3 and K1,2
3,3

are the smallest 3-connected signed graphs that contain both K1
3,3 and K̃4 as minors.

2. Odd circuits in signed graphs. We mention some elementary facts on
signed graphs that are good to keep in mind while reading this paper. Note that they
are all known and not just for odd circuits in graphs but for general binary clutters,
which are just collections of odd circuits in signed binary matroids.

A signed graph (G,Σ) is bipartite if Σ = δG(U) for some U ⊆ V (G). So clearly,
(G,Σ) is bipartite if and only if it is isomorphic to (G, ∅). Hence, if (G,Σ) is bipartite it
has no odd circuits. Actually the converse is also true. To see this, we may assume that
G is connected and that we have resigned (G,Σ) such that Σ is as small as possible.
That means that Σ does not contain a nonempty cut δG(U) (otherwise resigning on
U replaces Σ by Σ\ δG(U), which then is smaller). Therefore the even edges in (G,Σ)
form a connected spanning subgraph of G. Now, if (G,Σ) is nonbipartite there is an
odd edge uv in Σ and, as u and v are connected by a path with all edges even, that
edge is in an odd circuit. So a signed graph is bipartite if and only if it has no odd
circuit.

A subset S of E(G) is a signature of (G,Σ) if (G,S) has exactly the same odd
circuits as (G,Σ). Clearly, S is a signature if and only if all circuits are even in
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(G,S � Σ). In other words, the signatures are exactly the sets Σ � δG(U) for some
U ⊆ V (G). Each signature meets all odd circuits. Conversely, if F ⊆ E(G) meets all
odd circuits it contains a signature. Indeed, let H be obtained from G by deleting
all edges in F . Then (H,Σ \ F ) has no odd circuits and so is bipartite. Thus there
exists a set U ⊆ V (H) = V (G) with Σ \ F = δH(U). In other words Σ� δG(U) ⊆ F ,
so F contains a signature, as claimed. In other words the signatures are exactly the
inclusionwise minimal edge sets that meet all odd circuits, and the smallest signatures
are exactly the the sets attaining the minimum in Theorem 4.

3. Packing odd circuits—algorithm and min-max relation. We actually
consider a “capacitated version” of packing odd circuits, because it is slightly more

convenient to work with. If G is a graph and w ∈ Z

E(G)
+ , then a w-packing is a

collection of subsets of E(G), repetition allowed, such that each edge e is in at most
w(e) members of the collection. So the maximum size of a w-packing of odd circuits
in (G,Σ) is equal to

νw(G,Σ) := max

⎧⎨
⎩

∑
C∈Ω(G,Σ)

λC

∣∣∣∣∣∣λ ∈ Z

Ω(G,Σ)
+

and
∑

C∈Ω(G,Σ),C�e

λC ≤ w(e) for each e ∈ E

⎫⎬
⎭ .

Clearly, νw(G,Σ) is bounded from above by

τw(G,Σ) := min{w(S) |S is a signature of (G,Σ)},

where w(S) is short for
∑

e∈S w(e).

We call a function w ∈ Z

E(G)
+ Eulerian if w(δG(v)) is even for each vertex v ∈

V (G). Theorem 4 is equivalent with the following result:

If (G,Σ) is a signed graph with no K̃5-, K
1,1
3,3 -, K1,2

3,3 -, or K2
3,3-minor,

then νw(G,Σ) = τw(G,Σ) for each Eulerian w ∈ Z

E(G)
+ .

(1)

Indeed, as the excluded minor condition is invariant under addition of even edges
parallel to even edges and of odd edges parallel to odd edges and under deleting
edges, (1) follows from Theorem 4, which in turn is the special case of (1) when w is
the all-one function.

Now we show that Theorem 3 implies (1) hence also Theorem 4. We first con-
sider the basic building blocks of our decomposition. For these there exist standard
constructions, by Barahona and Seymour, to reduce the odd circuit packing problem
to flow problems and odd cut packing problems.

If (G,Σ) has a blockvertex then νw(G,Σ) = τw(G,Σ) for each w ∈ Z

E(G)
+ .

Moreover then we can find a maximum w-packing of odd circuits
in polynomial time.

(2)

To see this let s be a blockvertex. As the signed graph obtained by deleting s from
(G,Σ) is bipartite, we may resign such that Σ ⊆ δG(s). Now construct a new graph
H by adding a new vertex t and replacing each odd edge us of G with an edge ut
in H. Then there is a one-to-one correspondence between odd circuits in (G,Σ) and
st-paths in H. Thus (2) follows from network flow theory.
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Next we discuss how to deal with the signed graphs in Figure 2 and with signed
graphs (K5,Σ) that are not isomorphic to K̃5. In either of these cases (G,Σ) contains
a blocking pair. This is a pair of vertices such that each odd circuit contains at least
one of these two vertices. So we can then apply the following fact:

If (G,Σ) has a blocking pair, then νw(G,Σ) = τw(G,Σ) for each

Eulerian w ∈ Z

E(G)
+ . Moreover then we can find

a maximum w-packing of odd circuits in polynomial time.

(3)

To see this we use the same approach, due to Barahona, as in the blockvertex case.
Let {s1, s2} be a blocking pair. By resigning we may assume that each odd edge is
incident with at least one of s1 and s2. Now construct a new graph H by adding new
vertices t1 and t2 and by replacing each odd edge us1 of G with u �= s2 with an edge
ut1 in H; by replacing each odd edge us2 of G with u �= s1 with an edge ut2 in H; and
by replacing an odd edge between s1 and s2 (if such edge exists) with an edge t1s2

in H. Then there is a one-to-one correspondence between the odd circuits in (G,Σ)
and the s1t1-paths and s2t2-paths in H. Thus we translate the maximum w-packing
of odd circuits problem into the integer 2-commodity flow problem. Note that the
latter problem does not really change if we would add an edge s1t1 with w(s1t1) = 1
or an edge s2t2 with w(s2t2) = 1 or both. Hence we may assume that w is Eulerian
on H. Thus (3) follows from the integer 2-commodity flow theorem of Rothschild and
Whinston [9].

If G is planar, then νw(G,Σ) = τw(G,Σ) for each Eulerian w ∈ Z

E(G)
+ .

Moreover then we can find a maximum w-packing of odd circuits
in polynomial time.

(4)

We use a construction by Seymour [12], and for ease of exposition we restrict ourselves
to the case that w is the all-one function, so G is Eulerian. Hence the planar dual G∗

of some embedding of G in the plane is bipartite in the ordinary graph sense. Let Σ∗

be the edges of G∗ corresponding to the edges in Σ. Let T denote the set of vertices
of G∗ that meet an even number of edges in Σ∗. We call a collection F of odd edges
in G∗ a T -join if and only if every vertex in T meets an odd number of edges in F
and every vertex outside T meets an even number of edges in F . A cut δG∗(U) in
G∗ is a T -cut if |T ∩ U | is odd. By the relation between circuits in a plane graph
and cuts in its plane dual, we see that there is a one-to-one correspondence between
T -joins in G∗ and signatures in (G,Σ) and between inclusionwise minimal T -cuts in
G∗ and odd circuits in (G,Σ). Hence the min-max relation in (4) follows from a min-
max relation by Seymour [12] that says that in any ordinary (not signed) bipartite
graph the minimum size of a T -join is equal to the maximum size of a collection
of pairwise disjoint T -cuts. See Barahona [1] for a polynomial algorithm for finding
such a maximum collection of disjoint T -cuts; it also allows general Eulerian functions
w ∈ Z

E(G), other than the all-one function. Thus (4) follows.
The following two results, Lemmas 5 and 6, say that all signed graphs that do

not satisfy the min-max relation in (1) and are minor-minimal in this respect are
3-connected and have no improper 3-vertex cutsets.

Lemma 5. If (G,Σ) does not satisfy νw(G,Σ) = τw(G,Σ) for each Eulerian

w ∈ Z

E(G)
+ and is minor-minimal in this respect, then (G,Σ) is 3-connected and has

no parallel edges.
Proof. Let (G,Σ) be a counterexample. We clearly may assume G to be 2-

connected, so there exist two vertices u1 and u2 in G and two connected graphs G1
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and G2 with V (G1) ∩ V (G2) = {u1, u2} such that E(G1) and E(G2) both have at
least two elements and partition E(G). For i = 1, 2, we define Σi := Σ ∩ E(Gi). Let

w ∈ Z

E(G)
+ be Eulerian with τw(G,Σ) > νw(G,Σ).

For each signed graph (H,Θ) containing u1 and u2 and for i = 0, 1, we define

τw(H,Θ)i := min{w(Θ � δH(U)) | |U ∩ {u1, u2}| = i}.(5)

Then,

τw(H,Θ) = min{τw(H,Θ)0, τw(H,Θ)1},(6)

and

τw(G,Σ)i = τw(G1,Σ1)i + τw(G2,Σ2)i for i = 0, 1.(7)

Also note that if U ⊆ V (H) with u1 ∈ U and u2 �∈ U , then

τw(H,Θ)i = τw(H,Θ � δH(U))1−i for i = 0, 1.(8)

So by resigning (G,Σ) if necessary we may assume that

τw(G1,Σ1)1 ≥ τw(G1,Σ1)0.(9)

Let ω := τw(G1,Σ1)1 − τw(G1,Σ1)0. If ω = 0, let Ĝ2 := G2; if ω > 0, let Ĝ2 be
obtained from G2 by adding a new even edge e2 between u1 and u2 with weight
w(e2) := ω.

τw(Ĝ2,Σ2) = τw(G,Σ) − τw(G1,Σ1)0.(10)

To see this, note that it follows from (7) that τw(Ĝ2,Σ2)0 = τw(G2,Σ2)0 = τw(G,Σ)0−
τw(G1,Σ1)0 and τw(Ĝ2,Σ2)1 = τw(G2,Σ2)1 + ω = τw(G2,Σ2)1 + τw(G1,Σ1)1 −
τw(G1,Σ1)0 = τw(G,Σ)1 − τw(G1,Σ1)0. By (6), this implies (10).

(Ĝ2,Σ2) is a proper minor of (G,Σ).(11)

Suppose this is not true. Then G1 has no even u1u2-path, and ω > 0. We first prove
that (G1,Σ1) is bipartite. Let C be a circuit in G1. As G is 2-connected there exist
two disjoint paths from V (C) to {u1, u2}. As the union of these paths and C does
not contain an even u1u2-path, C has to be even. So (G1,Σ1) is bipartite indeed.
Hence Σ1 = δG1(U) for some U ⊆ V (G1). We may assume u1 ∈ U . Then, as there
is no even u1u2-path, u2 �∈ U . Hence as w(Σ1 � δG1(U)) = w(∅) = 0, we have that
τw(G1,Σ1)1 = 0. So ω = 0, which is a contradiction. This proves (11).

w(δ
Ĝ2

(v)) is even for each v ∈ V (Ĝ2).(12)

Indeed, as w(δG(v)) is even for each v ∈ V (G), (12) holds for all v �∈ {u1, u2}. So, as
there is an even number of vertices v with w(δ

Ĝ2
(v)) odd, we may restrict ourselves

to proving that w(δ
Ĝ2

(u1)) is even. Let U1 ⊆ V (G1) with U1 ∩ {u1, u2} = {u1} such

that w(Σ1 � δG1(U1)) = τw(G1,Σ1)1, and let U0 ⊆ V (G1) with U0 ∩ {u1, u2} = ∅
such that w(Σ1 � δG1

(U0)) = τw(G1,Σ1)0. Then we get the following (“≡” denotes
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equivalence modulo 2):

w(δ
Ĝ2

(u1)) = w(δG2(u1)) + w(e2)

= w(δG2(u1)) + τw(G1,Σ1)1 − τw(G1,Σ1)0
= w(δG2

(u1)) + w(Σ1 � δG1
(U1)) − w(Σ1 � δG1

(U0))
≡ w(δG2(u1)) + w(Σ1) + w(δG1(U1)) + w(Σ1) + w(δG1(U0))
≡ w(δG2(u1)) + w(δG1(U1) � δG1(U0))
≡ w(δG2(u1)) + w(δG1(U1 � U0))
= w(δG(U1 � U0)) ≡ 0.

So (12) follows.
By (11) and (12) there exists a w-packing C2 = {C2

1 , . . . , C
2

τw(Ĝ2,Σ2)
} of odd

circuits in (Ĝ2,Σ2). For each e ∈ E(Ĝ2) let c(e) denote the number of members of
C2 that use edge e; abbreviate γ := w(e2). Assume that C2

1 , . . . , C
2
γ are the members

of C2 containing e2. The function w − c is Eulerian on Ĝ2, and as C2 is a maximum
w-packing of odd circuits, the set of edges e ∈ E(Ĝ2) with w(e)−c(e) > 0 contains no
odd circuits. Hence, by Euler’s theorem on Euler tours and since (w− c)(e2) = ω−γ,

there exists a (w − c)-packing D = {D2
1, . . . , D

2
ω−γ} of even circuits in (Ĝ2,Σ2) that

all contain e2.

We may assume that γ = 0 or ω − γ = 0.(13)

If both are positive, then C2
1 contains e2 and D2

1 exists; by definition D2
1 also contains

e2. The set C2
1 � D2

1 contains an odd circuit, C say. As C2
1 � D2

1 does not contain
e2, neither does C. Replacing in C2 the odd circuit C2

1 with C yields a w-packing of
the same size as C2 that has only c(e2) − 1 members using e2. This proves (13).

If ω = 0, let Ĝ1 := G1. If γ = ω > 0, let Ĝ1 be obtained from G1 by adding an
odd edge e1 between u1 and u2 with w(e1) := ω. If ω > 0 = γ, let Ĝ1 be obtained
from G1 by adding an even edge f1 between u1 and u2 with w(f1) := ω. If e1 is

included in Ĝ1, we define Σ̂1 := Σ1 ∪ {e1}; otherwise, Σ̂1 := Σ1.

(Ĝ1, Σ̂1) is a proper minor of (G,Σ).(14)

If e1 exists in (Ĝ1, Σ̂1), then γ > 0, so there exists an odd circuit using e2 in (G2,Σ2),
for instance, C2

1 . So in that case there is an odd u1u2-path in (G2,Σ2). If f1 exists

in (Ĝ1, Σ̂1), then ω − γ > 0, so there exists an even circuit using e2 in (G2,Σ2), for
instance, D2

1. Hence, in that case there is an even u1u2-path in (G2,Σ2). This proves
(14).

w(δ
Ĝ1

(v)) is even for each v ∈ V (Ĝ1).(15)

This is obvious as the weight of the added edge is w(e2) and as w is Eulerian on G

and on Ĝ2.
By (14) and (15) there exists a w-packing C1 = {C1

1 , . . . , C
1

τw(Ĝ1,Σ̂1)
} of odd

circuits in (Ĝ1, Σ̂1).

τw(Ĝ1, Σ̂1) = τw(G1,Σ1)0 + γ = τw(Ĝ1, Σ̂1)0.(16)

Note that γ = ω = w(e1) if e1 exists and γ = 0 if e1 does not exist. Hence,

τw(Ĝ1, Σ̂1)0 = τw(G1,Σ1)0 + γ. Similarly, ω − γ = ω = w(f1) if f1 exists, and
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ω − γ = 0 if f1 does not exist. Hence, by the definition of ω we get τw(Ĝ1, Σ̂1)1 =
τw(G1,Σ1)1 + ω − γ = τw(G1,Σ1)0 + 2ω − γ ≥ τw(G1,Σ1)0 + γ. By (6), this proves
(16).

As τw(Ĝ1, Σ̂1) = τw(Ĝ1, Σ̂1)0 there exists a minimum weight signature containing
e1 as soon as e1 exists, that is as soon as γ > 0. Hence, by “complementary slackness”
there are exactly γ odd circuits in C1 that contain e1. Assume that C1

1 , . . . , C
1
γ contain

e1 and that C1
γ+1, . . . , C

1
γ+k are the members of C1 containing f1. Note that k ≤ ω−γ.

Now let C be the collection of the following odd circuits:

(C1
i \ {e1}) ∪ (C2

i \ {e2}) for i = 1, . . . , γ,
(C1

i \ {f1}) ∪ (D2
i−γ \ {e2}) for i = γ + 1, . . . , γ + k,

C1
i for i = γ + k + 1, . . . , τw(Ĝ1, Σ̂1),

C2
i for i = γ + 1, . . . , τw(Ĝ2,Σ2).

Clearly, C is a w-packing in G. Its size is τw(Ĝ1, Σ̂1)+τw(Ĝ2,Σ2)−γ. By (10) and (16)
this is equal to τw(G,Σ). Hence, νw(G,Σ) ≥ τw(G,Σ), contrary to our assumption.
This proves the lemma.

Lemma 6. If (G,Σ) does not satisfy νw(G,Σ) = τw(G,Σ) for each Eulerian

w ∈ Z

E(G)
+ and is minor-minimal in this respect, then (G,Σ) has no improper 3-

vertex cutset.
Proof. Let (G,Σ) be a counterexample; by Lemma 5 it is 3-connected. Then

(G,Σ) contains a signed graph (G1,Σ1) and a bipartite signed graph (G2,Σ2) such
that E(G1) and E(G2) partition E(G), V (G1)∩V (G2) = {u1, u2, u3}, and |E(G2)| ≥
4. By resigning, we may assume that Σ2 = ∅. Let w ∈ Z

E(G)
+ be Eulerian with

τw(G,Σ) > νw(G,Σ).
For each signed graph (H,Θ) containing {u1, u2, u3}, we define

τw(H,Θ)0 := min{w(Θ � δH(U)) |U ∩ {u1, u2, u3} = ∅},(17)

and, for each i = 1, 2, 3,

τw(H,Θ)i := min{w(Θ � δH(U)) |U ∩ {u1, u2, u3} = {ui}}.(18)

Then,

τw(H,Θ) = min{τw(H,Θ)0, τw(H,Θ)1, τw(H,Θ)2, τw(H,Θ)3}.(19)

Moreover, we define

ω1 := 1
2 [τw(G2, ∅)2 + τw(G2, ∅)3 − τw(G2, ∅)1],

ω2 := 1
2 [τw(G2, ∅)1 + τw(G2, ∅)3 − τw(G2, ∅)2],

ω3 := 1
2 [τw(G2, ∅)1 + τw(G2, ∅)2 − τw(G2, ∅)3].

(20)

Then,

ω1, ω2, and ω3 are nonnegative.(21)

To prove that, for ω1, choose for i = 2, 3 a set Ui ⊆ V (G2) with Ui∩{u1, u2, u3} = {ui}
and w(δG2(Ui)) = τw(G2, ∅)i. Then, as (V (G2) \ (U2 ∪ U3)) ∩ {u1, u2, u3} = {u1}, we
get that τw(G2, ∅)1 ≤ w(δG2(V (G2) \ (U2 ∪ U3))) = w(δG2(U2 ∪ U3)) ≤ w(δG2(U2)) +
w(δG2

(U3)) = τw(G2, ∅)2 + τw(G2, ∅)3. So indeed, ω1 ≥ 0 and (21) follows.
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Moreover,

ω1, ω2, and ω3 are integers.(22)

To see that note that the fact that w(δG2(v)) is even for each v ∈ V (G2)\{u1, u2, u3}
has the following two consequences: w(δG2

(u1)) + w(δG2(u2)) + w(δG2
(u3)) is even

and, for i = 1, 2, 3, w(δG2(Ui))−w(δG2(ui)) is even if Ui∩{u1, u2, u3} = {ui}. Hence,
by the definition of τw(G2, ∅)i, the number τw(G2, ∅)1 + τw(G2, ∅)2 + τw(G2, ∅)3 is
even. So (22) follows.

We define both Ĝ1 and Ĝ2 by adding to G1 and to G2 the edges e1 := u2u3, e2 :=
u1u3, and e3 := u1u2. Moreover, we define w(ei) = ωi for i = 1, 2, 3. Similar
calculations as in the proof of Lemma 5 show that

w(δ
Ĝj

(v)) is even for each v ∈ V (Ĝj) and j = 1, 2.(23)

Next we define Σ̂2 := {e1, e2, e3}. Straightforward calculations show that

τw(Ĝ1,Σ1)i = τw(G,Σ)i and τw(Ĝ2, Σ̂2)i = τw(G2,Σ2)i + ωi = ω1 + ω2 + ω3(24)

for each i = 0, 1, 2, 3 and thus that

τw(Ĝ1,Σ1) = τw(G,Σ) and τw(Ĝ2, Σ̂2) = ω1 + ω2 + ω3.(25)

From the facts that |E(G2)| ≥ 4 and that G is 3-connected, it easily follows that

(Ĝ1,Σ1) is a proper minor of (G,Σ). Hence, νw(Ĝ1,Σ1) = τw(Ĝ1,Σ1). So by (25),

there exists a w-packing C1 in (Ĝ1,Σ1) consisting of τw(G,Σ) odd circuits.

As {u1, u2} is a blocking pair of (Ĝ2, Σ̂2), it follows from (3) and (23) that

νw(Ĝ2, Σ̂2) = τw(Ĝ2, Σ̂2). Thus by (25) there exists a w-packing C2 in (Ĝ2, Σ̂2)
consisting of ω1 + ω2 + ω3 odd circuits.

As {e1, e2, e3} is a minimum weight signature of (Ĝ2, Σ̂2), there are by comple-
mentary slackness for each i exactly ωi members of C2 that intersect {e1, e2, e3} in
exactly ei. So there exists a w-packing P1 ∪ P2 ∪ P3 in (G2,Σ2) such that each
Pi is a collection of ωi even paths connecting the ends of ei. Using the paths in
Pi to replace occurrences of ei in the members of C1, we can turn C1 into a w-
packing consisting of τw(G,Σ) odd circuits in (G,Σ), contradicting our assumption
that τw(G,Σ) > νw(G,Σ). This proves the lemma.

Proof of Theorem 4 (from Theorem 3). We prove (1), which implies Theorem 4.
From Lemmas 5 and 6 and from (2) and (4), we see that we may assume that |V (G)| =
5 or that (G,Σ) is one of the signed graphs in Figure 2. In the latter case (G,Σ) has a
blocking pair; thus, (3) applies. So we may assume |V (G)| = 5. By Lemma 5 we may
assume that G has no parallel edges. This means that G is isomorphic to a subgraph
of K5. As (G,Σ) is not isomorphic to K̃5, (G,Σ) has a blocking pair. So again (3)
applies. This proves Theorem 4.

Proof of Theorem 1 (from Theorem 3). Clearly, if (G,Σ) has a blockvertex or
a blocking pair or if G is planar, we can find a maximum w-packing of odd circuits
by (2), (3), and (4). So it remains to explain how we can algorithmically deal with
2-separations and improper 3-separations.

First consider an improper 3-separation (G1,Σ1), (G2,Σ2) of (G,Σ) as in the proof
of Lemma 6. We follow that proof. So we assume that Σ2 = ∅. Finding ω1, ω2, ω3

amounts to calculating τw(G2,Σ2)i for i = 1, 2, 3, which is just the minimum weight
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of a cut in G2 separating ui from {u1, u2, u3} \ {ui}, so that can be solved by flow

techniques. As {u1, u2} is a blocking pair in (Ĝ2, Σ̂2) finding a maximum w-packing of

odd circuits in (Ĝ2, Σ̂2) can be done by solving an integer 2-commodity flow problem.
As explained in the proof of Lemma 6 the solution of that gives a collection of paths in
G2 that can be used to transform a maximum w-packing of odd circuits in (Ĝ1,Σ1) to
a maximum w-packing of odd circuits in (G,Σ). As all this can be done in polynomial
time, we have a polynomial time reduction from the odd circuit packing problem in
(G,Σ) to the odd circuit packing problem in (Ĝ1,Σ1), which is a proper minor of
(G,Σ).

So there exists a polynomial time algorithm for the odd circuit packing problem
in 3-connected signed graphs with no K̃5-, K1,1

3,3 -, K1,2
3,3 -, or K2

3,3-minor. Next we
consider the case that the signed graph is not 3-connected. Here there are certain
issues involved that need extra care. Consider a 2-separation (G1,Σ1), (G2,Σ2) of
(G,Σ) as in the proof of Lemma 5. If we can find such separation with (G1,Σ1) and
(G2,Σ2) both bipartite, then u1 is a blockvertex of (G,Σ), and we can solve the odd
circuit packing problem by flow techniques. So we assume that no such 2-separations
exist. Therefore as of now we assume that we selected (G1,Σ1) and (G2,Σ2) such that
(G2,Σ2) is nonbipartite and under that condition E(G1) is inclusionwise minimal.

Let (G1
1,Σ

1
1) be obtained from (G1,Σ1) by adding an odd edge e1 connecting

u1 and u2, and let (G0
1,Σ

0
1) be obtained from (G1,Σ1) by adding an even edge f1

connecting u1 and u2. Then as (G2,Σ2) is nonbipartite both (G1
1,Σ

1
1) and (G0

1,Σ
0
1)

are proper minors of (G,Σ). Moreover, by minimality of E(G1) these graphs are
3-connected so we do have a polynomial time algorithm for solving any odd circuit
packing problem in (G1

1,Σ
1
1) or (G0

1,Σ
0
1). This is important since as we will see we

need to solve three such problems in these signed graphs.
For both i = 0 and i = 1, we can find τw(G1,Σ1)i in polynomial time as it amounts

to finding a minimum weight signature in (Gi
1,Σ

i
1) where the extra edge between u1

and u2 gets a very high weight. Thus we can calculate ω in polynomial time. Now
solve the odd circuit packing problem in the signed graph (Ĝ2,Σ2) constructed in the
proof of Lemma 5. We do this recursively, so we may use 2-separations again. We also
find the collection of even circuits D2 (which is just a flow problem) and adjust the
solution such that γ is either 0 or ω, as in (13). Now we solve the odd circuit packing

problem on (Ĝ1, Σ̂1). Since Ĝ1 is 3-connected, we can do this without recursively

using 2-separations. Now we combine the optimal packing of odd circuits in (Ĝ1, Σ̂1)

with the optimal packing of odd circuits in (Ĝ2,Σ2) and with the collection D2 of
even circuits to a solution for the odd circuit packing problem in (G,Σ).

This recursive method using 2-separations calls itself only in (Ĝ2,Σ2) and for just
a single function w. Hence, it runs in polynomial time.

4. Subdivisions, homeomorphs, and minors; links and bridges. If P is a
path containing vertices u and v, then Puv denotes the uv-subpath of P .

Subdividing an edge uv of (G,Σ) is replacing it with a uv-path P that is internally
vertex disjoint with G and replacing Σ with (Σ \ {uv})∪ΣP , where ΣP is any subset
of E(P ) with the same parity as Σ∩{uv}. A (G,Σ)-subdivision is the result of a series
of subdivisions of edges in (G,Σ). If G is just a graph, so with no signing, subdividing
an edge and G-subdivision are defined similarly.

A (G,Σ)-homeomorph is a signed graph that is isomorphic to a (G,Σ)-subdivi-
sion. Clearly, if a signed graph has a (G,Σ)-homeomorph it has a (G,Σ)-minor. If
G has maximum degree 3, the converse is true as well. In particular, for i = 0, 1, 2,
(G,Σ) has a Ki

3,3-minor if and only if it has a Ki
3,3-homeomorph.
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Let G be a graph; a leg of G is a path such that all of its internal vertices have
degree 2 in G and its ends have degree at least 3. Let H be a subgraph of G, and let
u and v be two of its vertices. A uv-link of H, or just link of H, is a uv-path that
intersects H exactly in {u, v}.

If G is a graph and X is a set of vertices, then G−X is the graph obtained from
G by deleting the vertices in X and the edges incident to them; if X is a set of edges
(or a subgraph with edges), then G−X is obtained by deleting only the edges in X.

A subgraph B of G is called a bridge of H if either B consists of a single edge
not in E(H) that has both ends in V (H) or B consists of a component of G− V (H)
together with the edges from this component to H and their ends in H.

5. Recognizing if a graph has a K̃5-, K1,1
3,3 -, K1,2

3,3 -, or K2
3,3-minor. We

describe how to decide in polynomial time if a graph has a K̃5-, K
1,1
3,3 -, K1,2

3,3 -, or K2
3,3-

minor or not. The algorithm is based on the decomposition in Theorem 3. The idea is
standard: we can check in polynomial time if G is planar or if (G,Σ) has a blockvertex
or is one of the signed graphs in Figure 2, so we need only recursive procedures for the
cases that (G,Σ) is not 3-connected or has improper 3-vertex cutsets. In case (G,Σ) is
not 3-connected such a procedure is straightforward, but dealing with decompositions
along improper 3-vertex cutsets needs some extra care. So we describe that in detail.

Assume (G,Σ) is 3-connected and contains an improper 3-vertex cutset {u1, u2, u3}.
So, after resigning if necessary, we may assume that G contains graphs G1 and G2

with Σ ∩ E(G2) = ∅ such that E(G1) and E(G2) partition E(G), V (G1) ∩ V (G2) =
{u1, u2, u3}, and |E(G2)| ≥ 4. Let G+ be defined by adding to G1 a new vertex u+

and three new even edges u+u1, u
+u2, and u+u3. Then (G+,Σ) is a minor of (G,Σ).

So if it has a K̃5-, K
1,1
3,3 -, K1,2

3,3 -, or K2
3,3-minor, then so does (G,Σ). Also if (G,Σ)

has a K̃5-, K
1,2
3,3 -, or K2

3,3-minor, (G+,Σ) will have such a minor. But, as K1,1
3,3 has

improper 3-vertex cutsets, (G,Σ) may have a K1,1
3,3 -minor whereas (G+,Σ) does not.

Fortunately, it can be checked in polynomial time if this happens, as we will explain
now. Let G− be obtained from G2 by by adding a new vertex u− and three new edges
u−u1, u

−u2, and u−u3. The following observation is straightforward.

(G,Σ) has a K1,1
3,3 -minor if and only if one of the following holds:(26)

(i) G− has a K3,3-subdivision in which u− has degree 3 and (G+,Σ) has a K̃4-
homeomorph in which u+ has degree 3 and at least one of u1, u2, and u3 has
degree 2.

(ii) G− has a K3,3-subdivision in which u− has degree 3 and at least one of

u1, u2, and u3 has degree 2 and (G+,Σ) has a K̃4-homeomorph in which u+

has degree 3.
(iii) (G+,Σ) has a K1,1

3,3 -minor.
So when we encounter an improper 3-separation, we first check if (26i) or (26ii) applies.
If so we decide that our signed graph has a K1,1

3,3 -minor. If not we just replace (G,Σ)

with (G+,Σ) and search for the existence of a K̃5-, K1,1
3,3 -, K1,2

3,3 -, or K2
3,3-minor in

(G+,Σ) recursively. To check if (26i) or (26ii) applies we use the following two results:

If v is a degree 3 vertex in a simple 3-connected graph H,
then v is a degree 3 vertex in some K3,3-subdivision in H if and only if
H is nonplanar (Seymour [11]).

(27)



284 MICHELE CONFORTI AND BERT GERARDS

If v is a degree vertex in a simple 3-connected signed graph (H,Θ),

then v is a degree 3 vertex in some K̃4-homeomorph in (H,Θ)

if and only if (H,Θ) has a K̃4-homeomorph.

(28)

We will prove (28) below; (27) is immediate from (11.2) in Seymour [11]. By (27), we
can check the condition on G− in (26i) by checking if G− is nonplanar. For checking
the condition on G− in (26ii), we construct for each i = 1, 2, 3 and each neighbor of
x �= u− of ui the graph G−

i,x by deleting from G− all edges incident with ui except

u−ui and uix. If G−
i,x is nonplanar for some i and some x, the condition on G− in

(26ii) is satisfied; otherwise, it is not.
By (28), we can check the condition on (G+,Σ) in (26ii) by checking if (G+,Σ)

contains a K̃4-homeomorph. This can be done in polynomial time by an algorithm
by Gerards, Lovász, Schrijver, Seymour, Shih, and Truemper based on decompos-
ing signed graphs with no K̃4-homeomorph (see Gerards [3]; actually the algorithm
amounts to applying Truemper’s algorithm [13] for recognizing if a binary clutter has
a Q6-minor to the clutter of odd circuits in (G+,Σ)). Finally to check if (G+,Σ)
satisfies the condition in (26i), we construct for each i = 1, 2, 3 and each neighbor
of x �= u+ of ui the graph G+

i,x by deleting from G+ all edges incident with ui ex-

cept u−ui and uix. If G−
i,x contains a K̃4-homeomorph for some i and some x, the

condition on G− in (26ii) is satisfied; otherwise, it is not.

So to see that we can decide in polynomial time if a signed graph has a K̃5-,
K1,1

3,3 -, K1,2
3,3 -, or K2

3,3-minor, it remains only to prove (28).
Proof of (28). Suppose it is false; let (H,Θ) be a minimal counterexample.

Each K̃4-homeomorph K satisfies V (K) ⊇ V (H) \ {u}.(29)

Suppose it is not true; let K be a K̃4-homeomorph and x be a vertex not in V (K)∪{u}.
As H is 3-connected, x has a neighbor y such that {x, y} �⊆ {u, u1, u2, u3}. Then H\xy
contains K. So if H\xy is a subdivision of a simple 3-connected graph H ′, it follows, as

(H,Θ) is a minimal counterexample, that H ′ contains a K̃4-homeomorph containing
u. As H itself does not contain such a homeomorph, this is impossible. So H \ xy is
not a subdivision of a simple 3-connected graph. Then, as |V (H)| ≥ |V (K)∪{x}| ≥ 5,
(11.1) in Seymour [11] says that H/xy is 3-connected. H/xy may have parallel edges
though. Let H ′′ be a subgraph of H/xy consisting of one edge from each parallel class
of H/xy. We may choose H ′′ such that it contains K. Note that u has also degree 3 in

H ′′. Hence, as (H,Θ) is a minimal counterexample, H ′′ contains a K̃4-homeomorph

containing u. But then also H contains such a K̃4-homeomorph; this contradiction
proves (29).

(H,Θ) contains a K̃4-homeomorph K̄ with V (K̄) = V (H).(30)

Indeed, let K be a K̃4-homeomorph in H. If u �∈ V (K), then, by (29), u has all
three neighbors on K. From this it is straightforward to check that the union of K
and the three edges incident with u contains a K̃4-homeomorph K̄ using u. By (29),
V (K̄) = V (H). So (30) follows.

Take K̄ as in (30). Then as u does not have degree 3 in K, we may assume that
uu1 and uu2 are edges of the same leg, say, P , of K̄. By (28), u3 lies on K̄. If u3 does

not lie on P , then it is straightforward to find in K ∪ {uu3} a K̃4-homeomorph in
which u has degree 3. So u3 lies on P as well, see Figure 3 (left). As indicated there,
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Fig. 3. The word “odd” indicates that the corresponding face is bounded by an odd circuit.
Dashed edges may have length zero.

the circuit Pu3u ∪{uu3} is odd as otherwise (K̄ −Pu3u)∪{uu3} is a K̃4-homeomorph
that misses u2, contradicting (29). As H is 3-connected, Pu1u3 − u1 − u3 contains a
vertex v that is adjacent to a vertex w ∈ V (K̄) \ V (Pu1u3). As u had degree 3 in H,
v �= u.

First consider the case that w lies on P . Then the circuit Pvw ∪ {vw} is odd

as otherwise (K̄ − Pvw) ∪ {vw} is a K̃4-homeomorph that misses either u1 or u3,
contradicting (29). So K̄ ∪ {uu3, vw} contains a subgraph as indicated in the middle
picture in Figure 3, where u is one of the two black vertices. That subgraph is a
K̃4-homeomorph, and u is a degree 3 vertex of it. This contradicts our assumption
that no such homeomorph exists. So we may assume that w is not on P .

Then upto symmetry w lies on a leg of K̄ that has the black vertex as an end, as
indicated in Figure 3 (right). From the fact that K̄ is a K̃4-homeomorph, it is again

a straightforward case check that K̄ ∪{uu3, vw} contains a K̃4-homeomorph in which
u has degree 3. This concludes the proof of (28).

6. Nonbipartite subdivisions of K3,3: Proof of Theorem 3(i). We now
prove Theorem 3(i). We denote the six degree-3 vertices of a K3,3-subdivision K by
rK1 , rK2 , rK3 , rK4 , rK5 , and rK6 , where the numbering is such that there is a leg between
rKi and rKj if and only if i = 1, 3, 5 and j = 2, 4, 6. We denote such a leg by PK

ij .
Proof of Theorem 3(i). Suppose the theorem is false. Let (G,Σ) be a minor-

minimal counterexample. As G is 3-connected, has no parallel edges, and is not planar
and not isomorphic to K5, it follows from Kuratowski’s theorem and a well-known
and easy result of Hall [7] that G contains a K3,3-subdivision. No K3,3-subdivision in
G contains odd circuits, as otherwise there would be a K1

3,3- or a K2
3,3-homeomorph.

Let K be any K3,3-subdivision. By resigning, we may assume that all edges in K
are even.

Each odd link of K has both ends in {rK1 , rK3 , rK5 } or both ends in {rK2 , rK4 , rK6 }.(31)

Suppose there is a link P contradicting (31). Then K ∪P contains a K3,3-subdivision
using P as part of one of its legs. As P is odd and all edges in K are even, this is a
K1

3,3-subdivision; this contradiction proves (31).

Each odd link of K is an edge.(32)

Suppose this is not true; let P be a link of K contradicting (32). By (31), we may
assume that the ends of P are rK1 and rK3 . As P is not an edge and G is 3-connected,
there exists a link Q of K ∪ P with one end in V (P ) \ {rK1 , rK3 } and one end, say, r
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in V (K) \ {rK1 , rK3 }. Clearly, P ∪ Q contains an odd link of K with end r. So, by
(31), r has to be rK5 . Now (K ∪P ∪Q)−PK

21 −PK
23 −PK

25 is a K1
3,3-homeomorph; this

contradiction proves (32).
G has at least seven vertices, as otherwise Theorem 3(i) is easily verified. It is

straightforward to derive from that and the fact that G is 3-connected that (G,Σ)
has a K3,3-subdivision with at least seven vertices. Fix such a K3,3-subdivision, and
call it K. Let F be the edges of G that form the odd links of K. So each edge in F
has both ends in {rK1 , rK3 , rK5 } or both ends in {rK2 , rK4 , rK6 }. For each edge uv of F ,
there are three internally vertex disjoint uv paths in K. Hence, G−F is 3-connected.
Moreover, G− F has no odd circuits because if it had, then by the 3-connectivity of
G−F there would exist an odd link of K that is not an edge of F , contradicting (32).
So we may resign (G,Σ) such that the edges in F are odd and the edges in G−F are
even.

If i = 1, 3, 5 and j = 2, 4, 6 and if rKi and rKj are both ends of some edge
in F , then PK

ij consists of a single edge.
(33)

Suppose this is false. Then, as G − F − rKi − rKj is connected, K has an even link

Q with one end in PK
ij − rKi − rKj and one end not in PK

ij . Then Q is contained in a
K3,3-subdivision in K ∪Q. This K3,3-subdivision has an odd link contradicting (32).
So (33) follows.

We may assume that rK1 rK3 and rK2 rK4 are in F and that rK1 rK5 , rK2 rK6
and rK4 rK6 are not in F .

(34)

If no edge in F has its end in {rK1 , rK3 , rK5 }, then {rK2 , rK4 , rK6 } is an improper 3-vertex
cutset. Hence, by symmetry, we may assume that rK1 rK3 and rK2 rK4 are in F . As K
has at least seven vertices, it follows from (33) that at least one of rK1 , rK2 , . . . , rK6 is
not an end of an edge in F . So, again by symmetry, we may assume that rK2 rK6 and
rK4 rK6 are not in F . Now if both rK1 rK5 and rK3 rK5 are in F , then rK1 rK3 , rK1 rK5 , rK3 rK5 ,

rK2 rK4 , and K contains a K̃5-homeomorph. Thus (34) follows.

F = {rK1 rK3 , rK2 rK4 }.(35)

If not, then by (34), F = {rK1 rK3 , rK3 rK5 , rK2 rK4 }. Now as F has at least seven vertices
it follows from (33) that PK

61 ∪ PK
63 ∪ PK

65 has at least four edges. Since {rK1 , rK3 , rK5 }
is not an improper 3-vertex cutset this means that (G,Σ) has the signed graph in
Figure 4 as a minor (possibly with rK2 and rK4 interchanged). That signed graph has
a K1

3,3-subdivision, so (35) follows.

r5
K

1r
K r3

K

r6
Kr4

K
2r
K

Fig. 4. Bold edges are odd; thin edges are even.
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Fig. 5. Bold edges are odd paths; thin edges are even paths; and dashed edges may have length
zero.

By (33) and (35), each of PK
12 , PK

14 , PK
32 , and PK

34 is a single edge. Hence, by sym-
metry, we may assume that PK

61 ∪PK
63 ∪PK

65 has at least four edges. Since {rK1 , rK3 , rK5 }
is not an improper 3-vertex cutset, that means that K has an st-link Q1 with s on
(PK

52 ∪PK
54)− rK5 and t on (PK

61 ∪PK
63 ∪PK

65)− rK1 − rK3 − rK5 . Choose K and Q1 such
that t is as close as possible to PK

61 ∪ PK
63 in PK

61 ∪ PK
63 ∪ PK

65 . We may assume that s
lies on PK

54 .

t lies on PK
65 .(36)

If not, K ∪Q1 contains a K3,3-subdivision that has an odd link contradicting (31).
So we have a situation as depicted in Figure 5 (left). Since {rK2 , rK4 , t} is not an

improper 3-vertex cutset, K ∪ Q1 has an xy-link Q2 with x on (PK
52 ∪ PK

54 ∪ Q1 ∪
(PK

56)rK5 t)− rK2 − rK4 − t and y on (PK
61 ∪PK

63 ∪ (PK
65)rK6 t)− t. As K and Q1 are chosen

such that t is as close as possible to PK
61∪PK

63 the end x of Q2 has to lie on (PK
56)rK5 t−t.

If y lies on PK
63 − rK6 (see Figure 5 (middle)) then (K ∪Q1 ∪Q2) − rK2 rK3 − rK1 rK4 −

(PK
63)rK6 y − (PK

52)rK5 s is a K2
3,3-subdivision. Hence, y does not lie on PK

63 − rK6 and,

by symmetry, also does not lie on PK
61 − rK6 . So y lies on (PK

65)rK6 t − t (see Figure 5

(right)). Now replacing K with (K ∪Q2) − (PK
65)xy and Q1 with Q1 ∪ (PK

65)ty yields
a contradiction against the fact that K and Q1 are chosen such that t is as close as
possible to PK

61 ∪ PK
63 . This proves Theorem 3(i).

7. K1
3,3-subdivisions and K1

3,3-extensions. As of now, if K is a K1
3,3-subdi-

vision in (G,Σ), we will assume that the unique odd leg is PK
12 . In that case, we can

always resign (G,Σ) such that the only odd edge in K is the edge in PK
12 with end

rK1 ; unless stated otherwise, we will assume that if we call a K1
3,3-subdivision K, it

has such a canonical signing. Under these assumptions we define TK
1 := PK

14 ∪ PK
16 ,

TK
2 := PK

23 ∪PK
25 , cage(K):= PK

34 ∪PK
36 ∪PK

45 ∪PK
56 , and core(K) := V (cage(K)) \

{rK3 , rK4 , rK5 , rK6 } (see Figure 6).
Clearly, these labelings of vertices and legs of a K1

3,3-subdivision and the indicated
canonical signing are not unique. For instance if we interchange index 1 with index 2,
interchange index pair {4, 6} with index pair {3, 5}, and resign (G,Σ) on the internal
vertices of PF

12, we obtain another labeling and canonical signing as indicated above.
When we use this symmetry, we refer to it as left-right symmetry. Simpler symmetries
are 35-symmetry, that is interchanging index 3 with index 5, and 46-symmetry.

Our strategy in proving Theorem 3(ii) is to start with a K1
3,3-subdivision in (G,Σ).

Such a K1
3,3-subdivision has blockvertices and improper 3-vertex cutsets. So, assuming
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Fig. 6. A K1
3,3-subdivision F .

(G,Σ) does not have these features, more structure should be available. We try to
grasp that structure by studying the links of the K1

3,3-subdivision. Ideally such a
link, or a combination of a few of them, provides a contradiction by establishing one
of the forbidden minors in Theorem 3(ii). There are other links, however, that do
not provide any extra structure other then some extra K1

3,3-subdivisions, for instance,
even links with no end on the unique odd leg of the K1

3,3-subdivision. To avoid chasing
such useless links, we include many of them in our initial structure; that is, we start
with a “K1

3,3-extension” rather than with just a K1
3,3-subdivision.

Consider a signed graph F consisting of
- six special vertices, rF1 , rF2 , rF3 , rF4 , rF5 , and rF6 ,
- five internally vertex disjoint paths, PF

12, P
F
14, P

F
16, P

F
23, and PF

25, where PF
ij is

an rFi r
F
j -path whose edges are all even, except for the edge of PF

12 adjacent

to rF1 which is odd,
- a 2-connected subgraph cage(F ) with even edges only that shares with these

paths exactly the vertices rF3 , rF4 , rF5 , and rF6 .
We define TF

1 := PF
14 ∪ PF

16, TF
2 := PF

23 ∪ PF
25, and core(F ) := V (cage(F )) \

{rF3 , rF4 , rF5 , rF6 }.
The set of K1

3,3-subdivisions K in F with PK
12 = PF

12 and cage(K) ⊆ cage(F )
is denoted by K(F ). Note that for each K1

3,3-subdivision K in K(F ) we can choose

the numbering such that: rK1 = rF1 , rK2 = rF2 , PK
14 ⊇ PF

14, P
K
16 ⊇ PF

16, P
K
23 ⊇ PF

23, and
PK

25 ⊇ PF
25.

For u ∈ V (F ) we define the following
- If u �∈ core(F ), then Ku(F ) := K(F ).
- If u ∈ core(F ), then Ku(F ) consists of those K1

3,3-subdivisions K ∈ K(F )
with u ∈ core(K).

We call F a K1
3,3-extension if K(F ) �= ∅ and for each u ∈ core(F ) there exists a

K1
3,3-subdivision K in F with u ∈ core(K) and (after resigning) PK

12 = PF
12 (see

Figure 7).
Note that each K1

3,3-subdivision is a K1
3,3-extension. A K1

3,3-extension F is called

extreme in (G,Σ) if, even after resigning, there is no K1
3,3-extension F ′ with PF ′

12 �⊆ PF
12

or with PF ′

12 = PF
12 and cage(F ′) �⊇ cage(F ).

8. Links of K1
3,3-extensions. As of now we call signed graphs with no K2

3,3-,

K1,1
3,3 -, or K1,2

3,3 -minor clean. In this section we characterize the type of links an extreme

K1
3,3-extension in a clean signed graph can have (see Figure 8).
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3,3-extension F with all possible links (upto symmetry, numbers indicate types,
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Lemma 7. Let F be an extreme K1
3,3-extension in a clean signed graph, and let

P be a link of F . Then P is exactly one of the following types:
Type 1. Both ends of P lie on PF

12.
Type 2. Both ends of P lie on PF

ij , where (i, j) is (1, 4), (1, 6), (2, 3), or (2, 5).

Type 3. P connects rFi with a vertex in core(F ), where i = 1 or i = 2.
Type 4. P connects rFi with a vertex in TF

3−i − rF3−i, where i = 1 or i = 2.
Type 5. P connects a vertex of PF

12 − rF1 − rF2 with a vertex on TF
i − rFi , where

i = 1 or i = 2.
Type 6. P connects the two components of TF

i − rFi , where i = 1 or i = 2.
Moreover, a link P of Type 5 is even when i = 1 and odd when i = 2; all links of Type
6 are even.

We denote the collection of type t links of F by LF
t . If t = 2, 5, 6, LF

t,i denotes the

collection of links in LF
t with an end in TF

i . If t = 1, 3, 4, LF
t,i denotes the collection of

links in LF
t with rFi as an end. So if t �= 1, LF

t,1 and LF
t,2 partition LF

t . The set of even

links in LF
t is denoted by EF

t , and the set of odd links is denoted by OF
t . Similarly,

we define EF
t,i and OF

t,i.
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It is the statement of Lemma 7 that the collection of links of an extreme K1
3,3-ex-

tension F in a clean signed graph is equal to

LF
1 ∪ LF

2 ∪ LF
3 ∪ LF

4 ∪ EF
5,1 ∪ OF

5,2 ∪ EF
6 .

Mind that EF
5,1 corresponds to OF

5,2 under left-right symmetry, and OF
5,1 corresponds

to EF
5,2.
Proof of Lemma 7. Suppose the theorem is false; let F and P form a counterex-

ample. Note that as (G,Σ) has no K1,1
3,3 -minor, OF

6 = ∅. So

P �∈ LF
1 ∪ LF

2 ∪ LF
3 ∪ LF

4 ∪ EF
5,1 ∪ OF

5,2∪LF
6 .(37)

We first prove

P has no end on PF
12.(38)

If not, then as P �∈ LF
1 ∪LF

2 ∪LF
3 ∪LF

4 , one end of P , say, u, lies on PF
12−rF1 −rF2 and

the other end, say, v, does not lie on PF
12. With u and v in those positions we may

assume, by left-right symmetry, that P is even. So as P �∈ EF
5,1, v does not lie on TF

1 .

Let K ∈ Kv(F ). Then v is not on TK
1 . By 35-symmetry and 46-symmetry we may

assume that v lies on PF
43∪PF

32−rF4 −rF2 . If v lies on PF
43, let S := PF

32; if v lies on PF
32,

let S be the vrF2 -subpath of PF
32. Then K ′ = (K ∪ P ) − S is a K1

3,3-extension with

PK′

12 strictly contained in PF
12; this contradicts that F is extreme. So (38) follows.

Both ends of P lie in the core of F .(39)

Suppose this is not true; then by symmetry we may assume that P has an end u in
PF

14 − rF1 . Then by (37) and (38) the other end, say, v of P lies on TF
2 − rF2 or in

the core of F . Let K ∈ Kv(F ). Then by 35-symmetry, we may assume that v lies on
(PK

43 ∪ PK
63 ∪ PK

32)− rK2 − rK4 − rK6 . If v lies on PK
43 , let S be the rK4 v-subpath of PK

43 ;
otherwise, S := PK

43 . If v lies on PK
23 , let R be the rK3 v-subpath of PK

23 ; otherwise,
R := {v}. Let Q be the urF4 -subpath of PF

14. Then K ′ := (K ∪P )−S is a K3,3-subdi-
vision with odd leg PF

12. Moreover, the leg of K ′ containing P shares no end with PF
12.

Hence, as (G,Σ) has no K2
3,3-minor, that leg is even. So K ′ is a K1

3,3-subdivision.
The vertices of (P ∪Q∪R)−u− v lie in core(K ′). Hence, F ∪P is a K1

3,3-extension
that has a larger core than F has, a contradiction. So (39) follows.

Let u and v be the two ends of P . Let K ∈ Ku(F ). As cage(F )−u is connected,
it contains a path from v to K. Let P ′ be the union of this path with P , then P ′

is a leg of K with one end in core(K) and the other end not in PK
12 . Hence, as

(G,Σ) has no K2
3,3-minor, P ′ is even. So P ′ is contained in the cage of a (unique)

K1
3,3-subdivision in K ∪ P . Hence, F ∪ P is a K1

3,3-extension with a larger core than
F , a contradiction.

9. Pairs of links of K1
3,3-extensions. We study the occurrence of pairs of

links of K1
3,3-extensions of different types, but first we give an easy fact.

Lemma 8. Let a, b1, b2 be vertices in a 3-connected signed graph. Each nonbi-
partite bridge of a, b1, b2 contains an odd ab1-path disjoint from b2 or an odd ab2-path
disjoint from b1.

Proof. Let C be an odd circuit in the bridge. As the graph is 3-connected, there
exist three vertex disjoint paths from C to {a, b1, b2}. So the bridge contains an odd
path P with ends in {a, b1, b2}. Assume P is not as claimed. Then it is a b1b2-path.
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As {b1, b2} is not a 2-vertex cutset, there exists a path Q from a to P that is disjoint
from {b1, b2}. Clearly P ∪Q contains an odd ab1-path or an odd ab2-path; it obviously
misses one of b1 and b2.

If F is an K1
3,3-extension, then ΛF

i := OF
2,i ∪ OF

3,i ∪ OF
4,i ∪ LF

5,i for i = 1, 2.

Lemma 9. Let F be an extreme K1
3,3-extension in a 3-connected clean signed graph

with no blockvertex and no improper 3-vertex cutset. If ΛF
1 and ΛF

2 are nonempty,
then either ΛF

1 = OF
2,1 ∪ LF

5,1 and ΛF
2 = OF

4,2 or ΛF
1 = OF

4,1 and ΛF
2 = OF

2,2 ∪ LF
5,2.

Proof. First we prove some easy facts. In items (40)–(45), K is a K1
3,3-subdivision

in a clean signed graph.

If Q1 ∈ OK
2,1 and Q2 ∈ OK

2,2, then they intersect.(40)

Indeed, if Q1 and Q2 did not intersect, then the unique K3,3-subdivision in K∪Q1∪Q2

that contains both Q1 and Q2 would be a K2
3,3-subdivision.

If Q1 ∈ OK
2,1 and Q2 ∈ OK

3,2 ∪ LK
5,2, then they intersect.(41)

By contracting edges in the cage of F and along PF
12, we can turn K into a K1

3,3-

subdivision K ′ so that Q2 ∈ OK′

2,2. As Q1 is also in OK′

2,1 it follows from (40) that Q1

and Q2 intersect after these contractions. As these intersections cannot lie on K ′, the
paths also intersected before the contractions were carried out. So (41) holds indeed.

If Q1 ∈ OK
4,1 and Q2 ∈ OK

4,2, then they intersect.(42)

If not, K ∪Q1 ∪Q2 contains a K1,2
3,3 -minor.

If Q1 ∈ OK
3,1 and Q2 ∈ OK

4,2, then they intersect.(43)

If not, we can contract edges in the cage of K such that Q1 and Q2 stay disjoint and
K turns into a K1

3,3-subdivision K ′ with Q1 ∈ OK′

4,1 and Q2 ∈ OK′

4,2, contradicting
(42).

By a similar contraction argument we derive the following from (41):

If Q1 ∈ OK
3,1 and Q2 ∈ LK

5,2, then they intersect.(44)

Note that (41), (43), and (44) have “left-right symmetrical” versions obtained by
swapping the second subscripts 1 and 2. We will not list all such versions but just
refer to them by mentioning left-right symmetry.

If Q1 ∈ OK
3,1 and Q2 ∈ OK

3,2, then they intersect outside K.(45)

If Q1 and Q2 do not intersect at all, it is possible to contract edges in the cage of
K such that K turns into a K1

3,3-subdivision K ′ with Q1 ∈ OK′

2,1 ∪ OK′

4,1 and Q2 still

in OK′

3,2. If Q1 ∈ OK′

2,1 this contradicts (41); if Q1 ∈ OK′

4,1 this contradicts (43), by
left-right symmetry. If Q1 and Q2 meet only in the cage of K, so at their ends, we
can contract edges in cage(K) such that we obtain the signed graph in Figure 9(a) as
a minor. As is illustrated in that figure, that signed graph has a K1,1

3,3 -homeomorph,
a contradiction. So (45) follows indeed.

Now let F be an extreme K1
3,3-extension in a clean signed graph (G,Σ) with no

blockvertex and no improper 3-vertex cutset.

At least one of OF
2,1 ∪ OF

3,1 and OF
2,2 ∪ LF

5,2 is empty.(46)
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(a) (b)

Fig. 9. Bold edges are odd; thin edges are even. To obtain (b) from (a), resign on the black
vertex and delete the “crossed” edge.

Suppose this is false; let P1 ∈ OF
2,1 ∪ OF

3,1 and P2 ∈ OF
2,2 ∪ LF

5,2. If P1 ∈ OF
3,1, let u

be its end in the core of F ; otherwise, let u be any vertex of F . Choose K ∈ Ku(F ).
Then P1 ∈ OK

2,1 ∪ OK
3,1 and P2 ∈ OK

2,2 ∪ LK
5,2. Hence, it follows from (40), (41), (44),

and left-right symmetry that P1 and P2 intersect. Clearly this intersection lies outside
F . Hence, P1 ∪ P2 contains a link of F that has one end in (TF

1 ∪ core(F )) − rF1 and
one end in TF

2 − rF2 . As this contradicts Lemma 7, (46) follows.

At least one of OF
3,1 ∪ OF

4,1 and OF
4,2 is empty.(47)

Suppose this is false; let P1 ∈ OF
3,1 ∪ OF

4,1 and P2 ∈ OF
4,2. If P1 ∈ OF

3,1, let u be its
end in the core of K; otherwise, let u be any vertex of F . Choose K ∈ Ku(F ). Then
P1 ∈ OK

3,1 ∪OK
4,1 and P2 ∈ OK

4,2. Hence, it follows from (42) and (43) that P1 and P2

intersect. Clearly this intersection lies outside F . Hence, P1 ∪P2 contains a link of F
that has one end in TF

1 − rF1 and one end in (TF
2 ∪ core(F ))− rF2 . As this contradicts

Lemma 7, (47) follows.
Now assume that the lemma is false and that F is a counterexample. Hence, ΛF

1

and ΛF
2 are both nonempty.

OF
2 is empty.(48)

Suppose this is false; assume OF
2,1 �= ∅. Then by (46) and left-right symmetry ΛF

2 =

OF
4,2. So OF

4,2 �= ∅. Hence, (47) implies that ΛF
1 = OF

2,1 ∪ LF
5,1. This contradicts that

F is a counterexample, so (48) follows.
We consider two cases.
Case 1. OF

3 is empty.

LF
5,1 and LF

5,2 are not empty.(49)

If LF
5,1 = ∅, then, by (48) and as OF

3 is empty, ΛF
1 = OF

4,1 and ΛF
2 = OF

4,2 ∪ LF
5,2.

Hence, as F falsifies the lemma, both OF
4,1 and OF

4,2 are nonempty, contradicting (47).

OF
4 is empty.(50)

Suppose this is false; assume Q ∈ OF
4,1. Let P1 ∈ LF

5,1 and P2 ∈ LF
5,2. By Lemma 7, Q

and P1 are vertex disjoint and P1 and P2 are internally vertex disjoint. Let P ′
2 be the

link of F ∪Q that is contained in P2 and has one end on PK
12 . Let P ′′

2 be the link of F
in LF

5,2 contained in P ′
2 ∪Q. By symmetry, we may assume that P1 has an end on PF

14
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(b)(a)

Fig. 10. Bold edges are odd; thin edges are even. To obtain (b) from (a), resign on the black
vertices, delete the “crossed” edge, and contract the “directed” edge.

and that P ′′
2 has an end on PF

23. Note that, by Lemma 7, P1 ∈ EF
5,1 and P ′′

2 ∈ OF
5,2.

If Q has an end in PF
25, then by construction of P ′′

2 links Q and P ′′
2 are disjoint. In

that case, K ∪Q∪P1 ∪P ′′
2 contains the signed graph in Figure 10(a) as a minor, and

as illustrated in Figure 10 that signed graph has a K1,2
3,3 -minor. So Q has an end in

PF
23. If Q and P ′′

2 share edges, resign (if necessary) to make them even, and contract
them. Now it it easy to see that K ∪Q ∪ P ′′

2 has the signed graph in Figure 9(a) as
a minor, hence also a K1,1

3,3 -minor. That contradicts the cleaness of (G,Σ), so (50)
follows indeed.

There exists a vertex v ∈ PF
12 such that each path in LF

5

has v as one of its ends.
(51)

By (49), it suffices to prove that if P1 ∈ LF
5,1 has end p1 on PF

12 and P2 ∈ LF
5,2 has

end p2 on PF
12, then p1 = p2. Suppose this is not the case. Choose K ∈ K(F ). By

Lemma 7, P1 and P2 are vertex disjoint. If p1 lies between rK1 and p2 along PK
12 , then

the unique K3,3-subdivision in K ∪ P1 ∪ P2 that contains PK
12 , P1, and P2 is a K2

3,3-

subdivision. So p1 lies between p2 and rK2 along PK
12 . Then K∪P1∪P2 is a subdivision

of the signed graph in Figure 11(a). Hence, as illustrated in Figure 11(b), it contains
a K1

3,3-extension F ′ with PF ′

12 = (PF
12)p1p2 . That contradicts the extremeness of F , so

(51) follows.
As G is 3-connected, {rF1 , rF2 } is not a 2-vertex cutset of G− v. Hence, it follows

from (51) that PF
12 consists of only two edges: rF1 v and vrF2 . Fix P1 ∈ EF

5,1 and

P2 ∈ OF
5,2. Resign on the internal vertices of P1 and P2 so that all edges on P1 and

on P2 − v are even. As (G,Σ) has no blockvertex, (G,Σ)− v contains an odd circuit.
Hence, as G − v is 2-connected, (F ∪ P1 ∪ P2) − v has an odd link Q contained in
G− v. By Lemma 7, (48), (50), and (51), and as OF

3 is empty, Q is disjoint with P1

and P2, and Q ∈ OF
1 . So the ends of Q are rF1 and rF2 . Consider the K1

3,3-subdivision

(F − PF
12) ∪Q; it is extreme in F ∪ P1 ∪ P2 ∪Q. The union of P1 and P2 is a link of

that K1
3,3-subdivision that contradicts Lemma 7. So Case 1 cannot apply.

Case 2. OF
3 is not empty.

If OF
3,1 is not empty, then by (46) and (47), ΛF

2 = OF
3,2, so OF

3,2 is nonempty as

well. Hence, by left-right symmetry it follows from OF
3 �= ∅ that OF

3,1 = ΛF
1 �= ∅ and

OF
3,2 = ΛF

2 �= ∅.

Each link in OF
3,1 intersects each link in OF

3,2 outside F .(52)
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3 4

p2
p2

(a) (b)

Fig. 11. Bold edges are odd paths; thin edges are even paths; and dashed edges may have length
zero. To obtain (b) from (a), resign on the black vertex and delete the “crossed” edges. The numbers

i = 1, . . . , 6 indicate the vertices rF
′

i .

Suppose this is false, and let P1 ∈ OF
3,1 and P2 ∈ OF

3,2 be disjoint outside F . Let p1

be the end of P1 in the core of F , and let p2 be the end of P2 in the core of F . Let
K ∈ Kp1

(F ). If p2 �= p1, let P be a path in the cage of F that misses p1 and connects
p2 to cage(K) (as cage(F ) is 2-connected, such P exists); if p2 = p1, let P consist
only of p2. Then P2 ∪ P ∈ OK

3,2 ∪ OK
4,2 and P1 ∈ OK

3,1. Moreover, these paths are
disjoint. This contradicts (43) and (45). So (52) follows.

All links in OF
3 have the same end in the core of F ; we call that end p.(53)

If not, then as OF
3,1 and OF

3,2 are nonempty, there would be a link in OF
3,1 and a link,

in OF
3,2 that have different ends in the core of F . By (52) the union of two such links

would contain a link of F that contradicts Lemma 7. So (53) follows.
Let B be the bridge of {rF1 , rF2 , p} that contains cage(F ).

PF
12 and all links in OF

3 lie outside B.(54)

That PF
12 lies outside B follows as LF

5 = ∅. Suppose B contains a link P in OF
3 .

Then as B − rF1 − rF2 − p is connected, it contains a path Q from P − rF1 − rF2 − p to
F − rF1 − rF2 − p. Now P ∪Q contains a link of F with one end outside {rF1 , rF2 , p}.
This contradicts Lemma 7. So (54) follows.

So {rF1 , rF2 , p} is a 3-vertex cutset separating the core of F from the links in OF
3 .

As this is not an improper 3-vertex cutset, bridge B contains an odd circuit. Hence,
by Lemma 8, B contains an odd path that connects p to one of rF1 and rF2 and that
does not contain the other vertex in {rF1 , rF2 }. Clearly such a path contains an odd
link of F with at most one end in {rF1 , rF2 }. As ΛF

1 ∪ΛF
2 = OF

3 , this contradicts (54).
So the lemma follows.

Lemma 10. Let K be a K1
3,3-subdivision in a clean signed graph, let Q1 be an

st-link in OK
2,1 with s ∈ PK

14 and t ∈ (PK
14)srF4 , and let Q2 be an rK2 p-link of K ∪ Q1

with p ∈ (Q1 ∪ (PK
14)rK4 s) − s. Then the unique rK2 rK4 -path P ′ in (Q1 ∪Q2 ∪ PF

14) − s
is even.

Proof. Suppose P ′ is odd. If necessary resign on p such that P ′ − Q2 is even,
and contract P ′ −Q2, (PK

14)rK4 t and (PF
14)rF1 s. This yields a subdivision of the signed

graph in Figure 9(a). As illustrated in Figure 9, that signed graph has a K1,1
3,3 -minor,

a contradiction.
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(a) (b)

Fig. 12. Bold edges are odd paths; thin edges are even paths. To obtain (b) from (a), delete
the “crossed” edges.

Lemma 11. Let F be an extreme K1
3,3-extension in a clean signed graph. Then

LF
5,1 = ∅ or EF

3,1 ∪ EF
4,1 = ∅.

Proof. Suppose this is not true. Then we may assume that there exists a p1p2-link
P ∈ LF

5,1 and an rF1 q-link Q ∈ EF
3,1 ∪ EF

4,1 with p2 ∈ PF
14 and that q ∈ core(F ) ∪ TF

2 .

Choose K ∈ Kq(F ). By 35-symmetry we may assume that q ∈ PK
45 ∪ PK

65 ∪ PK
52 . Let

R be the intersection of PK
65 with the rK6 q-subpath of PK

45 ∪ PK
65 ∪ PK

52 . By Lemma 7,
P is even and disjoint with Q. Now deleting R and (PF

14)rF1 p2
from K ∪ P ∪ Q

yields a K1
3,3-subdivision F ′ with PF ′

12 = (PF
12)rF1 p1

. As PF ′

12 is properly contained in

PF
12, this contradicts the extremeness of F . (See Figure 12 for the special case that

q = rK5 .)
The results so far say that certain combinations of links cannot occur; here is a

lemma that says that certain links force other ones.
Lemma 12. Let F be an extreme K1

3,3-extension in a 3-connected clean signed

graph with no blockvertex and no improper 3-vertex cutset. If OF
2,1 ∪ LF

5,1 �= ∅, then

LF
3,1 ∪ LF

4,1 �= ∅.
Proof. Let F be a counterexample. As OF

2,1 ∪ LF
5,1 �= ∅, it follows from Lemma 9

that LF
5,2 = ∅. So, as also LF

3,1 ∪ LF
4,1 = ∅, it follows from Lemma 7 that rF1 does not

lie in the bridge B of {rF2 , rF4 , rF6 } that contains cage(F )∪TF
2 . As {rF2 , rF4 , rF6 } is no

improper 3-vertex cutset, B contains an odd circuit. Hence, by Lemma 8, B contains
an odd path that has both ends in {rF2 , rF4 , rF6 } and that is disjoint from the third
vertex in {rF2 , rF4 , rF6 }. Such a path contains an odd link of F . By Lemma 7, that
odd link is in OF

2,2 ∪ OF
3,2. As that contradicts Lemma 9, the lemma follows.

Lemma 13. Let F be an extreme K1
3,3-extension in a 3-connected clean signed

graph that has no blockvertex and no improper 3-vertex cutset. If Q ∈ OF
2,1 with ends

on PF
1j with j = 4, 6 and P ∈ OF

4,2, then P intersects Q ∪ PF
1j.

Proof. Let P and Q be as indicated. Assume P and Q∪PF
1j do not intersect. By

Lemma 9, OF
3,1∪OF

4,1 = ∅, and thus, by Lemma 12, EF
3,1∪EF

4,1 �= ∅. Let R ∈ EF
3,1∪EF

4,1.
Then, by Lemma 7, R is internally vertex disjoint with P and Q. Hence, we have the
signed graph in Figure 13(a) as a minor. As indicated in Figure 13 that signed graph
has a K1,2

3,3 -minor, a contradiction.

10. Handles. A handle of a K1
3,3-extension F is a link in OF

2 with no end in

{rF1 , rF2 }. The following lemma says that in a counterexample to Theorem 3(ii) each
extreme K1

3,3-extension has a handle.
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(a) (b)

Fig. 13. Bold edges are odd; thin edges are even. To obtain (b) from (a), resign on the black
vertex and delete the “crossed” edge.

Lemma 14. Each extreme K1
3,3-extension F in a 3-connected clean signed graph

(G,Σ) with no blockvertex and no improper 3-vertex cutset has a handle.
Proof. Let (G,Σ) and F form a counterexample; thus, F has no handle. Let

B := TF
1 ∪ cage(F ) ∪ TF

2 .

(G,Σ) − rF1 − rF2 contains an odd circuit, say, C.(55)

Suppose this is not true; then we may assume, by resigning, that all edges not incident
with rF1 or rF2 are even. It is easy to see that this resigning can be done such that all
edges in B are even. In other words Σ ⊆ (δG(rF1 ) ∪ δG(rF2 )) −B.

As (G,Σ) has no blockvertex, there exists an odd circuit disjoint from rF2 . As
G − rF1 − rF2 is connected, F has a link Q1 that closes with F − rF2 an odd circuit.
Moreover, as (55) is false, all such odd circuits go through rF1 . So, as Σ ⊆ (δG(rF1 ) ∪
δG(rF2 ))−B, we have that Q1 ∈ LF

1,1 ∪OF
2,1 ∪OF

3,1 ∪OF
4,1 ∪LF

5,1. By symmetry F also

has a link Q2 ∈ LF
1,2 ∪OF

2,2 ∪OF
3,2 ∪OF

4,2 ∪LF
5,2 that closes with F − rF1 an odd circuit.

First assume that PF
12 consists of a single edge. Then, Q1, Q2 �∈ LF

1 ∪ LF
5 , so by

Lemma 9 and by symmetry, we may assume that Q1 ∈ OF
2,1 and Q2 ∈ OF

4,2. We also

may assume that Q1 has its ends on PF
14. By Lemma 13, Q2 intersects Q1∩PF

14. From
this and as Σ ⊆ (δG(rF1 ) ∪ δG(rF2 )) − B, one easily deduces a contradiction against
Lemma 10.

So we may assume that PF
12 does not consist of a single edge. As G is 3-connected,

LF
5 �= ∅. So we may as well assume that Q1 ∈ LF

5,1. By Lemmas 12 and 11 there exists

a link Q ∈ LF
3,1 ∪ LF

4,1. Hence, LF
5,1 and LF

3,1 ∪ LF
4,1 are nonempty, so by Lemma 9,

ΛF
2 = ∅. This implies that Q2 ∈ LF

1,2. By Lemma 7, Q is vertex disjoint with Q1, and

as LF
5,2 ⊆ ΛF

2 = ∅, Q is also disjoint with Q2. Contract all edges in PF
12 ∪ Q1 ∪ Q2

that are not incident with {rF1 , rF2 } and not incident with a vertex on PF
14; they are

all even. The resulting signed graph has the signed graph in Figure 14(a) as a minor.
As illustrated in Figure 14, that signed graph has a K2

3,3-minor. This contradiction
proves (55).

We may assume that ΛF
2 = OF

4,2. Indeed, by Lemma 9 and 12-symmetry we may

assume that ΛF
2 = ∅ or ΛF

2 = OF
4,2. As by definition, OF

4,2 is contained in ΛF
2 , which

means the sets are equal.

If B has an odd rF2 p-link with p �= rF1 , then PF
12 is a single edge.(56)

Assume that PF
12 is not an edge. Then, as G is 3-connected, LF

5 �= ∅. So as ΛF
2 = OF

4,2,

we have that LF
5,2 = ∅, so LF

5,1 �= ∅. Hence, by Lemma 12, there exists a link
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(b)(a)

Fig. 14. Bold edges are odd; thin edges are even. To obtain (b) from (a), resign on the black
vertex, delete the “crossed” edges, and contract the “directed” edge.

(a)
(b)

Fig. 15. Bold edges are odd; thin edges are even; and both in (a) and in (b) exactly one of the
dashed edges is odd. To obtain (b) from (a), delete the “crossed” edges and contract the “directed”
edge.

R ∈ LF
3,1 ∪ LF

4,1. By Lemma 11, R ∈ OF
3,1 ∪ OF

4,1. Hence, by Lemma 9, OF
4,2 = ∅, so

ΛF
2 = ∅.

Let P be an odd rF2 p-link of B with p �= rF1 . As ΛF
2 = ∅, path P intersects P12.

So P contains a link in LF
5 ; as this collection is equal to LF

5,1 we get that p ∈ TF
1 . Let

Q be the shortest path on P12 from rF1 to P . As LF
5,2 = ∅ and as P intersects P12, the

subgraphs R and P ∪Q share no other vertex than rF1 . Hence, (G,Σ) has a minor as
in Figure 15(a), which has a K2

3,3-minor. This contradiction proves (56).

There exists a vertex p �∈ {rF1 , rF2 } such that each path
in G− rF1 − rF2 from B to C contains p.

(57)

If not, then in G − rF1 − rF2 there exist two vertex disjoint paths from C to B. So
B has an odd link J contained in G− rF1 − rF2 . As F has no handle, it follows from
Lemma 7 that J is not a link of F , so J intersects P12. But this implies that P12 is
not an edge and that its union with J contains an odd rF2 p-link with p �= rF1 . As this
contradicts (56), (57) follows.

Let B be the union of the bridges of {rF1 , rF2 , p} that contain edges of B. Assume
p is chosen such that B is as small as possible. Note that B is 2-connected and that
B − rF1 − rF2 is connected. Let P1, P2, and P3 be three vertex disjoint paths from C
to {rF1 , rF2 , p}. Take a path P ′ from p to B − rF1 − rF2 with no internal vertices in B;
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let u be its end vertex in B.

P12 is a single edge.(58)

This follows from (56), as C ∪P1∪P2∪P3∪P ′ contains an odd rF2 p-link with p �= rF1 .
So each link of B, except P12, is a link of F .
C ∪ P1 ∪ P2 ∪ P3 ∪ P ′ contains an odd rF1 u-link of F and an odd rF2 u-link of F .

So as ΛF
2 = OF

4,2, we have that u ∈ TF
1 and thus that OF

2,1 and OF
4,2 are not empty.

Hence, we have by Lemma 9 and (58) that ΛF
1 = OF

2,1 and ΛF
2 = OF

4,2.

B contains a link P in OF
2,1 ∪ OF

4,2.(59)

As {rF1 , rF2 , p} is not an improper 3-vertex cutset, B contains as odd circuit. From
this and as B is 2-connected, it follows that B contains an odd rF1 rF2 -path, say, Q.
As B − rF1 − rF2 is connected, it contains a path R that connects Q − rF1 − rF2 with
B − rF1 − rF2 . The union of R and Q contains an odd link P of F that has at most
one end in {rF1 , rF2 }. By (58), P ∈ ΛF

1 ∪ ΛF
2 = OF

2,1 ∪ OF
4,2. So (59) follows.

Let q be the end of P not in {rF1 , rF2 }. By 46-symmetry, we may assume that
q ∈ PF

14 − rF1 . Take the subpath Q of P ′ from p to q ∈ P ∪ TF
1 . Then as Q can

be extended to an rF1 p-link as well as an rF2 p-link of F ∪ P of either parity, it is
straightforward to argue from Lemma 13 that q ∈ (Q∪PF

14)−rF1 and from Lemma 10
that q ∈ PF

16 − rF1 . This is absurd.

11. Proof of Theorem 3(ii). We finally prove Theorem 3(ii). Assume that
(G,Σ) is a 3-connected clean signed graph with no blockvertex and no improper 3-
vertex cutset. Let F be an extreme K1

3,3-extension in (G,Σ). By Lemma 14 and by

12-symmetry, we may assume that F has a handle in OF
2,1.

Let F be the set of all K1
3,3-extensions F ′ with PF ′

12 = PF
12, T

F ′

2 = TF
2 , cage(F ′) =

cage(F ), and {rF ′

4 , rF
′

6 } = {rF4 , rF6 }; obviously each F ′ ∈ F is extreme.

Each F ′ ∈ F has a handle in OF ′

2,1.(60)

If not, then by Lemma 14 some F ′ ∈ F has a handle P in OF ′

2,2. As OF
2,1 �= ∅,

it follows from Lemma 9 that OF
2,2 = ∅. Hence, P �∈ OF

2,2. Therefore this handle

intersects TF
1 − rF1 , and thus it contains a link of F that contradicts Lemma 7. So

(60) follows.
Hence, Lemma 9 implies

ΛF ′

2 = OF ′

4,2 for each F ′ ∈ F .(61)

The tip of a link in OF
2,1, so in particular of a handle, is the end that lies farthest from

rF1 on TF
1 .

Let P be a handle of F with tip s on PF
14, and let L ∈ LF

2,1 with ends x
in (PF

14)rF1 s − rF1 − s and y in (PF
14)srF4 − s. Then there exists a

K1
3,3-extension F ′ in F with PF ′

16 = PF
16 and (PF ′

14 )yrF4 = (PF
14)yrF4

that has a handle with tip y.

(62)

In proving this we clearly may assume that L consists of a path that is internally
disjoint with P and possibly a part of P . If L is odd, then it is a handle of F with
tip y. Hence, we may assume that L is even. We may also assume that the only odd
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Fig. 16. Bold edges are odd; thin edges are even; and dashed edges may have length zero.

edge on P ∪ L is the edge of P incident with s. Figure 16 depicts the three possible
arrangements of P and L along PF

14. Let F ′ be the K1
3,3-extension obtained from F

by replacing (PF
14)xy with L. One easily checks in Figure 16 that F ′ satisfies all claims

in (62).
A single border of F is any pair (rF1 , s) where s is the tip of a handle. A pair

(r, s) is a linked border of F if s is the tip of a handle and there exists an rr′-link in
LF

6,1 with r′ ∈ (TF
1 )rF1 s − s; any such rr′-link is a join for the linked border (r, s). A

pair (r, s) is a double border of F if r and s are both tips of a handle, one lying in PF
14

and the other in PF
16, and there exists a link in LF

6,1 with both ends in (TF
1 )rs − r− s;

any such link is a join for the double border (r, s). A border of F is a single, linked,
or double border of F . Note that if (r, s) is a border, then one among r and s lies
on PF

14 and the other on PF
16. Moreover, s �= rF1 and r = rF1 exactly when (r, s) is a

single border. Note that by Lemma 7, joins for borders are even.
If (r, s) is a border, let B[r, s] = F − (TF

1 )rs, and let L[r, s] be the collection of
links of F with one end in B[r, s]−rF1 −r−s and the other end in (TF

1 )rs−rF1 −r−s.

If (rF1 , s) is a single border of F with L[rF1 , s] �⊆ LF
2,1 ∪ LF

6,1,
then L[rF1 , s] ∩ OF

4,2 �= ∅ and ΛF
1 = OF

2,1.
(63)

To prove this, let Q be a handle with end s, and let P ∈ L[rF1 , s]\ (LF
2,1∪LF

6,1). Then,

by Lemma 7, P has an end on PF
12 − rF1 . Let P ′ be the shortest subpath of P from

PF
12 to Q ∪ TF

1 . Clearly, by changing P if necessary, we may assume that P consists
of P ′ and possibly a subpath of Q. If P was even, (G,Σ) would have the signed
graph in Figure 17(a) as a minor. As illustrated in Figure 17 that signed graph has
a K1,1

3,3 -minor. So P is odd. As by Lemma 7, OF
5,1 = ∅, this means that P ∈ OF

4,2.

So L[rF1 , s] ∩ OF
4,2 �= ∅ indeed. Moreover, as OF

4,2 �= ∅, it follows from Lemma 9 that

ΛF
1 = OF

2,1 ∪ LF
5,1. In other words, OF

3,1 ∪ OF
4,1 = ∅. So, as OF

2,1 �= ∅ it follows from

Lemma 12 that EF
3,1 ∪EF

4,1 �= ∅. Hence, by Lemma 11, LF
5,1 is empty. Thus ΛF

1 = OF
2,1

indeed, and (63) follows.
The value for F of a border (r, s) is defined as the number of edges in B[r, s].

Choose F ∈ F and a border (r, s) for F such that

the value for F of (r, s) is as small as possible.(64)

By 46-symmetry assume that s lies on PF
14 and that r lies on PF

16. Then we have the
following:

L[r, s] ∩ LF
2,1 = ∅.(65)

Suppose this is not true; let L ∈ L[r, s] ∩ LF
2,1. Let x be the end of L in (TF

1 )rs,

and let y be the other end of L. If x and y lie on PF
14, then by (62) there exists a
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(a) (b)

Fig. 17. Bold edges are odd; thin edges are even. To obtain (b) from (a), delete the “crossed”
edge and contract the “directed” edge.

K1
3,3-extension F ′ such that (r, y) is a border of F ′. The value for F ′ of (r, y) is clearly

smaller than the value for F of (r, s). By (64) this is impossible, so x and y lie on
PF

16. In fact, by 46-symmetry and symmetry between r and s, this also means that
(r, s) is not a double border. Hence, as s ∈ PF

14, (r, s) is a linked border. Let P be a
join for (r, s).

If L intersected P , it would do so internally and (y, s) would be a linked border
for F (with a join in L ∪ P ). As the value of (y, s) is smaller than that of (r, s), it
follows from (64) that this is impossible, so L and P are disjoint.

If L was odd, it would be a handle and (y, s) would be a double border, again
contradicting (64). So L is even. Let F ′ be the K1

3,3-extension obtained from F by

replacing (PF
16)xy with L. Clearly, F ′ ∈ F . Now (y, s) is a linked border of F ′. The

value for F ′ of (y, s) is clearly smaller than the value for F of (r, s). By (64) this is
impossible, so (65) follows.

L[r, s] ∩ LF
6,1 = ∅.(66)

Suppose this is not true; let L ∈ L[r, s]∩LF
6,1. Let y be the end of L in B[r, s]. If y lies

on PF
16, then (y, s) would be a linked border of F that has a smaller value than (r, s),

contradicting (64) (L would be a join for that border). So, y ∈ PF
14. By 46-symmetry

and symmetry between r and s, this also implies that (r, s) is not a double border.
Now, as L ∈ LF

6,1, (r, s) is a linked border; let R be a join for (r, s), and let Q be a
handle with tip s. By (65), L and R are internally vertex disjoint, and by construction
they do not share any end. By Lemma 7, L and R are both even. Moreover, both
these paths are internally disjoint with Q; otherwise, we would have a link in OF

6,1.
Now, let K ∈ K(F ), and let K ′ be the K1

3,3-subdivision obtained from K by replacing

PK
45 and PK

63 with L and R. Then K ′ is extreme in K ′ ∪Q. As Q is a link of K ′ that
violates Lemma 7 with respect to K ′, (66) follows.

(r, s) is a linked or double border of F .(67)

Suppose this is not true; then (r, s) is a single border and r = rF1 . As G is 3-connected,
{rF1 , s} is not a 2-vertex cutset, so L[rF1 , s] �= ∅. By (65), (66), and (63), there exists an
L ∈ L[rF1 , s] ∩ OF

4,2, and ΛF
1 = OF

2,1. In particular, OF
3,1 ∪ OF

4,1 = ∅, so by Lemma 12,

EF
3,1 ∪ EF

4,1 �= ∅. As also LF
5,1 = ∅, it follows from (61) that LF

5 = ∅. So PF
12 is a

single edge. From this, (65), and (66), it follows that the bridge, say, B, of {rF1 , s, rF2 }
containing cage(F ) is distinct from the bridge, say, A, of {rF1 , s, rF2 } containing
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(a) (b)

Fig. 18. Bold edges are odd; thin edges are even; and both in (a) and in (b) exactly one of the
dashed edges is odd. To obtain (b) from (a), delete the “crossed” edge and contract the “directed”
edge.

(TF
12)rF1 s. Hence, as (G,Σ) has no improper 3-vertex cutset, B is not bipartite. By

Lemma 8, B contains an odd path P from s to one of rF1 and rF2 that misses the other
vertex in {rF1 , rF2 }. As PF

12 is a single edge, PF
12 is not contained in B. Therefore P

contains a link Q ∈ OF
2,1 ∪ OF

4,2.
Let R be a handle with tip s. Then R lies in A. As Q ∈ B, links R and Q are

internally disjoint. This means that if Q ∈ OF
4,2, then, by Lemma 13, Q has an end

in PF
14. However, then links Q and R contradict Lemma 10. So Q ∈ OF

2,1.
As L lies in A and Q lies in B, these links are internally vertex disjoint. Since L

has an end in PF
14, it follows from Lemma 13 that Q has its ends in PF

14. As Q lies in
B its tip, say, y, lies in (PF

14)srF4 − s. Hence, by (64), Q is not a handle. So the other

end of Q is rF1 . But then Q and L violate Lemma 10. This proves (67).

B[r, s] has an odd rs-link T with the following three properties:
T intersects (PF

14)rF1 s internally; rF1 does not lie on T ; and if (r, s) is a

linked border, then T intersects PF
16 only in r.

(68)

Indeed such a path is contained in the union of a handle with tip s, a join for (r, s)
and TF

1 .

No odd rF2 w-link of B[r, s] ∪ T with w ∈ (TF
2 ∪ core(F )) − rF2 contains rF1 .(69)

Assume this is false; let P be an odd rF2 w-link of B[r, s]∪T with w ∈ (TF
2 ∪core(F ))−

rF2 that contains rF1 . Let Y be the subpath of PF
14 from P to T . Note that by (68)

Y has neither rF4 nor rF6 as one of its ends. By resigning on the vertices of Y , if
necessary, we see that (G,Σ) has the signed graph in Figure 18(a) as a minor. As
illustrated in Figure 18, that signed graph has K2

3,3 as a minor. This contradiction
proves (69).

EF
3,1 ∪ EF

4,1 = ∅.(70)

Suppose this is false; let P ∈ EF
3,1 ∪ EF

4,1. Paths P and T are disjoint as otherwise F

has a link that violates Lemma 7. This means that PF
12 ∪ P contradicts (69), so (70)

follows.
Hence, as OF

2,1 �= ∅, it follows from Lemma 12 that OF
3,1 ∪ OF

4,1 �= ∅. Hence, by

Lemma 9, ΛF
2 = ∅.

L[r, s] = ∅.(71)
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Suppose this is false; let L ∈ L[r, s]. By (65), (66), and Lemma 7, L has an end, say,
y, on PF

12 − rF1 . Let x be the other end of L. By the properties of T listed in (68) we
may assume that if L meets T , then x ∈ PF

14 (if not, we can replace L with another
path in T ∪ L that does end in PF

14). In any case, L ∈ L[rF1 , t] for t = s or t = r. As
OF

3,1 ∪OF
4,1 �= ∅, it follows from (63) that t is not the tip of a handle. So L ∈ L[rF1 , r]

and (r, s) is a linked border and, as x �∈ PF
14, the paths T and L are vertex disjoint.

Moreover, as OF
4,2 and OF

5,1 are both empty, L is even. Hence, the concatenation of

(PF
12)rF2 y, L, (PF

16)xrF1 , and any link in OF
3,1 ∪ OF

4,1 violates (69). So (71) follows.

As {r, rF1 , s} is not an improper 3-vertex cutset, there exists a link Q of F that
closes with B[r, s] an odd circuit. As EF

3,1 ∪EF
4,1 = ΛF

2 = OF
5,1 = ∅, link Q ∈ LF

2,1 ∪LF
1 .

By (64), Q cannot be in OF
2,1. If Q ∈ LF

1 , then as Q closes with B an odd circuit,

L∪PF
12 contains an even rF2 rF1 -path, which together with any link in OF

3,1∪OF
4,1 forms

a link violating (69). So Q ∈ EF
2,1. As Q closes with B[r, s] an odd circuit, rF1 is an

end of Q. Let q be the other end of Q. Let u be the vertex among r and s that is
farthest from q along TF

1 . Let F ∗ be the K1
3,3-extension in F obtained from F by

replacing (TF
1 )rF1 q with Q. Vertex u is not the tip of a handle of F , as otherwise (q, u)

is a linked border of F ∗ that has a smaller value than (r, s) has. So u is r, border
(r, s) is linked, and q lies on PF

14. By (71), Q and T are disjoint. Hence, by the last
property of T listed in (68), T ∪ (PF

14)sq ∈ OF∗

6,1. This contradicts Lemma 7, which
completes the proof of Theorem 3(ii).
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Abstract. Grone and Merris conjectured that the Laplacian spectrum of a graph is majorized
by its conjugate vertex degree sequence. In this paper, we prove that this conjecture holds for a class
of graphs, including trees. We also show that this conjecture and its generalization to graphs with
Dirichlet boundary conditions are equivalent.
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1. Introduction. One way to extract information about the structure of a graph
is to encode the graph in a matrix and study the invariants of that matrix, such as
the spectrum. In this paper, we study the spectrum of the combinatorial Laplacian
matrix of a graph.

The combinatorial Laplacian of a simple graph G = (V,E) on the set of n vertices
V = {v1, . . . , vn} is the n× n matrix L(G) defined by

L(G)ij =

⎧⎪⎨
⎪⎩

deg(vi) if i = j,

−1 if {i, j} ∈ E,

0 otherwise.

Here deg(v) is the degree of v, that is, the number of edges on v. The matrix
L(G) is positive semidefinite, and so its eigenvalues are real and nonnegative. We list
them in nonincreasing order and with multiplicity:

λ1(L(G)) ≥ λ2(L(G)) ≥ · · · ≥ λn−1(L(G)) ≥ λn(L(G)) = 0.

When the context is clear, we can write λi(G), or simply λi. We abbreviate the
sequence of n eigenvalues as λ(L(G)).

We are interested in the Grone–Merris (GM) conjecture that the spectrum λ(L(G))
is majorized by the conjugate partition of the nonincreasing sequence of vertex de-
grees of G [5]. This question is currently being studied, see, for example, [4], but has
yet to be resolved. We extend the class of graphs for which the conjecture is known to
hold to include trees, among other graphs. We also show that if GM holds for graph
Laplacians, it also holds for more general Dirichlet Laplacians (cf. [2]) as conjectured
by Duval [3].
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2. Background and definitions.

2.1. Graphs. Given a graph G = (V,E) with n = |V | vertices and m = |E|
edges, there are several ways to represent G as a matrix. There is the edge-incidence
matrix, an n ×m matrix that records in each column the two vertices incident on a
given edge. For directed graphs, we can consider a signed edge-incidence matrix:

∂(G)ve =

⎧⎪⎨
⎪⎩

1 if v is the head of edge e,

−1 if v is the tail of edge e,

0 otherwise.

There is also an n× n matrix A(G) called the adjacency matrix, which is defined
by

A(G)ij =

{
1 if {i, j} ∈ E,

0 otherwise.

The diagonal of A(G) is zero.
We can encode the (vertex) degree sequence of G in nonincreasing order as a

vector d(G) of length n and in an n × n matrix D(G) whose diagonal is d(G) and
whose off-diagonal elements are 0. Then the combinatorial Laplacian L(G) that we
study is simply D(G)−A(G). It is easy to check that if we (arbitrarily) orient G and
consider the matrix ∂(G) above, we also have L(G) = ∂(G)∂(G)t.

The complement of a graph G = (V,E) is the graph G on V whose edges are
exactly those not included in G.

Remark 2.1. The Laplacian is sometimes defined with entries normalized by
dividing by the square roots of the degrees. However, we do not do that here.

2.2. Majorization. We recall that a partition p = p(i) is a nonincreasing se-
quence of natural numbers, and its conjugate is the sequence pT (j) := |{i : p(i) ≤ j}|.
Then pT has exactly p(1) nonzero elements. When convenient, we can add or drop
trailing zeros in a partition. For nonincreasing real sequences s and t of length n, we
say that s is majorized by t (denoted s � t) if, for all k ≤ n,

k∑
i=1

si ≤
k∑

i=1

ti(2.1)

and

n∑
i=1

si =

n∑
i=1

ti.(2.2)

The concept of majorization extends to vectors by comparing the nonincreas-
ing vectors produced by sorting the elements of the vector into nonincreasing order.
Given a vector v, call the sorted vector v′ which contains the elements of v sorted in
nonincreasing order (with multiplicity) sort(v).

In the context of majorization of unsorted vectors, we will often want to refer to
the concatenation of two vectors x and y (i.e., the vector which contains the elements
of x followed the elements of y). This is denoted x, y, as, for example, in Lemma 2.3.
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There is a rich theory of majorization inequalities which occur throughout math-
ematics; see, for example, [9]. Matrices are an important source of such inequalities.
Notably, the relationship between the diagonal and spectrum of a Hermitian matrix
is characterized by majorization; see, for example, [7].

We will use the following lemmas about majorization, which can be found in [9].
Lemma 2.2. If x and y are vectors and P is a doubly stochastic matrix and

x = Py, then x � y.
This yields two simple corollaries.
Lemma 2.3. For any vectors x � y and any vector z, we have x, z � y, z.
Lemma 2.4. If x and y are nonincreasing sequences, and x = y except that at

indices i < j we have xi = yi − a and xj = yj + a, where a ≥ 0, then x � y.
Lemma 2.4 says that for nonincreasing sequences, transferring units from lower

to higher indices reduces the vector in the majorization partial order. In particular,
if x, x′, y, y′ are all nonincreasing sequences, x′ � x and y′ � y, then

x′ + y′ � x′ + y � x + y.(2.3)

Lemma 2.5. Let A and B be positive semidefinite (more generally, Hermitian)
matrices. Then

λ(A), λ(B) � λ(A + B).

This is Theorem G.1.b in Chapter 9 of [9], although the majorization is reversed
in the printing available to the author.

Lemma 2.6. For positive semidefinite (more generally, Hermitian) matrices A
and B,

λ(A + B) � λ(A) + λ(B).

This is a theorem of Fan (Theorem G.1 in Chapter 9 of [9]).
Lemma 2.7. Let A be an m × n 0 − 1 (or incidence) matrix with row sums

r1, . . . , rm and columns sums c1, . . . , cn both indexed in nonincreasing order. Let rT

be the conjugate of the partition (r1, . . . , rm) and c be the partition (c1, . . . , cn). Then

c � rT .(2.4)

This is known as the Gale–Ryser theorem (Theorem C.1 in Chapter 9 of [9]).

2.3. The GM conjecture. In the notation of this section, the GM conjecture
is

λ(G) � dT (G).(2.5)

Note that
n∑

i=1

dTi =

n∑
i=1

di = trace(L(G)) =

n∑
i=1

λi.

If we ignore isolated vertices (which contribute only zero entries to λ and d), we
will have dT1 = n. Using this fact, it is possible to show that

λ1 ≤ dT1 .(2.6)
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Three short proofs of this are given in [4]. The authors then continue to prove the
second majorization inequality:

λ1 + λ2 ≤ dT1 + dT2 .(2.7)

However, their proof would be difficult to extend.
There are several other facts which fit well with the GM conjecture. One is that

if the GM conjecture holds, then the instances where (2.5) holds with equality are
well understood; these would be the threshold graphs of section 3.1. Also, since d and
λ are, respectively, the diagonal and spectrum of L(G), we have d � λ. Combining
this with GM gives d� dT , a fact that has been proved combinatorially. We refer the
reader to [4] for further discussion.

3. GM on classes of graphs. In this section, we give further evidence for the
GM conjecture by remarking that it holds for several classes of graphs, including
threshold graphs, regular graphs, and trees.

3.1. Threshold graphs. The GM conjecture was originally formulated in the
context of threshold graphs, which are a class of graphs with several extremal proper-
ties. An introduction to threshold graphs is [8]. Threshold graphs are the graphs that
can be constructed recursively by adding isolated vertices and taking graph comple-
ments. It turns out that they are also characterized by degree sequences: the convex
hull of possible (unordered) degree sequences of an n vertex graph defines a polytope.
The extreme points of this polytope are the degree sequences that have a unique
labelled realization, and these are exactly the threshold graphs.

Threshold graphs are interesting from the point of view of spectra. Both Hammer
and Kelmans [6] and Grone and Merris [5] investigated the question of which graphs
have integer spectra. They found that threshold graphs are one class of graphs that
have integer spectra and showed for these graphs that λ(G) = dT (G). We could
interpret the GM conjecture as saying that threshold graphs are extreme in terms
of spectra and that these extreme spectra can be understood as conjugate degree
sequences.

3.2. Complements. Threshold graphs are built using graph complements of
existing graphs, and so it is not surprising that the GM conjecture behaves well under
taking complements. Indeed, the relationship between λ(G) and λ(G) is the same
as between dTn (G) and dTn (G). For a graph G with n vertices, the ith largest vertex
of G is the (n − i)th largest vertex of G, and we have di(G) = n − 1 − dn−i(G).
Translating this to the conjugate partition dT yields dTi (G) = n − dTn−1−i(G) with

dTn (G) = dTn (G) = 0.
Now notice that L(G) + L(G) = nIn − Jn, where Jn is the n× n matrix of ones.

The matrix nIn − Jn sends the special eigenvector en (n ones) to 0 and acts as the
scalar n on e⊥n . Both L(G) and L(G) also send en to 0, giving us λn(G) = λn(G) = 0.
Since L(G) and L(G) sum to nIn on e⊥n , they have the same set of eigenvectors on
e⊥n , and for each eigenvector, the corresponding eigenvalues for L(G) and L(G) sum
to n. Thus λi(G) = n− λn−1−i(G). As a consequence, GM holds for G if and only if
GM holds for G.

3.3. Regular and nearly regular graphs. For some small classes of graphs,
it can be easily shown that the GM conjecture holds. Consider a k-regular graph
G on n vertices (in a k-regular graph, all vertices have degree k). Then the degree
sequence d(G) is k repeated n times, and its conjugate dT (G) is n repeated k times
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followed by n − k zeros. Thus dT majorizes every nonnegative sequence of sum kn
whose largest term is at most n, and, in particular, λ � dT . Indeed, this proof shows
that GM holds for what we might call nearly regular graphs, that is, graphs whose
vertices have degree either k or (k − 1).

3.4. Graphs with low maximum degree. Using facts about the initial GM
inequalities, we can prove that GM must hold for graphs with low maximal degree.
For example, if a graph has maximum vertex degree 2, then dT3 = dT4 = · · · = dTn = 0,
and so, for k = 2, 3, . . . , n,

k∑
i=1

λi ≤
n∑

i=1

λi =

n∑
i=1

dTi =

k∑
i=1

dTi .

More generally, the GM inequalities for k ≥ max deg(G) hold trivially. Thus GM
holds for graphs of maximum degree 2 by (2.6). Using Duval and Reiner’s result
(2.7), we get that GM holds for graphs of maximum degree 3.

3.5. Trees and more. It is tempting to try to prove GM inductively by breaking
graphs into simpler components on which GM clearly holds. In this section, we show
that if G is “almost” the union of two smaller graphs on which GM holds, then GM
holds for G as well. We apply this construction to show that GM holds for trees.

Take two graphs A = (VA, EA) and B = (VB , EB) on disjoint vertex sets VA and
VB . Define their disjoint sum to be A+B = (VA∪VB , EA∪EB). Assuming VA and VB

are not empty, this is a disconnected graph. Now take two graphs G = (V,EG) and
H = (V,EH) on the same vertex set V . Define their union as G∪H = (V,EG ∪EH).

Given the spectra and conjugate degree sequences of A and B, the spectrum
of A + B is (up to ordering) λ(A + B) = (λ(A), λ(B)), while the conjugate degree
sequence of A+B is dT (A+B) = dT (A) + dT (B) (taking each vector to have length
n). Then if λ(A) � dT (A) and λ(B) � dT (B), we see that

λ(A + B) � λ(A) + λ(B) � dT (A) + dT (B) = dT (A + B),

where the first majorization follows from Lemma 2.6 and the second from (2.3).

In a typical situation, where neither A or B is very small, we would expect the
majorization λ(A+B) � dT (A+B) to hold with considerable slack. We can use this
slack to show that if we add a few more edges to A + B, the majorization will still
hold.

Theorem 3.1. Take graphs A or B on disjoint vertex sets VA and VB. Let
G = A + B, and on V = VA ∪ VB let C be a graph of “new edges” between VA and
VB. Assume that GM holds on A, B, and C, i.e., that λ(A) � dT (A), λ(B) � dT (B),
and λ(C) � dT (C). Additionally, assume that dTi (C) ≤ dTi (A), dTi (B) for all i and
that dT1 (B) ≤ dTm(A), where m is the largest nonzero index of dT (C) (equivalently, m
is the maximum vertex degree in C). Let H = C ∪G. Then

λ(H) � dT (H).(3.1)

Proof. Our strategy is to understand dT (H) in terms of the conjugate degree
sequences of its constituent graphs. In particular, we show that

sort(dT (A), dT (B)) + dT (C) � dT (H).(3.2)
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Then we can apply the majorizations of λ by dT for A,B,C to the above terms and
apply (2.3) to get

sort(λ(A), λ(B)) + λ(C) � sort(dT (A), λ(B)) + λ(C)
� sort(dT (A), dT (B)) + λ(C) � sort(dT (A), dT (B)) + dT (C)� dT (H).

The two terms on the left-hand side of this equation are spectra of L(G) and L(C),
respectively. Hence by Lemma 2.6 their sum majorizes the spectrum of L(H) =
L(G) + L(C):

λ(H) � λ(G) + λ(C) � dT (H).

It remains to prove (3.2), which is a statement entirely about conjugate degree se-
quences. For convenience, we will use the terminology of Ferrer’s diagrams to describe
these nonincreasing nonnegative integer sequences. That is, if s is such a sequence,
we will describe s as a diagram of rows and columns with row i (reading from top
to bottom) of length s(i) and hence column j (reading from left to right) of length
sT (j).

We begin with the following.
Claim 3.2. Let k be the larger of max deg(A) and max deg(B). We have

(dT1 (G), dT2 (G), . . . , dTk (G), dT1 (C), . . . , dTm(C)) � dT (H).

Proof of claim. The term on the right-hand side is the concatenation of two
partitions, dT (G) and dT (C). The columns of dT (G) index the vertices of G, and the
length of a column gives the degree of the corresponding vertex. Since this claim is
purely about degree sequences, we introduce a series of intermediate “partial graphs”
where edges are allowed to have only one end. Degree sequences and their conjugates
are still well defined for such objects.

Consider two copies of V , calling them V 1 and V 2. Take G0 = G on V 1 and
C0 = C on V 2. Let l = 2 max deg(C). For i = 1, 2, . . . , l, define graphs Gi and Ci by
moving one end of one edge from each nonisolated vertex of Ci−1 on V 1 to V 2. That
is, let Gi be Gi−1 plus these additional ends of edges, and let Ci be Ci−1 with these
ends of edges removed. Then we will have Gl = H, and Cl will be the empty graph
0V 2 on V 2.

We can now prove the claim via a chain of l majorizations:

dT (G), dT (C) = dT (G0), d
T (C0) � · · · � dT (Gl), d

T (Cl) = dT (H), dT (0V 2) = dT (H)

if we can show that, for each i = 1, 2, . . . , l,

dT (Gi−1), d
T (Ci−1) � dT (Gi), d

T (Ci).(3.3)

Compare the partitions in (3.3): The first row of dT (Ci−1) on the left-hand side
is removed, and each element from that row is inserted into a separate column of
dT (Gi−1) (representing a distinct vertex) to get dT (Gi). Where there are columns of
equal length in dT (Gi−1), they should be ordered so that those acquiring new elements
come first. To see that this operation increases (or leaves unchanged) the partition in
the majorization partial order, observe that after ignoring the (unchanged) contents
of dT (Ci) it is equivalent to sorting the new row into the partition dT (Gi−1), using
Lemma 2.4 to move its final (rightmost) element to the proper column and repeating
as necessary.
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This completes the proof of the Claim 3.2. We note that

dT (G) = dT (A) + dT (B)

= (dT1 (A) + dT1 (B), dT2 (A) + dT2 (B), . . . , dTk (A) + dTk (B), 0, . . . , 0),

and hence

(dT1 (A) + dT1 (B), dT2 (A) + dT2 (B), . . . , dTk (A) + dTk (B), dT1 (C), . . . , dTm(C)) � dT (H).

If we sort the vector on the left into nonincreasing order, the first m terms will remain
fixed by the assumptions that dTm(A) ≥ dT1 (B) ≥ dT1 (C). Since we have assumed that
dTi (C) ≤ dTi (B) for all i, we can apply Lemma 2.4 to the reordered sequence to get

(dT1 (A) + dT1 (C),dT2 (A) + dT2 (C), . . . , dTm(A) + dTm(C),

dTm+1(A), . . . , dTk (A), dT1 (B), . . . , dTk (B)) � dT (H).

The right-hand term decomposes as

(dT1 (A), . . . , dTk (A), dT1 (B), . . . , dTk (B)) + (dT1 (C), . . . , dTm(C), 0, . . . , 0).

Since we assume dTm(A) ≥ dT1 (B), the first m entries of (dT (A), dT (B)) will remain
unchanged if the vector is sorted. This gives (3.2) and completes the proof of Theo-
rem 3.1.

More generally, we could replace the conditions in the statement of Theorem 3.1
with the condition (3.2), which can be checked combinatorially. The conditions in the
theorem statement and (3.2) are most likely to be satisfied if C is small relative to A
and B.

A useful case is when C consists of k disjoint edges. Then m = 1 and dT1 (C) = 2k.
Without loss of generality, we can take d1(A) ≥ d1(B), and the only condition that
we will need to check is that d1(A), d1(B) ≥ d1(C); i.e., both A and B must have at
least 2k nonisolated vertices.

The strategy for applying Theorem 3.1 to show that a given graph H satisfies
GM is to find a “cut” C for it that contains few edges and divides H into relatively
large components. For example, we have the following result.

Corollary 3.3. The GM conjecture holds for trees.
Proof. Proceed by induction on the diameter of the graph. If T has diameter 1

or 2, then there is a vertex v which is the neighbor of all the remaining vertices, and
T is a threshold graph. So GM holds with equality for T .

Otherwise, we can find some edge e that does not have a leaf vertex. Since T is a
tree, e is a cut edge and divides T into two nontrivial connected components, A and
B. We apply induction to A and B and apply Theorem 3.1 to H = (A + B) ∪ C,
where C is the graph on the vertex set of T containing the single edge e.

Remark 3.4 (small graphs). The facts in this section allow us to check that GM
holds for some small graphs without directly computing eigenvalues. For example,
since the GM condition is closed under complement (see section 3.2) for graphs on up
to 5 vertices, it is enough to observe that either G or G has maximum degree ≤ 3. Out
of 156 graphs on 6 vertices, 146 can be decomposed into smaller graphs (A + B) ∪ C
using Theorem 3.1. Calculating the eigenvalues of the remaining 10 does not yield a
counterexample.

For any particular larger graph G, we could attempt to verify that GM holds for
G by breaking G (or G) into smaller graphs across cuts that have relatively few edges
and applying Theorem 3.1.
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4. Simplices and pairs. The most recent work relating to the GM conjecture
has been to study the spectra of more general structures than graphs, such as simplicial
complexes and simplicial family pairs. In this section, we show that the generalization
of GM to graphs with Dirichlet boundary conditions is equivalent to the original
conjecture and may be useful in approaching GM.

4.1. Simplicial complexes. In [4], the authors look at simplicial complexes,
which are higher-dimensional analogues of simple graphs (see, for example, [10]). A
set of faces of a given dimension i is called an i-family. Given a simplicial complex
Δ, we can denote the i-family of all faces in Δ of dimension i as Δ(i). For example,
a graph is a one-dimensional complex, and its edge set is the 1-family Δ(1). Define
the degree sequence d of an i-family to be the list of the numbers of i-faces from
the family incident on each vertex and sorted into nonincreasing order. We can then
define d(Δ, i) as the degree sequence of Δ(i), which we can abbreviate to d(Δ) or d
when the context is clear.

We define the chain group Ci(Δ) of formal linear combinations of elements of
Δ(i) and generalize the signed incidence matrix ∂ of section 2.1 to a signed boundary
map ∂i : Ci(Δ) → Ci−1(Δ). This allows us to define a Laplacian on Ci(Δ), namely
Li(Δ) = ∂i∂

T
i , and study its corresponding spectrum s(Δ, i), sometimes abbreviated

s(Δ) or s.
Duval and Reiner [4] looked at shifted simplicial complexes, which are a general-

ization of threshold graphs to complexes. They showed that for a shifted complex Δ
and any i, we have s(Δ, i) = dT (Δ, i). They then conjectured that GM also holds for
complexes, i.e., that for any complex and any i we have

s(Δ, i) � dT (Δ, i).(4.1)

They also show that some related facts, such as (2.6), generalize to complexes.

4.2. Simplicial pairs. In [3], Duval continues by studying relative (family) pairs
(K,K ′), where the set K = Δ(i) for some i is taken modulo a family of (i− 1)-faces
K ′ ⊆ Δ(i−1). When K ′ = ∅, this reduces to the situation of the previous section.

Remark 4.1. In the case i = 1, this is the edge set of a graph (K) with a set
of deleted boundary vertices K ′. An edge attached to a deleted vertex will not be
removed—it remains as part of the pair, but we now think of the edge as having a
hole on one (or both) ends.

This type of graph with a boundary appears in conformal invariant theory. In this
language, the relative Laplacian of an (edge, vertex) pair is sometimes referred to as a
Dirichlet Laplacian and its eigenvalues as Dirichlet eigenvalues; see, for example, [2].
Recently [1] used the spectrum of the Dirichlet Laplacian in the analysis of “chip-firing
games,” which are processes on graphs that have an absorbing (Dirichlet) boundary
at some vertices.

We can form chain groups Ci(K) and Ci−1(K,K ′) and use these to define a
(signed) boundary operator on the pair ∂(K,K ′) : Ci(K) → Ci−1(K,K ′). Hence
we get a Laplacian for family pairs L(K,K ′) = ∂(K,K ′)∂(K,K ′)T . Considered as a
matrix, L(K,K ′) will be the principal submatrix of L(K) whose rows are indexed by
the i-faces in Δ(i−1) −K ′. Finally, we get a spectrum s(K,K ′) for family pairs from
the eigenvalues of L(K,K ′).

Duval defines the degree dv(K,K ′) of vertex v (in the case of a graph, v is allowed
to be in K ′) relative to the pair (K,K ′) as the number of faces in K that contain v
such that K − {v} is in Δ(i−1) −K ′. This allows him to define the degree sequence
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d(K,K ′) for pairs and to conjecture that GM holds for relative pairs:

s(K,K ′) � dT (K,K ′).(4.2)

4.3. The GM conjecture for relative pairs. It turns out that at least in the
case of (edge, vertex) pairs that (4.2) follows from the original GM conjecture for
graphs.

Theorem 4.2. GM for graphs ⇒ GM for (edge, vertex) pairs.
Proof. Let G = (V,E) be a graph with D ⊆ V a set of “deleted” vertices. Let

U = V − D be the remaining “undeleted” vertices. We will assume that GM holds
only on the undeleted part of the graph, i.e., G|U . So we have s(G|U )� dT (G|U ). We
can ignore the edges in G|D completely, since they have no effect on either s(E,D)
or d(E,D). The remaining edges connect vertices in D to vertices in U . Define G′ to
be the graph on V whose edge are exactly the edges of G between D and U . Let a
be the degree sequence of the deleted vertices in G′ and b be the degree sequence of
the undeleted vertices in G′.

We can compute dT (E,D) in terms of the degree sequences and spectra of G|U ,
G′, and G|D, since dTi (E,D) is the number of vertices (deleted or not) attached to at
least i nondeleted vertices. The number of such vertices in U will be dTi (G|U ), and
the number in D will be dTi (G′) = aT . Hence dT (E,D) = dTi (G|U ) + aT .

Now consider the Laplacian L(E,D). This is the submatrix of L(G) indexed by
U . An edge (i, j) in G|U contributes to entries ii, ij, ji, jj in both L(E,D) and L(G).
An edge in G′, say from i ∈ U to j ∈ D, contributes only to entry ii, and an edge
in G|D, does not affect L(E,D). So we have L(E,D) = L(G|U ) + Diag(b), and by
Lemma 2.6 we have

s(E,D) � s(G|U ) + b.(4.3)

We complete our equivalence by appealing to the Gale–Ryser theorem, (2.4), to
claim that b � aT . This follows from the fact that a and b are row and column sums
(in nonincreasing order) of the |D|×|U | bipartite incidence matrix for G′. Combining
with the assumption that s(G|U ) � dT (G|U ) and (4.3), we get

s(E,D) � s(G|U ) + b � dT (G|U ) + aT = dT (E,D).

This proof relies on the bipartite structure of G′, and so it is not immediately
obvious how to extend it to higher-dimensional complexes. It would be interesting to
do this.

Remark 4.3. Because the induction used to prove Theorem 4.2 requires only that
the “undeleted” part of the graph satisfy GM, it is tempting to attack the original
GM conjecture by showing that if GM holds for a pair (G, {v}), then GM holds for
G.
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Abstract. We consider the scheduling problem of n independent jobs on m identical parallel
processors in order to minimize makespan, the completion time of the last job. We propose a new
approximation algorithm that iteratively combines partial solutions to the problem. The worst-case
performance ratio of the algorithm is z+1

z
− 1

mz
, where z is the number of initial partial solutions

that are obtained by partitioning the set of jobs into z families of subsets which satisfy suitable
properties. The computational behavior of our worst-case performance ratio provided encouraging
results on three families of instances taken from the literature.
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1. Introduction. In this paper, we consider the scheduling problem of n inde-
pendent jobs on m parallel machines. Each job i must be processed without interrup-
tion by only one of the m machines (nonpreemptive environment); the machines are
identical, and thus the processing time ai of the job i is independent of the machine
processing it (identical parallel processor environment). The objective is to minimize
the makespan, i.e., the total time required to complete all the jobs. Using the stan-
dard three field classification scheme (Graham et al. (1979)), this problem is usually
denoted as P ||Cmax.

The problem is well known to be NP-hard in strong sense for an arbitrary m ≥ 2
(Garey and Johnson (1979) and Ullman (1976)). It is unlikely that there exists a
polynomial-time algorithm for producing a minimal makespan, and so we consider
heuristic algorithms in the hope of providing near-optimal results. If we look at the
approximation algorithms for this problem, we can refer to the list scheduling family
of Graham (1966, 1969), which includes the largest processing time (LPT ), and to
the multifit decreasing (MFD) scheduling algorithm of Coffman, Garey, and Johnson
(1978). The LPT algorithm runs in O(n log(n) + nm)-time and has the worst-case
ratio equal to 4

3 − 1
3m , whereas the MFD algorithm runs in O(n log(n) + knm)-time

and has a worst-case ratio equal to 13
11 + 1

2k (Friesen (1984) and Yue (1990)), where
k represents the number of times that a bin packing problem is solved by using the
lowest fit decreasing algorithm (Coffman, Garey, and Johnson (1978)).

The literature of parallel machine scheduling problems, on the heuristic algo-
rithms, has been extensively reviewed by Cheng and Sin (1990), Lawler et al. (1993),
and Mokotoff (2001). An overview of existing results and of recent research areas is
presented in the handbook edited by Leung (2004).
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The algorithm proposed in this paper is based on the idea of combining iteratively
partial solutions until a feasible solution for the scheduling problem is obtained. The
initial partial solutions are obtained by partitioning the set of jobs into z families of
subsets satisfying suitable properties that will be described below.

The algorithm runs in O(n log(n)+nm)-time as the LPT algorithm and produces
a solution with a worst-case performance ratio equal to z+1

z − 1
mz if z > 1, where z is

the number of initial partial solutions, whereas, if z = 1, the algorithm produces an
optimal solution. This bound of the algorithm is very poor whenever z is less than 3.
However, as it will be described below, z is at least equal to � n

mρ� (where ρ is the ratio

between maxi=1,...,n{ai} and mini=1,...,n{ai} and �x� denotes the smallest integer not
less than x) so that when n > 6mρ, our algorithm works very well compared to LPT
and MFD algorithms. Also, our bound is comparable with t+1

t − 1
mt (where t is the

least number of jobs on any processor), that is, the worst-case performance bound
given by Coffman and Sethi (1976) for the LPT approach.

The paper is organized as follows. Section 2 presents the definitions and the
properties of the partitions that are used to design the algorithm. Section 3 contains
the description of the algorithm. Section 4 includes the statements of the inductive
assertions about the efficiency and performance of our algorithm. Finally, the com-
putational results obtained from three families of instances taken from the literature
are presented in section 5.

2. Definitions and preliminary results. Let I = {1, . . . , i, . . . , n} be the set
of n independent jobs, M = {1, . . . , j, . . . ,m} be the set of m identical parallel pro-
cessors, and A = {a1, . . . , ai, . . . , an} be the set of processing times of the jobs. Let
us start with a precise definition of the partitions to be studied.

Let I = {I1
1 , . . . , I

1
j , . . . , I

1
m, . . . , Ir1 , . . . , I

r
j , . . . , I

r
m, . . . , Iz1 , . . . , I

z
j , . . . , I

z
m} be a

partition of the set I. Let arj :=
∑

i∈Ir
j
ai be the sum of the processing times of

the jobs belonging to Irj , r = 1, . . . , z and j = 1, . . . ,m.
Definition 1. A partition

I = {I1
1 , . . . , I

1
j , . . . , I

1
m, . . . , Ir1 , . . . , I

r
j , . . . , I

r
m, . . . , Iz1 , . . . , I

z
j , . . . , I

z
m}

of the set I is called an α-partition if the following properties are satisfied:
(a) a1

1 ≥ · · · ≥ a1
j ≥ · · · ≥ a1

m ≥ · · · ≥ ar1 ≥ · · · ≥ arm ≥ · · · ≥ az1 ≥ · · · ≥ azm.
(b) ar1 ≤ 2arm, r = 1, . . . , z.
(c) arm + azm > ar1, r = 1, . . . , z − 1.
(d) arj , j = 1, . . . ,m and r = 1, . . . , z−1, is equal to the sum of at least an ai ∈ A

so that ai ≥ az1.
We associate the α-partition I of I with the family P = {I1, . . . , Ir, . . . , Iz} of

z partial solutions, where each Ir = {Ir1 , . . . , Irj , . . . , Irm}, r = 1, . . . , z, represents
the rth partial solution of the scheduling problem. In particular, with respect to the
partial solution Ir, r = 1, . . . , z, each Irj , j = 1, . . . ,m, represents the set of jobs that
must be performed by the machine j. Each Ir, r = 1, . . . , z, is associated with the
m-set Gr = {ar1, . . . , arj , . . . , arm} that is referred to the set of total processing times
of the job-sets of Ir.

In view of property (a), the m elements of each Gr, r = 1, . . . , z, are sorted in
nonincreasing order with respect to their size.

In what follows, let us denote by Δr := ar1 − arm, r = 1, . . . , z, the gap between
the maximum and the minimum element of the m-set Gr.

Example 1. Let us focus on the instance I = {1, 2, . . . , 25},M = {1, 2, 3, 4, 5}, and
A = {47, 46, 39, 33, 31, 31, 31, 27, 27, 26, 25, 25, 25, 24, 23, 19, 19, 19, 18, 18, 9, 6, 6, 5, 2}.
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The partition I = {I1
1 = {1}, I1

2 = {2}, I1
3 = {4, 22, 23}, I1

4 = {3, 24}, I1
5 = {5,

21, 25}, I2
1 = {6}, I2

2 = {7}, I2
3 = {8}, I2

4 = {9}, I2
5 = {10}, I3

1 = {11}, I3
2 = {12},

I3
3 = {13}, I3

4 = {14}, I3
5 = {15}, I4

1 = {16}, I4
2 = {17}, I4

3 = {18}, I4
4 = {19}, I4

5 =
{20}} is an α-partition of I because it satisfies all the properties of Definition 1. This
α-partition is associated with the family P = {I1, I2, I3, I4} of 4 partial solutions,
where I1 = {I1

1 , I
1
2 , I

1
3 , I

1
4 , I

1
5}, I2 = {I2

1 , I
2
2 , I

2
3 , I

2
4 , I

2
5}, I3 = {I3

1 , I
3
2 , I

3
3 , I

3
4 , I

3
5}, and

I4 = {I4
1 , I

4
2 , I

4
3 , I

4
4 , I

4
5}. The 5-set G1 = {47, 46, 33 + 6 + 6, 39 + 5, 31 + 9 + 2} and

the gap Δ1 = 5 are associated with the partial solution I1, G2 = {31, 31, 27, 27, 26}
and the gap Δ2 = 5 are associated with I2, G3 = {25, 25, 25, 24, 23} and the gap
Δ3 = 2 are associated with I3, and G4 = {19, 19, 19, 18, 18} and the gap Δ4 = 1 are
associated with I4.

Let I = {I1
1 , . . . , I

1
j , . . . , I

1
m, . . . , Ir1 , . . . , I

r
j , . . . , I

r
m, . . . , Iz−1

1 , . . . , Iz−1
m , Iz1 , . . . , I

z
j ,

. . . , Izp} be a partition of the set I with p ≤ m; let arj :=
∑

i∈Ir
j
ai be the sum of

the processing times of the jobs belonging to Irj , r = 1, . . . , z − 1 and j = 1, . . . ,m;
let uj :=

∑
i∈Iz

j
ai be the sum of the processing times of the jobs belonging to Izj ,

j = 1, . . . , p and uj := 0, p < j ≤ m.
Definition 2. A partition

I = {I1
1 , . . . , I

1
j , . . . , I

1
m, . . . , Ir1 , . . . , I

r
j , . . . , I

r
m, . . . , Iz−1

1 , . . . , Iz−1
j , . . . ,

Iz−1
m , Iz1 , . . . , I

z
j , . . . , I

z
p}

of the set I is called a β-partition if the following properties are satisfied:
(a) a1

1 ≥ · · · ≥ a1
j ≥ · · · ≥ a1

m ≥ · · · ≥ ar1 ≥ · · · ≥ arm ≥ · · · ≥ az−1
1 ≥ · · · ≥

az−1
m ≥ u1 ≥ · · · ≥ up.

(b) ar1 ≤ 2arm, r = 1, . . . , z − 1, and u1 > 2um.
(c) arm + up > ar1, r = 1, . . . , z − 1.
(d) arj , j = 1, . . . ,m and r = 1, . . . , z−1, is equal to the sum of at least an ai ∈ A

so that ai ≥ u1.
We associate the β-partition I of I with the family P = {I1, . . . , Ir, . . . , Iz−1, I}

of z partial solutions, where each Ir = {Ir1 , . . . , Irj , . . . , Irm}, r = 1, . . . , z−1, represents
the rth partial solution and I = {Iz1 , . . . , Izj , . . . , Izp , ∅p+1, . . . , ∅m} represents the zth
partial solution, where m−p machines do not perform jobs. In particular, with respect
to the partial solution I, Izj , j = 1, . . . , p, represents the set of jobs that are performed
by the machine j, and ∅j , j = p + 1, . . . ,m, indicates that the machine j does not
perform jobs. Each Ir, r = 1, . . . , z − 1, is associated with the m-set Gr = {ar1, . . . ,
arj , . . . , a

r
m}, whereas I is associated with the m-set U = {u1, . . . , up, 0, . . . , 0} that is

referred to the set of the total processing times of the job-sets of I.
In view of property (a), the elements of each Gr, r = 1, . . . , z−1, and the elements

of U are sorted in nonincreasing order with respect to their size.
As before, let us denote by Δr := ar1 − arm, r = 1, . . . , z − 1, the gap between the

maximum and the minimum element of the m-set Gr and by ΔU := u1 − um the gap
between the maximum and the minimum element of the m-set U .

Example 2. Let us focus on the instance I = {1, 2, . . . , 25},M = {1, 2, 3, 4, 5}, and
A = {50, 48, 44, 42, 39, 36, 35, 34, 32, 30, 29, 28, 28, 28, 28, 27, 26, 26, 23, 11, 10, 9, 9, 2, 1}.
The partition I = {I1

1 = {1}, I1
2 = {5, 20}, I1

3 = {2}, I1
4 = {3}, I1

5 = {4, 24},
I2
1 = {6}, I2

2 = {7}, I2
3 = {8}, I2

4 = {9}, I2
5 = {10}, I3

1 = {11}, I3
2 = {12}, I3

3 =
{13}, I3

4 = {14}, I3
5 = {15}, I4

1 = {16}, I4
2 = {17}, I4

3 = {18}, I4
4 = {19}, I4

5 =
{21, 22, 25}, I5

1 = {23}} is a β-partition of I because it satisfies all the properties
of Definition 2. This β-partition is associated with the family P = {I1, I2, I3, I4, I}
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of 5 partial solutions, where I1 = {I1
1 , I

1
2 , I

1
3 , I

1
4 , I

1
5}, I2 = {I2

1 , I
2
2 , I

2
3 , I

2
4 , I

2
5}, I3 =

{I3
1 , I

3
2 , I

3
3 , I

3
4 , I

3
5}, I4 = {I4

1 , I
4
2 , I

4
3 , I

4
4 , I

4
5}, and I = {I5

1 , ∅2, ∅3, ∅4, ∅5}. The 5-set
G1 = {50, 39 + 11, 48, 44, 42 + 2} and the gap Δ1 = 6 are associated with the
partial solution I1, G2 = {36, 35, 34, 32, 30} and the gap Δ2 = 6 are associated
with I2, G3 = {29, 28, 28, 28, 28} and the gap Δ3 = 1 are associated with I3,
G4 = {27, 26, 26, 23, 10 + 9 + 1} and the gap Δ4 = 7 are associated with I4, and
U = {9, 0, 0, 0, 0} and the gap ΔU = 9 are associated with I.

Definition 3. Let Ir and Iq be two partial solutions related to an α-partition
(β-partition) of I. Let us define “ combination” among Ir and Iq (Ir � Iq) as the
m-family

Ir � Iq = {Ir1 ∪ Iqm, . . . , Irj ∪ Iqm−j+1, . . . , I
r
m ∪ Iq1}.

This new family corresponds to a new partial solution on the jobs belonging to Ir

and Iq. In particular, the set Irj ∪ Iqm−j+1, for each j = 1, . . . ,m, represents the jobs
performed by the machine j. The total processing time needed for the machines to
perform all the jobs belonging to Ir�Iq is computed by using the following definition.

Definition 4. Let Gr and Gq be the sets of processing times of the partial
solutions Ir and Iq related to an α-partition (β-partition) of I. Let us define “ sum”
among Gr and Gq (Gr ⊕Gq) as the m-set (not necessarily ordered)

Gr ⊕Gq = {ar1 + aqm, . . . , arj + aqm−j+1, . . . , a
r
m + aq1}.

Notice that arj + aqm−j+1 represents the total processing time needed for machine
j to perform all the jobs belonging to Irj ∪ Iqm−j+1, and Ir � Iq is a partial solution
that is not related to an α-partition or to a β-partition of I because the elements of
Gr ⊕Gq are not sorted in decreasing order with respect to their size.

Example 3. Let G1 and G2 be the sets of processing times of the partial solutions
I1 and I2 which are related to the α-partition of Example 1; then

G1 ⊕G2 = {a1
1 + a2

5, a
1
2 + a2

4, a
1
3 + a2

3, a
1
4 + a2

2, a
1
5 + a2

1}

= {47 + 26, 46 + 27, 45 + 27, 44 + 31, 42 + 31} = {73, 73, 72, 75, 73}

and

I1 � I2 = {I1
1 ∪ I2

5 , I
1
2 ∪ I2

4 , I
1
3 ∪ I2

3 , I
1
4 ∪ I2

2 , I
1
5 ∪ I2

1}

= {{1, 10}, {2, 9}, {4, 22, 23, 8}, {3, 24, 7}, {5, 21, 25, 6}},

where, for example, a1
5 + a2

1 = 73 represents the total processing time needed for
machine 5 to perform the jobs belonging to I1

5 ∪ I2
1 = {5, 21, 25, 6}.

The “sum” operator satisfies the properties indicated in Lemmas 1 and 3.
Lemma 1. Let Gr and Gq be the sets of processing times of the partial solutions

Ir and Iq which are relative to an α-partition (β-partition) of I. Put S = Gr ⊕ Gq

and ΔS = max{S} − min{S}. Then
1. max{S} ≤ 2 min{S};
2. ΔS ≤ max{Δr,Δq};
3. ΔS < azm (ΔS < up).

Proof.
Statement 1.
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Let

max{S} = ark + aqm−k+1 for some k, 1 ≤ k ≤ m,

and

min{S} = arl + aqm−l+1 for some l, 1 ≤ l ≤ m.

Then

max{S} = ark + aqm−k+1 ≤ (property (a)) ≤ ar1 + aq1 ≤ (property (b))

≤ 2arm + 2aqm ≤ (property (a)) ≤ 2(arl + aqm−l+1) = 2 min{S}.

Statement 2.
Let

ΔS = (ark + aqm−k+1) − (arl + aqm−l+1) = (ark − arl ) + (aqm−k+1 − aqm−l+1).

It can happen that ark − arl ≥ 0 or not. We examine both cases separately.
First case: ark − arl ≥ 0.
An immediate consequence of the definition of S and of property (a) gives rise to

aqm−k+1 − aqm−l+1 ≤ 0.

It follows that

ΔS = (ark − arl ) + (aqm−k+1 − aqm−l+1) ≤ ark − arl ≤ (property (a)) ≤ ar1 − arm = Δr.

Second case: ark − arl ≤ 0.
An immediate consequence of the definition of S and of property (a) gives rise to

aqm−k+1 − aqm−l+1 ≥ 0.

Then

ΔS = (ark − arl ) + (aqm−k+1 − aqm−l+1) ≤ aqm−k+1 − aqm−l+1

≤ (property (a)) ≤ aq1 − aqm = Δq.

Consequently,

ΔS ≤ max{Δr,Δq}.

Statement 3.
Property (c) ensures that

Δr < azm and Δq < azm(Δr < up and Δq < up).

From Statement 2, we deduce that

ΔS < azm(ΔS < up).

Lemma 2. Let Gr = {ar1, . . . , arj , . . . , arm} and U = {u1, . . . , up, 0, . . . , 0}, p < m,
be the sets of processing times of the partial solutions Ir and I related to a β-partition
of I. Set S = U ⊕Gr. Then
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1. min{S} = arm−p;
2. max{S} = uk + arm−k+1 for some k, 1 ≤ k ≤ p.

Proof.
Statement 1.
Let

S = {u1 + arm, . . . , up + arm−p+1, . . . , a
r
m−p, . . . , a

r
1}.

Property (a) yields ar1 ≥ · · · ≥ arm−p. Moreover, for each j = 1, . . . , p,

arm−p ≤ ar1 < (property (c)) < up + arm ≤ (property (a)) ≤ uj + arm−j+1,

and hence we deduce that min{S} = arm−p.
Statement 2.
It follows from property (c) that, for all j = 1, . . . , p,

uj + arm−j+1 ≥ ar1 ≥ (property (a)) ≥ ar2 ≥ · · · ≥ arm−p,

from which we deduce that

max{S} = max
j=1,...,p

{uj + arm−j+1}.

Lemma 3. Let Gr and U be the sets of processing times of the partial solutions
Ir and I related to a β-partition of I. Set S = U ⊕Gr and ΔS = max{S}−min{S}.
Then

1. max{S} ≤ 2 min{S};
2. ΔS ≤ max{ΔU ,Δr} = ΔU ;
3. ΔS ≤ u1.

Proof.
Statement 1.
We distinguish two cases.
First case: p < m.
Lemma 2 states that min{S} = arm−p and max{S} = uk+arm−k+1 for some k, 1 ≤

k ≤ p. Then

max{S} = uk + arm−k+1 ≤ (property (a)) ≤ arm−p + arm−p = 2arm−p = 2 min{S}.

Second case: p = m.
First,

ar1 < (property (c)) < um + arm ≤ (property (a)) ≤ uj + arm−j+1, j = 1, . . . ,m.

So, we obtain

ar1 ≤ min
j=1,...,m

{uj + arm−j+1}. (i)

Now

max{S} = max
j=1,...,m

{uj + arm−j+1} ≤ (property (a)) ≤ u1 + ar1

≤ (property (a)) ≤ 2ar1 ≤ from (i) ≤ 2 min{S}.
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Statement 2.
We distinguish two cases.
First case: p < m.
First, we show that max{ΔU ,Δr} = ΔU . In fact, we have

Δr = ar1 − arm < (property (c)) < up ≤ (property (a)) ≤ u1 = ΔU , r = 1, . . . , z − 1.

Moreover, Lemma 2 ensures that, for some k, 1 ≤ k ≤ p, one has

ΔS = uk + arm−k+1 − arm−p ≤ (because arm−k+1 − arm−p ≤ 0)

≤ uk ≤ (property (a)) ≤ u1 = ΔU .

Second case: p = m.
First, we show that max{ΔU ,Δr} = ΔU . In this case, we obtain

Δr − ΔU = ar1 − arm − (u1 − um) < (property (c))

< arm + um − arm − u1 + um = 2um − u1 < (property (b)) < 0.

Now let max{S} = uk + arm−k+1 for some k, 1 ≤ k ≤ m, and min{S} = ul +
arm−l+1 for some l, 1 ≤ l ≤ m. So,

ΔS = (uk − ul) + (arm−k+1 − arm−l+1).

If uk − ul ≥ 0 (hence arm−k+1 − arm−l+1 ≤ 0), then

ΔS ≤ uk − ul ≤ (property (a)) ≤ u1 − um = ΔU .

If uk − ul < 0 (hence arm−k+1 − arm−l+1 ≥ 0), then

ΔS ≤ arm−k+1 − arm−l+1 ≤ (property (a)) ≤ ar1 − arm = Δr ≤ ΔU .

Summarizing, we derive

ΔS ≤ ΔU .

Statement 3.
From Statement 2, we deduce that

ΔS ≤ ΔU = u1 − um ≤ u1.

Definition 5. Let Gr and Gq be the sets of processing times of the partial
solutions Ir and Iq related to an α-partition (β-partition) of I. Let us define “ ordered
sum” among Gr and Gq as the ordered m-set Ord(Gr ⊕Gq) whose elements are the
elements of Gr ⊕Gq sorted in nonincreasing order with respect to their size.

Definition 6. Let Ir and Iq be two partial solutions related to an α-partition
(β-partition) of I. Let us define “ ordered combination” among Ir and Iq as the m-
family Ord(Ir � Iq) whose sets are those of Ir � Iq sorted so that the jth element of
Ord(Gr⊕Gq) represents the total processing time of the jth job-set of Ord(Ir �Iq).

Thus, we have Ord(Gr⊕Gq)=Ord(Gq⊕Gr) and Ord(Ir�Iq)= Ord(Iq�Ir). In
the following, the partial solution Ord(Ir � Iq) is called “combined partial solution”
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to distinguish it from the initial partial solutions obtained by the procedure described
in the next section.

Example 4. With reference to Example 3, we have

Ord(G1 ⊕G2) = Ord(73, 73, 72, 75, 73) = {75, 73, 73, 73, 72}

and

Ord(I1 � I2) = Ord({1, 10}, {2, 9}, {4, 22, 23, 8}, {3, 24, 7}, {5, 21, 25, 6})

= {{3, 24, 7}, {5, 21, 25, 6}, {1, 10}, {2, 9}, {4, 22, 23, 8}}.

Lemma 4. Let P = {I1, . . . , Ir, . . . , Iz} be a family of z partial solutions related
to an α-partition of I. Then {Ord(. . . (Ord(Ord(I1 � I2)� I3)� . . .)� Ir), Ir+1, . . . ,
Iz}, r = 2, . . . , z, is a family of z − r + 1 partial solutions that is related to an
α-partition of I.

Proof. Property (a) is guaranteed because the “ordered combination” operator is
iteratively performed among the first two partial solutions related to an α-partition.
Properties (b) and (c) are guaranteed, respectively, by Statements 1 and 3 of Lemma 1.
Property (d) is guaranteed because it was guaranteed by the partial solutions in
P.

By using the same arguments in the proof of Lemma 4, we have the following
lemma.

Lemma 5. Let P = {I1, . . . , Ir, . . . , Iz−1, I} be a family of z partial solutions re-
lated to a β-partition of I. Then {Ord(. . . (Ord(Ord(I1�I2)�I3)�. . .)�Ir), Ir+1, . . . ,
Iz−1, I}, r = 2, . . . , z− 1, is a family of z − r + 1 partial solutions that is related to a
β-partition of I.

Example 5. With reference to Example 1, we have {Ord(I1�I2), I3, I4}, which is
a family of three partial solutions, where Ord(I1�I2) and Ord(G1⊕G2) are reported
in Example 4.

3. Algorithms. The proposed algorithm, which uses the procedure named IPS
(initial partial solutions) described later, partitions the jobs so as to obtain an α-
partition or a β-partition of I, i.e., a family of initial partial solutions to the scheduling
problem. Then, as indicated in Lemmas 4 and 5, it iteratively combines, in turn, the
initial partial solutions with the current combined partial solution by utilizing the
ordered combination operator. The iterative process is repeated until a solution of
the scheduling problem is obtained. The algorithm, named MPS (multiprocessor
scheduling), can be summarized as follows.

Algorithm MPS.
Initialization

- Use the procedure IPS to obtain the family P of z initial partial solutions
that are related to an α-partition or to a β-partition of I. If IPS returns only
a partial solution, then Stop (the solution is optimal);

- Set C = {C1 = 0, . . . , Cj = 0, . . . , Cm = 0} and T = {T1 = ∅1, . . . , Tj =
∅j , . . . , Tm = ∅m}, where T represents the current combined partial solution
and Cj the processing time of the job-set Tj .

Construction
- For r = 1, . . . , z − 1, compute C =Ord(C ⊕Gr) and T =Ord(T � Ir), where
Gr and Ir have been provided by the IPS procedure;

- If IPS returns an α-partition of I, then compute C =Ord(C ⊕ Gz) and
T =Ord(T �Iz), where Gz and Iz have been provided by the IPS procedure;
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- If IPS returns a β-partition of I, then compute C =Ord(C ⊕ U) and T =
Ord(T � I), where U and I have been provided by the IPS procedure.

At the end, MPS returns T = {T1, . . . , Tj , . . . , Tm} and C = {C1, . . . , Cj , . . . ,
Cm}, where T represents a solution of the problem and C the completion times of
the machines. In particular, each Tj , j = 1, . . . ,m, represents the jobs assigned to
machine j and Cj the processing time needed for each machine j to perform the jobs
which are assigned to it.

3.1. Determining the initial partial solutions. The procedure IPS, which
finds the initial partial solutions related to an α-partition or a β-partition of I, first
orders the jobs so that a1 ≥ · · · ≥ ai ≥ · · · ≥ an. Then it builds an α-partition or a
β-partition of I by processing the jobs in turn, starting with job 1. Now we suppose
that, when job i must be inserted, there are either z − 1 families Ir, r = 1, . . . , z − 1,
that satisfy ar1 ≤ 2arm and the family I that satisfies u1 > 2um, or there are z families
Ir. Also, we suppose that all families are sorted in nonincreasing order with respect to
their processing times. Let Π = {π(1), π(2), . . .} be the permutation of the indexes of
the current partial solutions of type Ir so that Δπ(1) ≥ Δπ(2) ≥ · · ·. Then IPS inserts
job i as follows. First, it selects, among the ordered families of type Ir, the family
Iq = Iπ(1) with the biggest gap Δq = Δπ(1) between the processing times of the first
and the last job-sets. Now if ai ≤ Δq, then job i is inserted into the last job-set of Iq,
that is, into Iqm; the job-sets of Iq are sorted in nonincreasing order with respect to
their processing times, and Π is arranged in nonincreasing order with respect to the
gaps. If ai > Δq and all job-sets of I are not empty, then job i is inserted into the
last set of I, that is, into Izm, and the job-sets of I are sorted in nonincreasing order
with respect to their processing times. If ai > Δq and some job-sets of I are empty,
then job i is inserted into the first job-set empty of I. In this case, it is not necessary
to sort the job-sets because they are already ordered. If ai > Δq and all job-sets of I
are empty, then the job i is inserted into the first set of I, and z is increased by one.
Also, if job i is inserted into I and 2um ≥ u1, then I becomes Iz, index z is inserted
into Π, that is again arranged, and I is placed equal to m empty sets. The procedure
can be formally described as follows.

Procedure IPS
Initialization

- Order the jobs so that a1 ≥ · · · ≥ ai ≥ · · · ≥ an. Set z = 1 (z = number of
initial partial solutions);

- Consider I = {Iz1 = {1}, Iz2 = ∅2, . . . , I
z
m = ∅m}, U = {u1 = a1, u2 = 0, . . . ,

um = 0};
- Set ΔU = a1, p = 1 (p represents the number of elements of U not equal to

0), and Π = ∅.
Construction

For each i = 2, . . . , n
- If Π �= ∅, then set q = π(1), Δmax = Δq, and consider the m-set Gq and
the family Iq, else set Δmax = 0;
- If ai ≤ Δmax, then

- aqm = aqm + ai, I
q
m = Iqm ∪ {i}, sort the elements of the m-set Gq

so that aq1 ≥ · · · ≥ aqj ≥ · · · ≥ aqm, and arrange the family Iq so

that aqj is the total time required by the jobs belonging to Iqj ;

- Δq = aq1 − aqm, and arrange the set Π so that Δπ(1) ≥ Δπ(2) ≥ · · ·;
End If ai ≤ Δmax;
- If ai > Δmax, then
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- If all job-sets of I are empty (ΔU = ∞), then z = z + 1,
I = {Iz1 = {i}, Iz2 = ∅2, . . . , I

z
m = ∅m},

U = {u1 = ai, u2 = 0, . . . , um = 0}, and p = 1;
- If all job-sets of I are not empty (ΔU �= ∞ and p = m), then
um = um + ai, I

z
m = Izm ∪ {i}, sort the elements of the set U so that

u1 ≥ · · · ≥ um, and arrange the family I so that uj is the total time
required by the jobs belonging to Izj ;

- If some job-sets of I are empty (ΔU �= ∞ and 1 ≤ p < m), then
p = p + 1, up = ai, I

z
p = Izp ∪ {i};

- ΔU = u1 − um;
- If p = m and 2um ≥ u1, then Gz = U , Iz = I, Δz = ΔU , insert z

into Π, and arrange the set Π so that Δπ(1) ≥ Δπ(2) ≥ · · ·,
I = {∅1, . . . , ∅j , . . . , ∅m}, U = {0, , 0, . . . , 0}, and ΔU = ∞;

End If ai > Δmax;
End For i.
It is easy to show that the procedure IPS produces a partition so that the first

job-set of each family is a singleton, and, consequently, the processing time of the last
job-set of a family is greater than the processing time of the first job-set of the next
family. Also, IPS produces an α-partition of I if U = {u1 = 0, . . . , um = 0} or a
β-partition of I if U �= {u1 = 0, . . . , um = 0}.

4. Efficiency and performance of the algorithm. With regard to efficiency,
it is easy to show that the MPS algorithm, as the LPT algorithm, runs in O(n log(n)+
nm)-time, that is, the running time of the procedure IPS.

Now we consider the performance of the MPS algorithm.
Let us use Cmax = maxj=1,...,m{Cj} and C∗

max to denote the makespan of
the MPS solution and the optimal makespan, respectively. Denote by Cmin =
minj=1,...,m{Cj} and by Δ := Cmax − Cmin.

To obtain the performance ratio of our algorithm, it is necessary to show the
following lemmas.

Lemma 6. If the procedure IPS returns a family of z initial partial solutions
relative to an α-partition of I, then azm ≥ Δ.

Proof. Property (c) states that, for q = 1, . . . , z − 1,

Δq = aq1 − aqm < azm.

Moreover, we obtain from property (b) that

Δz = az1 − azm ≤ 2azm − azm = azm.

Then

azm ≥ max
q=1,...,z

{Δq}.

Using Lemmas 1 and 4, we note that

Δ ≤ max
q=1,...,z

{Δq}.

Consequently, azm ≥ Δ.
Lemma 7. If the procedure IPS returns a family of z initial partial solutions

relative to a β-partition of I, then u1 ≥ Δ.
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Proof. Using Lemmas 3 and 5, we note that

Δ ≤ max{Δ1, . . . ,Δz−1,ΔU} = ΔU . (i)

Since

ΔU = u1 − um ≤ u1,

it follows from (i) that u1 ≥ Δ.
We are now able to find a lower bound on C∗

max with respect to the number z
of initial partial solutions relative to an α-partition or a β-partition of I produced by
IPS.

Theorem 1. If the procedure IPS returns a family P of z initial partial solutions
relative to an α-partition or a β-partition of I, then

C∗
max ≥ zΔ.

Proof. We need to distinguish two cases.
First case: P is relative to an α-partition of I.
Of course,

C∗
max ≥ zazm.

Moreover, Lemma 6 ensures that azm ≥ Δ.
It follows that

C∗
max ≥ zazm ≥ zΔ.

Second case: P is relative to a β-partition of I.
In view of property (d), the number of elements ai ∈ A so that ai ≥ u1 in a1

1, . . . ,
a1
m, . . . , az−1

1 , . . . , az−1
m is at least m(z− 1). Focusing only on these m(z− 1) elements

ai ≥ u1, together with u1, we get m(z−1)+1 jobs with processing times greater than
or equal to u1 (we can ignore the other jobs). Then

C∗
max ≥

⌈
m(z − 1) + 1

m

⌉
u1 =

⌈
(z − 1) +

1

m

⌉
u1 = zu1.

Moreover, Lemma 7 ensures that u1 ≥ Δ, and so

C∗
max ≥ zΔ.

We are now in a position to show results about the performance ratio of the
proposed algorithm.

Theorem 2. If the procedure IPS returns a family P of z initial partial solutions
relative to an α-partition (or a β-partition) of I, then

Cmax

C∗
max

≤ z + 1

z
− 1

mz
if z > 1

and

Cmax = C∗
max if z = 1.
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Proof. If the procedure IPS returns only the m-set G1 (or only the set U), we
have an optimal solution. In fact, a1

1 = a1 = max{ai} (respectively, u1 = a1) and
C∗

max ≥ a1. If z > 1, let C ′
min = Cmin + 1

mΔ. Then

Cmax = Cmin + Δ = C ′
min − 1

m
Δ + Δ = C ′

min +

(
1 − 1

m

)
Δ.

Since

C∗
max ≥ C ′

min,

it follows that

Cmax ≤ C∗
max +

(
1 − 1

m

)
Δ.

Moreover, Theorem 1 states that C∗
max ≥ zΔ. We can conclude that

Cmax

C∗
max

≤ 1+
1

C∗
max

(
1 − 1

m

)
Δ ≤ 1+

1

zΔ

(
1 − 1

m

)
Δ = 1+

m− 1

mz
=

z + 1

z
− 1

mz
.

We exhibit an example that shows that the worst-case performance ratio of our
algorithm cannot be improved.

Example 6. Let us focus on the instance I = {1, 2, 3, 4, 5},M = {1, 2}, and
A = {3, 3, 2, 2, 2}. The optimal solution is obtained when jobs 1 and 2 are performed
by machine 1 and jobs 3, 4, and 5 are performed by machine 2. This solution is
associated with the completion time of the machines {3 + 3, 2 + 2 + 2} = {6, 6}, and
the related makespan is equal to 6.

The procedure IPS returns I1 = {I1
1 = {1}, I1

2 = {2}}, I2 = {I2
1 = {3}, I2

2 =
{4}}, I = {I3

1 = {5}, ∅}, G1 = {3, 3}, G2 = {2, 2}, and U = {2, 0}. Altogether,
MPS returns T = Ord(Ord(I1 � I2) � I} = {T1 = {1, 5, 4}, T2 = {2, 3}} and C =
Ord(Ord(G1 ⊕G2) ⊕ U) = {2 + 3 + 2, 0 + 3 + 2} = {7, 5}, and the related makespan
is equal to 7. Then

Cmax

C∗
max

=
7

6
and

z + 1

z
− 1

mz
=

4

3
− 1

6
=

7

6
.

4.1. Estimate of the worst-case performance ratio. We estimated the
worst-case performance ratio of our algorithm. In the following, it is supposed that
a1 ≥ · · · ≥ ai ≥ · · · ≥ an and ρ = a1

an
.

Proposition 1. The procedure IPS returns z initial partial solutions with z ≥
� n
mρ� ≥ 1.

Proof. The procedure IPS returns z initial partial solutions where each Ir1 , r =
1, . . . , z, is a singleton.

When IPS returns an α-partition of I, ar1 ≤ a1
1 = a1, r = 1, . . . , z, it follows that∑

j=1,...,m arj ≤ mar1 ≤ ma1, r = 1, . . . , z. Hence∑
i=1,...,n

ai =
∑

r=1,...,z

∑
j=1,...,m

arj ≤
∑

r=1,...,z

ma1 ≤ zma1.

When IPS returns a β-partition of I, ar1 ≤ a1
1 = a1, r = 1, . . . , z − 1, and

u1 ≤ a1
1 = a1, it follows that

∑
j=1,...,m arj ≤ mar1 ≤ ma1, r = 1, . . . , z − 1, and∑

j=1,...,p uj ≤ par1 ≤ mar1 ≤ ma1. Hence∑
i=1,...,n

ai =
∑

r=1,...,z−1

∑
j=1,...,m

arj +
∑

j=1,...,p

uj ≤
∑

r=1,...,z−1

ma1 + ma1 ≤ zma1.
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Summarizing, we obtain

z ≥

⎡
⎢⎢⎢

1

ma1

∑
i=1,...,n

ai

⎤
⎥⎥⎥ ≥

⌈ nan
ma1

⌉
=

⌈ n

mρ

⌉
.

Through Proposition 1 and Theorem 2, we immediately obtain the following re-
sult.

Corollary 1. The algorithm MPS returns a solution with

Cmax

C∗
max

≤ 1 +
1⌈
n
ρm

⌉ − 1

m
⌈

n
ρm

⌉ .
This estimate is very poor when ρ is very large, whereas, when ρ ≤ n

6m , the
estimate is better than the worst-case ratio of the LPT and MFD algorithms.

When a1 < 2an, we obtain the following results.
Proposition 2. For all instances so that a1 < 2an, the procedure IPS returns

z = � n
m� ≥ 1 initial partial solutions.

Proof. When IPS returns an α-partition of I, each Irj , r = 1, . . . , z and j = 1, . . . ,
m, is a singleton, while when IPS returns a β-partition of I, each Irj , r = 1, . . . , z− 1
and j = 1, . . . ,m, is a singleton, just like each Izj , j = 1, . . . , p, is also a singleton.

It follows that z = � n
m� ≥ 1.

Corollary 2. For all instances so that a1 < 2an, the algorithm MPS returns a
solution with

Cmax

C∗
max

≤ 1 +
1⌈
n
m

⌉ − 1

m
⌈

n
m

⌉ .
This estimate is better than the worst-case ratio of the LPT and MFD algorithms

when n
m ≥ 11

2 .

5. Computational results. First, we analyze the computational behavior of
the average worst-case ratio bound z+1

z − 1
mz of MPS and the average worst-case

ratio bound t+1
t − 1

mt given by Coffman and Sethi (1976) for the LPT approach, and
then we compare our bound with the MFD bound. The MPS and LPT algorithms
have been coded in Fortran 77 and run on the three families of instances that have
been used by Frangioni, Necciari, and Scutellà (2004).

In the first family of instances, denoted NONUNIFORM, the number of machines
m were 5, 10, and 25, the number of jobs n were 100, 500, and 1000, and the intervals
for the integer processing times were [1, 100], [1, 1000], and [1, 10000]. Ten instances
were randomly generated for each choice of m,n and of the processing time intervals,
for a total of 270 instances. The generator, which was presented by Frangioni, Nec-
ciari, and Scutellà, when an interval [a, b] of the processing times is given, produces
instances where 98% of the processing times are uniformly distributed in the interval
[(b − a)0.9, b], while the remaining processing times fall within the interval [a, (b −
a)0.02]. The generator is available from http://www.di.unipi.it/di/groups/optimize/
Data/index.html.

The last two families of instances have been derived from difficult bin packing in-
stances and are available at the OR-Library of J. E. Beasley from http://mscmga.ms.ic.
ac.uk/jeb/orlib/binpackinfo.html.



326 GIUSEPPE PALETTA AND PAOLAMARIA PIETRAMALA

Table 1

Behavior of the average worst-case ratio bounds on BINPACK instances.

LPT MPS

m n t+1
t

− 1
mt

sec. z+1
z

− 1
mz

sec.

[46,52] 120 1.32654 0.1 1.32654 0.1

[97,106] 250 1.33005 0.0 1.33005 0.1

[196,207] 500 1.33167 0.0 1.33167 0.3

[393,411] 1000 1.33250 0.1 1.33250 0.6

Table 2

Behavior of the average worst-case ratio bounds on TRIPLET instances.

LPT MPS

m n t+1
t

− 1
mt

sec. z+1
z

− 1
mz

sec.

20 60 1.31666 0.0 1.31666 0.0

40 120 1.32500 0.0 1.32500 0.0

83 249 1.32931 0.0 1.32931 0.1

167 501 1.33133 0.1 1.33133 0.1

In each instance of the last two families, the number of machines m is the number
of bins in the best known solution of bin packing instances. In the second family,
denoted BINPACK, the number of jobs n were 120, 250, 500, 1000, and the processing
times were uniformly distributed in [20, 100]. Twenty instances were generated for
each choice of n, for a total of 80 instances. In the third family, denoted TRIPLET,
the number of jobs n were 60, 120, 249, 501, and the processing times were in [25, 50].
Twenty instances were generated for each choice of n, for a total of 80 instances.

Tables 1, 2, and 3 compare the behavior of the average worst-case performance
bounds in BINPACK, TRIPLET, and NONUNIFORM instances. For each algorithm,
the entries give the average worst-case performance bound and the average running
time (expressed in seconds, on a Pentium III, 933 MHz, 256 MbRAM, and including
the sorting time). The worst-case performance bounds and the running times were
averaged for each group of 10 NONUNIFORM instances (Table 3), whereas they were
averaged for each group of 20 BINPACK and TRIPLET instances (Tables 1 and 2,
respectively).

All the instances of the three families (see Tables 1, 2, and 3) were solved very
quickly by both algorithms. The running time of MPS is only slightly higher than
the running time of LPT.

On NONUNIFORM instances (Table 3), the average worst-case ratio bound of
MPS is slightly better, whereas, on BINPACK and TRIPLET instances (Tables 1
and 2), MPS and LPT have the same average worst-case ratio bound. Because all
TRIPLET instances satisfy the property a1 < 2an, the average worst-case perfor-
mance bound of MPS can be computed by using Corollary 2.

The average worst-case ratio bounds of MPS and LPT decrease as the ratio n
m

increase (Table 3), whereas, when the ratio n
m is constant, the average worst-case

performance bounds of MPS and LPT decrease as m decreases (Tables 1 and 2).
As shown in Table 3, the average worst-case ratio bounds were independent from

the intervals within which the processing times of the jobs were generated (see each
row of the table) because, for each interval [a, b], the generator produced instances
where 98% of the processing times were distributed in the interval [(b− a)0.9, b].
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The average worst-case ratio bounds z+1
z − 1

mz and t+1
t − 1

mt were always better
than the worst-case ratio 13

11 + 1
2k ≈ 1.1818 of the MFD algorithm, except in instances

with n
m ≤ 4.

The numerical results computed by using Corollary 1 on BINPACK and NONUNI-
FORM instances were not reported because, as expected (n � 6mρ), they were very
poor.

6. Conclusions. We have designed a new approximation algorithm, which runs
in O(n log(n)+nm)-time as the LPT algorithm of Graham, for the scheduling problem
of independent jobs on identical parallel processors in order to minimize makespan.
The worst-case performance ratio of the algorithm is z+1

z − 1
mz , where z is the number

of initial partial solutions that are obtained by partitioning the set of jobs into z
families of subsets which satisfy suitable properties.

The computational results showed that our worst-case performance ratio outper-
forms the one of the MFD algorithm on a few instances taken from the literature,
except in instances with n

m ≤ 4. Also, our worst-case performance ratio bound is
comparable to that given by Coffman et al. for the LPT algorithm.

An estimate of our bound is also given, and it was quite good when n > 6mρ.

Acknowledgments. We are grateful both to the editor and to the referees for
their suggestions, which helped us to improve the presentation of this paper.
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1. Introduction. The kth Xor graph power of a graph G, G⊕k, is the graph
whose vertex set is the Cartesian product V (G)k, where two k-tuples are adjacent iff
an odd number of their coordinates is adjacent in G. This product was used in [21] to
construct edge colorings of the complete graph with two colors, containing a smaller
number of monochromatic copies of K4 than the expected number of such copies in
a random coloring.

In [4], the authors studied the independence number, α, and the clique number, ω,
of high Xor powers of a fixed graph G, motivated by problems in coding theory: cliques
and independent sets in such powers correspond to maximal codes satisfying certain
natural properties. It is shown in [4] that while the clique number of G⊕k is linear in

k, the independence number α(G⊕k) grows exponentially: the limit α(G⊕k)
1
k exists

and is in the range [
√
|V (G)|, |V (G)|]. Denoting this limit by xα(G), the problem of

determining xα(G) for a given graph G proves to be extremely difficult, even for simple
families of graphs. Using spectral techniques, it is proved in [4] that xα(Kn) = 2 for
n ∈ {2, 3, 4}, where Kn is the complete graph on n vertices, and it is conjectured that
xα(Kn) =

√
n for every n ≥ 4. The best upper bound given in [4] on xα(Kn) for

n ≥ 4 is n/2.
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The graph product we introduce in this work, which generalizes the Xor product,
is motivated by Ramsey theory. In [9], Erdős proved the existence of graphs on n
vertices without cliques or independent sets of size larger than O(log n) vertices, and
that in fact almost every graph satisfies this property. Ever since, there have been
many attempts to provide explicit constructions of such graphs. Throughout the
paper, without being completely formal, we call a graph “Ramsey” if it has neither
a “large” clique nor a “large” independent set. The famous Ramsey construction
of Frankl and Wilson [10] provided a family of graphs on n vertices, FWn, with a
bound of exp

(√
(2 + o(1)) logn log log n

)
on the independence and clique numbers,

using results from extremal finite set theory. Thereafter, constructions with the same
bound were produced in [3] using polynomial spaces and in [11] using low degree
matrices. Recently, the old Frankl–Wilson record was broken in [6], where the authors
provided, for any ε > 0, a polynomial-time algorithm for constructing a Ramsey graph
on n vertices without cliques or independent sets on exp ((logn)ε) vertices. The
disadvantage of this latest revolutionary construction is that it involves a complicated
algorithm, from which it is hard to tell the structure of the resulting graph.

Relating the above to graph products, the Xor product may be viewed as an
operator, ⊕k, which takes a fixed input graph G on n vertices and produces a graph
on nk vertices, H = G⊕k. The results of [4] imply that the output graph H satisfies
ω(H) ≤ nk = O(log(|V (H)|)), and that if G is a nontrivial d-regular graph, then
H is d′-regular, with d′ → 1

2 |V (H)| as k tends to infinity. Thus, ⊕k transforms any
nontrivial d-regular graph into a random looking graph, in the sense that it has an
edge density of roughly 1

2 and a logarithmic clique number. However, the lower bound

α(H) ≥
√
|V (H)|, which holds for every even k, implies that ⊕k cannot be used to

produce good Ramsey graphs.
In order to modify the Xor product into a method for constructing Ramsey graphs,

one may try to reduce the high lower bound on the independence numbers of Xor
graph powers. Therefore, we consider a generalization of the Xor graph product,
which replaces the modulo 2 (adjacency of two k-tuples is determined by the parity of
the number of adjacent coordinates) with some possibly larger modulo p ∈ N. Indeed,
we show that by selecting a larger p, the lower bound on the independence number,
α(H), is reduced from

√
|V (H)| to |V (H)|1/p, at the cost of a polynomial increase in

ω(H). The generalized product is defined as follows.
Definition 1.1. Let k, p ∈ N. The kth p-power of a graph G, denoted by Gk(p) ,

is the graph whose vertex set is the Cartesian product V (G)k, where two k-tuples are
adjacent iff the number of their coordinates which are adjacent in G is not congruent
to 0 modulo p, that is,

(u1, . . . , uk) (v1, . . . , vk) ∈ E(Gk) iff |{i : uivi ∈ E(G)}| �≡ 0 (mod p).

Throughout the paper, we use the abbreviation Gk for Gk(p) when there is no
danger of confusion.

In section 2 we show that the limit α(Gk)
1
k exists and equals supk α(Gk)

1
k ; denote

this limit by x
(p)
α . A simple lower bound on x

(p)
α is |V (G)|1/p, and algebraic arguments

show that this bound is nearly tight for the complete graph: x
(p)
α (Kn) = O(n1/p). In

particular, we obtain that

√
n ≤ xα(Kn) = x(2)

α (Kn) ≤ 2
√
n− 1,

improving the upper bound of n/2 for n ≥ 4 given in [4], and determining that the
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behavior of xα for complete graphs is as stated in Question 4.1 of [4] up to a factor
of 2.

For the special case G = Kn, it is possible to apply coding theory techniques in

order to bound x
(p)
α (G). The problem of determining x

(p)
α (Kn) can be translated into

finding the asymptotic maximum size of a code over the alphabet [n], in which the
Hamming distance between any two codewords is divisible by p. The related problem
for linear codes over a field has been well studied: see, e.g., [23] for a survey on this
subject. However, as we later note in section 2, the general nonlinear case proves
to be quite different, and the upper bounds on linear divisible codes do not hold for

x
(p)
α (Kn). Yet, other methods for bounding sizes of codes are applicable. In section 3

we demonstrate the use of Delsarte’s linear programming bound in order to obtain

precise values of α(K
k(3)

3 ). We show that α(K
k(3)

3 ) = 3k/2 whenever k ≡ 0 (mod 4),

while α(K
k(3)

3 ) < 1
23k/2 for k ≡ 2 (mod 4); hence the series α(K

k+1(3)

3 )/α(K
k(3)

3 ) does
not converge to a limit.

Section 4 gives a general bound on x
(p)
α for d-regular graphs in terms of their

eigenvalues, using Hoffman’s eigenvalue bound. The eigenvalues of p-powers of G are
calculated using tensor products of matrices over C, in a way somewhat similar to
performing a Fourier transform on the adjacency matrix of G. This method may also
be used to derive tight results on α(Gk(p)), and we demonstrate this on the above-
mentioned case of p = 3 and the graph K3, where we compare the results with those
obtained in section 3 by the Delsarte bound.

Section 5 shows, using tools from linear algebra, that indeed the clique number of
Gk(p) is polylogarithmic in k, and thus p-powers of graphs attaining the lower bound

of x
(p)
α are Ramsey. We proceed to show a relation between the Shannon capacity

of the complement of G, c(G), and the Ramsey properties of p-powers of G. Indeed,
for any nontrivial graph G, we can point out a large Ramsey-induced subgraph of
some p-power of G. The larger c(G) is, the larger these Ramsey subgraphs are. When

G = Kp for some prime p, we obtain that H = K
p2

(p)
p is a Ramsey graph matching the

bound of Frankl and Wilson, and in fact, H contains an induced subgraph which is a
modified variant of FWN1 for some N1 and is contained in another variant of FWN2

for some N2. The method of proving these bounds on Gk(p) provides yet another
(simple) proof for the Frankl–Wilson result.

2. Algebraic lower and upper bounds on x(p)
α . In this section, we define

the parameter x
(p)
α and provide lower and upper bounds for it. The upper bounds

follow from algebraic arguments, using graph representation by polynomials.

2.1. The limit of independence numbers of p-powers. The following lem-

ma establishes that x
(p)
α exists and gives simple lower and upper bounds on its range

for graphs on n vertices.
Lemma 2.1. Let G be a graph on n vertices, and let p ≥ 2. The limit of α(Gk(p))

1
k

as k → ∞ exists, and, denoting it by x
(p)
α (G), it satisfies

n1/p ≤ x(p)
α (G) = sup

k
α(Gk(p))

1
k ≤ n.

Proof. Observe that if I and J are independent sets of Gk and Gl, respectively,
then the set I×J is an independent set of Gk+l, as the number of adjacent coordinates
between any two k-tuples of I and between any two l-tuples of J is 0 (mod p).
Therefore, the function g(k) = α(Gk) is supermultiplicative and strictly positive, and
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we may apply Fekete’s lemma (cf., e.g., [15, p. 85]) to obtain that the limit of α(Gk)
1
k

as k → ∞ exists, and satisfies

(2.1) lim
k→∞

α(Gk)
1
k = sup

k
α(Gk)

1
k .

Clearly, α(Gk) ≤ nk, and it remains to show the lower bound on x
(p)
α . Notice that

the following set is an independent set of Gp:

I = { (u, . . . , u) : u ∈ V (G)} ⊂ Gp,

since for all u, v ∈ V (G) there are either 0 or p adjacent coordinates between the two

corresponding p-tuples in I. By (2.1), we obtain that x
(p)
α (G) ≥ |I|1/p = n1/p.

2.2. Bounds on x(p)
α of complete graphs. While the upper bound |V (G)|

on x
(p)
α (G) is clearly attained by an edgeless graph, proving that a family of graphs

attains the lower bound requires some effort. The next theorem states that complete
graphs achieve the lower bound of Lemma 2.1 up to a constant factor.

Theorem 2.2. The following holds for all integers n, p ≥ 2:

(2.2) x(p)
α (Kn) ≤ 2H(1/p)(n− 1)1/p,

where H(x) = −x log2(x) − (1 − x) log2(1 − x) is the binary entropy function. In

particular, x
(p)
α (Kn) = Θ(n1/p). In the special case where n = p = qr for some prime

q and r ≥ 1, the lower bound roughly matches the upper bound:

p
2

p+1 ≤ x(p)
α (Kp) ≤

(
ep2

)1/p
.

Taking p = 2 and noting that H( 1
2 ) = 1, we immediately obtain the following

corollary for Xor graph products, which determines the asymptotic behavior of xα for
complete graphs.

Corollary 2.3. For all n ≥ 2, the complete graph on n vertices satisfies
√
n ≤ xα(Kn) ≤ 2

√
n− 1.

Proof of Theorem 2.2. The upper bound will follow from an argument on poly-
nomial representations, an approach which was used in [3] to bound the Shannon
capacity of certain graphs. Take k ≥ 1, and consider the graph H = Kk

n. For every
vertex of H, u = (u1, . . . , uk), we define the following polynomial in R[xi,j ], where
i ∈ [k], j ∈ [n]:

(2.3) fu(x1,1, . . . , xk,n) =

�k/p	∏
t=1

(
k − tp−

k∑
i=1

xi,ui

)
.

Next, give the following assignment of values for {xi,j}, xv, to each v = (v1, . . . , vk) ∈
V (H):

(2.4) xi,j = δvi,j ,

where δ is the Kronecker delta. Definitions (2.3) and (2.4) imply that for every two
such vertices u = (u1, . . . , uk) and v = (v1, . . . , vk) in V (H),

(2.5) fu(xv) =

�k/p	∏
t=1

(
k − tp−

k∑
i=1

δui,vi

)
=

�k/p	∏
t=1

(|{i : ui �= vi}| − tp) .
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Notice that, by the last equation, fu(xu) �= 0 for all u ∈ V (H), and consider two
distinct nonadjacent vertices u, v ∈ V (H). The Hamming distance between u and v
(considered as vectors in Z

k
n) is by definition 0 (mod p) (and is not zero). Thus, (2.5)

implies that fu(xv) = 0.
Recall that for all u, the assignment xu gives values xi,j ∈ {0, 1} for all i, j, and

additionally
∑n

j=1 xi,j = 1 for all i. Therefore, it is possible to replace all occurrences

of xi,n by 1−
∑n−1

j=1 xi,j in each fu, and then proceed and reduce the obtained result
modulo the polynomials,⋃

i∈[k]

(
{x2

i,j − xi,j : j ∈ [n]} ∪ {xi,jxi,l : j, l ∈ [n], j �= l}
)
,

without affecting the value of the polynomials on the above-defined substitutions. In
other words, after replacing xi,n by 1−

∑
j<n xi,j , we repeatedly replace x2

i,j by xi,j ,
and let all the monomials containing xi,jxi,l for j �= l vanish. This gives a set of

multilinear polynomials {f̃u} satisfying

{
f̃u(xu) �= 0 for all u ∈ V (H),

f̃u(xv) = 0 for u �= v, uv /∈ E(H),

where the monomials of f̃u are of the form
∏r

t=1 xit,jt for some 0 ≤ r ≤ k
p �, a set of

pairwise distinct indices {it} ⊂ [k], and indices {jt} ⊂ [n− 1].
Let F = Span({f̃u : u ∈ V (H)}), and let I denote a maximum independent set

of H. A standard argument shows that F = {f̃u : u ∈ I} is linearly independent in
F . Indeed, suppose that

∑
u∈I auf̃u(x) = 0; then substituting x = xv for some v ∈ I

gives av = 0. It follows that α(H) ≤ dimF , and thus

(2.6) α(H) ≤
�k/p	∑
r=0

(
k

r

)
(n− 1)r ≤

(
2H(1/p)(n− 1)1/p

)k

,

where in the last inequality we used the fact that
∑

i≤λn

(
n
i

)
≤ 2nH(λ) (cf., e.g., the

remark following Corollary 4.2 in [2], and also [5, p. 242]). Taking the kth root and
letting k grow to ∞, we obtain

x(p)
α (Kn) ≤ 2H(1/p)(n− 1)1/p,

as required.

In the special case of Kp (that is, n = p), note that 2H( 1
p ) = p

1
p ( p

p−1 )
p−1
p ≤ (ep)

1
p

and hence in this case x
(p)
α (Kp) ≤ (ep2)1/p. If p = qr is a prime-power, we can provide

a nearly matching lower bound for x
(p)
α (Kp) using a construction of [4], which we

shortly describe for the sake of completeness.
Let L denote the set of all lines with finite slopes in the affine plane GF (p), and

write down the following vector w� for each � ∈ L, � = ax + b for some a, b ∈ GF (p):

w� = (a, ax1 + b, ax2 + b, . . . , axp + b),

where x1, . . . , xp denote the elements of GF (p). For every two distinct lines �, �′, if
�‖�′, then w�, w�′ has a single common coordinate (the slope a). Otherwise, w�, w�′

has a single common coordinate, which is the unique intersection of �, �′. In any case,
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we obtain that the Hamming distance of w� and w�′ is p; hence W = {w� : � ∈ L} is
an independent set in Kp+1

p . By (2.1), we deduce that

x(p)
α (Kp) ≥ p

2
p+1 ,

completing the proof.

Remark 2.4. The proof of Theorem 2.2 used representation of the vertices of Kk
n

by polynomials of kn variables over R. It is possible to prove a similar upper bound

on x
(p)
α (Kn) using a representation by polynomials of k variables over R. To see this,

use the natural assignment of xi = vi for v = (v1, . . . , vk), denoting it by xv, and
assign the following polynomial to u = (u1, . . . , uk):

(2.7) fu(x1, . . . , xk) =

�k/p	∏
t=1

(
k − tp−

k∑
i=1

n∏
j=1
j �=ui

xi − j

ui − j

)
.

The expression
∏

j �=ui

xi−j
ui−j is the monomial of the Lagrange interpolation polynomial

and is equal to δxi,ui
. Hence, we obtain that fu(xu) �= 0 for any vertex u, whereas

fu(xv) = 0 for any two distinct nonadjacent vertices u, v. As the Lagrange monomials
yield values in {0, 1}, we can convert each fu to a multilinear combination of these
polynomials, f̃u, while retaining the above properties. Note that there are n possibil-
ities for the Lagrange monomials (determined by the value of ui), and it is possible to
express one as a linear combination of the rest. From this point, a calculation similar
to that in Theorem 2.2 for the dimension of Span({f̃u : u ∈ V }) gives the upper bound
(2.2).

Remark 2.5. The value of α(K
k(p)
n ) corresponds to a maximum size of a code C

of k-letter words over Zn, where the Hamming distance between any two codewords
is divisible by p. The case of linear such codes when Zn is a field, that is, we add
the restriction that C is a linear subspace of Z

k
n, has been thoroughly studied; it is

equivalent to finding a linear subspace of Z

k
n of maximal dimension, such that the

Hamming weight of each element is divisible by p. It is known for this case that
if p and n are relatively prime, then the dimension of C is at most k/p (see [22]),
and hence the size of C is at most nk/p. However, this bound does not hold for the
nonlinear case (notice that this bound corresponds to the lower bound of Lemma 2.1).
We give two examples of this:

1. Take p = 3 and n = 4. The divisible code bound implies an upper bound

of 41/3 ≈ 1.587, and yet x
(3)
α (K4) ≥

√
3 ≈ 1.732. This follows from the

geometric construction of Theorem 2.2, which provides an independent set of

size 9 in K
4(3)

3 ⊂ K
4(3)

4 , using only the coordinates {0, 1, 2} (this result can
be slightly improved by adding an all-3 vector to the above construction in
the 12th power).

2. Take p = 3 and n = 2. The linear code bound is 21/3 ≈ 1.26, whereas the

following construction shows that α(K
12(3)

2 ) ≥ 24, implying that x
(3)
α (K2) ≥

241/12 ≈ 1.30. Let {v1, . . . , v12} denote the rows of a binary Hadamard matrix
of order 12 (such a matrix exists by Paley’s theorem; cf., e.g., [12]). For all
i �= j, vi and vj have precisely 6 common coordinates, and hence the set
I = {vi} ∪ {vi} (where vi denotes the complement of vi modulo 2) is an

independent set of size 24 in K
12(3)

2 . In fact, I is a maximum independent set
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of K
12(3)

2 , as Delsarte’s linear programming bound (described in section 3)

implies that α(K
12(3)

2 ) ≤ 24.

2.3. The value of x(3)
α (K3). While the upper bound of Theorem 2.2 on x

(p)
α (Kn)

is tight up to a constant factor, the effect of this constant on the independence num-
bers is exponential in the graph power, and we must resort to other techniques in
order to obtain more accurate bounds. For instance, Theorem 2.2 implies that

1.732 ≈
√

3 ≤ x(3)
α (K3) ≤ 2H( 1

3 )2
1
3 =

3

21/3
≈ 2.381.

In sections 3 and 4, we demonstrate the use of Delsarte’s linear programming bound
and Hoffman’s eigenvalue bound for the above problem, and in both cases obtain the

exact value of α(K
k(3)

3 ) under certain divisibility conditions. However, if we are merely
interested in the value of x

(3)
α (K3), a simpler consideration improves the bounds of

Theorem 2.2 and shows that x
(3)
α (K3) =

√
3.

Lemma 2.6. For any k ≥ 1, α(K
k(3)

3 ) ≤ 3·
√

3
k
, and in particular x

(3)
α (K3) =

√
3.

Proof. Treating vertices of Kk
3 as vectors of Z

k
3 , notice that every two vertices

x = (x1, . . . , xk) and y = (y1, . . . , yk) satisfy

k∑
i=1

(xi − yi)
2 ≡ |{i : xi �= yi}| (mod 3),

and hence if I is an independent set in Kk
3 , then

∑
i

(xi − yi)
2 ≡ 0 (mod 3) for all x, y ∈ I.

Let I denote a maximum independent set of Kk
3 , and let Ic = {x ∈ I :

∑
i x

2
i ≡ c

(mod 3)} for c ∈ {0, 1, 2}. For every c ∈ {0, 1, 2} we have

∑
i

(xi − yi)
2 = 2c− 2x · y ≡ 0 (mod 3) for all x, y ∈ Ic,

and hence x · y = c for all x, y ∈ Ic. Choose c for which |Ic| ≥ |I|/3, and subtract an
arbitrary element z ∈ Ic from all the elements of Ic. This gives a set J of size at least
|I|/3, which satisfies

x · y = 0 for all x, y ∈ J.

Since Span(J) is a self-orthogonal subspace of Z

k
3 , its dimension is at most k/2, and

hence |J | ≤ 3k/2. Altogether, α(Kk
3 ) ≤ 3 ·

√
3
k
, as required.

3. Delsarte’s linear programming bound for complete graphs. In this
section, we demonstrate how Delsarte’s linear programming bound may be used to
derive precise values of independence numbers in p-powers of complete graphs. As
this method was primarily used on binary codes, we include a short proof of the bound
for a general alphabet.
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3.1. Delsarte’s linear programming bound. The linear programming bound
follows from the relation between the distance distribution of codes and the Kraw-
tchouk polynomials, defined as follows.

Definition 3.1. Let n ∈ N and take q ≥ 2. The Krawtchouk polynomials Kn;q
k (x)

for k = 0, . . . , n are defined by

(3.1) Kn;q
k (x) =

k∑
j=0

(
x

j

)(
n− x

k − j

)
(−1)j(q − 1)k−j .

Definition 3.2. Let C be an n-letter code over the alphabet {1, . . . , q}. The
distance distribution of C, B0, B1, . . . , Bn, is defined by

Bk =
1

|C| |{(w1, w2) ∈ C2 : δ(w1, w2) = k}| (k = 0, . . . , n),

where δ denotes the Hamming distance.
The Krawtchouk polynomials {Kn;q

k (x)} are sometimes defined with a normalizing
factor of q−k. Also, it is sometimes customary to define the distance distribution with
a different normalizing factor, letting Ak = Bk

|C| , in which case Ak is the probability

that a random pair of codewords has a Hamming distance k.
The Krawtchouk polynomials {Kn;q

k : k = 0, . . . , n} form a system of orthogonal
polynomials with respect to the weight function w(x) = n!

Γ(1+x)Γ(n+1−x) (q−1)x, where

Γ is the gamma function. For further information on these polynomials see, e.g., [20].
Delsarte [7] (see also [18]) presented a remarkable method for bounding the max-

imal size of a code with a given set of restrictions on its distance distribution. This
relation is given in the next proposition, for which we include a short proof.

Proposition 3.3. Let C be a code of n-letter words over the alphabet [q], whose
distance distribution is B0, . . . , Bn. The following holds:

(3.2)

n∑
i=0

BiKn;q
k (i) ≥ 0 for all k = 0, . . . , n.

Proof. Let G = Z

n
q , and for every two functions f, g : G → C, define (as usual)

their inner product 〈f, g〉 and their delta-convolution, f ∗ g, as

〈f, g〉 =

∫
G

f(x)g(x)dx =
1

|G|
∑
T∈G

f(T )g(T ),

(f ∗ g)(s) =

∫
G

f(x)g(x− s)dx.

Denoting the Fourier expansion of f by f =
∑

S∈G f̂(S)χS , where χS(x) = ωS·x and
ω is the qth root of unity, it follows that for any k = 0, . . . , n,

(3.3)
∑

S∈G:|S|=k

f̂(S) =
1

|G|

n∑
i=0

Kn;q
k (i)

∑
T∈G:|T |=i

f(T ),

where |S| and |T | denote the Hamming weights of S, T ∈ G. Since the delta-
convolution satisfies

̂f ∗ g(S) = f̂(S)ĝ(S),
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every f satisfies

(3.4) ̂f ∗ f(S) = |f̂(S)|2 ≥ 0.

Let f denote the characteristic function of the code C, f(x) = 1{x∈C}, and notice
that

(f ∗ f)(S) =
1

|G|
∑
T∈G

f(T )f(T − S) =
1

|G| |{T : T, T − S ∈ C}|,

and thus

(3.5) Bi =
|G|
|C|

∑
T :|T |=i

(f ∗ f)(T ).

Putting together (3.3), (3.4), and (3.5), we obtain

0 ≤
∑

S:|S|=k

̂f ∗ f(S) =
1

|G|

n∑
i=0

Kn;q
k (i)

∑
T :|T |=i

(f ∗ f)(T ) =
|C|
|G|2

n∑
i=0

Kn;q
k (i)Bi,

as required.
Let F ⊂ [n] be a set of forbidden distances between distinct codewords. Since

|C| =
∑

i Bi, the following linear program provides an upper bound on the size of any
code with no pairwise distances specified by F :

maximize
∑
i

Bi subject to the constraints

⎧⎪⎪⎨
⎪⎪⎩

B0 = 1,
Bi ≥ 0 for all i,
Bi = 0 for all i ∈ F,∑n

i=0 BiKn;q
k (i) ≥ 0 for all k = 0, . . . , n.

By examining the dual program, it is possible to formulate this bound as a minimiza-
tion problem. The following proposition has been proved in various special cases (cf.,
e.g., [8], [16]). For the sake of completeness, we include a short proof of it.

Proposition 3.4. Let C be a code of n-letter words over the alphabet [q], whose
distance distribution is B0, . . . , Bn. Let P (x) =

∑n
k=0 αkKn;q

k (x) denote an n-degree
polynomial over R. If P (x) has the two properties

α0 > 0 and αi ≥ 0 for all i = 1, . . . , n,(3.6)

P (d) ≤ 0 whenever Bd > 0 for d = 1, . . . , n,(3.7)

then |C| ≤ P (0)/α0.
Proof. The MacWilliams transform of the vector (B0, . . . , Bn) is defined as follows:

(3.8) B′
k =

1

|C|

n∑
i=0

Kn;q
k (i)Bi.

By the Delsarte inequalities (stated in Proposition 3.3), B′
k ≥ 0, and furthermore

B′
0 =

1

|C|

n∑
i=0

Kn;q
0 (i)Bi =

1

|C|
∑
i

Bi = 1.
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Therefore, as (3.6) guarantees that αi ≥ 0 for i > 0, we get

(3.9)

n∑
k=0

αkB
′
k ≥ α0.

On the other hand, B0 = 1, and by (3.7), whenever Bi > 0 for some i > 0 we have
P (i) ≤ 0, and thus

(3.10)

n∑
i=0

BiP (i) ≤ P (0).

Combining (3.9) and (3.10) with (3.8) gives

α0 ≤
n∑

k=0

αkB
′
k =

1

|C|

n∑
i=0

Bi

n∑
k=0

αkKn;q
k (i) =

1

|C|

n∑
i=0

BiP (i) ≤ P (0)

|C| ,

and the result follows.

We proceed with an application of the last proposition in order to bound the
independence numbers of p-powers of complete graphs. In this case, the distance
distribution is supported by {i : i ≡ 0 (mod p)}, and in section 3.2 we present
polynomials which satisfy the properties of Proposition 3.4 and provide tight bounds

on α(K
k(3)

3 ).

3.2. Improved estimations of α(K
k(3)

3 ). Recall that the geometric construc-

tion of Theorem 2.2 describes an independent set of size p2 in K
p+1(p)
p for every p,

which is a prime-power. In particular, this gives an independent set of size 3k/2 in

K
k(3)

3 for every k ≡ 0 (mod 4). Using Proposition 3.4 we are able to deduce that
indeed α(Kk

3 ) = 3k/2 whenever k ≡ 0 (mod 4), whereas for k ≡ 2 (mod 4) we prove
that α(Kk

3 ) < 1
23k/2.

Theorem 3.5. The following holds for any even integer k:

{
α(Kk

3 ) = 3k/2, k ≡ 0 (mod 4),
1
33k/2 ≤ α(Kk

3 ) < 1
23k/2, k ≡ 2 (mod 4).

Proof. Let k be an even integer, and define the following polynomials:

P (x) =
2

3
3k/2 +

k∑
t=1

t�≡0(mod 3)

Kk;3
t (x),(3.11)

Q(x) =
2

3
3k/2 +

k∑
t=0

t≡0(mod 3)

Kk;3
t (x).(3.12)

Clearly, both P and Q satisfy (3.6), as Kn;q
0 = 1 for all n, q. It remains to show

that P,Q satisfy (3.7) and to calculate P (0), Q(0). As the following calculation will
prove useful later on, we perform it for a general alphabet q and a general modulo p.
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Denoting the qth root of unity by ω = e2πi/q, we have

k∑
t=0

t≡0(mod p)

Kk;q
t (s) =

k∑
t=0

t≡0(mod p)

t∑
j=0

(
s

j

)(
k − s

t− j

)
(−1)j(q − 1)t−j

=

s∑
j=0

(
s

j

)
(−1)j

k−s∑
l=0

j+l≡0(mod p)

(
k − s

l

)
(q − 1)l

=

s∑
j=0

(
s

j

)
(−1)j

k−s∑
l=0

(
k − s

l

)
(q − 1)l

1

q

q−1∑
t=0

ω(j+l)t

= δs,0 · qk−1 +
1

q

q−1∑
t=1

(1 + (q − 1)ωt)k−s(1 − ωt)s,(3.13)

where the last equality is by the fact that
∑s

j=0

(
s
j

)
(−1)j = δs,0, and therefore the

summand for t = 0 vanishes if s �= 0 and is equal to qk−1 if s = 0. Repeating the
above calculation for t �≡ 0 (mod p) gives

k∑
t=0

t�≡0(mod p)

Kk;q
t (s) =

s∑
j=0

(
s

j

)
(−1)j

k−s∑
l=0

(
k − s

l

)
(q − 1)l

(
1 − 1

q

q−1∑
t=0

ω(j+l)t

)

= δs,0 · (qk − qk−1) − 1

q

q−1∑
t=1

(1 + (q − 1)ωt)k−s(1 − ωt)s.(3.14)

Define

ξs =
1

q

q−1∑
t=1

(1 + (q − 1)ωt)k−s(1 − ωt)s,

and consider the special case p = q = 3. The fact that ω2 = ω implies that
(3.15)

ξs =
2

3
Re

(
(1 + 2ω)k−s(1 − ω)s

)
=

2

3
Re

(
(
√

3i)k−s(
√

3e−
π
6 i)s

)
=

2

3

√
3
k
cos

(
πk

2
− 2πs

3

)
,

and for even values of k and s ≡ 0 (mod 3) we deduce that

(3.16) ξs =
2

3
3k/2(−1)k/2.

Therefore, ξs = 2
33k/2 whenever s ≡ 0 (mod 3) and k ≡ 0 (mod 4), and (3.14) gives

the following for any k ≡ 0 (mod 4):

P (0) =
2

3
3k/2 +

2

3
3k − ξ0 =

2

3
3k,

P (s) =
2

3
3k/2 − ξs = 0 for any 0 �= s ≡ 0 (mod 3).

Hence, P (x) satisfies the requirements of Proposition 3.4 and we deduce that for any
k ≡ 0 (mod 4),

α(Kk
3 ) ≤ P (0)

2
33k/2

= 3k/2.
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As mentioned before, the construction used for the lower bound on x
(p)
α (K3) implies

that this bound is indeed tight whenever 4 | k.
For k ≡ 2 (mod 4) and s ≡ 0 (mod 3) we get ξs = − 2

33k/2, and by (3.13) we get

Q(0) =
2

3
3k/2 + 3k−1 + ξ0 = 3k−1,

Q(s) =
2

3
3k/2 + ξs = 0 for any 0 �= s ≡ 0 (mod 3).

Again, Q(x) satisfies the requirements of Proposition 3.4 and we obtain the following
bound for k ≡ 2 (mod 4):

α(Kk
3 ) ≤ Q(0)

2
33k/2 + 1

=
3k

2 · 3k/2 + 3
<

1

2
3k/2.

To conclude the proof, take a maximum independent set of size
√

3
l

in Kl
3, where

l = k − 2, for a lower bound of 1
33k/2.

4. Hoffman’s bound on independence numbers of p-powers. In this sec-
tion we apply spectral analysis in order to bound the independence numbers of p-
powers of d-regular graphs. The next theorem generalizes Theorem 2.9 of [4] by
considering tensor powers of adjacency matrices whose values are pth roots of unity.

Theorem 4.1. Let G be a nontrivial d-regular graph on n vertices, whose eigen-
values are d = λ1 ≥ λ2 ≥ · · · ≥ λn, and let λ = max{λ2, |λn|}. The following holds
for any p ≥ 2:
(4.1)

x(p)
α (G) ≤ max

{√
n2 − 2

(
1 − cos

(
2π

p

))
d(n− d), λ

√
2 − 2 cos

(
2π

p

⌊p
2

⌋)}
.

Proof. Let A = AG denote the adjacency matrix of G, and define the matrices Bt

for t ∈ Zp as follows:

(4.2) Bt = Jn + (ωt − 1)A,

where ω = e2πi/p is the pth root of unity, and Jn is the all-ones matrix of order n. In
other words,

(Bt)uv = ωtAuv =

{
ωt if uv ∈ E(G),
1 if uv /∈ E(G).

By the definition of the matrix tensor product ⊗, it follows that for all u = (u1, . . . , uk)
and v = (v1, . . . , vk) in Gk,

(B⊗k
t )u,v = ωt|{i : uivi∈E(G)}|,

and

p−1∑
t=0

(B⊗k
t )u,v =

{
p if |{i : uivi ∈ E(G)}| ≡ 0 (mod p),
0 otherwise.

Recalling that uv ∈ E(Gk) iff |{i : uivi ∈ E(G)}| �≡ 0 (mod p), we get

(4.3) AGk = Jnk − 1

p

p−1∑
t=0

B⊗k
t =

p− 1

p
Jnk − 1

p

p−1∑
t=1

B⊗k
t .



GRAPH POWERS, DELSARTE, HOFFMAN, RAMSEY, AND SHANNON 341

The above relation enables us to obtain expressions for the eigenvalues of Gk and then
apply the following bound, proved by Hoffman (see [13], [17]): every regular nontrivial
graph H on N vertices, whose eigenvalues are μ1 ≥ · · · ≥ μN , satisfies

(4.4) α(H) ≤ −NμN

μ1 − μN
.

Recall that Jn has a single nonzero eigenvalue of n corresponding to the all-ones
vector 1. Hence, (4.2) implies that 1 is an eigenvector of Bt with an eigenvalue of
n + (ωt − 1)d, and the remaining eigenvalues of Bt are {(ωt − 1)λi : i > 1}. By well-
known properties of tensor products, we obtain that the largest eigenvalue of H = Gk

(which is its degree of regularity) is

μ1 = nk − 1

p

p−1∑
t=0

(n + (ωt − 1)d)k = nk − 1

p

k∑
j=0

(
k

j

)
(n− d)k−jdj

p−1∑
t=0

ωjt

= nk −
k∑

j=0
j≡0(mod p)

(
k

j

)
(n− d)k−jdj ,(4.5)

and the remaining eigenvalues are of the form

(4.6) μ(λi1 , . . . , λis) = −1

p

p−1∑
t=1

(n + (ωt − 1)d)k−s
s∏

j=1

(ωt − 1)λij ,

where 0 < s ≤ k and 1 < ij ≤ n for all j (corresponding to an eigenvector which is a
tensor-product of the eigenvectors of λij for j = 1, . . . , s and 1⊗k−s). The following
holds for all such choices of s and {λij}:

|μ(λi1 , . . . , λis)| ≤ max
1≤t≤p−1

∣∣∣∣(n + (ωt − 1)d)k−s
s∏

i=1

(ωt − 1)λij

∣∣∣∣
≤ max

1≤t≤p−1
|n + (ωt − 1)d|k−s(|ωt − 1|λ)s

≤ max
1≤t≤p−1

(
max{|n + (ωt − 1)d|, λ|ωt − 1|}

)k
.

Since for any 1 ≤ t ≤ p− 1 we have

|n + (ωt − 1)d|2 = n2 − 2

(
1 − cos

(
2πt

p

))
d(n− d) ≤ n2 − 2

(
1 − cos

(
2π

p

))
d(n− d),

|ωt − 1|2 = 2 − 2 cos

(
2πt

p

)
≤ 2 − 2 cos

(
2π

p

⌊p
2

⌋)
,

it follows that

|μ(λi1 , . . . , λis)| ≤ (max{ρ1, ρ2})k,

where

ρ1 =

√
n2 − 2

(
1 − cos

(
2π

p

))
d(n− d),

ρ2 = λ

√
2 − 2 cos

(
2π

p

⌊p
2

⌋)
.
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By the same argument, (4.5) gives

|μ1| ≥ nk − ρk1 ,

and applying Hoffman’s bound (4.4), we get

(4.7) α(Gk) ≤ −nkμnk

μ1 − μnk

≤ (max{ρ1, ρ2})k

1 − (ρ1

n )k + (max{ρ1,ρ2}
n )k

.

To complete the proof, we claim that max{ρ1, ρ2} ≤ n, and hence the denominator
in the expression above is Θ(1) as k → ∞. Clearly, ρ1 ≤ n, and a simple argument
shows that λ ≤ n/2 and hence ρ2 ≤ n as well. To see this, consider the matrix A2

whose diagonal entries are d; we have

nd = trA2 =
∑
i

λ2
i ≥ d2 + λ2,

implying that λ ≤
√
d(n− d) ≤ n

2 . Altogether, taking the kth root and letting k tend

to ∞ in (4.7), we obtain that x
(p)
α (G) ≤ max{ρ1, ρ2}, as required.

Examples. For p = 2, 3 the above theorem gives

x(2)
α (G) ≤ max{|n− 2d|, 2λ},

x(3)
α (G) ≤ max{

√
n2 − 3d(n− d),

√
3λ}.

Since the eigenvalues of K3 are {2,−1,−1}, this immediately provides another

proof for the fact that x
(3)
α (K3) ≤

√
3. Note that, in general, the upper bounds derived

in this method for x
(p)
α (Kn) are useful only for small values of n, and tend to n as

n → ∞, whereas by the results of section 2 we know that x
(p)
α (Kn) = Θ(n1/p).

Consider d = d(n) = n
2 + O(

√
n ), and let G ∼ Gn,d denote a random d-regular

graph on n vertices. By the results of [14], λ = max{λ2, |λn|} = O(n3/4), and thus

Theorem 4.1 implies that x
(2)
α (G) = O(n3/4), and x

(3)
α (G) ≤ (1+o(1))n2 . We note that

one cannot hope for better bounds on x
(3)
α in this method, as ρ1 attains its minimum

at d = n
2 .

Remark 4.2. The upper bound (4.1) becomes weaker as p increases. However,
if p is divisible by some q ≥ 2, then clearly any independent set of Gk(p) is also

an independent set of Gk(q) , and in particular x
(p)
α (G) ≤ x

(q)
α (G). Therefore, when

applying Theorem 4.1 on some graph G, we can replace p by the minimal q ≥ 2, which

divides p. For instance, x
(4)
α (G) ≤ x

(2)
α (G) ≤ max{|n− 2d|, 2λ}, whereas substituting

p = 4 in (4.1) gives the slightly weaker bound x
(4)
α (G) ≤ {

√
(n− d)2 + d2, 2λ}.

Remark 4.3. In the special case G = Kn, the eigenvalues of G are {n − 1,−1,
. . . ,−1}, and the general expression for the eigenvalues of Gk in (4.6) takes the form
(note that λij = −1 for all 1 ≤ j ≤ s)

μ(s) = −1

p

p−1∑
t=1

(1 + (n− 1)ωt)k−s(1 − ωt)s,

and as s > 0, we obtain the following from (3.14):

μ(s) =
k∑

t=0
t�≡0(mod p)

Kk;q
t (s).
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Similarly, comparing (4.5) to (3.14) gives

μ1 =

k∑
t=0

t�≡0(mod p)

Kk;q
t (0).

It is possible to deduce this result directly, as Kk
n is a Cayley graph over Z

k
n with the

generator set S = {x : |x| �≡ 0 (mod p)}, where |x| denotes the Hamming weight of
x. It is well known that the eigenvalues of a Cayley graph are equal to the character
sums of the corresponding group elements. Since for any k = 0, . . . , n and any x ∈ Z

k
n

the Krawtchouk polynomial Kn;q
k satisfies

Kn;q
k (|x|) =

∑
y∈Zk

n:|y|=k

χy(x),

the eigenvalue corresponding to y ∈ Z

k
n is

μ(y) =
∑
x∈S

χx(y) =

k∑
t=0

t�≡0 (mod p)

∑
x:|x|=t

χx(y) =

k∑
t=0

t�≡0 (mod p)

Kk;q
t (|y|).

Remark 4.4. The upper bound on x
(p)
α was derived from an asymptotic analysis

of the smallest eigenvalue μnk of Gk. Tight results on α(Gk) may be obtained by
a careful analysis of the expression in (4.6). To illustrate this, we consider the case
G = K3 and p = 3. Combining the previous remark with (3.14) and (3.15), we obtain

that the eigenvalues of K
k(3)

3 are

μ1 =
2

3
3k − 2

3

√
3
k
cos

(
πk

2

)
,

μ(s) = −2

3

√
3
k
cos

(
πk

2
− 2πs

3

)
for 0 < s ≤ k.

Noticing that μ(s) depends only on the values of s (mod 3) and k (mod 4), we can
determine the minimal eigenvalue of Gk for each given power k and deduce that

α(Gk) ≤ 3k/2 if k ≡ 0 (mod 4),

α(Gk) ≤ 3k+1

3 + 2 · 3(k+1)/2
<

1

2
3(k+1)/2 if k ≡ 1 (mod 2),

α(Gk) ≤ 3k

3 + 2 · 3k/2 <
1

2
3k/2 if k ≡ 2 (mod 4),

matching the results obtained by the Delsarte linear programming bound.

5. Ramsey subgraphs in large p-powers of any graph. In order to prove a
polylogarithmic upper bound on the clique sizes of p-powers of a graph G, we use an
algebraic argument, similar to the method of representation by polynomials described
in the section 2. We note that the same approach provides an upper bound on the
size of independent sets. However, for this latter bound, we require another property,
which relates the problem to strong graph products and to the Shannon capacity of
a graph.
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The kth strong power of a graph G (also known as the and power), denoted by
G∧k, is the graph whose vertex set is V (G)k, where two distinct k-tuples u �= v are
adjacent iff each of their coordinates is either equal or adjacent in G:

(u1, . . . , uk)(v1, . . . , vk) ∈ E(G∧k) iff for all i = 1, . . . , k : ui = vi or uivi ∈ E(G).

In 1956, Shannon [19] related the independence numbers of strong powers of a fixed
graph G to the effective alphabet size in a zero-error transmission over a noisy channel.
Shannon showed that the limit of α(G∧k)

1
k as k → ∞ exists and equals supk α(G∧k)

1
k ,

by supermultiplicativity; this limit is denoted by c(G), the Shannon capacity of G. It
follows that c(G) ≥ α(G), and in fact equality holds for all perfect graphs. However,
for nonperfect graphs, c(G) may exceed α(G), and the smallest (and most famous)
example of such a graph is C5, the cycle on 5 vertices, where α(C5) = 2 and yet

c(C5) ≥ α(C∧2
5 )

1
2 =

√
5. The seemingly simple question of determining the value of

c(C5) was solved only in 1979 by Lovász [17], who introduced the ϑ-function to show
that c(C5) =

√
5.

The next theorem states the bound on the clique numbers of Gk(p) and relates
the Shannon capacity of G, the complement of G, to bounds on independent sets of
Gk(p) .

Theorem 5.1. Let G denote a graph on n vertices and let p ≥ 2 be a prime. The
clique number of Gk(p) satisfies

(5.1) ω(Gk(p)) ≤
(
kn + p− 1

p− 1

)
,

and if I is an independent set of both Gk(p) and G
∧k

, then

(5.2) |I| ≤
(
kn + k

p �
k
p �

)
.

Moreover, if in addition G is regular, then

(5.3) ω(Gk(p)) ≤
(
k(n− 1) + p

p− 1

)
, |I| ≤

(
k(n− 1) + k

p � + 1

k
p �

)
.

The above theorem implies that if S is an independent set of G
∧k

, then any
independent set I of Gk(p) [S], the induced subgraph of Gk(p) on S, satisfies inequality
(5.2). For large values of k, by definition there exists such a set S of size roughly
c(G)k. Hence, there are induced subgraphs of Gk(p) of size tending to c(G)k whose
clique number and independence number are bounded by the expressions in (5.1) and
(5.2), respectively.

In the special case G = Kn, the graph G
∧k

is an edgeless graph for any k, and
hence

α(K
k(p)
n ) ≤

(
k(n− 1) + k

p � + 1

k
p �

)
≤ (ep(n− 1) + e + o(1))

k/p
,

where the o(1)-term tends to 0 as k → ∞. This implies an upper bound on x
(p)
α (Kn)

which nearly matches the upper bound of Theorem 2.2 for large values of p.
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Proof. Let g1 : V (G) → Z

m
p and g2 : V (G) → C

m, for some integer m, denote two
representations of G by m-dimensional vectors satisfying the following for any (not
necessarily distinct) u, v ∈ V (G):

(5.4)

{
gi(u) · gi(v) = 0 if uv ∈ E(G)
gi(u) · gi(v) = 1 otherwise

(i = 1, 2).

It is not difficult to see that such representations exist for any graph G. For instance,
the standard basis of n-dimensional vectors is such a representation for G = Kn. In
the general case, it is possible to construct such vectors inductively, in a way similar
to a Gram–Schmidt orthogonalization process. To see this, define the lower diagonal
|V (G)| × |V (G)| matrix M as follows:

Mk,i =

⎧⎪⎪⎨
⎪⎪⎩

−
∑i−1

j=1 Mk,jMi,j , i < k, vivk ∈ E(G),

1 −
∑i−1

j=1 Mk,jMi,j , i < k, vivk /∈ E(G),

1, i = k,
0, i > k.

The rows of M satisfy (5.4) for any distinct u, v ∈ V (G), and it remains to modify the
inner product of any vector with itself into 1 without changing the inner products of
distinct vectors. This is clearly possible over Zp and C using additional coordinates.

Consider Gk(p) , and define the vectors wu = g1(u1)◦· · ·◦g1(uk) for u = (u1, . . . , uk)
∈ V (Gk), where ◦ denotes vector concatenation. By definition

wu · wv ≡ k − |{i : uivi ∈ E(G)}| (mod p)

for any u, v ∈ V (Gk), and hence if S is a maximum clique of Gk, then wu · wv �≡ k
(mod p) for any u, v ∈ S. It follows that if B is the matrix whose columns are wu for
u ∈ S, then C = BtB has values which are k (mod p) on its diagonal and entries which
are not congruent to k modulo p anywhere else. Clearly, rank(C) ≤ rank(B), and
we claim that rank(B) ≤ kn, and that, furthermore, if G is regular, then rank(B) ≤
k(n− 1) + 1. To see this, notice that as the dimension of Span({g1(u) : u ∈ V }) is at
most n, the dimension of the span of {wu : u ∈ Gk} is at most kn. If in addition G
is regular, define z =

∑
u∈V g1(u) (assuming without loss of generality that z �= 0),

and observe that by (5.4), each of the vectors wu is orthogonal to the following k− 1
linearly independent vectors:

(5.5) {z ◦ (−z) ◦ 0◦(k−2), 0 ◦ z ◦ (−z) ◦ 0◦(k−3), . . . , 0◦(k−2) ◦ z ◦ (−z)}.

Similarly, the vectors w′
u = g2(u1) ◦ · · · ◦ g2(uk) satisfy the following for any u, v ∈

V (Gk):

w′
u · w′

v = k − |{i : uivi ∈ E(G)}|.

Let I denote an independent set of Gk(p) , which is also an independent set of G
∧k

.

By the definition of G
∧k

, every u, v ∈ I shares a coordinate i such that uivi ∈ E(G),
and combining this with the definition of Gk(p) , we obtain

0 < |{i : uivi ∈ E(G)}| ≡ 0 (mod p) for any u, v ∈ I.

Therefore, for any u �= v ∈ I,

w′
u · w′

v = k − tp for some t ∈
{

1, . . . ,

⌊
k

p

⌋}
,
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and if B′ is the matrix whose columns are w′
u for u ∈ I, then C ′ = B′tB′ has the entries

k on its diagonal and entries of the form k − tp, 0 < t ≤ k
p �, anywhere else. Again,

the definition of g2 implies that rank(C ′) ≤ kn, and in case G is regular, rank(C ′) ≤
k(n− 1) + 1 (each w′

u is orthogonal to the vectors of (5.5) for z =
∑

u∈V g2(u)).
Define the following polynomials:

(5.6) f1(x) =
∏
j∈Zp

j �≡k(mod p)

(j − x), f2(x) =

� k
p 	∏

t=1

(k − tp− x).

By the discussion above, the matrices D, D′ obtained by applying f1, f2 on each
element of C, C ′, respectively, are nonzero on the diagonal and zero anywhere else,
and, in particular, they are of full rank: rank(D) = |S| and rank(D′) = |I|. Recalling
that the ranks of C and C ′ are at most kn, and at most k(n− 1) + 1 if G is regular,
the proof is completed by the following simple lemma of [1].

Lemma 5.2 (see [1]). Let B = (bi,j) be an n× n matrix of rank d, and let P (x)
be an arbitrary polynomial of degree k. Then the rank of the n × n matrix (P (bi,j))

is at most
(
k+d
k

)
. Moreover, if P (x) = xk, then the rank of (P (bi,j)) is at most(

k+d−1
k

)
.

For large values of k, the upper bounds provided by the above theorem are

ω(H) ≤
(

(1 + o(1))kn

p

)
,

α(H) ≤
(

(1 + o(1))kn

k/p

)
.

This gives the following immediate corollary, which states that large p-powers of any
nontrivial graph G contain a large induced subgraph without large homogeneous sets.

Corollary 5.3. Let G be some fixed nontrivial graph and fix a prime p.
1. Let S denote a maximum clique of G, and set λ = logω(G) = logα(G). For

any k, the induced subgraph of Gk(p) on Sk, H = Gk(p) [Sk], is a graph on
N = exp(kλ) vertices which satisfies

ω(H) = O(logp N), α(H) ≤ N (1+o(1)) log(np)+1
pλ .

2. The above formula holds when taking λ = logα(G
∧�

)
� for some � ≥ 1 divid-

ing k, S a maximum clique of G
∧�

, and H = Gk(p) [Sk/�]. In particu-
lar, for sufficiently large values of k, Gk(p) has an induced subgraph H on
N = exp

(
(1 − o(1))k log c(G)

)
vertices satisfying

ω(H) = O(logp N), α(H) ≤ N
(1+o(1)) log(np)+1

p log c(G) .

Remark 5.4. In the special case G = Kn, where n, p are large and k > p,
the bound on ω(Kk

n) is
(
(1+o(1))kn

p

)
, whereas the bound on α(Kk

n) is
(
(1+o(1))kn

k/p

)
.

Hence, the optimal mutual bound on these parameters is obtained at k = p2. Writing
H = Kk

n, N = nk = np2

, and p = nc for some c > 0, we get

p =

√
(2c + o(1)) logN

log logN
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and

max{ω(H), α(H)} ≤ ((1 + o(1))epn)
p

= exp

((
1 + c√

2c
+ o(1)

)√
logN log logN

)
.

The last expression is minimized for c = 1, and thus the best Ramsey construction in
p-powers of Kn is obtained at p = n and k = p2, giving a graph H on N vertices with
no independence set or clique larger than exp

(
(1 + o(1))

√
2 logN log logN

)
vertices.

This special case matches the bound of the Frankl–Wilson Ramsey construction, and
is in fact closely related to that construction, as we next describe.

The graph FWN , where N =
(

p3

p2−1

)
for some prime p, is defined as follows: its

vertices are the N possible choices of (p2−1)-element sets of [p3], and two vertices are
adjacent iff the intersection of their corresponding sets is congruent to −1 modulo p.

Observe that the vertices of the graph K
k(p)
n for n = p and k = p2, as described above,

can be viewed as k-element subsets of [kn], where the choice of elements is restricted
to precisely one element from each of the k subsets {(j−1)n+1, . . . , jn}, j ∈ [k] (the
jth subset corresponds to the jth coordinate of the k-tuple). In this formulation, the
intersection of two sets corresponds to the number of common coordinates between
the corresponding k-tuples. As k = p2 ≡ 0 (mod p), it follows that two vertices in

K
p2
(p)

p are adjacent iff the intersection of their corresponding sets is not congruent to 0

modulo p. Altogether, we obtain that K
p2
(p)

p is an induced subgraph of a slight variant
of FWN , where the differences are in the cardinality of the sets and the criteria for
adjacency.

Another relation between the two constructions is the following: one can identify

the vertices of K
p3
(p)

2 with all possible subsets of [p3], where two vertices are adjacent
iff the intersection of their corresponding sets is not congruent to 0 modulo p. In

particular, K
p3
(p)

2 contains all the (p2 − 1)-element subsets of [p3], a variant of FWN

for the above value of N (the difference lies in the criteria for adjacency).
We note that the method of proving Theorem 5.1 can be applied to the graph

FWN , giving yet another simple proof for the properties of this well-known construc-
tion.

Acknowledgment. The authors would like to thank Simon Litsyn and Benny
Sudakov for useful discussions.
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[20] G. Szegő, Orthogonal Polynomials, 4th ed., Amer. Math. Soc. Colloq. Publ. 23, AMS, Provi-

dence, RI, 1975.
[21] A. Thomason, Graph products and monochromatic multiplicities, Combinatorica, 17 (1997),

pp. 125–134.
[22] H. N. Ward, Divisible codes, Arch. Math. (Basel), 36 (1981), pp. 485–494.
[23] H. N. Ward, Divisible codes: A survey, Serdica Math. J., 27 (2001), pp. 263–278.



SIAM J. DISCRETE MATH. c© 2007 Society for Industrial and Applied Mathematics
Vol. 21, No. 2, pp. 349–360

ON MAXIMUM COST KT,T -FREE T -MATCHINGS OF BIPARTITE
GRAPHS∗

MÁRTON MAKAI†

Abstract. Frank examined the maximum Kt,t-free t-matching problem of simple bipartite
graphs. As the C6-free 2-matching problem is NP-hard (Geelen), this is a promising generalization
of restricted 2-matchings. Given an arbitrary family T of Kt,t-subgraphs of the underlying graph,
a T -free t-matching is a subgraph of maximum degree at most t that contains no member of T .
We show that the maximum size T -free t-matching problem also admits a nice min-max formula.
Given an integer cost function on the edge-set which is vertex-induced on any member of T , we also
show an integer min-max formula for the maximum cost of T -free t-matchings. As the maximum
cost C4-free 2-matching problem is NP-hard (Király), we cannot expect a nice characterization in
general.

Key words. submodularity, restricted matchings, integer polyhedra

AMS subject classifications. 05C07, 05C70, 05C65, 90C10, 90C27, 90C46, 90C47, 90C57
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1. Introduction. Throughout the paper, we work with the finite simple bipar-
tite graph G = (V = A ∪ B,E), and t ≥ 2 will be an integer. For a graph H, V (H)
and E(H) denote, respectively, its set of vertices and edges. If H is a subgraph of G,
then its color classes will be denoted by A(H) = A ∩ V (H) and B(H) = B ∩ V (H).
(The same notation will be used also in some other situations.) If H is a graph
(hypergraph), X ⊆ V (H), then H[X] denotes the subgraph (subhypergraph) of H
induced by X, and |E(H[X])| is denoted by iH(X). For X,Y ⊆ V (H), X ∩ Y = ∅,
δH(X,Y ) = δH({X,Y }) denotes the set of edges of H going between X and Y , δH(X)
stands for δH(X,V −X), and for the singleton {v}, we use δH(v) rather than δH({v}).
If δ is replaced by d, then it denotes the cardinality of the corresponding set. In these
notations, the graph is sometimes replaced by its edge set, or if the graph (edge set) is
clear from the context, its notation is omitted. For a function g : V → Z and X ⊆ V ,
we use g(X) =

∑
v∈X g(v); we do not distinguish subsets of V and their characteristic

functions, nor do we distinguish vectors and functions on the same ground set.
For f, g : V → Z, f ≤ g, an (f, g)-factor of G is a subgraph H of G such that

(s.t.) f(v) ≤ dH(v) ≤ g(v) for every v ∈ V . The (0, g)-factors are called g-matchings,
and the (g, g)-factors are called g-factors. In the literature, a matching may consist
of multiple copies of an edge; our notion of matching, consisting of subgraphs, is
referred to as simple. Since we deal only with simple graphs and simple matchings,
the adjective “simple” is omitted. The problem of searching for a matching with a
maximum number of edges is known as the maximum matching problem. Similarly,
given a cost function c : E → Z, the maximum cost matching problem is to search for a
matching H maximizing its cost c(E(H)). It is known from bipartite matching theory
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(see, e.g., [10]) that the maximum number of edges of a g-matching in a bipartite graph
G is

min
Z⊆V

g(Z) + iG(V − Z).

Similarly, a simple formula is known for the maximum cost of g-matchings (g-factors),
although it is better to formulate this in polyhedral terms.

Generalizing this, Cunningham and Geelen proposed investigating the maximum
C4-free 2-matching problem, i.e., the problem of finding a maximum 2-matching that
does not contain a cycle of length four. Hartvigsen obtained a min-max formula by a
combinatorial algorithm and introduced the linear program

max x(E),(1.1)

x ∈ R

E , 0 ≤ x ≤ 1,(1.2)

x(δ(v)) ≤ 2 for every v ∈ V ,(1.3)

x(E(C)) ≤ 3 for every subgraph C of G isomorphic to C4.(1.4)

Clearly, the integer solutions of (1.2)–(1.4) are exactly the C4-free 2-matchings. Hart-
vigsen proved the following integrality result.

Theorem 1 (Hartvigsen [5, 6]). The optimum of the linear program (1.1)–(1.4) is
attained on an integer vector, and the optimum of its dual is attained on a half-integer
vector.

Király sharpened this by stating that the dual has, in fact, integer optimal solu-
tions, and he obtained the following theorem by a relatively simple inductive proof.

Theorem 2 (Király [9]). For g : V → {0, 1, 2}, the maximum number of edges
of a C4-free g-matching of the bipartite graph G is

min
Z⊆V

g(Z) + iG(V − Z) − c2(G[V − Z]),

where c2(G[V − Z]) denotes the number of C4-components of G[V − Z].
The crucial observation in the area was made by Frank. As Geelen proved that the

maximum C6-free 2-matching problem is NP-hard [4], Frank proposed generalizing the
C4-free 2-matching problem by forbidding Kt,t subgraphs in t-matchings. His approach
is based on the general set-pair covering theorem of Frank and Jordán [3], thus not
leading to a combinatorial algorithm. Later, Király also was able to extend his proof
for this case [8].

Theorem 3 (Frank [2] with f ≡ t, Király [8]). For g : V → {0, 1, 2, . . . , t}, the
maximum number of edges of a Kt,t-free g-matching of the bipartite graph G is

min
Z⊆V

g(Z) + iG(V − Z) − ct(G[V − Z]),

where ct(G[V − Z]) denotes the number of Kt,t-components of G[V − Z].
We emphasize that neither of these two approaches is algorithmic. The proof

based on the Frank–Jordán theorem provides a polynomial time algorithm via the
ellipsoid method [1, 3], but a purely combinatorial algorithm is not known. It may be
possible to extend Hartvigsen’s maximum C4-free 2-matching algorithm for the above
case, but it would be much more interesting to see an algorithmic approach via the
Frank–Jordán theorem.

Frank’s technique yielded another generalization of the problem. A complete
bipartite graph Kk,l with k + l > t + 1 and k, l ≥ 1 is said to be a large biclique.
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Frank [2] proved a min-max formula for the maximum number of edges of a subgraph
H of G which contains no large biclique. Notice that, for t = 1, this is the maximum
matching problem and that, for t = 2, this is the K2,2-free 2-matching problem.

The natural question of maximum cost restricted matchings also arises. Király
noticed [7] that Geelen’s proof [4] can be modified to show that the maximum cost
C4-free 2-matching problem is NP-hard. Hence, the more general Kt,t-free t-matching
problem is also NP-hard. On the other hand, Frank’s approach enables us to handle
vertex-induced cost functions, i.e., any cost function c : E → Z for which there exists
c′ : V → R s.t. c(uv) = c′(u) + c′(v) for every uv ∈ E [2].

The main purpose of this paper is to approximate better the borderline of tractabil-
ity in the maximum cost Kt,t-free t-matching problem by a polyhedral study. We give
min-max formulae for the maximum cost problem for a class of cost functions which
is more general than the class of vertex-induced cost functions.

Suppose that we are given a function g : V → {0, 1, 2, . . . , t} and an arbitrary
family T of the Kt,t-subgraphs of G, which is called the set of forbidden Kt,t’s. A T -
free g-matching (g-factor, (f, g)-factor) is a g-matching (g-factor, (f, g)-factor) that
contains no member of T . A cost function c : E → Z is said to be T -induced if,
for every T ∈ T , there exists cT : V (T ) → R s.t. c(uv) = cT (u) + cT (v) for every
uv ∈ E(T ). In other words, T -induced cost functions are vertex-induced on forbidden
Kt,t’s. Formulated in polyhedral terms, our main result is the following.

Theorem 4. Let G be a bipartite graph, f, g : V → {0, 1, 2, . . . , t}, f ≤ g, and
let T be an arbitrary family of Kt,t-subgraphs of G. If c : E → Z is a T -induced cost
function, then the optimum of the linear program

max cx(1.5)

x ∈ R

E , 0 ≤ x ≤ 1,(1.6)

f(v) ≤ x(δ(v)) ≤ g(v) for every v ∈ V ,(1.7)

x(E(T )) ≤ t2 − 1 for every T ∈ T(1.8)

and the optimum of its dual are attained on integer vectors.
If there is no forbidden Kt,t, then all the integer cost functions are T -induced,

while if T is very dense in G, then the set of T -induced cost functions coincides with
the set of vertex-induced cost functions. It is not hard to see that Theorem 4 implies
the following for maximum T -free g-matchings.

Theorem 5. Let G be a bipartite graph, g : V → {0, 1, 2, . . . , t}, and let T be
an arbitrary family of Kt,t-subgraphs of G. Then the maximum number of edges of a
T -free g-matching is

min
Z⊆V

g(Z) + iG(V − Z) − cT (G[V − Z]),

where cT (G[V − Z]) denotes the number of T -components of G[V − Z].
The proof of Theorem 4 is based on the primal-dual method and on the following

theorem, which characterizes the existence of T -free (l, u)-factors.
Theorem 6. For l, u : V → Z, 0 ≤ l ≤ u ≤ t, G has a T -free (l, u)-factor if and

only if, for each X ⊆ A and Y ⊆ B,

l(X) ≤ u(Y ) + iG(X ∪B − Y ) − cT (G[X ∪B − Y ])(1.9)

and

l(Y ) ≤ u(X) + iG(Y ∪A−X) − cT (G[Y ∪A−X])(1.10)
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hold, where cT (G) denotes the number of components of G that are members of T .
In the rest of the paper, the proofs of Theorems 4 and 6 are presented. The proof

of the latter result is based on a slightly modified version of the Frank–Jordán theorem.
The goal of this generalization is twofold. The first aim is to end up with a proof of
Theorem 6, while the second one is to show that there are possible generalizations of
the Frank–Jordán theorem where the uncrossing operation is not so apparent.

2. Proof of Theorem 4.
Proof of Theorem 4. Let c be a T -induced cost function, and let (y, π, λ, z) ≥ 0,

y : E → Z, π : V → Z, λ : V → Z, z : T → Z, be a (not necessarily optimal) integer
dual solution, where πv is associated with the constraint x(δ(v)) ≤ g(v), and λv is
associated with −x(δ(v)) ≤ −f(v). (Note that there always exists a dual solution,
say y = c, π = 0, λ = 0, z = 0.)

An edge uv ∈ E is said to be tight if the dual inequality

yuv + πu + πv − λu − λv +
∑

T∈T :uv∈E(T )

zT ≥ c(uv)(2.1)

holds with equality. For F ⊆ E and S ⊆ T , we introduce the notations Ftight =
{e ∈ F : e is tight}, F0 = {e ∈ F : ye = 0}, F+ = F − F0, S0 = {T ∈ S : zT = 0},
and S+ = S − S0. Therefore, the set of tight edges e with ye = 0 is denoted by
Etight,0. Moreover, let us choose (y, π, λ, z) so that the vector (w1, w2, w3, w4) defined
by w1 =

∑
e∈E ye+

∑
v∈V (πvg(v)−λvf(v))+

∑
T∈T (t2−1)zT , w2 =

∑
T∈T (t2−1)zT ,

w3 =
∑

e∈E ye, w4 =
∑

v∈V (πv + λv) is lexicographically as small as possible.
In what follows, we either construct a primal solution which satisfies the com-

plementary slackness conditions with respect to (y, π, λ, z), or we construct a dual
solution (y′, π′, λ′, z′) s.t.

∑
e∈E

y′e +
∑
v∈V

(π′
vg(v) − λ′

vf(v)) +
∑
T∈T

(t2 − 1)z′T

<
∑
e∈E

ye +
∑
v∈V

(πvg(v) − λvf(v)) +
∑
T∈T

(t2 − 1)zT .

First, we need some technical observations.
Lemma 7.

(i) E+ ⊆ Etight.
(ii) The members of T+ are disjoint.
(iii) For any v ∈ V , either g(v) = 0 and δ(v)+ = ∅, or g(v) > 0 and |δ(v)+| <

g(v).
(iv) If λv > 0, then |δ(v)+| < f(v).
(v) If T ∈ T+ and e ∈ E(T ), then e ∈ Etight,0.
(vi) If v ∈

⋃
{V (T ) : T ∈ T+}, then g(v) = t.

(vii) If v ∈
⋃
{V (T ) : T ∈ T+} and λv > 0, then f(v) = t.

(viii) If T ∈ T+, uv ∈ E, u ∈ V (T ), and v /∈ V (T ), then yuv = 0.
(ix) At least one of πv = 0 or λv = 0 holds for every v ∈ V .
Proof. If any of the above statements does not hold, then we show that (y, π, λ, z)

can be replaced by (y′, π′, λ′, z′) so that the corresponding (w′
1, w

′
2, w

′
3, w

′
4) is strictly

smaller than (w1, w2, w3, w4). We define (y′, π′, λ′, z′) only on the coordinates where
it changes compared to (y, π, λ, z).

(i) If e ∈ E+ is not tight, then let y′e = ye − 1, and therefore w′
1 < w1.
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(ii) Let T, S ∈ T+ s.t. V (T ) ∩ V (S) �= ∅. Then let z′T = zT − 1 and z′S = zS − 1,
π′
v = πv + 1 for every v ∈ V (T ) ∩ V (S), and y′e = ye + 1 for every e ∈ E[V (T ) −

V (S)] ∪E[V (S)− V (T )]. Setting a = |A(T ) ∩A(S)| and b = |B(T ) ∩B(S)|, we have
g(A(T ) ∩A(S)) ≤ t(a+ b), w′

1 ≤ w1 − 2(t2 − 1) + g(A(T ) ∩A(S)) + 2(t− a)(t− b) ≤
2 − a(t− b) − b(t− a) ≤ w1, and w′

2 < w2.

(iii) If g(v) = 0 and δ(v)+ �= ∅ for some v ∈ V , then let π′
v = πv + 1 and

y′uv = yuv −1 for each uv ∈ δ(v)+, and therefore w′
1 < w1. If |δ(v)+| ≥ g(v) > 0, then

we do the same operation, but, in this case, w′
1 ≤ w1, w

′
2 = w2, and w′

3 < w3.

(iv) Otherwise, let λ′
v = λv − 1 and y′uv = yuv − 1 for every uv ∈ δ(v)+, and thus

w′
1 ≤ w1, w

′
2 = w2, w

′
3 ≤ w3, and w′

4 < w4.

(v) If e ∈ E(T ) is not tight, then let z′T = zT − 1 and yh = yh + 1 for every
h ∈ E(T ) − {e}, and thus w1 ≤ w′

1 and w′
2 < w2. Let C be the set of components

of (V,Etight,0)[V (T )]. By (iii), |δ(v)+| ≤ t− 1, and so C does not contain singletons.
Using that c is T -induced, it can be seen that if I ∈ C and ij, jk, kl ∈ E(I), then
il ∈ E(I); i.e., C contains only complete bipartite graphs. If |C| = 1, then we are
done. Otherwise, T has a K2,2-subgraph ({a1, a2, b1, b2}, {a1b1, a1b2, a2b1, a2b2}) s.t.
a1b1, a2b2 ∈ Etight,0 and a1b2, a2b1 ∈ Etight,+, which contradicts that c is T -induced.

(vi) By (ii), there is a unique T ∈ T+ s.t. v ∈ T , and we may assume v ∈ A(T ).
If g(v) ≤ t− 1, then let z′T = zT − 1 and π′

a = πa for every a ∈ A(T ). Then w′
1 ≤ w1

and w′
2 < w2.

(vii) Suppose that the statement does not hold for some v ∈ A(T ). Then let
λ′
v = λv − 1, z′T = zT − 1, and y′ab = yab + 1 for every a ∈ A(T ) − {v}, b ∈ B(T ).

Then w′
1 ≤ w1 and w′

2 < w2.

(viii) If uv ∈ E+, u ∈ A(T ), and v ∈ B−B(T ), then let z′T = zT −1, y′uv = yuv−1,
and π′

a = πa + 1 for every a ∈ A(T ). Then w′
1 ≤ w1 and w′

2 < w2.

(ix) If πv > 0 and λv > 0 for some v ∈ V , then let π′
v = πv − 1 and λ′

v = λv − 1.
Then w′

1 ≤ w1, w
′
2 ≤ w2, w

′
3 ≤ w3, and w′

4 < w4.

We define a graph G′ from the graph (V,Etight,0) by shrinking A(T ) and B(T )
to new vertices TA and TB for each T ∈ T+; we delete

⋃
{E(T ) : T ∈ T+} from the

edge set; and finally, to obtain a simple graph, we delete the parallel copies of edges.
Thus, the set of old and new vertices in G′ is Vold = V −

⋃
{V (T ) : T ∈ T+} and

Vnew = {TA, TB : T ∈ T+}. The sets Aold, Bold, Anew, and Bnew are defined similarly.

In order to construct a T -free (f, g)-factor of G, we try to construct a T ′-free
(l, u)-factor of G′ with u : V (G′) → Z, l : V (G′) → Z, and T ′. First, let

u(v) =

⎧⎨
⎩

g(v) − |δ(v)+| if v ∈ Vold and λv = 0,
f(v) − |δ(v)+| if v ∈ Vold and λv > 0,

1 if v ∈ Vnew,

l(v) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

g(v) − |δ(v)+| if v ∈ Vold and πv > 0,
max(f(v) − |δ(v)+|, 0) if v ∈ Vold and πv = 0,

1 if v ∈ Vnew, v = TX ,
and πu + λu > 0 for each u ∈ X ∩ V (T ),

0 if v ∈ Vnew, v = TX ,
and πu + λv = 0 for some u ∈ X ∩ V (T ).

Next, let T ′ be a family of subgraphs of G′ containing each T ∈ T s.t. V (T )∩
⋃
{V (S) :

S ∈ T+} = ∅ and G′[V (T )] is isomorphic to Kt,t.

Case 1. G′ has a T ′-free (l, u)-factor H ′. For satisfying the complementary
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slackness conditions with respect to (y, π, λ, z), we have to define H s.t.

E(H) ⊆ Etight,

ye > 0 ⇒ e ∈ E(H),

πv > 0 ⇒ |δH(v)| = g(v),

λv > 0 ⇒ |δH(v)| = f(v),

zT > 0 ⇒ |E(H[T ])| = t2 − 1.

First, each edge of H ′ has an inverse image at the shrinking operation. Thus, for
each e ∈ E(H ′), we put exactly one of these edges into H. Next, for T ∈ T+, A(T ) is
incident with at most one edge of (the already defined) H. If there is such an edge,
then let aT be its end vertex in A(T ). Otherwise, πu+λu = 0 for some u ∈ A(T ), and
thus we let aT = u. We choose bT similarly. For each T ∈ T+, we put E(T )−{aT bT }
into H. Last, we put E+ into H.

The construction shows that H is an (f, g)-factor of G and that it meets the
complementary slackness conditions. We have to prove only that H is T -free. Clearly,
for T ∈ T+, H does not contain T as a subgraph. Suppose now that H contains T for
some T ∈ T0 and T shares some vertices with an S ∈ T+. Now dH(A(S), B−V (S)) ≤ 1
and dH(B(S), A−V (S)) ≤ 1, and thus |B(T )−B(S)| ≤ 1 and |B(T )−B(S)| ≤ 1. As T
and S are different, we may assume |A(T )−A(S)| = 1. Thus, either |B(T )−B(S)| = 0,
or |B(T )−B(S)| = 1. It is not hard to see that both lead to contradiction. So consider
T ∈ T with V (T ) ⊆ V −

⋃
{V (S) : S ∈ T+}, and suppose that T is a subgraph of

H. Let C be the set of components of the graph (V,Etight,0)[V (T )]. Using that c
is T -induced, it can be seen that if I ∈ C and ij, jk, kl ∈ E(I), then il ∈ E(I);
i.e., C contains only complete bipartite graphs. If |C| = 1, then E(T ) ⊆ Etight,0, T
is forbidden in H ′, and H ′ cannot contain T , which is a contradiction. As E(T ) ⊆
Etight,0 ∪ Etight,+, (iii) implies that C does not contain singletons. Hence, |C| ≥ 2,
and T has a K2,2-subgraph ({a1, a2, b1, b2}, {a1b1, a1b2, a2b1, a2b2}) s.t. a1b1, a2b2 ∈
Etight,0 and a1b2, a2b1 ∈ Etight,+, which contradicts that c is T -induced.

Case 2. G′ has no T ′-free (l, u)-factor. In this case, we construct the dual solution
(y′, π′, λ′, z′) so that

∑
e∈E

y′e +
∑
v∈V

(π′
vg(v) − λ′

vf(v)) +
∑
T∈T

(t2 − 1)z′T

<
∑
e∈E

ye +
∑
v∈V

(πvg(v) − λvf(v)) +
∑
T∈T

(t2 − 1)zT .

By Theorem 6, there exists X ′ ⊆ A′(G′), Y ′ ⊆ B′(G′) satisfying

l(X ′) > u(Y ′) + iG′(X ′ ∪B′(G′) − Y ′) − cT ′(G′[X ′ ∪B′(G′) − Y ′])(2.2)

or

l(Y ′) > u(X ′) + iG′(Y ′ ∪A′(G′) −X ′) − cT ′(G′[Y ′ ∪A′(G′) −X ′]).(2.3)

By symmetry, we may assume that (2.2) holds. Moreover, we choose X ′ and Y ′ so that
X ′∪B′(G′)−Y ′ is minimal. Let C′ be the set of T ′-components of G′[X ′∪B′(G′)−Y ′].
Let I ′ be the set of edges of E(G′[X ′∪B′(G′)−Y ′]) which are not in T ′-components,
and let I ′T ′ be the set of edges of E(G′[X ′ ∪B′(G′) − Y ′]) in T ′-components.
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Lemma 8. Let x ∈ X ′. If x ∈ V (T ) for some T ′-component T of G′[X ′∪B′(G′)−
Y ′], then l(x) = t, and |I ′ ∩ δG′(x)| < l(x) otherwise.

Let y ∈ B′(G′)−Y ′. If y ∈ V (T ) for some T ′-component T of G′[X ′∪B′(G′)−Y ′],
then u(y) = t, and |I ′ ∩ δG′(y)| < u(y) otherwise.

Proof. Otherwise, for the first case, we reset X ′ to X ′ − x, and we reset Y ′ to
Y ′ + y for the second one.

If x ∈ X ′, y ∈ B′(G′)−Y ′, and xy ∈ I ′, then, by Lemma 8, l(x) ≥ 2 and u(y) ≥ 2,
and hence x and y cannot be shrunk vertices. This implies that each edge of I ′ has a
unique inverse image at the shrinking operation. Let X and Y be the inverse images
of X ′ and Y ′ at the shrinking operation.

The dual solution (y, π, λ, z) changes as follows. Let

y′ab =

⎧⎪⎪⎨
⎪⎪⎩

yab − 1 if a ∈ A−X and b ∈ Y and yab > 0,
yab + 1 if a ∈ X and b ∈ B − Y and yab > 0,

yab + 1 = 1 if ab ∈ I ′,
yab otherwise,

π′
v =

⎧⎨
⎩

πv − 1 if v ∈ X and πv > 0,
πv + 1 if v ∈ Y and λv = 0,

πv otherwise,

λ′
v =

⎧⎨
⎩

λv + 1 if v ∈ X and πv = 0,
λv − 1 if v ∈ Y and λv > 0,

λv otherwise,

z′T =

⎧⎪⎪⎨
⎪⎪⎩

zT − 1 if TA ∈ A′(G′) −X ′, TB ∈ Y ′, and zT > 0,
zT + 1 if TA ∈ X ′, TB ∈ B′(G′) − Y ′, and zT > 0,

zT + 1 = 1 if T ∈ I ′T ′ ,
zT otherwise.

First, it easily follows from the construction that (y′, π′, λ′, z′) ≥ 0 and the dual
inequality (2.1) remains true for (y′, π′, λ′, z′).

Next, we have to compute the change of the dual objective function. If x ∈ X ′ is
a shrunk vertex, then let x1, x2, . . . , xt be the inverse vertices. Then either πxi > 0
and g(xi) = t, or, if πxi

= 0, then l(x) > 0 implies l(x) = 1, πxi
+ λxi

> 0, and
therefore f(xi) = t by (vii). Also, δ(xi)+ = ∅. Next, suppose that x ∈ X ′ is not
shrunk, but x is in some T ′-component of G′[X ′ ∪ (B′(G′) − Y ′)]. If πx > 0, then
t = l(x) = g(x) − |δ(x)+| by Lemma 8, and if πx = 0, then t = l(x) = f(x) − |δ(x)+|
also by Lemma 8. Last, suppose that x ∈ X ′ is not shrunk, but x is not in some
T ′-component of G′[X ′ ∪ (B′(G′)− Y ′)]. If πx > 0, then l(x) = g(x)− |δ(x)+|, and if
πx = 0, then l(x) = f(x) − |δ(x)+|. These together imply∑

x∈X

d+(v) −
∑

v∈X,πv>0

g(v) −
∑

v∈X,πv=0

f(v) + (t2 − 1)|T+[X ∪B]| = −l(X ′).

Similarly, let y ∈ Y ′. If y is shrunk and y1, y2, . . . , yt are the inverse vertices, then
either λyi

= 0 and g(yi) = t, or, if λyi
> 0, then f(yi) = t by (vii). If y is not shrunk,

then either λy = 0 and u(y) = g(y) − |δ(y)+|, or λy = 0 and u(y) = f(y) − |δ(y)+|.
Thus,

−
∑
x∈Y

d+(v) +
∑

v∈Y,λv=0

g(v) +
∑

v∈Y,λv>0

f(v) − (t2 − 1)|T+[A ∪ Y ]| = u(Y ′).
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The change of the dual objective function is∑
e∈E

(y′e − ye) + g(v)
∑
v∈V

(π′
v − πv) + f(v)

∑
v∈V

(λ′
v − λv) + (t2 − 1)

∑
T∈T

(z′T − zT )

= |E+[X ∪ (B − Y )]| − |E−[(A−X) ∪ Y ]| + |I ′|

−
∑

v∈X,πv>0

g(v) −
∑

v∈X,πv=0

f(v) +
∑

v∈Y,λv=0

g(v) +
∑

v∈Y,λv>0

f(v)

+ (t2 − 1) (|T+[X ∪ (B − Y )]| − |T+[(A−X) ∪ Y ]| + cT ′(G′[X ′ ∪ (B′(G′) − Y ′)]))

=
∑
v∈X

d+(v) −
∑

v∈X,πv>0

g(v) −
∑

v∈X,πv=0

f(v) + (t2 − 1)|T+[X ∪B]|

−
∑
v∈Y

d+(v) +
∑

v∈Y,λv=0

g(v) +
∑

v∈Y,λv>0

f(v) − (t2 − 1)|T+[A ∪ Y ]|

+|I ′| + (t2 − 1)cT ′(G′[X ′ ∪ (B′(G′) − Y ′)])

= −l(X ′) + u(Y ′) + |I ′| + (t2 − 1)cT ′(G′[X ′ ∪ (B′(G′) − Y ′)]) < 0.

This is a contradiction, finishing the proof.

3. Proof of Theorem 6. The proof of Theorem 6 follows the structure of
Frank’s proof for Theorem 3 [2]. However, it can easily be seen that if an arbi-
trary family of Kt,t’s is forbidden, then the argument described there does not work.
To address this problem, a slight extension of the Frank–Jordán theorem is used.

Consider now a bipartite graph on the vertex set V = A ∪ B with edge set
E = A×B, and let P = {(X,Y ) : ∅ � X ⊆ A, ∅ � Y ⊆ B} be called the set of pairs.
For U ⊆ V , P[U ] = {(X1, X2) ∈ P : X1 ∪ X2 ⊆ U}. A pair (X1, X2) is said to be
trivial if at least one of X1 and X2 is singleton.

In this section, when we use the word collection, this means a multiset of pairs;
i.e., a pair belongs to the collection with multiplicity. Thus, it is rather convenient to
consider a collection of pairs as a nonnegative function mapping P into Z. The sum
of two collections is defined by the sum of these functions. Other algebraic operations
are handled similarly.

Two pairs X,Y ∈ P are independent if δE(X) ∩ δE(Y ) = ∅, while a collection of
pairs is called independent if its members are pairwise independent. More generally, a
collection F of pairs satisfying

∑
U∈F δE(U) ≤ h is called h-independent. (Remember

that sets and their characteristic functions are not distinguished.) We define the
partial order  on P as (X1, X2)  (Y1, Y2) if and only if X1 ⊆ Y1 and X2 ⊇ Y2. Two
pairs X,Y ∈ P are comparable if X  Y or Y  X. Two pairs are crossing if they
are neither comparable nor independent. A collection of pairs is called cross-free if it
contains no two crossing pairs.

If we are given a function p : P → Z, we say that the pair X is positive if
p(X) > 0. The nonnegative function p : P → Z is said to be skew-bisupermodular if,
for every two positive crossing pairs X = (X1, X2) and Y = (Y1, Y2), there exists a
cross-free collection of positive pairs GX,Y satisfying

(3.1) δE(X) + δE(Y ) ≥
∑

U∈GX,Y

δE(U) and p(X) + p(Y ) ≤
∑

U∈GX,Y

p(U)

and, for any collection H of positive pairs and any sequence of collections

(3.2) H = H0,H1,H2, . . . ,
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where Hi+1 is obtained from Hi by decreasing the multiplicities of two crossing pairs
X,Y ∈ Hi by 1 and increasing the multiplicities of the members of GX,Y by 1, resulting
in a finite sequence. Hence, the last member UH is a cross-free collection.

The nonnegative function z : E → Z is said to be a cover of p if p(X1, X2) ≤
z(δE(X1, X2)) for every (X1, X2) ∈ P. The cardinality of a minimum cover of p is
τp = min

∑
e∈E z(e), where the minimum ranges over all covers z of p. Similarly,

max
∑

U∈F p(U) is denoted by νp, where the maximum is taken over all independent
collections F .

Theorem 9. For any skew-bisupermodular function p, νp = τp.
Proof. νp ≤ τp can be seen easily. If νp = 0, then z = 0 is a cover, and F = ∅ is an

independent collection, which together give equality. Thus, νp > 0 can be assumed.
Similarly, we assume |A||B| ≥ 2. We can observe that, for any e ∈ E , the function
pe : P → Z defined by pe(X) = max{p(X) − d{e}(X), 0} is a skew-bisupermodular
function. If there exists an edge e ∈ E s.t. νpe ≤ νp−1, then τp ≤ τpe +1 = νpe +1 ≤ νp
by using τp ≤ τpe + 1 by induction, and we are done. Thus, νpe = νp for every e ∈ E .
For each e ∈ E , let us consider the independent collection He s.t. p(He) = νpe , and
let H =

∑
e∈E He. By the construction, p(H) = νp|A||B|, and H is |A||B| − 1-

independent. According to the definition of skew-bisupermodularity, there exists a
cross-free collection UH which is |A||B| − 1-independent, and p(UH) ≥ νp|A||B|. By
applying Dilworth’ theorem to the partial order  restricted to UH, UH decomposes
into at most |A||B| − 1 antichains s.t. each member of UH is contained in as many

antichains as its multiplicity. But then there is an antichain A with p(A) ≥ νp|A||B|
|A||B|−1 >

νp, contradicting the definition of νp.
Let us define pAν : 2A → Z by

pAν (Z) = max{p(G) : G is an independent subcollection of P[Z ∪B]}

and pBν : 2B → Z by

pBν (Z) = max{p(G) : G is an independent subcollection of P[A ∪ Z]}.

The proofs of the following four theorems are the same as the proofs of the
analogous theorems of Frank and Jordán [3].

Theorem 10. Let m : V → Z be a nonnegative function with m(A) = m(B),
and let p be a skew-bisupermodular function on P. Then there exists a cover z of p
s.t. z(δE(v)) = m(v) for every v ∈ V if and only if m(Z) ≥ pAν (Z) for every Z ⊆ A
and m(Z) ≥ pBν (Z) for every Z ⊆ B.

Proof. The necessity can be easily seen. For the sufficiency, we define p′ : P → Z,
p′ ≥ 0 by p′(a,B) = m(a), p′(A, b) = m(b) for a ∈ A, b ∈ B, and p′(X1, X2) =
p(X1, X2) for the other pairs. p(a,B) ≤ pAν (a) ≤ m(a), and similarly p(A, b) ≤ m(b).
Therefore, p ≥ p′, and p′ is skew-bisupermodular, since it is obtained from p by
increasing the value on the trivial pairs (a,B) and (A, b), and these pairs cross no
other. Let z be a minimum cover of p′. Clearly, z(δE(v)) ≥ m(v) for each v ∈ V .
If we have equality for each v, then we are done. Thus, there exists an independent
collection F s.t. m(A) = m(B) < z(E) = p′(F). F cannot contain trivial pairs of
form both (a,B) and (A, b), and we may assume that it contains only pairs of the
first type. Then let Z = {a ∈ A : (a,B) ∈ F} and F ′ = F − {(a,B) : a ∈ A}.
Then m(A) < p′(F) implies m(A − Z) < p′(F ′) = p(F ′) ≤ pAν (A − Z), which is a
contradiction.

The following statement can be proved similarly.
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Theorem 11. Let m : A → Z be a nonnegative function, and let p be a skew-
bisupermodular function on P. Then there exists a cover z of p s.t. z(δE(v)) = m(v)
for every v ∈ A if and only if m(Z) ≥ pAν (Z) for every Z ⊆ A.

We call a function q : V → Z supermodular if q(X)+q(Y ) ≤ q(X ∩Y )+q(X ∪Y )
holds for every X,Y ⊆ V . If, in addition, q(∅) = 0 and q is monotone increasing
(i.e., q(X) ≤ q(Y ) whenever X ⊆ Y ), then q is said to be a contra-polymatroid
function. The polyhedron C(q) = {x ∈ R

V : x(U) ≥ q(U) ∀U ⊆ V } is said to be the
contra-polymatroid defined by q. We will use that contra-polymatroids are integer
polyhedra.

Theorem 12. pAν and pBν are contra-polymatroid functions.

Proof. By symmetry, it is enough to prove the statement for pAν . It is clear
that pAν is nonnegative, monotone increasing and pAν (∅) = 0. Thus, we have to prove
supermodularity, i.e., the inequality pAν (X)+pAν (Y ) ≤ pAν (X∩Y )+pAν (X∪Y ) for every
X,Y ⊆ A. Let GX and GY be collections which give the maximum in the definition of
pAν (X) and pAν (Y ). Then we can apply the uncrossing procedure to G = GX+GY which
results in a cross-free family UG . Clearly, for each ab ∈ E , d{ab}(UG) ≤ 2 if a ∈ X ∩Y ,
d{ab}(UG) ≤ 1 if a ∈ X ∪ Y −X ∩ Y , and d{ab}(UG) = 0 if a ∈ A−X ∪ Y . Let Umin

G
consist of the minimal elements UG with respect to the partial order . (If a minimal
element has multiplicity 2, then it is taken only once.) Then Umin

G is an independent
collection of P[(X∩Y )∪B], and UG−Umin

G is an independent collection of P[X∪Y ∪B].
Thus, pAν (X) + pAν (Y ) ≤ p(Umin

G ) + p(UG − Umin
G ) ≤ pAν (X ∩ Y ) + pAν (X ∪ Y ).

Theorem 13. Let g : V → Z be a nonnegative function, and let p be a skew-
bisupermodular function on P. Then there exists a cover z of p s.t. z(δE(v)) ≤ g(v)
for every v ∈ V if and only if g(Z) ≥ pAν (Z) for every Z ⊆ A and g(Z) ≥ pBν (Z) for
every Z ⊆ B

Proof. The restriction of g to A is in C(pAν ), and hence there is a minimal member
m : A → Z of C(pAν ) s.t. m(a) ≤ g(a) for each a ∈ A. Similarly, we can consider
a minimal member m : B → Z of C(pBν ) s.t. m(b) ≤ g(b) for each b ∈ B. The
integer members of these two contra-polymatroids are the degree sequences of covers,
and hence m(A) = m(B). Then there exists a cover with degree function m, which
completes the proof.

Proof of Theorem 6. If there exists a T -free (l, u)-factor, then for X ⊆ A and
Y ⊆ B, (1.9) and (1.10) clearly hold. We prove now the opposite direction, thus
supposing that (1.9) and (1.10) hold for every X ⊆ A and Y ⊆ B.

We define a skew-bisupermodular function p : P → Z. For every T ∈ T , let
p(A(T ), B(T )) = 1. If a ∈ A, ∅ �= Z ⊆ B, and G[a∪Z] is a complete bipartite graph,
then let p(a, Z) = max{|Z| − u(a), 0}. Similarly, if b ∈ B, ∅ �= Z ⊆ A, and G[Z ∪ b]
is a complete bipartite graph, then let p(Z, b) = max{|Z| − u(b), 0}. On other pairs,
p is defined to be 0.

Lemma 14. p is skew-bisupermodular.

Proof. First, p is nonnegative. Second, suppose that X and Y are positive
crossing pairs. If X = (a,B1) and Y = (a,B2) are trivial pairs, then let GX,Y =
{(a,B1 ∩B2), (a,B1 ∪B2)}. If X = (a,B1) is trivial and Y = (T1, T2) is a forbidden
Kt,t, then let GX,Y = {(a,B1 ∪ T2)}. If X = (T1, T2) and Y = (S1, S2) are forbidden
Kt,t’s, then let GX,Y = {(a, T2 ∪ S2) : a ∈ T1 ∩ S1} ∪ {(T1 ∪ S1, b) : b ∈ T2 ∩ S2}. It
can easily be checked that (3.1) is satisfied.

Thus, we have to prove the existence of the sequence (3.2) for every collection H.
Suppose that H0 = H,H1,H2, . . . ,Hi have already been defined. If Hi is cross-free,
then we are done with UH = Hi. Otherwise, Hi contains two crossing pairs X and Y .
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Then Hi+1 is obtained from Hi by decreasing the multiplicities of X and Y and by
increasing the multiplicities of the members of GX,Y by 1. The uncrossing operation
for a trivial pair and a Kt,t or for two Kt,t’s decreases the sum of multiplicities of Kt,t’s,
and these multiplicities cannot increase in other operations. Hence, such an uncrossing
can be applied finitely many times. When two crossing trivial pairs are uncrossed,
then

∑
U∈Hj

(|U1| − |U2|)2 increases, which is upper bounded by |Hj |max{|A|, |B|}2.
Hence, the number of Kt,t pairs decreases finitely many times, and between each two
such operations, there are finitely many other operations.

Next, g : V → Z is defined by g(v) = dG(v) − l(v) for every v ∈ V . By applying
(1.9) to X = {v} and Y = ∅, we get that g(v) ≥ 0 for every v ∈ A. Similarly,
g(v) ≥ 0 for every v ∈ B by (1.10). Now we ask whether a cover z of p exists s.t.
z(δE(v)) ≤ g(v) for every v ∈ V .

Case 1. There exists such a cover. Then let z be a minimal cover satisfying
z(δE(v)) ≤ g(v) for every v ∈ V . (Minimal means that

∑
e∈E z(e) is as small as

possible.)

Lemma 15. If z(ab) > 0, then ab ∈ E. Moreover, z is 0 − 1 valued, and
{ab ∈ E : z(ab) = 0} is a T -free (l, u)-factor.

Proof. If z(ab) > 0, then there exists a positive pair (X1, X2) s.t. a ∈ X1, b ∈ X2,
and z(δE(X1, X2)) = p(X1, X2). But this implies ab ∈ E. If z(ab) ≥ 2, then there is
a trivial pair X = (X1, X2), a ∈ X1, b ∈ X2 s.t. z(δE(X)) = p(X). Suppose |X1| = 1.
Then z does not cover (X1, X2 − {b}), which is a contradiction.

The fact that {ab ∈ E : z(ab) = 0} is a T -free (l, u)-factor easily follows from the
definition of p and g.

Then, by Lemma 15, we are done.

Case 2. There does not exist such a cover. Then, by Theorem 13, there exists a
set Z ⊆ A s.t. g(Z) < pAν (Z) or Z ⊆ B s.t. g(Z) < pBν (Z). By symmetry, we may
assume the first, and let us choose Z to be minimal among these sets. Let G be a
family which gives the maximum in the definition of pAν (Z). Suppose, moreover, that
the number of Kt,t pairs in G is as small as possible, and, subject to this, the number
of its trivial pairs is minimal.

Lemma 16. For every a ∈ A, G contains at most one trivial pair of form (a,B1).
Similarly, for every b ∈ B, G contains at most one trivial pair of form (A1, b).

Proof. If (a,B1) are (a,B2) trivial pairs in G, then G could be replaced by G −
{(a,B1), (a,B2)}+ (a,B1 ∪B2). This operation does not decrease p(G) and does not
change the number of Kt,t pairs but decreases the number of trivial pairs, which is a
contradiction.

Lemma 17. If (T1, T2) is a Kt,t member of G, a ∈ T1, then G has no trivial
member of form (a,B1). Similarly, for b ∈ T2, G has no trivial member of form
(A1, b).

Proof. Otherwise, G could be replaced by G−{(a,B1), (T1, T2)}+(a,B1∪T2). This
operation does not decrease p(G) but decreases the number of Kt,t pairs in G.

Lemma 18. If (X1, X2) and (Y1, Y2) are two Kt,t’s of G, then (X1 ∪X2) ∩ (Y1 ∪
Y2) = ∅.

Proof. If (X1∪X2)∩(Y1∪Y2) �= ∅, then, by symmetry, we may suppose X1∩Y1 �= ∅
and X2 ∩ Y2 = ∅. Then we could remove (X1, X2) and (Y1, Y2) from G and insert
(a,X2 ∪ Y2) into G for every a ∈ X1 ∩ Y1. This operation does not increase p(G) but
decreases the number of Kt,t pairs in G.

Lemma 19. G contains no trivial pair of form (a,B1).

Proof. Suppose (a,B1) ∈ G. By the above lemmas, there is no pair (X1, X2) ∈ G
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s.t. a ∈ X1. Thus, let Z ′ = Z − {a} and G′ = G − {(a,B1)}. By dG(a) ≥ |B1| and
l(a) ≤ u(a), dG(a)− l(a) ≥ |B1| −u(a). And, finally, g(Z ′) = g(Z)− (dG(a)− l(a)) <
p(G) − (|B1| − u(a)) = p(G′), which contradicts the minimal choice of Z.

Thus, G is composed of the trivial pairs (A1, b1), (A2, b2), . . . , (Ar, br) and of Kt,t

pairs (X1, Y2), (X2, Y2), . . . , (Xs, Ys) s.t. the sets Xi, Yj and the singletons bk are
pairwise disjoint. Let Y = {b1, b2, . . . , br} and X = Z. We will show that X and Y
contradict (1.9).

Lemma 20. Let (T1, T2) ∈ G be a Kt,t pair, and let ab ∈ E. If a ∈ T1 and
b ∈ B − T2, or a ∈ Z − T1 and b ∈ T2, then there is a pair (X1, X2) ∈ G s.t. a ∈ X1

and b ∈ X2.
Proof. Let us prove the a ∈ T1, b ∈ B − T2 case. If the statement does not hold,

then we can replace G by G − {(T1, T2)} + {(a, {b} ∪ T2)}, which would decrease the
number of Kt,t pairs of G.

These lemmas together imply that if (T1, T2) ∈ G is a Kt,t pair, then there is no
edge ab ∈ E s.t. a ∈ Z − T1 and b ∈ T2. The definition of G implies that Ak = Z for
every k = 1, 2, . . . , r.

Then (X1, Y2), (X2, Y2), . . . , (Xs, Ys) define some of the Kt,t components of G[Z∪
B − Y ]. Hence,

iG(Z ∪ Y ) − u(Y ) + s = p(G) > g(Z) =
∑
v∈Z

(dG(v) − l(v)) = iG(Z ∪B) − l(Z),

which completes the proof.
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[8] Z. Király, Kt,t-Free t-Matchings in Bipartite Graphs, manuscript, 2000.
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Abstract. The achromatic number of a graph G = (V,E) with |V | = n vertices is the largest
number k with the following property: the vertices of G can be partitioned into k independent
subsets {Vi}1≤i≤k such that for every distinct pair of subsets Vi, Vj in the partition, there is at
least one edge in E that connects these subsets. We describe a greedy algorithm that computes the
achromatic number of a bipartite graph within a factor of O(n4/5) of the optimal. Prior to our work,
the best known approximation factor for this problem was n log logn/ logn as shown by Kortsarz
and Krauthgamer [SIAM J. Discrete Math., 14 (2001), pp. 408–422].
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1. Introduction. Consider a connected, undirected graph G = (V,E) with
|V | = n vertices and |E| = m edges. An achromatic coloring is an assignment of
colors to the vertices of G such that adjacent vertices receive distinct colors and, fur-
thermore, for every pair of distinct colors, there is at least one edge in the graph whose
endpoints are assigned those colors. Equivalently, if we contract all the vertices with
the same color into a single vertex and merge parallel edges, then the resulting graph
is a clique. The achromatic number of G, denoted as ψ(G), is the largest number k,
1 ≤ k ≤ n, such that G admits an achromatic coloring with k colors.

The achromatic number problem is to determine ψ(G) for any given graph G. This
problem has been studied extensively; for instance, see the surveys of Edwards [4]
and of Hughes and MacGillivray [10]. We focus on the algorithmic aspects of the
problem. Yannakakis and Gavril [16] proved that the achromatic number problem is
NP-hard. Farber et al. [5] showed that the problem remains NP-hard for bipartite
graphs. Bodlaender [1] established that the problem is NP-hard on graphs that are
simultaneously cographs and interval graphs. Cairnie and Edwards [2] showed that
the problem is NP-hard even on trees.

Since an exact solution to the problem appears to be intractable, there has been
an interest in approximating the achromatic number. An approximation algorithm
with ratio α ≥ 1 for the achromatic number problem takes as input a graph G and
returns, in time polynomial in the input size, a number p ≥ ψ(G)/α such that G
admits an achromatic coloring with p colors.

1.1. Previous work. In any achromatic coloring, every set of monochromatic
vertices in the graph (called a color class) is clearly an independent set; to maximize
the number of colors, it seems natural to look for small independent sets. Hence, one
might use the following greedy approach for finding an achromatic coloring with a
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large number of colors: iteratively remove from the graph maximal independent sets
of small size. However, the problem of finding a minimum maximal independent set
cannot be approximated within a ratio of n1−ε for any ε > 0, unless P = NP [8].

On the other hand, using a semigreedy approach to extracting small independent
sets, Chaudhary and Vishwanathan [3] gave the first sublinear approximation algo-
rithm for the achromatic number problem with an approximation ratio of O(n/

√
log n)

for any graph with n vertices. They conjectured that the achromatic number can be
approximated within a ratio of O(

√
ψ(G)) for any graph G. In support of their

conjecture, they gave an algorithm that returns an O(
√
ψ(G)) = O(n7/20) ratio ap-

proximation for graphs G with girth (i.e., length of the shortest simple cycle) at
least 7. For graphs G with girth at least 6, Krysta and Loryś [14] described an al-
gorithm with approximation ratio O(

√
ψ(G)) = O(n3/8); this ratio was improved

slightly to O(n log log n/ log n) by Kortsarz and Krauthgamer [11]. This latter paper
also showed that the Chaudhary–Vishwanathan conjecture holds for graphs of girth 5
and demonstrated an algorithm for such graphs that approximates the achromatic
number within a ratio of O(n1/3).

To summarize the upper bounds on approximating the achromatic number for
general or bipartite graphs, the best known approximation ratio guarantees are just
barely sublinear in the number of vertices. We do know that graphs with large girth (at
least 5) admit algorithms with relatively low approximation ratio for the achromatic
number. This conclusion hinges on the result that ψ(G) = θ(m/n) for graphs G with
n vertices, m edges, and girth at least 5 [11]. But, considering the complete bipartite
graph, we encounter a graph with girth 4 and achromatic number equal to 2 that
satisfies 2 � m/n = Ω(n).

As for lower bounds, the first hardness of approximation result for general graphs
was given by Kortsarz and Krauthgamer [11]. They showed that unless P = NP,
the problem cannot be approximated within a ratio of 2 − ε for any ε ≥ 0. In
the preliminary conference version of the present paper [13], we stated (without a
complete proof) the first nonconstant lower bound for the problem. The result was
that unless NP admits a randomized quasi-polynomial-time algorithm, it is impossible
to approximate the achromatic number on n-vertex bipartite graphs within a ratio
of (lnn)1/4−ε. The methods used for proving the hardness result are built upon a
combination of one-round two-prover techniques and zero-knowledge techniques as
suggested in Feige et al. [6]. In Kortsarz, Radhakrishnan, and Sivasubramanian [12],
the lower bound on the approximation ratio is improved to

√
log n, with details to

appear in the forthcoming journal version of that paper.

1.2. Our contribution. For graphs with n vertices, all previous results for the
achromatic number problem had been unable to obtain approximations better than a
factor of Õ(n), where Õ(n) is the class of functions that are essentially O(n) ignoring
logarithmic factors, i.e., functions of the form O(n logk n) for some constant k. In
this paper, we give a combinatorial algorithm for the problem when restricted to
bipartite graphs. Our algorithm lowers the Õ(n) barrier on the approximation ratio;
specifically, it achieves a ratio of O(n4/5) for approximating the achromatic number
of every bipartite graph.

2. Preliminaries. Consider a graph G = (V,E). Following standard terminol-
ogy, we use dG(u) and NG(u) to denote, respectively, the degree and the set of adjacent
neighbors of any vertex u in the graph. Wherever possible, we will simplify notation
by omitting G from subscripts when the graph G is clear from the context. For any
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subset U ⊆ V of the vertices, the subgraph of G induced by U is denoted as G[U ]. If
G[U ] has no induced edges, then U is said to be an independent set in G.

Given disjoint subsets of vertices U,W in the graph, we say that they are adjacent
if there exist adjacent vertices u ∈ U and v ∈ W . The set U covers W if every vertex
in W is adjacent to some vertex in U .

A proper k-coloring of the graph is a mapping that assigns to every vertex a cor-
responding color in the range [1, k] such that adjacent vertices receive distinct colors.
Thus, any proper k-coloring of a graph partitions its vertex set into k independent
sets—one per color—called its color classes. An achromatic k-coloring is a proper
coloring where all distinct pairs of color classes are adjacent. The partition formed by
the color classes is called an achromatic partition; henceforth, we will use the terms
achromatic coloring and achromatic partition interchangeably.

The achromatic number problem is to determine for any given graph G the largest
number k such that G has an achromatic k-coloring. Note that, in contrast, the
chromatic number problem is to determine for graph G the smallest number k such
that G has a proper k-coloring (which, by minimality of k, is also an achromatic
coloring).

The chromatic and achromatic numbers of a graph G are denoted by χ(G) and
ψ(G), respectively. Clearly, ψ(G) ≥ χ(G) and, indeed, the problem of finding the
achromatic number, being a maximization problem, is fundamentally different from
that of finding the chromatic number, a minimization problem. For instance, when
ψ(G) = O(1), an achromatic coloring of G with ψ(G) colors can be found in polyno-

mial time by guessing
(
ψ(G)

2

)
critical edges with distinct color combinations on their

endpoints (see [5] for a more efficient algorithm). In contrast, even when χ(G) = 3,
it can be NP-hard to find a 4-coloring of G [7]. However, the general cases for both
problems are known to be NP-hard, as is the bipartite case for the achromatic number
problem.

3. Achromatic partitions and matchings. The following lemmas are well
known [15, 4, 3, 14] and are stated here without proof for completeness; we will use
these lemmas extensively in the development and the analysis of our algorithm.

Lemma 1. Let U be a subset of vertices of a graph G. Then any achromatic k-
coloring of the subgraph, G[U ], can be extended greedily to an achromatic k′-coloring
of G with k′ ≥ k colors.

Lemma 2. Consider v, an arbitrary vertex in a graph G, and let G \ v denote
the graph that results when v and all its incident edges are deleted from G. Then
ψ(G) − 1 ≤ ψ(G \ v) ≤ ψ(G).

Note that in the above lemma, if v is an isolated vertex in G, then its removal
does not affect the achromatic number, i.e., ψ(G \ v) = ψ(G). Hence, the lemma
can be restated more generally as follows. Let U be any ordered subset of vertices
of G. Suppose that we remove vertices in U from the graph one by one in the order
prescribed for U . Let Uc ⊆ U be the subset of vertices v such that v is not isolated
in the subgraph of G that exists just prior to v’s removal. Then ψ(G \U) is bounded
above by ψ(G) and below by ψ(G) − |Uc|.

A subset of edges of the graph G is called a matching if no two distinct edges in
the subset share a common endpoint. Let M = {(u1, v1), . . . , (uk, vk)} be a matching
with the sets of endpoints X = {u1, . . . , uk} and Y = {v1, . . . , vk}. Then

• M is said to be independent if M is the induced subgraph, G[X ∪ Y ];
• M is said to be semi-independent if X and Y are independent sets, and the

edges in M , ordered as above, respect the following additional property: for
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all j > i ≥ 1, it holds that ui is not adjacent to vj .
Note that in a semi-independent matching, ui may well be adjacent to vk for

1 ≤ k < i. Hence, not every semi-independent matching is independent (although
the converse is trivially true). A semi-independent matching can be used to obtain
an achromatic coloring of the induced subgraph of its vertices as stated in the lemma
below; a weaker version of this result, based on using an independent matching, is
used in [3].

Lemma 3 (see [15]). Let M be a semi-independent matching of size
(
t
2

)
in G, and

let V (M) be the set of vertices in M . Then an achromatic t-coloring of the subgraph
G[V (M)] can be computed efficiently.

We now focus exclusively on bipartite graphs for the remainder of the paper.
Given independent sets of vertices U and V , we denote by G(U, V,E) the bipartite
graph G with bipartition (U, V ) and edge set E ⊆ U × V . For subsets U ′ ⊆ U and
V ′ ⊆ V , we use the alternative notation G[U ′, V ′] for the induced subgraph G[U ′∪V ′]
to make explicit the subsets of the original bipartition that induce the subgraph.

For any vertex v ∈ V in the bipartite graph G(U, V,E), the induced subgraph,
G[NG(v), {v}], consisting of v and its neighbors is called the star centered at v in G.
Suppose that U does not contain any isolated vertices. A simple iterative procedure
that we will call the star removal algorithm can be used to compute an achromatic
coloring of G as follows. In iteration i ≥ 1 of the algorithm, we choose an arbitrary
surviving vertex vi ∈ V of nonzero degree in the current graph. The star centered at vi
in the current graph is removed in the iteration along with all the other edges incident
on the star’s vertices. The resulting graph is used for the next iteration. Note that
the surviving portion of U , in this resulting graph, contains isolated vertices if and
only if there are no further edges left. When all the edges of G have been eliminated,
we process the sequence of stars removed in successive iterations. If an arbitrary edge
(ui, vi) is chosen from the ith star, it is not difficult to see that the the resulting
sequence of edges, M = {(u1, v1), . . . , (uk, vk)}, forms a semi-independent matching.

Letting ΔG(V ) denote the largest degree of any vertex in bipartition V of G,
it follows that k, the size of the semi-independent matching M , must be at least
|U |/ΔG(V ). In conjunction with Lemmas 1 and 3, we get the following result.

Lemma 4. Let G(U, V,E) be a bipartite graph with no isolated vertices in U .
Then the star removal algorithm produces an achromatic partition of size at least
Ω(

√
|U |/ΔG(V )).

4. Achromatic partitions and reducing congruences. Hell and Miller [9]
define a very natural equivalence relation on the vertex set of any graph G. The
relation, also called the reducing congruence of G [4, 10], is defined as follows: any
pair of vertices of G are equivalent if and only if they have exactly the same set of
neighbors in the graph.

We denote by SG(v) the equivalence class of vertex v under the reducing con-
gruence for G; we will drop the subscript in the notation whenever G is clear from
the context. Let q be the number of distinct equivalence classes under the reducing
congruence for G. Assume that the vertices of G are indexed so that S(v1), . . . , S(vq)
denote the distinct equivalence classes. Then vi is the representative of its equivalence
class, S(vi), and we refer to every member of the class as being a copy of vi. Note
that, by definition, two equivalent vertices cannot be adjacent to each other in G;
hence S(vi) is an independent set in G. The following result can be shown.

Theorem 1 (see [11]). Let G be a bipartite graph whose reducing congruence has
q equivalence classes. Then there is an efficient algorithm to compute an achromatic
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coloring of G with at least

min{ψ(G)/q,
√
ψ(G)}

colors. Hence, the achromatic number of a bipartite graph can be approximated to
within a ratio of O(max{q,

√
ψ(G)}).

Given the graph G and the collection of its equivalence classes under the reduc-
ing congruence, the reduced degree, d∗G(v), of any vertex v is the maximum number of
pairwise nonequivalent neighbors of v in G. Equivalently, if {vi : 1 ≤ i ≤ q} is the col-
lection of distinct representatives of the equivalence classes, then the reduced degree of
v in G is the degree of its representative in the induced subgraph, G[{vi : 1 ≤ i ≤ q}].

Lemma 5. Let u,w be a pair of vertices of G such that S(u) 	= S(w) and d∗(u) ≤
d∗(w). Then there is a vertex z of Gk that is adjacent to w but not to u.

Proof. Otherwise, if every neighbor of w is also a neighbor of u, we would have
N(w) ⊆ N(u). But d∗(u) ≤ d∗(w), which implies that N(u) = N(w) and hence that
S(u) = S(w); this clearly contradicts our initial assumption.

5. Intuitive description of the algorithm. Our goal is to show that for any
bipartite graph G(U, V,E) with n vertices, we can find an achromatic partition of
size at least ψ(G)/(Kn4/5) for some constant K > 0. Let ψ∗ be an estimate of the
true value of ψ(G). Our approximation algorithm uses the parameter ψ∗ to obtain
an achromatic partition of an induced subgraph of G, with the guarantee that it
will produce a large number of color classes in the partition when the value of ψ∗

equals ψ(G). Hence, it suffices to run the algorithm for all possible values of ψ∗,
viz. ψ∗ = 1, 2, . . . , n, and use the best solution from among all the runs.

To explain the key ideas underlying the algorithm, it is convenient to use terms
like small and large in an informal sense to qualify the relative sizes of various sets.
We postpone more precise characterizations of these terms, but merely observe here
that by small we mean of size roughly O(n4/5) or nδ for some 0 < δ ≤ 4/5, and by
large we mean of size roughly ω(n4/5).

We may assume that G has no isolated vertices because such vertices have no
effect on the achromatic number of G. Also, ψ(G) may be assumed to be large, for
otherwise even the achromatic coloring induced by the initial bipartition {U, V } will
achieve a small ratio of approximation.

Next, consider the reducing congruence on G. Since G has no isolated vertices,
its equivalence classes under the reducing congruence can be cleanly partitioned into
those that are subsets of U (the U -equivalence classes) and those that are subsets
of V (the V -equivalence classes). Let qU (respectively, qV ) be the number of U -
equivalence (respectively, V -equivalence) classes under the reducing congruence on
G, and let q = qU + qV denote the total number of equivalence classes. If q were
small, then Theorem 1 (via the algorithm described in [11]) would guarantee a good
approximation ratio for ψ(G). Hence, we can assume that q and ψ(G) are both large,
i.e., have magnitude ω(n4/5).

Since q is large, the average size of an equivalence class under the reducing con-
gruence is roughly O(n1/5). We call such classes the light equivalence classes. By
the Markov inequality, there will be only a few equivalence classes that are not light.
The effect of such classes on our algorithm is negligible; for the sake of a simplified
description, the maximum size of an equivalence class that is not light is not pertinent.

The heart of the approximation algorithm is a subroutine, Ach-Bip, that takes
as input a bipartite graph G[U0, V0] ⊆ G and a guessed value ψ∗ of the achromatic
number to iteratively compute a sequence, A1, A2, . . . , Ak, of color classes. These
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classes form an achromatic partition of G[∪1≤i≤k Ai]. Broadly speaking, in iteration
i, with i ≥ 1, Ach-Bip works as follows:

• It starts with a subgraph Gi−1 = G[Ui−1, Vi−1].
• If Gi−1 has no light Ui−1-equivalence classes, then the subroutine call exits.

Otherwise, a set, Ai, of independent vertices in Gi−1 is computed with the
following properties: Ai is small in size and covers a relatively large set Ui ⊆
Ui−1 \ Ai. The latter property ensures that color classes Ai+1, Ai+2, . . . , Ak

computed in future iterations are adjacent to the class Ai.
• If the removal of Ai and some related vertices from Gi−1 does not reduce the

guessed achromatic number significantly, then the next iteration is initiated
on a subgraph Gi = G[Ui, Vi] ⊂ Gi−1.

The subroutine Ach-Bip is first executed on the graph G(U, V ). Recall that q,
the number of equivalence classes of G under the reducing congruence, is large. Since
q = qU + qV , either qU or qV or both must be large. If qU is large, then this first
subroutine call may produce a large enough collection of color classes. However, if the
call exits because there are no light Ui−1-equivalence classes at the beginning of some
iteration i (with i being a relatively small number), then we still have the unexplored
possibility that qV , the number of V -equivalence classes, is large.

To exploit this case, the algorithm calls Ach-Bip again. In this second call, the
input to the subroutine is the subgraph Gi−1 = G[Vi−1, Ui−1] that remains at the
conclusion of the first call. Note in particular that the roles of the bipartitions are
interchanged, viz. that Vi−1 is treated as the first bipartition and Ui−1 as the second
one. There can be two possible outcomes when the second call to Ach-Bip halts. It
may halt after finding a large enough achromatic partition of an induced subgraph of
Gi−1. On the other hand, it is possible that the second call also halts within a small
number of iterations—small enough that the ratio, of the actual achromatic number
divided by the size of the larger of the achromatic partitions classes found in the calls,
is not a good enough approximation guarantee.

In this latter event, our algorithm still manages to ensure—by design—that the
graph, remaining after the two calls to Ach-Bip, still has a large achromatic number. In
particular, the achromatic number is still at most ψ∗/2 less than ψ(G), the achromatic
number of the original graph G. Provided that our guess, ψ∗, is close to the optimal
value, Theorem 1 allows us to compute a large achromatic partition of the remaining
graph. This coloring can be extended (via Lemma 1) to obtain a guaranteed ratio of
approximating the achromatic number of G. This completes the informal overview of
the algorithm.

6. Formal description of the algorithm. The approximation algorithm,
Approx-Bip, is described below. As mentioned earlier, we execute the algorithm once
for each possible value of the guessed achromatic number, ψ∗. The best solution from
all the runs is used. The overall runtime is still polynomial in the input size and may
be improved slightly (by a logarithmic factor) by deploying binary search over the
possible range of values of ψ∗.

We introduce a few notational abbreviations that simplify the formal description
and analysis of procedure Ach-Bip.

• We call a set heavy if it contains at least n1/5 vertices. Otherwise, it is called
light. In any bipartite graph G(U, V,E), a vertex v ∈ V is said to be U -heavy
if the reduced degree of v (under the reducing congruence of G) is at least
n1/5.

• An assignment of values to several variables in a sequential manner is abbre-
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Input: A bipartite graph G0(U0, V0), and a guessed achromatic number ψ∗

Output: An achromatic partition {A1, A2, . . .} of the induced graph G0[∪i Ai]
if ψ∗ < 8n4/5 then1

return A = {U0, V0}2

end3

A = ∅ ;4

for i = 1, 2, . . . do5

if there are no light Ui−1-equivalence classes in Gi−1 then6

/* Condition 1 */

return A7

end8

u ← a vertex in Ui−1 with minimum reduced degree in Gi−1 ;9

U ′, V ′, G′ ← Ui−1 \ SGi−1
(u), Vi−1 \NGi−1

(u), G[U ′, V ′] ;10

Ci ← ∅11

while (U ′ 	= ∅) and ∃ a U ′-heavy vertex in V ′ do12

v ← a U ′-heavy vertex in V ′ with maximum reduced degree in G′ ;13

Add v to Ci ;14

U ′, V ′, G′ ← U ′ \NG′(v), V ′ \ {v}, G[U ′, V ′]15

end16

q′ ← the number of U ′-equivalence classes in G′ ;17

if q′ > n3/5 then /* Condition 2 */18

return the partition obtained by applying the star removal algorithm19

to G′

end20

Di ← {w ∈ U ′ | SG′(w) is a light equivalence class} ;21

for every heavy U ′-equivalence class SG′(w) do22

add an arbitrary neighbor of SG′(w) to Ci23

end24

Ai ← SGi−1
(u) ∪ Ci ;25

Li ← the set of isolated vertices in the graph26

G[Ui−1 \ (Ai ∪Di), Vi−1 \ (Ai ∪Di)] ;
if it is not ψ∗-safe for Gi−1 to delete (Ai ∪Di ∪ Li) then27

/* Condition 3 */

return A28

end29

add Ai to A ;30

Ui, Vi, Gi ← Ui−1 \ (Ai ∪Di ∪ Li), Vi−1 \ (Ai ∪Di ∪ Li), G[Ui, Vi]31

end32

Procedure Ach-Bip.

viated on a single line, e.g., on line 10 of procedure Ach-Bip, the statement

U ′, V ′, G′ ← Ui−1 \ SGi−1(u), Vi−1 \NGi−1(u), G[U ′, V ′]

simply means that U ′ is assigned the value Ui−1 \ SGi−1
(u), then V ′ is as-

signed the value Vi−1 \NGi−1(u), and lastly G′ is set to be the induced graph
G[U ′, V ′].

The following definition is of critical importance to the analysis of subroutine
Ach-Bip.
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Input: G(U, V,E), a bipartite graph; ψ∗, a positive integer
Output: An achromatic partition of G
A1 ← the achromatic partition returned by the call Ach-Bip(G(U, V ), ψ∗).1

Let G[1] = G[U [1], V [1]] be the induced subgraph that remains when the
procedure call halts ;
A2 ← the achromatic partition returned by the call Ach-Bip(G[V [1], U [1]], ψ∗).2

Note that the roles of the bipartitions are interchanged. Let
G[2] = G[U [2], V [2]] be the induced subgraph that remains when this second
application of the procedure halts ;
If either of the achromatic partitions A1 or A2 is of size at least ψ∗/(16n4/5),3

then the corresponding achromatic coloring is extended to an achromatic
coloring of G which is returned as final output ;
Otherwise, apply the algorithm of Theorem 1 on the subgraph G[2]. The4

achromatic coloring thereby obtained can be extended to an achromatic
coloring of G which is returned as final output.

Algorithm 2: Approx-Bip.

Definition 1. Starting with a subgraph G0 of the graph G, let G0 ⊃ G1 ⊃ · · · ⊃
Gj be a sequence of induced subgraphs of G obtained by successively removing vertices
(and their adjacent edges). Let ψ∗ be a positive integer. Then the deletion of some
ordered set of vertices Sj from Gj is said to be ψ∗-safe for Gj if the total number of
nonisolated vertices (including those in Sj) removed from the initial subgraph G0 is
at most ψ∗/4.

7. Analyzing the approximation ratio. Our goal is to show that the approx-
imation ratio obtained by Approx-Bip is O(n4/5). The analysis is conducted under the
assumption that ψ(G) ≥ 8n4/5. Otherwise, returning an arbitrary achromatic par-
tition, e.g., the original bipartition of size 2, as done in line 2 of procedure Ach-Bip,
trivially gives an O(n4/5) ratio.

Consider a run of the algorithm when presented with a bipartite graph G(U, V,E)
with n vertices, and with the parameter ψ∗, which is an estimate of ψ(G). Since the
algorithm makes two separate calls on the procedure Ach-Bip, we first analyze the
procedure itself in isolation and derive some useful properties.

We start by observing that the execution of the main loop (lines 5–32) in procedure
Ach-Bip could be halted in one of three mutually exclusive ways during some iteration
(k + 1) ≥ 1.
Condition 1: At the beginning of the iteration, there are no light Uk-equivalence

classes in Gk.
Condition 2: The star removal algorithm can be applied during the iteration.
Condition 3: Just prior to the end of the iteration, it is found that the current deletion

of (Ak+1 ∪Dk+1 ∪ Lk+1) in left-to-right order is not ψ∗-safe for Gk.
Note that the induced subgraphs {Gi}i≥1 form a monotone decreasing chain with

respect to graph size. If the star removal algorithm (Condition 2) cannot be applied
during any iteration, then eventually one of the other two conditions will become
true since the graphs keep getting smaller with each iteration. This guarantees that
procedure Ach-Bip will eventually terminate.

The schematic shown in Figure 1 depicts the various sets computed during iter-
ation i ≥ 1 of procedure Ach-Bip. We say that iteration i ≥ 1 is successful if none
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Fig. 1. The graph Gi−1.

of the conditions is triggered during the iteration, i.e., the procedure continues to the
next iteration with the surviving subgraph Gi. Suppose that the first k iterations are
successful and let (k + 1) ≥ 1 be the first unsuccessful iteration of the procedure.

Lemma 6. If procedure Ach-Bip halts during iteration (k+1) due to Condition 2,
then the achromatic partition that is returned has size at least n1/5.

Proof. During iteration (k + 1), consider the graph G′ = G[U ′, V ′] to which the
star removal procedure is applied (lines 18–20). Since U ′ has at least n3/5 equivalence
classes, |U ′| > n3/5 must hold.

Consider any vertex w ∈ U ′. Let u be the vertex chosen during the iteration on
line 9 of the procedure. By construction, we observe that

U ′ = (Uk \ SGk
(u)) \

( ⋃
v∈Ck+1

NGk
(v)

)
,

V ′ = (Vk \NGk
(u)) \ Ck+1.

Clearly, w /∈ SGk
(u), and furthermore the choice of u on line 9 ensures that d∗Gk

(u) ≤
d∗Gk

(w). By Lemma 5, we conclude that there is a vertex z ∈ (Vk \ NGk
(u)) that

is adjacent to w. In fact, w must be adjacent to some vertex in V ′ since w is not
adjacent to any vertex in Ck+1. It follows that U ′ does not have any isolated vertices.

Note that the inner loop condition (line 12) guarantees that every vertex in V ′ is
adjacent to at most n1/5 U ′-equivalence classes in G′. From the discussion preceding
Lemma 4, it is easy to see that the star removal algorithm will produce a collection
of at least √

n3/5

n1/5
= n1/5

stars, and hence an achromatic partition of size at least n1/5 can be returned, as
claimed.

Turning now to Condition 3, we need to show that if the procedure halts during
iteration (k + 1) because a ψ∗-unsafe deletion for Gk is flagged, then the number, k,
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of classes in the partition A computed thus far must already be large enough. To this
end, we establish a sequence of claims.

Claim 1. For 1 ≤ i ≤ k, the set Ai is an independent set and is adjacent to Aj

for every j ∈ [i + 1, k]. In other words, A is indeed an achromatic partition of the
subgraph G[∪1≤i≤k Ai].

Proof. We first verify that at the end of a successful iteration i, the set of vertices
Ai is an independent set. By construction, Ai = SGi−1

(u)∪Ci, where u is the vertex
chosen on line 9. The vertices in SGi−1(u) are mutually nonadjacent by definition.
Moreover, Ci ⊆ Vi−1 \ NGi−1(u) and hence Ci is an independent set that is not
adjacent to SGi−1(u). Thus, Ai is independent as well.

Now, by construction, the vertices retained in the set Ui at the end of the iteration
are exactly those that are covered by some vertex in Ci ⊂ Ai. The set Aj , for
i < j ≤ k, contains at least one vertex in Uj−1 ⊆ Ui. Hence there is always an edge
between Ai and Aj for i < j ≤ k.

Claim 2. For 1 ≤ i ≤ k, the size of the set (Ai ∪Di), just prior to executing the
safety check on line 27, is bounded by 4n4/5.

Proof. By construction, Ai = SGi−1(u) ∪ Ci prior to executing line 27. We know

that SGi−1(u) is a light equivalence class, and hence |SGi−1(u)| < n1/5. A vertex
v ∈ Vi−1 is added to Ci either during the inner loop (line 14) or later, if it happens
to be adjacent to a heavy U ′-equivalence class (line 23).

In the former case, just prior to the vertex v being added to Ci, it must have been
adjacent to at least n1/5 pairwise nonequivalent vertices in U ′. These vertices (along
with their copies) are removed from U ′ after v is added to Ci and before the next
iteration of the inner loop commences. In other words, each vertex of U ′ eliminated
in the inner loop corresponds to exactly one vertex in Ci that causes its elimination.
Since the initial size of U ′ is bounded by n, it follows that no more than n/n1/5 = n4/5

vertices could have been added to Ci during the execution of the inner loop.

The number of vertices, added to Ci because they are witness to being adjacent
to some heavy U ′-equivalence class (see lines 22–24), is at most the number of heavy
U ′-equivalence classes. This latter quantity is bounded above by the total number
of U ′-equivalence classes. Since U ′ has fewer than n3/5 classes (otherwise, the star
removal algorithm would have been used), at most n3/5 vertices are added to Ci in
the loop on lines 22–24. Thus, prior to executing the safety check, there are at most

n1/5 + n4/5 + n3/5 ≤ 3 · n4/5

vertices in Ai.

U ′ has at most n3/5 light equivalence classes when control reaches line 21. Sub-
sequently, the set Di is formed by collecting together all the vertices in these light
equivalence classes. The size of Di, just prior to executing the safety check, is there-
fore at most n1/5 · n3/5 = n4/5. Summing up, we see that (Ai ∪Di) contains no more
than 4n4/5 vertices when it is tested for ψ∗-safety on line 27.

Claim 3. If the first k iterations are successful, then the difference, ψ(G0)−ψ(Gk),
is at most 4k · n4/5.

Proof. Consider the graph Gi at the end of the ith successful iteration. For clarity,
we can view the construction of Gi from Gi−1 as taking place in two stages. First,
the set of vertices (Ai ∪Di) is removed from Gi−1, giving us an intermediate graph
G−

i . Then Li, the set of all isolated vertices in G−
i (see line 26 in procedure Ach-Bip),

are deleted from G−
i , yielding Gi.
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By Lemma 2 and Claim 2, we obtain the inequality ψ(Gi−1) − ψ(G−
i ) ≤ 4n4/5.

Since Li is an isolated set of vertices in G−
i , their removal from G−

i has no effect on
the achromatic number; the number of vertices in Li does not matter. Therefore, it
holds that ψ(G−

i ) = ψ(Gi) and hence

ψ(Gi−1) − ψ(Gi) ≤ 4n4/5 for all 1 ≤ i ≤ k.

The telescoping sum of the above k inequalities, one per successful iteration, yields

ψ(G0) − ψ(Gk) ≤ 4kn4/5,

as claimed.
Lemma 7. If procedure Ach-Bip halts during iteration (k+1) under Condition 3,

then the achromatic partition returned has size at least �ψ∗/16n4/5�.
Proof. For each successful iteration i ∈ [1, k], it is ψ∗-safe for Gi−1 to delete the

corresponding set of vertices (Ai ∪Di ∪Li). However, it is ψ∗-unsafe for Gk to delete
(Ak+1 ∪Dk+1 ∪ Lk+1), and by Definition 1 and Claim 2 this can happen only if

4(k + 1)n4/5 ≥
k+1∑
i=1

|Ai ∪Di|

> ψ∗/4.

We conclude that A = {A1, A2, . . . , Ak} forms an achromatic partition of the subgraph
G[∪1≤i≤k Ai] by Claim 1. It has size k ≥ �ψ∗/(16n4/5)�, as claimed.

We now address Condition 1 in procedure Ach-Bip. If the procedure halts on this
condition at the beginning of iteration (k + 1), then we have two possibilities. If k ≥
�ψ∗/(16n4/5)�, then the same conclusion as that of Lemma 7 holds. Otherwise, k <
�ψ∗/(16n4/5)�, and we may not necessarily have a good guarantee of an approximation
ratio.

However, note that Gk, the graph at the beginning of iteration (k + 1), has no
light Uk-equivalence classes, which is what triggers the condition. Since Uk has only
heavy classes, it has no more than n4/5 equivalence classes in total (because each
heavy class has at least n1/5 vertices and |Uk| ≤ n).

Claim 4. Assume that both applications of procedure Ach-Bip on lines 1 and 2 of
algorithm Approx-Bip halt on Condition 1 of procedure Ach-Bip. Let q1 (respectively,
q2) be the number of U [1]-equivalence classes in G[1] (respectively, the number of U [2]-
equivalence classes in G[2]). Then, the graph G[2] has achromatic number at least
ψ(G) − ψ∗/2 and has at most a total of (q1 + q2) ≤ 2n4/5 equivalence classes.

Proof. Observe that the removal of vertices (along with all their incident edges)
from a graph cannot increase the number of equivalence classes: two vertices that
were equivalent before the removal remain equivalent afterward. Hence, the number
of V [2] equivalence classes is at most q1 (note that the partitions are interchanged
before the second application of procedure Ach-Bip on line 2). Thus G[2] has at most
a total of (q1 + q2) equivalence classes. The discussion preceding the statement of the
claim shows that (q1 + q2) is bounded above by 2n4/5.

Since neither application of procedure Ach-Bip halts on Condition 3, the vertices
deleted during both applications are ψ∗-safe for deletion. Hence, by Definition 1, the
net decrease in the achromatic number is at most 2ψ∗/4 = ψ∗/2.

Theorem 2. For at least one value of ψ∗, viz. when ψ∗ = ψ(G), algorithm
Approx-Bip achieves an approximation ratio of O(n4/5).
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Proof. Lemma 6 shows that if either of the two applications of procedure Ach-
Bip halts on Condition 2, then we are guaranteed an approximation ratio of O(n4/5)
regardless of the relationship between ψ(G) and ψ∗.

Now, consider the situation when ψ∗ happens to be equal to ψ(G), but neither
application of procedure Ach-Bip halts on Condition 2. There are two possibilities.
If either one of the two procedure calls halts on Condition 3, then by Lemma 7, the
corresponding returned partition (either A1 or A2) can be extended to an achromatic
partition of G whose size provides the desired O(n4/5)-ratio approximation of ψ(G).

Otherwise, it must be the case that both applications of procedure Ach-Bip halt
on Condition 1. From Claim 4, we see that the residual graph G[2] has at most 2n4/5

equivalence classes in its reducing congruence and has an achromatic number that is
at least ψ(G)/2 (since ψ∗ = ψ(G)). Using the algorithm underlying Theorem 1 on
graph G[2] provides an O(max{n4/5,

√
ψ(G)}) = O(n4/5) approximation ratio for the

achromatic number of G[2]. The achromatic coloring of G[2] can be extended to G
with the same approximation ratio guarantee.

Acknowledgments. The first author would like to thank Robert Krauthgamer
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Abstract. We prove that dual graphs and relational structures are connected. Moreover we
give efficient bounds for their diameter: a linear bound in the case of oriented graphs (and this is
best up to a constant) and a polynomial bound in the case of relational structures.
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1. Introduction. How do local properties of graphs influence their global prop-
erties? The local-global phenomena were studied extensively and, in general, this is
an area of negative results. See the seminal work of Erdős on high chromatic sparse
graphs [1] (extended in this setting in [8]). There are, however, positive aspects of
this local-global paradigm. For example, for proper minor closed classes we can char-
acterize the maximum number of colors which one can demand on a subgraph (this
leads to the notion of treedepth; see [3]), and for oriented graphs (and more gener-
ally for relational structures) one obtains a rich spectrum of global properties which
are defined locally. The present paper is devoted to one such area: homomorphism
dualities.

Our simplest model involves oriented graphs. Recall that for oriented graphs
G = (V,E) and G′ = (V ′, E′), a homomorphism f : G → G′ is any mapping f : V →
V ′ satisfying (x, y) ∈ E ⇒ (f(x), f(y)) ∈ E′. (See [2] for an introduction to graphs
and their homomorphisms.) Let G → G′ denote the existence of a homomorphism.
A homomorphism duality (see [4], [2]) is any statement of the following type:

(1) for every graph G the following holds: F �→ G iff G → H

(thus G is H-colorable iff G doesn’t contain a homomorphical image of F ). The pair
(F,H) is called a dual pair and H is the dual of F . This will be denoted by H = DF .
(The dual is uniquely determined up to homomorphism equivalence.) The following
is a consequence of the main result of [4].

Theorem 1. The dual DF exists iff F is homomorphically equivalent to an
oriented tree.

The original construction of duals was an indirect one; however, an explicit and
easy construction of the dual DF was introduced in [5]. Besides having the useful
property (1), this construction (of size 2n log n for a tree with n vertices) is an interest-
ing combinatorial structure in itself. However, due to its exponential size, not much
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is known about its properties. The construction is reviewed and analyzed in section
2, where we prove the following.

Theorem 2. After removing isolated vertices, DF is a connected graph of diam-
eter at most |V (F )| + 3 for every tree F .

Although we can prove indirectly that the core of the dual is always a connected
graph (see Theorem 5), for Theorem 2 we need a careful analysis of the explicit
construction of DF . For a fixed tree F , the vertices of DF are (neighborly) mappings
V (F ) → V (F ) with arcs defined by means of “switching.” This result should be
compared with a connectivity and diameter result for trees and their rotations (see [9]).
Proof of Theorem 2 is given in section 2.

In the context of applications in constraint satisfaction problems (see [2]), it is
important that statements similar to Theorems 1 and 2 hold for all finite relational
structures. Let Δ = (δi; i ∈ I) be a finite sequence of positive integers. A relational
structure A of type Δ (Δ-structure, for short) is a pair (X, (Ri; i ∈ I)) where Ri ⊆ Xδi

for all i ∈ I, i.e., Ri is some δi-ary relation. The base set X of A is sometimes denoted
by A. We use Ri(A) instead of Ri when necessary and call its elements edges. A
homomorphism A → A′ of Δ-structures is defined as a mapping of vertices which
preserves the relations Ri for all i ∈ I. We have the following.

Theorem 3. Δ-structure admits a dual iff it is homomorphically equivalent to a
Δ-tree.

See [4] or section 3 for the definition of Δ-tree. We prove the connectivity even
in the following case.

Theorem 4. For any Δ-tree F , its dual DF is connected after removing isolated
vertices.

By isolated vertices we mean vertices which do not belong to any edge or those
that belong only to edges in Ri(A) with δi = 1. Theorem 4 will be proved in section 3.
Section 4 contains some remarks and open problems.

2. Oriented graphs. Let T be an arbitrary oriented tree. Although we can
construct many dual graphs (graphs DT such that T �→ G ⇔ G → DT holds for
every G), any two duals D and D′ are homomorphically equivalent, meaning that we
have D → D′ and D′ → D. Thus, up to isomorphism, only one of the duals is a core
(it has no proper retracts). This is why we often speak about the dual. In this section,
DT will denote the dual obtained by construction described in Definition 1, whereas
Core(DT ) will be the dual that is a core. As a warm-up we prove that Core(DT ) is a
connected graph.

Theorem 5. Core(DT ) is a connected graph.
Proof. For contradiction, suppose that there exist two graphs, D1 and D2, such

that Core(DT ) = D1 + D2 (there is no edge uv for u ∈ V (D1) and v ∈ V (D2)).
Each of the two graphs contains at least one edge, otherwise Core(DT ) would not be
a core. Choose arbitrarily u1u2 ∈ E(D1) and v1v2 ∈ E(D2) and pick some odd k
such that k > |V (T )|. Next, build a new graph D′ from Core(DT ) by inserting new
vertices w1, . . . , wk and edges wjwj−1 and wjwj+1 for all even j as well as u1w1 and
v1wk. This D′, contrary to Core(DT ), contains a path with alternating directions of
edges with endpoints in D1 and D2. Clearly D1 �→ D2 and D2 �→ D1 (as D1 + D2

is a core). It follows that D′ �→ D1 + D2. On the other hand T �→ D′ since if
φ : T → D′ is a homomorphism, then φ[V (T )] ∩ V (Di) = ∅ for some i = 1, 2,
because T is connected and the length of the path which connects D1 and D2 is
greater than |V (T )|. Without loss of generality i = 2. The subgraph induced by
vertices φ[V (T )] consists of some vertices of D1 and some vertices that belong to the
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path between D1 and D2. Formally, φ[V (T )] ⊆ (V (D1)∪{w1, . . . , wk}). However, the
subgraph induced by vertices V (D1)∪{w1, . . . , wk} is homomorphically equivalent to
D1: consider homomorphism ψ such that ψ � V (D1) is the identity, ψ(wj) = u1

for j even, and ψ(wj) = u2 for j odd. Then ψφ is a homomorphism mapping T to
D1, which is a contradiction of T �→ D1 + D2. Thus we indeed have T �→ D′, which
together with D′ �→ D1 + D2 contradicts the assumption that D1 + D2 is a dual of
T .

In [5], Nešetřil and Tardif introduced the following explicit construction of DT .

Definition 1. DT is the graph defined as follows: its vertices are all map-
pings from V (T ) to V (T ) such that for every u ∈ V (T ) either (u, f(u)) ∈ E(T )
or (f(u), u) ∈ E(T ). Two mappings f and g form an edge (f, g) of DT if for all
(u, v) ∈ E(T ) we have f(u) �= v or g(v) �= u.

Theorem 6. DT defined above is a dual of T .

We have shown (Theorem 5) that Core(DT ) is a connected graph, i.e., for every
u, v ∈ V (Core(DT )) there exists an oriented path starting with u and ending with v.
But the above proof of Theorem 5 does not construct such a path and does not
provide any information about its length. In particular, we would like to estimate
the diameter of DT . In Theorem 7, we will prove a stronger statement: not only the
core of DT is connected, but DT itself is connected after removing isolated vertices.
Moreover, its diameter is linear in the number of vertices of T , which is perhaps
surprising considering that the number of vertices of DT can be exponential in |V (T )|
(see [7]).

To prove this, we first characterize the isolated vertices of DT .

Definition 2. A vertex u ∈ V (T ) is a source if its indegree is zero. It is a
problematic source for f ∈ V (DT ) if it is a source and, moreover, for all its neighbors
w we have f(w) = u. Similarly, u is a sink if its outdegree is zero and it is a
problematic sink for f ∈ V (DT ) if it is a sink and f(w) = u for all vertices w
adjacent to u.

The proof of the next lemma follows directly from Definitions 1 and 2.

Lemma 1 (characterization of isolated vertices of the dual). Outdegree of f in DT

is zero iff there exists a problematic sink for f in T . Indegree of f in DT is zero iff
there exists a problematic source for f in T .

Let Z be the set of sources in T . Let V ∗ be the set of mappings in V (DT )
that go against the directions of edges of T whenever possible, i.e., V ∗ = {f ∈
V (DT )| if f(x) = y for an edge (x, y) of T , then x ∈ Z}.

Lemma 2. If f ∈ V ∗ and h ∈ V (DT ), then (f, h) is an edge of DT iff for any
x ∈ Z, h(f(x)) �= x.

Proof. The pair (f, h) is an edge iff we have h(y) �= x whenever (x, y) is an edge
of T such that f(x) = y. But since f ∈ V ∗, this is equivalent to the requirement that
h(f(x)) �= x for every x ∈ Z.

Corollary 1. If f ∈ V ∗ and f ′ ∈ V (DT ), and f(x) = f ′(x) for all x ∈ Z, then
each outneighbor of f ′ is an outneighbor of f .

Lemma 3. Suppose f, g ∈ V ∗ and each of f, g has outdegree greater than zero. If
y is a source in T and f(x) = g(x) for all x ∈ Z \ {y}, then dDT

(f, g) ≤ 2.

Proof. Let z1 = f(y) and z2 = g(y). Pick hf and hg such that (f, hf ) and
(g, hg) are edges of DT . Define a mapping h in the following way: Let h(z2) = hg(z2)
and h(u) = hf (u) for all u �= z2. Let x be a source in T . If f(x) �= z2, then
h(f(x)) = hf (f(x)) �= x by Lemma 2 since (f, hf ) is an edge. If f(x) = z2, then
we also have g(x) = z2 since f and g coincide on all sources except for y. Thus
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h(f(x)) = h(z2) = hg(z2) = hg(g(x)) �= x since (g, hg) is an edge. So h(f(x)) �= x
whenever x ∈ Z and by another application of Lemma 2, (f, h) is an edge. Similarly,
for x ∈ Z, either g(x) = z2 and h(g(x)) = h(z2) = hg(g(x)) �= x, or g(x) �= z2, so
x �= y and h(g(x)) = hf (g(x)) = hf (f(x)) �= x. In any case h(g(x)) �= x, so (g, h) is
an edge.

Lemma 4. Suppose f, g ∈ V ∗ and each of f, g has outdegree greater than zero.
Then either f(x) = g(x) for all x ∈ Z, or there exists an x∗ ∈ Z such that f(x∗) �=
g(x∗) and there exists g′ ∈ V ∗ such that g′ has outdegree greater than zero, and
g′(x∗) = f(x∗) and g′(x) = g(x) for all x ∈ Z \ {x∗}.

Proof. Pick a vertex y1 ∈ Z such that f(y1) �= g(y1). Define a mapping h1:
h1(y1) = f(y1) and h1(u) = g(u) for u �= y1. If the outdegree of h1 is greater than
zero, then let g′ = h1 and x∗ = y1 and we are done.

Otherwise T has a problematic sink for h1. Since h1(u) = g(u) for u �= y1

and there are no problematic sinks for g, the only problematic sink for h1 is f(y1).
In particular, all neighbors of f(y1) are sources and g maps all of them except y1

to f(y1). But f has no problematic sink, so f(y1) has some neighbor y2 ∈ Z such
that f(y2) �= g(y2) = f(y1). Define h2: h2(y2) = f(y2) and h2(u) = g(u) for u �= y2.
If h2 has outdegree greater than zero, then let g′ = h2 and x∗ = y2. If not, find y3 in
a similar manner.

Consider the sequence y1, y2, y3, . . . . The way we defined it together with the fact
that T is a tree guarantee that the elements in the sequence never repeat. But then it is
finite and if yk is its last element, then hk defined as hk(yk) = f(yk) and hk(u) = g(u)
for u �= yk has outdegree greater than zero. Let g′ = hk and x∗ = yk.

Corollary 2. If f, g ∈ V ∗, each of f, g has outdegree greater than zero, f(x) =
g(x) whenever x �∈ Z, and m is the number of vertices x such that f(x) �= g(x), then
dDT

(f, g) ≤ 2m.

Proof. By induction of m. If m = 0, then f = g and the statement is trivial. For
m = 1, the statement is the essence of Lemma 3. If m > 1, find g′ as in Lemma 4.
There is only one vertex x such that g′(x) �= g(x) and m − 1 vertices x such that
f(x) �= g′(x). By induction hypothesis dDT

(g′, g) ≤ 2 and dDT
(f, g′) ≤ 2(m− 1) and

the claim follows.

Theorem 7. Let T be an oriented tree with n vertices and DT its dual constructed
in Definition 1. Let f and g be two vertices of DT which are not isolated. Then there
exists an oriented path between f and g of length at most n + 3.

Proof. If f has nonzero outdegree, then let f∗ be the mapping such that f∗(x) =
f(x) whenever x ∈ Z, and f∗(x) = z for an (arbitrary) edge (z, x) whenever x �∈ Z.
Such f∗ belongs to V ∗ and it has a common neighbor with f by Corollary 1. If f has
no outneighbor, then it has an inneighbor h. Let f∗ be a mapping that agrees with h
on the set of sources and maps the rest of the vertices against the directions of some
incident edges. Then again f∗ ∈ V ∗ and, by Corollary 1, (f∗, f) is an edge.

Let g∗(x) = f∗(x) whenever x �∈ Z. If g has an outneighbor, then let g∗(x) = g(x)
for x ∈ Z. If not, pick an inneighbor h and let g∗(x) = h(x) for x ∈ Z. This g∗ belongs
to V ∗ and has distance at most 2 from g.

Let Y ⊆ Z be the set of all vertices x such that f∗(x) �= g∗(x) and suppose
Y = {y1, . . . , ym}. By Corollary 2, f∗ and g∗ are at most 2m apart. Consider the
subgraph R of T with edges (yi, f

∗(yi)) and (yi, g
∗(yi)) for i ≤ m. R has 2m edges

and since it is either a tree or a forest, we get

(2) n = |V (T )| ≥ |V (R)| ≥ |E(R)| + 1 = 2m + 1.
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Therefore 2m ≤ n−1 and the distance of f∗ and g∗ is at most n−1. The mappings f∗

and g∗ were chosen so that d(f∗, f) ≤ 2 and d(g∗, g) ≤ 2, so d(f, g) ≤ n− 1 + 2 + 2 =
n + 3.

This bound can be improved to n + 2. We do not include the proof because it
is merely a tedious case analysis based on the ideas presented in the above proof.
Daphne Liu kindly informed us that the above proof can yield an upper bound n
(and even n − 1 if n is odd). For duals constructed in Definition 1 this is optimal.
Let us remark that [6] contains example of trees T for which Core(DT ) has diameter
at least

⌊
n−1

2

⌋
.

3. Relational structures. Let A be a relational structure of type Δ = (δi; i ∈ I).
We write u ∈ a for a vertex u and an edge a = (a1, . . . , aδi) if there exists an index k
such that u = ak.

The incidence graph Inc(A) of the structure A is the bipartite graph with parts
A and Block(A) = {(i,a)|i ∈ I,a ∈ Ri(A)}. The edges are all pairs (u, (i,a)) such
that u ∈ a. A is called a Δ-tree when Inc(A) is a tree.

Notice that if δi = δi′ for some i �= i′, then A can have an edge x that belongs to
both Ri(A) and Ri′(A). However, if we have also δi > 1, then such A is not a Δ-tree.

As we mentioned in section 1, A admits a dual iff it is homomorphically equivalent
to a Δ-tree. A simple construction of duals for relational structures similar to the one
in Definition 1 appeared in [7].

Definition 3. Let A be a Δ-tree. Let DA be the relational structure with the
base set DA = {f : A → Block(A)|(u, f(u)) ∈ E(Inc(A)) for all u ∈ A}. The δi-
tuple (f1, . . . , fδi) belongs to Ri(DA) iff for every (x1, . . . , xδi) ∈ Ri(A) there exists
j ∈ {1, . . . , δi} such that fj(xj) �= (i, (x1, . . . , xδi)).

Theorem 8 (see [7]). Let A be a Δ-tree. The structure DA defined above is a
dual of A.

Analogously to the proof of Theorem 5 we can prove easily that the core of DA is a
connected Δ-structure. Again we will prove a stronger statement: even the structure
DA constructed in Definition 3 is connected after deleting all isolated vertices.

Sinks and sources together with the sets of their neighbors played a crucial role in
characterizing the isolated vertices of duals of graphs. The classes of the equivalence
defined below play a similar role in characterizing the isolated vertices of duals of
relational structures.

Let cl denote the lth vertex of the edge c.
Definition 4. For every i ∈ I and k ∈ {1, . . . , δi} we will define equiva-

lence ≈(i,k) on Ri(A): x ≈(i,k) y if there exist an integer m ≥ 1 and a sequence
of edges x = c1, c2, . . . , cm = y with c1, . . . , cm ∈ Ri(A) which satisfy the following:
for every j = 1, . . . ,m − 1 there is an index lj �= k such that the edges cj and cj+1

share a vertex v, and v occupies the ljth position in both edges (that is, cjlj = cj+1
lj

).

The relation ≈(i,k) is clearly an equivalence. [x]≈(i,k)
will denote the class of the

equivalence ≈(i,k) containing the edge x.
If x and y are edges of a Δ-tree A that belong to the same equivalence class and

they share a vertex v, then v is in the same position in both edges, and moreover this
position is different from k. This is because (i,x), v, (i,y) is the unique path from
(i,x) to (i,y) in Inc(A), by the definition of Δ-tree. In particular, v is the only vertex
that x and y share. We necessarily have x = c1 and c2 = y and v is in the same
position in both, and that is different from k.

For Δ = (2), a Δ-tree is just an orientation of an ordinary tree. A class of
equivalence ≈(1,1) is a set of edges with the same second coordinate, say {(ur, v); r ≤ s}
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for some vertex v and some index s. Saying that T has a problematic sink for f
is equivalent to saying that there exists a set of edges {(ur, v); r ≤ s} such that
f(ur) = v for every r ≤ s, and moreover, v has no neighbors other than the vertices ur.
Definition 5 generalizes this idea for a general Δ.

Definition 5. Let f be a vertex of DA, i ∈ I, and k ∈ {1, . . . , δi}, and let C be
a class of equivalence ≈(i,k). We call C a problematic class for f and k if every edge
a in C satisfies the following two conditions:

(1) If a shares a vertex v with some edge y not in C, then v is the kth component
of a.

(2) f(ak) = (i,a).

If C is a class of equivalence ≈(i,k) and a is an edge in C that violates at least
one of the two conditions above, then we call a a good edge for C.

Lemma 5. Let f be a vertex of DA, i ∈ I, and k ∈ {1, . . . , δi}. If every class
of equivalence ≈(i,k) contains a good edge, then f is the kth component in some edge
of DA.

Proof. We need to find f1, . . . , fk−1, fk+1, . . . , fδi such that (f1, . . . , fδi) is an edge
in DA for fk = f . For every class C of equivalence ≈(i,k), pick a good edge a in C and
label the edges of C according to their distance from a. That is, a gets the label 0;
any edge b that has a common vertex with a gets the label 1; any edge that has a
common vertex with such b (but not with a) is labeled 2, and so on. Every edge in C
gets a label, and such labeling is unique, as a consequence of the definition of ≈(i,k)

and of A being a Δ-tree. In addition, if the good edge a violates the first condition,
label y with −1. Now if c ∈ Ri(A) and l �= k, let fl(cl) be the edge with the smallest
label of all edges incident to cl. Since A is a Δ-tree, such an edge is determined
uniquely. Define fl arbitrarily on the rest of the vertices of A, under the condition
that the image of every vertex is an incident edge, and let fk = f .

To show that (f1, . . . , fδi) is an edge of DA, we need to show that for every
c ∈ Ri(A) there exists an index l such that fl(cl) �= (i, c). If c is incident to another
edge with a smaller label, then this is obvious. If not, then c has label 0 and it is a
good edge violating the second condition. But then f(ck) = fk(ck) �= (i, c).

Lemma 6. Let i ∈ I and k ∈ {1, . . . , δi}. If there exists a problematic class for f
and k, then f is not the kth component of any edge in Ri(DA).

Proof. Suppose for contradiction that f = fk for some (f1, . . . , fδi) ∈ Ri(DA). Let
C be the problematic class for f and k and pick an edge x ∈ C. Since (f1, . . . , fδi) is an
edge of DA, there exists some vertex xj in x such that fj maps xj to an edge y different
from x. The edge y shares the vertex xj with x, and if y �∈ C, then by condition (1) in
Definition 5 we have j = k. Thus fk(xk) �= (i,x), which contradicts condition (2). So
we have y ∈ C. We will denote x1 = x, x2 = y and continue constructing the sequence
{xm|m ∈ N}. Suppose xm ∈ C is already known for some m. Find j ∈ {1, . . . , δi}
such that fj maps the vertex xm

j to an edge z different from xm. Such j exists for all

xm ∈ Ri(A) because (f1, . . . , fδi) is an element of Ri(DA). Denote xm+1 = z. Since
xm ∈ C and the two conditions hold, xm+1 belongs to C for reasons analogous to
those above. This way we obtain an infinite sequence of edges in C such that every
two consecutive edges are different and have a vertex in common. Can some elements
repeat in this sequence? Suppose that xm = xm+l for some m, l ∈ N. If this is true for
more than one pair m,l, choose the pair with the smallest value of l. If l ≥ 3, we get a
cycle in Inc(A), which contradicts the definition of Δ-tree. Two subsequent edges are
different, so l = 2. Since xm+1 follows after xm in our sequence and they belong to C,
the common vertex is the jth in both for some j and we have fj(x

m
j ) = (i,xm+1). Also
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xm+2 follows after xm+1, so the common vertex is the j′th in both for some j′ and
fj′(x

m+1
j′ ) = (i,xm+2) = (i,xm). But since A is a Δ-tree, xm and xm+1 share only

one vertex and thus j = j′. Hence, (i,xm+1) = fj(x
m
j ) = fj′(x

m+1
j′ ) = (i,xm), which

contradicts our assumption. Thus the elements of our sequence never repeat and we
obtained an infinite branch in a finite Δ-system, which is a contradiction.

As a direct consequence of Lemmas 5 and 6 we get the following.
Theorem 9 (characterization of isolated vertices of duals). A vertex f is not the

kth component of any edge in Ri(DA) iff A has a problematic class for f and k.

Throughout this section, we will use the following notation. Let Ã be a Δ-tree,
D̃A its dual, and let D̃A = {f̃1, . . . , f̃j}. Then A will denote the Δ-tree that we obtain

by adding a new edge to Ã. That is, we select some index i ∈ I and add δi − 1 new
vertices and one new edge b ∈ Ri(A) which contains all the new vertices and one old

vertex v ∈ Ã. Notice that no vertex of b other than v can belong to Ã, for otherwise
either A or Ã is not a Δ-tree. Let DA be the dual of A. It is not hard to see that DA

has vertices {f1, . . . , fj , f
′
1, . . . , f

′
j}, such that the mappings ft and f ′

t for t = 1, . . . , j

are both derived from f̃t and they differ only on the vertex v. More precisely, ft and
f ′
t coincide with f̃t on vertices of Ã except for v; they are defined in the only possible

way on vertices of b different from v (that is, ft(u) = f ′
t(u) = (i,b) for u ∈ b, u �= v);

and ft(v) = f̃t(v), while f ′
t(v) = (i,b). Notice that the elements f ′

1, . . . , f
′
j are not

necessarily distinct: if v belongs to more edges of Ã, then there are some indices
k and l such that the mappings f̃k and f̃l differ only on the vertex v, and f ′

k is equal
to f ′

l .
This notation allows us to state the following corollary of Theorem 9.
Corollary 3. Let g be a vertex of DA. If g is the kth component of some edge

(g1, . . . , gδi) ∈ Ri(DA) but g̃ is isolated in D̃A, then there exists a single problematic

class [x]≈(i,k)
for g̃ and k in D̃A, and this class is no longer problematic (for g and k)

after inserting the edge b.
The next lemma reveals a close relationship between DA and D̃A: if we delete the

vertices f ′
1, . . . , f

′
j in DA and all edges containing them, we get exactly a copy of D̃A.

The proof follows immediately from Definition 3.
Lemma 7. Let i ∈ I. (f̃1, . . . , f̃δi) is an edge of D̃A iff (f1, . . . , fδi) is an edge of

DA.
The structure DA may contain vertices that do not belong to any edge (isolated

vertices) and also vertices that are only in unary edges (i.e., edges with δi = 1). To
simplify notation, we will extend the definition of isolated vertices so that it includes
also the latter kind of vertices: from now on, a vertex u will be isolated iff for every
i ∈ I with δi > 1 and for every x ∈ Ri(A) we have u �∈ x. We will prove that after
removing such isolated vertices, DA is a connected Δ-system.

The proof of connectedness of the duals for graphs (Theorem 7) can be generalized
for relational structures. However, we chose a different approach, one that shows how
the dual changes when we modify the original tree, and thus provides additional
insight into its structure. This proof gives an alternative proof of Theorem 7 (without
the bound on diameter).

We will need the following lemma.
Lemma 8. If B is a component of DA which contains more than one vertex,

then some of the vertices f1, . . . , fj belong to B (that is, B does not contain only
f ′
1, . . . , f

′
j).

Proof. Suppose that the new edge b belongs to Ri′(A) and has a common vertex
aj1 = bj2 with some a ∈ Ri(A). Let δl > 1 and let (f ′

1, . . . , f
′
δl

) be an edge in B
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that does not contain any of the vertices f1, . . . , fj . One can easily see that this can
happen only if l �= i′. If a �∈ Rl(A), then we can define g(bj2) = (i,a), g(u) = f ′

1(u)
for u �= bj2 . The δl-tuple (g, f ′

2, . . . , f
′
δl

) is an edge: fix an edge c ∈ Rl(A) and find
an index j such that f ′

j(cj) �= (l, c) (it exists since (f ′
1, . . . , f

′
δl

) is an edge). Then this
j works for the new δl-tuple of mappings as well. If a ∈ Rl(A), then we will choose
m �= j1 (we can do this because δl > 1) and define g(bj2) = (i,a), g(u) = f ′

m(u) for
u �= bj2 . Then (f ′

1, . . . , f
′
m−1, g, f

′
m+1, . . . , f

′
δl

) is also an edge in Rl(DA). Moreover,
in both cases g ∈ {f1, . . . , fj}.

The so-called zigzag paths, i.e., paths with alternating directions of edges, play
an important role in the proof of Theorem 7. The equivalence classes defined below
are analogues of zigzag paths for relational structures.

Definition 6. For every i we will define an equivalence ∼i on Ri(A): x ∼i y
if there exists a sequence x = c1, c2, . . . , cm = y of edges from Ri(A) such that for
every j there exists some index lj ∈ {1, . . . , δi} such that cjlj = cj+1

lj
.

Contrary to the definition of ≈(i,k), now the index lj can be arbitrary. For every
x and k we have [x]≈(i,k)

⊆ [x]∼i . In the following proofs, a is again a fixed edge
in Ri(Ã) which has a common vertex with the newly added edge b.

Lemma 9. Suppose that Ã has an edge y that does not belong to the class [a]∼i and

that δi > 1. Let g ∈ {f1 . . . , fj} be a vertex such that g̃ is isolated in D̃A but g = z1
k for

some k and some edge (z1
1 , . . . , z

1
δi

) ∈ Ri(DA). Then there exists an index r and edges
z1, . . . , zr in Ri(DA) such that each consecutive pair shares a vertex, z1 = (z1

1 , . . . , z
1
δi

)

and zr = (zr1 , . . . , z
r
δi

) with (z̃r1 , . . . , z̃
r
δi

) ∈ Ri(D̃A) and zr1 , . . . , z
r
δi

∈ {f1, . . . , fj}.
Proof. Since Ã is a connected Δ-structure, we may without loss of generality sup-

pose that y has a common vertex with some edge in [a]∼i
. Let y = c1, c2, . . . , cm = b

be the shortest sequence of edges in A such that each consecutive pair shares a vertex.
Since A is a Δ-tree, all these edges except c1 and possibly cm belong to [a]∼i . Let
z1 = (z1

1 , . . . , z
1
δi

) and define z2, . . . , zm ∈ Ri(DA) inductively in the following way.
Suppose that zt−1 is already known. At least one of ct−1 and ct belongs to [a]∼i

;
suppose that the shared vertex w is the sth in this edge. Then let zt be a δi-tuple
which differs from zt−1 only in its sth component, zts, and the image of the vertex w
under the mapping zts is the edge ct−1, whereas zts(u) = zt−1

s (u) for all u �= w.

Considering that zt−1 is an edge of DA and that the mappings in zt are mostly the
same as those in zt−1, the edge ct−1 is the only one that can prevent the δi-tuple zt

from being an edge of DA. If t ≥ 3, then ct−1 shares its s′th vertex with ct−2 and
s �= s′ because the path from y to b was the shortest possible. But then zts′ = zt−1

s′

maps ct−1
s′ to the edge ct−2 and ct−1 does not violate the condition for zt being an

edge. If t = 2, then c1 = y can violate the condition only if y ∈ Ri(A). But in that
case, since y �∈ [a]∼i , the common vertex of y and c2 is the sth in c2 and the s′th in
y for some s �= s′ and the condition holds.

Thus we have constructed edges z1, . . . , zm in Ri(DA). Every two subsequent
edges in this sequence differ only in one component and since δi > 1, they share at least
one vertex. For l = 1, . . . , δi, define the mappings zm+1

l : zm+1
l (v) = (i,a) for the ver-

tex v shared by a and b and zm+1
l (u) = zml (u) for u �= v. For all l, zm+1

l ∈ {f1, . . . , fj}
and trivially (zm+1

1 , . . . , zm+1
δi

) ∈ Ri(A), so by Lemma 7, ( ˜zm+1
1 , . . . , ˜zm+1

δi
) is an edge

of D̃A. Moreover, if v is the rth vertex in a, then (zm+1
1 , . . . , zm+1

δi
) shares the vertex

zm+1
r = zmr with zm.

Lemma 10. Suppose that every edge of Ã belongs to the class [a]∼i . Then DA is
connected after removing isolated vertices.
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Proof. If b ∈ Ri(A) and as = bs holds for some s (that is, the common vertex
of a and b occupies the same position in both edges), then Ri(DA) = ∅. This is
because A is homomorphically equivalent to the Δ-system B with B = {b1, . . . , bδi}
and Ri(B) = R(B) = {b} and clearly Ri(DB) = ∅. If there exists some i′ �= i such
that δi′ > 1, then for any δi′ -tuple f1, . . . , fδ′i ∈ DA we have (f1, . . . , fδ′i) ∈ Ri′(DA)
(since Ri′(A) = ∅, nothing can prevent the existence of such edge), otherwise all
vertices of DA are isolated.

If b ∈ Ri(A), but bs = as′ for some s �= s′ (the common vertex occupies different
positions in the two edges) or b �∈ Ri(A), then describing Ri(DA) is also relatively
easy. First, let us label the edges of A recursively according to their distance from b
and let c(x) denote the label given to the edge x. More precisely, c(b) = 0, c(a) = 1,
c(y) = 2 for edges that have a common vertex with a, etc. Since A is a Δ-tree,
such labeling exists and is unique. Now define sets Hr ⊆ DA for r = 1, . . . , δi: f
will belong to Hr iff for every edge x other than b, f(xr) has the smallest label of all
edges incident with xr. If b ∈ Ri(A), we impose an additional requirement on f in Hs:
f(bs) �= (i,b). We will prove that Ri(DA) = H1 ×H2 × · · · ×Hδi (cartesian product
of sets). If (g1, . . . , gδi) ∈ H1 ×H2 × · · · ×Hδi , then for every edge x ∈ Ri(A) there is
some r such that gr(xr) �= (i,x) (here we need the extra condition on gs if b ∈ Ri(A)),
so (g1, . . . , gδi) ∈ Ri(A). Let’s prove the other inclusion. For contradiction suppose
that (g1, . . . , gδi) ∈ Ri(DA) but gr �∈ Hr for some r. The extra condition for the case
b ∈ Ri(A) and r = s clearly holds, if applicable, because otherwise b would be an edge
violating the condition for existence of the edge (g1, . . . , gδi). So there is some vertex u
in the rth position in some edge x ∈ Ri(A)\{b} such that gr maps u to some edge x0,

but u belongs to some edge y which is closer to b than x0. Since R(Ã) = [a]∼i , we can
without loss of generality suppose that x = x0 and u = x0

k. Since (g1, . . . , gδi) is an
edge, there is some l0 �= r for which gl0(x

0
l0

) = (i,x1) for x1 �= x0. Since A is a Δ-tree,
y is the only edge incident to x0 such that c(y) < c(x0), and therefore c(x1) > c(x0).
Analogously there exists l1 �= l0 for which gl1(x

1
l1

) = (i,x2) for x2 �= x1. Again
c(x2) > c(x1). The sequence x1,x2, . . . can finish only if it reaches b at some point.
However, considering that c(x1) < c(x2) < · · · and c(b) = 0, this will never happen.
The system A is finite, and thus we obtain a contradiction.

If there exists an i′ �= i with δi′ > 1, then again all vertices of DA belong to a single
nontrivial connected component. This is because if b ∈ Ri′(A), then (f1, . . . , fδi′ ) is
an edge whenever fs(bs) �= (i′,b), and if b �∈ Ri′(A), then Ri′(A) = ∅, so all the
δi′ -tuples are edges. If there is no such i′, then the nontrivial connected component
contains exactly the elements of Ri(DA) = H1 ×H2 × · · · ×Hδi , which has only one
connected component.

Theorem 10. If the Δ-system obtained from D̃A by removing isolated vertices
is connected, then DA is also connected after removing isolated vertices.

Proof. By deleting the vertices f ′
1, . . . , f

′
j from DA (and all edges incident with

them) we get a copy of D̃A (Lemma 7). By assumption, this copy has at most one
nontrivial connected component (i.e., connected component with more than one ver-
tex), say C. For contradiction suppose that there exists some nontrivial component C ′

in DA such that C ′ ∩ C = ∅. Necessarily, some of the vertices f ′
1, . . . , f

′
j belong to

C ′. But C ′ also contains some g ∈ {f1, . . . , fj} (Lemma 8), and since g �∈ C, g̃ was

isolated in D̃A. Thus, to prove the theorem, it suffices to find a path in Inc(DA)
beginning with g and ending in C for every g ∈ {f1, . . . , fj} such that g̃ is isolated in

D̃A but g = gk for some k, some i ∈ I with δi > 1, and some (g1, . . . , gδi) ∈ Ri(DA).
This will contradict the existence of C ′.



SMALL DIAMETERS OF DUALS 383

Let g be such a vertex. By Corollary 3 there was only one problematic class
[x]≈(i,k)

for g̃ in Ã, and after adding the edge b this class is no longer problematic.
This could happen only if b has a common vertex with an edge a ∈ [x]≈(i,k)

; in
particular we have a ∈ Ri(A) for this edge. In this situation we distinguish two cases.
If Ã has an edge that does not belong to [a]∼i , then use Lemma 9 to find a sequence of

edges connecting g with an element of C. If all edges of Ã belong to [a]∼i , Lemma 10
proves the connectivity directly.

Proof of Theorem 4. Every Δ-tree A has an edge x that shares only one vertex with
the rest of A (analogous to a leaf in a tree). If we remove x, the resulting Δ-structure
is again a Δ-tree. Thus any Δ-tree can be built in a finite number of steps from the
empty Δ-tree (i.e., a Δ-tree B with B = ∅) by inserting edges in such a way that the
Δ-systems obtained in each step are Δ-trees. Therefore we can proceed by induction,
with the inductive step being the essence of the previous theorem. .

Distance d(u, v) of vertices u and v in a relational structure is defined as the
smallest k for which there exists a sequence u = u0, . . . , uk = v such that ui and ui+1

belong to an edge. (It is the distance of u and v in the Gaifman graph of A.) A closer
look at the proof of Theorem 10 gives a polynomial upper bound on the diameter of
DA.

Lemma 11. If A is a Δ-tree with n vertices, then the diameter of DA, after
removing isolated vertices, is at most 3n2 + n− 4 + 4|Δ|n.

Proof. First, let us determine how adding a single edge influences the diameter
of the dual. If A is constructed by adding an edge to a Δ-tree Ã, then the situation
is either as in Lemma 10, and the diameter of DA is at most 2, or the situation is
as in Lemma 9. In this case, DA contains two groups of vertices, {f1, . . . , fj} and
{f ′

1, . . . , f
′
j}, and by the proof of Lemma 8, any nonisolated vertex in the second group

is at most distance two apart from some member of the first group. The first group
induces a copy of D̃A and contains a connected component C. Let g ∈ {f1, . . . , fj}
be a nonisolated vertex of DA that does not belong to C. In the proof of Lemma 9 we
constructed a sequence of edges z1, . . . , zm such that z1 contains g and zm contains
a vertex in C. The distance of every such g from C is therefore at most m, and the
distance of a nonisolated f ′ ∈ {f ′

1, . . . , f
′
j} from C is at most m + 2. If f and h are

nonisolated vertices of DA and diam(C) is the diameter of C, then

(3) d(f, h) ≤ d(f, C) + diam(C) + d(h,C) ≤ diam(C) + 2m + 4.

Since the sequence c1, . . . , cm in the proof of Lemma 9 was the shortest possible,
c2, . . . , cm−1 are nonunary edges, and m− 2 is bounded by the number of nonunary
edges of Ã. A Δ-tree Ã with t vertices can have at most t − 1 nonunary edges, so
using (3),

(4) diam(DA) ≤ diam(D̃A) + 2(t + 1) + 4.

Let A be a Δ-tree with n vertices. Build A by adding edges one by one (as in
the proof of Theorem 4), but moreover in such a way that unary edges are inserted
only after all others are in place. We can insert the nonunary edges in at most
n − 1 steps and, using (4) repeatedly, the resulting structure has diameter at most∑n−2

t=0 (2(t + 1) + 4) = n2 + 3n− 4.
Two situations can occur when we add a unary edge. If there is a vertex in

{f1, . . . , fj} that was isolated before, but is not isolated anymore after we add the
new edge, then by the arguments above, the diameter can increase by 2(n + 1) + 4.
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But this can happen only if adding this edge transformed a problematic class into a
good class. Let k be the number of times this situation happened. If every vertex is
in a unary edge, there are surely no problematic classes left, so k ≤ n. If there is no
such vertex, the diameter can increase by at most 4, since every nonisolated vertex in
{f ′

1, . . . , f
′
j} is a distance of at most 2 from the vertices {f1, . . . , fj}. There are no more

than |Δ|−1 unary relations (provided that there exists a nonunary relation) and each
vertex of A is incident to at most that many unary edges, so this situation can happen
no more than k(|Δ| − 2)+ (n− k)(|Δ| − 1) times. Altogether, adding the unary edges
can increase the diameter by at most k(2(n+1)+4)+4k(|Δ|−2)+4(n−k)(|Δ|−1),
which is bounded by 2n(n + 1) + 4n(|Δ| − 1).

Combining these estimates, DA has diameter at most

(5) n2 + 3n− 4 + 2n(n + 1) + 4n(|Δ| − 1) = 3n2 + n− 4 + 4|Δ|n.

4. Concluding remarks. The linearity of diameter suggests the existence of
fast algorithms for DT . For graphs, the proof of the connectivity of DT (Theorem 7)
yields an algorithm which finds a path from f to g in at most 2dn2 steps, where d is
the maximum degree in T . Is there a linear algorithm?

Knowing that DT is connected, one might also try to determine its connectivity.
Are there always vertices of small degree in DT ? How does the minimal degree in DT

depend on the height of T?
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[1] P. Erdős, Graph theory and probability, Canad. J. Math., 11 (1959), pp. 34–38.
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[6] J. Nešetřil and C. Tardif, On maximal finite antichains in the homomorphism order of

directed graphs, Discuss. Math. Graph Theory, 23 (2003), pp. 325–332.
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1. Introduction. Let G be a finite set of points in the plane. We say that a line
l is determined by G if l passes through at least two points of G. A line l, determined
by G, is called a k-edge, if, in one of the two open half-planes bounded by l, there are
precisely k points of G. We say that G skips k if G has no k-edge.

Definition 1.1. Let A be a set of nonnegative integers. We say that A is
skippable if there are arbitrary large finite sets in the plane, which are not collinear,
that skip k for every k ∈ A.

This notion of a skippable set was defined in [PP1]. It is shown there that for
any k ≥ 0 the set {k, k + 2} is not skippable. This means that if a noncollinear set of
points G is large enough, then it has either a k-edge or a (k + 2)-edge. In this paper
we show that skippable sets do exist. In particular, in Theorem 3.1 we show that {k}
is skippable if and only if k ≥ 2. Moreover, in Theorem 3.2 we show that one can find
arbitrary large such sets of positive integers.

We also complete the picture from [PP1] and characterize precisely the skippable
sets that consist of two elements (Theorem 4.5).

In what follows, by referring to a set of points we mean a finite set of points in
the two-dimensional Euclidean plane.

If G is a set of points in a general position, namely no three points of G lie on
one line, then clearly G has a k-edge for every 0 ≤ k ≤ |G| − 2. Therefore in our
study of skippable sets we will be concerned mainly with sets that are not in a general
position. Figure 1 shows an example of a set that skips k = 2.

In fact, by adding an arbitrary large number of points very close to the center of
the shape in Figure 1, we will remain with a set that skips k = 2, thus showing that
{2} is a skippable set. Similarly, the example in Figure 5 illustrates that {4, 5} is a
skippable set. The study of skippable sets was initiated by Kupitz and Perles (see
[K93, K94]). In [KP], Kupitz and Perles construct arbitrary large sets G, not contained
in a line, that skip every k for k = |G|, |G| − 1, . . . , |G| − log 2|G|. The question of
whether one can fix some skippable values and find arbitrary large noncollinear sets
that skip each of them was suggested by Perles. In this paper we give an affirmative
answer to this question.
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Fig. 1. A set of points that skips k = 2.

Fig. 2. A tangency path to a pentagon.

2. Tangency paths. In this section we define the notion of a tangency path and
learn its properties in connection with skippable sets. The notion of a tangency path
will be crucial for most of the constructions in this paper.

Definition 2.1. Let P be a convex polygon in the plane. A tangency path for P
is a closed polygonal path with vertices x0, x1, . . . , xm−1, xm = x0 (m can be arbitrary)
with the property that if l is the directed line −−−−→xixi+1, then l is a tangent of P , l ∩ P
is contained in the interior of the edge [xi, xi+1], and the polygon P is in the closed
half-plane to the left of l. In addition we require that the vertices of the path (namely,
x0, x1, . . . , xm−1) are pairwise different. (See Figure 2 for an example.)

Notation 2.2. Let G be a set of points in the plane, and let l be any directed
line. We denote by AG(l) the number of points of G that are inside the open half-plane
to the right of l. We denote by BG(l) the number of points of G on l. When there is
no ambiguity and the set G is known and fixed, we simply write A(l) for AG(l) and
B(l) for BG(l).

The following very simple lemma is the key observation regarding tangency paths.
We recall that if γ is a closed oriented path in the plane, then the index of γ with
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Fig. 3. Lemma 2.3.

respect to a point Q, not on γ, is the (counterclockwise) winding number of the path
γ around Q. It is well known that if −→r is any ray emanating from Q, then the number
of times γ crosses −→r from right to left minus the number of times γ crosses −→r from
left to right equals the index of γ with respect to Q.

Lemma 2.3. Let P be a convex polygon, let C be a tangency path for P , and let
G denote the set of vertices of C. Then, for every directed line l that touches P so
that P is contained in the closed half-plane to the left of l, we have

AG(l) + BG(l)/2 = I(C),

where I(C) is the index of the closed path C with respect to any point in the interior
of P .

Proof of Lemma 2.3. Let x0, x1, . . . , xn−1 be the set of vertices of C cyclicly
ordered as they appear along the path C. Let m be the midpoint of l ∩ P . Let l′ be
a directed line parallel to l that is strictly to the left of l, intersects the interior of P ,
but still to the right of all vertices of C which are to the left of l. Let p ∈ l′ ∩ P be
such that the ray −→r emanating from p and passing through m does not include any
vertex of C (see Figure 3).

Observe that if xi ∈ l, then either the edge [xi, xx+1] or the edge [xi−1, xi] of C is
included in l. Indeed, this follows because l is a tangent of P . Therefore, if k denotes
the number of edges of C that are included in l, then B(l) = 2k. Clearly, every edge
of C that is included in l is crossed by −→r . Indeed, let [xi, xi+1] be such an edge. By
the definition of a tangency path, [xi, xi+1] ⊃ l∩P . Therefore, −→r and [xi, xi+1] meet
at m. It follows that there are precisely I(C)− k edges of C that cross −→r and are not
included in l.
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If [xi, xi+1] is an edge of C that crosses −→r and is not included in l, then precisely
one of xi and xi+1 is to the right of l. Indeed, if both xi and xi+1 are to the right of l,
then [xi, xi+1]∩P = ∅. If none of xi and xi+1 is to the right of l, then [xi, xi+1]∩−→r = ∅.
In both cases we reach a contradiction.

On the other hand, we claim that if xi is in the half-plane to the right of l, then
precisely one of the edges [xi, xi+1] and [xi−1, xi] crosses −→r . Indeed, observe that both
[xi, xi+1] and [xi−1, xi] must cross the line l, for otherwise their intersection with P
is empty. By the choice of l′, both [xi, xi+1] and [xi−1, xi] must also cross l′. Let m1

denote the intersection point of [xi−1, xi] with l′, and let m2 denote the intersection
point of [xi, xi+1] with l′. Now p must be strictly between m1 and m2 on l′, because
P and therefore also p is to the left of both directed lines −−−−→xixi+1 and −−−−→xi−1xi. It now
follows that −→r crosses precisely one of [xi, xi+1] and [xi−1, xi] as required. This is
because −→r meets precisely two edges of the triangle whose vertices are m1, xi, and
m2. One edge met by −→r is [m1m2]; the other is either [m1, xi], or [m2, xi].

We can therefore conclude that I(C) − k = A(l). Combining this with B(l) = 2k
we obtain the desired result, namely, A(l) + B(l)/2 = I(C).

The following corollary is thus an immediate consequence of Lemma 2.3.
Corollary 2.4. Let P be a convex polygon, and let C1, C2, . . . , Ct be vertex

disjoint tangency paths for P . Let G denote the set of vertices of all paths together.
For every directed line l that touches P , so that P is contained in the open half-plane
to the left of l, we have

AG(l) + BG(l)/2 =

t∑
i=1

I(Ci).

The next lemma relates between tangency paths and the property of skipping k
for a certain value of k.

Lemma 2.5. Let P be a convex polygon, and let J ⊂ P be a finite set of points.
Let C1, . . . , Ct be a collection of vertex disjoint tangency paths for P , with the property
that every edge of P is contained in at least one edge of some tangency path. Let G
denote the set of vertices of all paths together. Then the set S = G∪vert(P )∪J skips
k = I(C1) + · · · + I(Ct).

Proof. Let l be a directed line determined by S. It is enough to show that the
number of points of S in the open half-plane to the right of l is different from k.

Let l′ be the directed line with the same direction as that of l such that l′ touches
P and P is contained in the closed half-plane to the left of l′ (see Figure 4).

Case 1. l = l′. Then by Corollary 2.4, AG(l) + BG(l)/2 = k. Observe that
BG(l) > 0. Indeed, this is true if l contains an edge of P , because then there is an
edge of some tangency path Ci that lies on l. If l touches P at a vertex, then it must
pass through at least one more point of S which therefore belongs to G. It follows
that AG(l) < k. However, AG(l) is exactly the number of points of S in the open
half-plane to the right of l.

Case 2. l is to the left of l′. Then the number of points of G in the open half-plane
to the right of l is at least AG(l′) + BG(l′) ≥ AG(l′) + BG(l′)/2 = k. Moreover, since
l′ passes through at least one vertex of P , we obtain that the number of points of G
in the open half-plane to the right of l is at least k + 1.

Case 3. l is to the right of l′. Then the number of points of S that are on or to
the right of l is at most AG(l′) ≤ k. However, l passes through at least two points of
S, and therefore the number of points of G in the open half-plane to the right of l is
at most k − 2.
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Fig. 4. Lemma 2.5.

We can impose another simple condition on the tangency paths C1, . . . Ct in Lemma
2.5, so that the resulting set S skips two consecutive values.

Lemma 2.6. Let P be a convex polygon, and let J ⊂ P be a finite set of points.
Let C1, . . . , Ct be a collection of vertex disjoint tangency paths for P , with the following
two properties:

• Every edge of P is contained in at least two edges of some tangency paths.
• Every edge of a tangency path is collinear with at least one more edge of a

(possibly other) tangency path.
Let G denote the set of vertices of all paths together. Then S = G ∪ vert(P ) ∪ J

skips k and k − 1, where k = I(C1) + · · · + I(Ct).
Proof. The proof goes exactly along the same lines as the proof of Lemma 2.5,

except that now whenever B(l′) > 0 we may conclude that B(l′) ≥ 4.
The example in Figure 5 shows such a case where the polygon P is the inner

regular 7-gon.

3. Construction of large skippable sets. In this section we will use Lemma
2.5 to construct arbitrary large skippable sets. We will also show that {k} is skippable
for every k ≥ 2, by constructing suitable arbitrary large sets of points that do not
have a k-edge for a fixed value of k ≥ 2. This is the goal of our next theorem.

We will need the following terminology in what follows. If P is a convex polygon,
then a diagonal of P is a segment connecting two vertices of P . We say that the order
of that diagonal is k if one of the open half-planes bounded by the line that contains
this diagonal includes precisely k − 1 vertices of P . Thus, for example, an edge of P
is a diagonal of order 1.

For a convex polygon P and a point x outside P , the angle at which x sees P is
the angle between the two tangents to P that pass through x.

It easy to see (and also follows immediately from Claim 4.1 in [PP1]) that {0} and
{1} are not skippable. In other words, every noncollinear set of points S that is large
enough must have a 0-edge and a 1-edge (in fact, one can drop the “large enough”
condition here). In view of this we can now characterize precisely the skippable sets
that consist of one element only.
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Theorem 3.1. The set {k} is skippable if and only if k ≥ 2.
Proof. We already observed the “only if” part. For the “if” part fix some k ≥ 2.

Let Q be a regular (2k + 1)-gon in the plane. Denote the vertices of Q in a cyclic
counterclockwise order by x0, x1, . . . , x2k. Start from x0, and draw a segment to xk

and from there to x2k and from there to x3k and so forth, where the indices are taken
modulo 2k + 1. Since k and 2k + 1 are relatively prime, we will obtain a closed path
C of length 2k + 1. This path is in fact combined from the diagonals of Q of order
k. The intersections of all half-planes bounded by those diagonals and containing the
center of Q form a smaller copy of a (2k + 1)-gon that we denote by P . Let J be an
arbitrary large set of points inside P .

P, J , and C satisfy the conditions of Lemma 2.5. Therefore S = vert(P ) ∪ J ∪
vert(Q) skips I(C). This index is easy to calculate. Every vertex of Q sees P at an
angle of π/(2k + 1). Therefore, the index of the path C with respect to any point

inside P is I(C) = (2k+1)(π−π/(2k+1))
2π = k.

Remark. The construction in the proof of Theorem 3.1 was in fact suggested
much earlier by Perles. The present notion of a tangency path gives us a convenient
environment for presenting an elegant proof for the validity of the construction.

Using Lemma 2.5 as our main tool, we can also show very easily that there are
arbitrary large skippable sets. This is the content of the next theorem. We will omit
the very specific details of the construction but include enough for the reader to be
able to complete the proof.

Theorem 3.2. There are arbitrary large skippable sets.
Proof. We start with a set G1 that skips just one value k1 and is constructed just

like in the proof of Theorem 3.1. The construction consists of a polygon P1 together
with some points outside. We may add any number of points inside P1 to get a larger
set that also skips k1.

Our construction for the proof of Theorem 3.2 is recursive. Assume that we
have already constructed a set Gn that skips the values k1, . . . , kn. Assume that Gn

includes the set of vertices of a regular polygon Pn such that, no matter how many
points we add to Gn inside Pn, the resulting set will still skip k1, . . . , kn.

To construct Gn+1 we will add points to Gn but only inside the polygon Pn. We
add a very small copy of a set that skips, say, k = 5 and is constructed just like in
the proof of Theorem 3.1. Namely, we add the set of vertices of an 11-gon plus the
intersection of every two of its consecutive diagonals of order 5. These intersection
points are the vertices of another (smaller) 11-gon that we denote by Pn+1. Then we
add a set S of additional points outside (but very close to) Pn+1, so that they are
still inside Pn, and such that Gn ∪ S may be regarded as a vertex disjoint union of
tangency paths for Pn+1. One can easily be convinced that this can be done by adding
at most, say, 10 extra points for each point of Gn. We thus get a resulting set Gn+1

that can be regarded as Gn together with some extra points inside Pn, and therefore
it still skips k1, . . . , kn. However, it can also be regarded as a union of tangency paths
for Pn+1 and thus skips another value that we denote by kn+1. This value must be
greater than kn, since the sum of the indices of all tangency paths to Pn+1 is clearly
greater than that of the tangency paths for Pn. Moreover, we can add any number
of points inside Pn+1, and the resulting set of points will still skip k1, . . . , kn+1. This
shows that {k1, . . . , kn+1} is skippable and also concludes the induction step.

Observe that the construction brought in the proof of Theorem 3.2 is exponential
in the number of values that are skipped. This is clear from the proof. We can thus
in general construct arbitrary large sets of points G that skip Ω(log |G|) values of k.
It is interesting to note that the totally different construction by Kupitz and Perles of
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arbitrary large sets G that skip the values |G|, |G|−1, . . . , |G|− log 2|G| is yet another
example of a different nature for a set of n elements that skips roughly log n values
between 1 and n. It is not known what the maximum number of values is (between 1
and n) that a noncollinear set of points of cardinality n can skip. A nontrivial (with
constant multiplier less than 1) linear upper bound follows from the result in [PP1],
which says that a noncollinear set of points cannot skip both k and k + 2, provided
that its cardinality is at least 2k + 4.

We thus leave this question open with no conjecture.
Problem. What is the maximum number of values that a noncollinear set of n

points in the plane can skip?
Of course, in terms of the order of magnitude, the answer can be anything between

log n and n.

4. Skippable sets of two elements. In this section we will characterize all
skippable sets of two elements. It shown in [PP1] that {k, k + 2} is not skippable for
any k. It follows from Theorem 3.1 that any set {k, l} that contains either 0 or 1 is
not skippable. We will show that, apart from another two sets of two elements that
are not skippable, all others are skippable.

Theorem 4.1. For every k ≥ 4, the set {k, k + 1} is skippable.
Proof. We will use a construction that satisfies the conditions of Lemma 2.6.

Fix k ≥ 4. Let P be a regular (2k − 1)-gon, and let l0, . . . , l2k−2 denote the lines
containing the edges of P in a cyclic order. Let S1 denote the intersection points
lj ∩ lj+2 for j = 0, . . . , 2k − 1 (where the indices are taken modulo 2k − 1). S1 is
in fact the set of vertices of a regular (2k − 1)-gon that contains P . Let S2 denote
the intersection points lj ∩ lj+k−1 for j = 0, . . . , 2k − 1. S2 is the set of vertices of a
regular (2k− 1)-gon that contains S1 inside. Observe that we need k ≥ 4 in order for
S1, S2, and the vertices of P to be pairwise different.

A careful look at the construction of S1 and S2 shows that each of the sets S1 and
S2 can be regarded as a set of vertices of a union of tangency paths for P . Moreover,
every edge of P is contained in (exactly) two edges of these tangency paths, and
every edge of a tangency path contains an edge of P . The sum of the indices of these
tangency paths with respect to any point in P is also easy to calculate (keeping in
mind that all of the paths are counterclockwise oriented). Every point of S1 sees P at
an angle of 4π/(2k−1), and every point of S2 sees P at an angle of 2(k−1)π/(2k−1).
Therefore the sum of the indices of all paths with respect to P is∑2k−1

i=1 (π − 4π/(2k − 1)) +
∑2k−1

i=1 (π − 2(k − 1)π/(2k − 1))

2π
= k + 1.

By Lemma 2.6, the set that consists of the vertices of P together with S1 and
S2 skips both k and k + 1. This is still true if we add an arbitrary number of points
inside P . (Figure 5 shows the resulting construction in Theorem 4.1 for k = 4.)

Next we show, in Theorems 4.2 and 4.3, that the sets {2, 3} and {3, 4} are not
skippable. In the proofs we use the method of flip arrays also known as allowable
sequences that was invented by Goodman and Pollack (see, e.g., [GP84, GP93]). We
refer the reader to the corresponding section of [PP1] for a detailed description and
useful notation. Briefly, one can encode a set of points G in the plane as a sequence
of permutation on n elements. This is done by keeping track of the order of the
projections of the points from left to right on a directed line that changes its direction
graduately counterclockwise until it reverses its direction. If we number the points
according to the order of their projection on the line in its initial position, the recorded
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Fig. 5. A set of points that skips k = 4, 5.

different ordering of the projections of the points form a sequence of permutation on
{1, . . . , n}. The first permutation is the identity, while the last is (n, n − 1, . . . , 1).
Each permutation is obtained from its predecessor by flipping a contiguous block of
monotone increasing elements. Each such flip corresponds to a line determined by the
set of points. The important observation is that a flip of the block [a, b] (namely, the
elements in the places a, a + 1, . . . , b in a permutation) represents a line, determined
by G, that passes through b − a + 1 points of G. This line has a − 1 points of G
in one open half-plane bounded by it and n − b points of G in the other. Another
important property of the sequence of permutations is that any pair of elements from
{1, 2, . . . , n} changes order exactly once.

Theorem 4.2. If G is a noncollinear set of at least 8 points in the plane, then
G cannot skip both k = 2 and k = 3. In particular, {2, 3} is not skippable.

Proof. Assume to the contrary that |G| ≥ 8 and G does not have a 2-edge nor
a 3-edge. We carefully analyze the flip array of G. Let n = |G|. The flip array of G
consists of a sequence of permutation in Sn. Each permutation is obtained from its
predecessor by flipping a contiguous monotone increasing block of elements. Observe
that we are not allowed to flip blocks of the form [3, b] (where b > 3) nor [4, b] (where
b > 4). Indeed, such blocks represent a 2-edge or a 3-edge, respectively, of G.

Define an interesting flip as a flip of a block that contains the block [2, 5]. Observe
that, in view of the forbidden flips, the only way to take an element that is in one
of the first 4 places of a permutation to a place within [5, n] is by an interesting flip.
The element 1 must eventually move to position n. Hence, there must be at least one
interesting flip. The block of the first interesting flip must be of the form [2, b] for
some b ≥ 5, because if it contained the block [1, 5], that would mean that the convex
hull of G contains an edge with at least 5 points, and this implies easily that G has
an r-edge for every r < 5.

Therefore, after the first interesting flip there is at least one element from {1, 2, 3, 4}
that remains in the region [1, 4]. Since |G| ≥ 8, this element must eventually move
to the region [5, n]. Therefore, there must be a second interesting flip. The block of
the second interesting flip will again contain 3 elements from the region [1, 4]. That
implies that at least 2 elements that took part in the first interesting flip will take part
also in the second interesting flip. We reached a contradiction, as any two elements
must change order exactly once.

Theorem 4.3. If G is a noncollinear set of at least 10 points, then G has either
a 3-edge or a 4-edge. In particular, the set {3, 4} is not skippable.

Proof. Assume to the contrary that |G| ≥ 10 and that G does not have a 3-edge
nor a 4-edge. Once again we will make use of the flip array of the set G. Let n = |G|.
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This time the flips of blocks of the form [4, b] and [5, b] are not allowed. We will also
make use of the observation that flips of blocks of the form [a, n− 4] and [a, n− 5] are
not allowed.

We will call a flip interesting of type I if the block of this flip contains [3, 6]. A
flip will be called interesting of type II if the block of the flip contains [n− 5, n− 2].
Observe that, in view of the forbidden flips, an element can move from the region
[1, 5] to the region [6, n] (and vice versa) only by an interesting flip of type I. Similarly
an element can move from the region [n−4, n] to the region [1, n−5] (and vice versa)
only by an interesting flip of type II.

We claim that it is not possible to have a flip that is an interesting flip of both
types I and II. Indeed, this would necessarily mean that the block of such a flip must
contain the region [3, n− 2] in a permutation. This implies that G determines a line
with at least n−4 points, having at most two points in each open half-plane bounded
by it. It is easily seen by inspection, taking into account that |G| ≥ 10, that G must
then have either a 3-edge or a 4-edge.

Just like in the proof of Theorem 4.2, there must be at least two interesting flips of
type I and similarly two interesting flips of type II. Let us consider the first interesting
flip of type I. This flip includes three elements from {1, 2, 3, 4, 5} in the positions [3, 5].
Right after this flip the elements in the region [3, 5] are in decreasing order. Therefore
the second interesting flip of type I may include just one of them in its block. The
other two elements must therefore be at the positions [1, 2] and remain untouched
while the second interesting flip happens. Right after the second interesting flip we
have two elements in positions [1, 2] that already changed order with each other and
three elements in positions [3, 5], every two of which already changed order. Therefore
a third interesting flip of type I is not possible (for it must include three elements from
the region [1, 5], no two of which already changed order). Similarly, there are just two
interesting flips of type II.

Since |G| ≥ 10, the elements {1, 2, 3, 4, 5} must all end at the region [n−4, n]. We
know that three elements from {1, 2, 3, 4, 5} belong to the block of the first interesting
flip. Those three elements must move from the region [1, n− 5] to [n− 4, n], and this
can be done only by interesting flips of type II. There are at most two interesting
flips of type II, and we obtain a contradiction, since two of the three elements from
{1, 2, 3, 4, 5} that were flipped during the first interesting flip of type I must be flipped
during the same interesting flip of type II.

The next theorem will complete the picture as for the skippable sets of two
elements.

Theorem 4.4. For every k ≥ 2 and every l ≥ k + 3 the set {k, l} is skippable.
Proof. For any k and l that satisfy the conditions in the theorem, we must show

that there are arbitrary large sets of points that do not have a k-edge nor an l-edge.
We will make use of Lemma 2.5 to show the validity of our construction. Fix

k ≥ 2, and assume first that l = k + 3. Let Q1 be a regular (2k + 2)-gon. Let Q2

be the regular (2k + 2)-gon whose vertices are the intersection points of consecutive
diagonals of order k of Q1. Clearly, the vertices of Q1 can be regarded as the union of
vertices of tangency paths for Q2. Each vertex of Q1 sees Q2 at the angle of π/(k+1);

thus, the sum of the indices of all tangency paths is (2k+2)(π−π/(k+1))
2π = k. Observe

that by construction every edge of Q2 is contained in an edge of some tangency path
(just like in the proof of Theorem 3.1). Hence by Lemma 2.5, the set that consists of
the union of the vertices of Q1 and Q2 skips k. This remains true if we add points
inside Q2. Let Q3 be the (2k + 2)-gon whose vertices are the intersection points of
consecutive diagonals of order 2 of Q2. Clearly, Q3 ⊂ Q2. The vertices of Q2 can
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Fig. 6. Theorem 4.4 (the case k = 2 and l = k + 3 = 5).

be regarded as the set of vertices of a union of tangency paths to Q3, and each edge
of Q3 is contained in one edge of some tangency path. Since every point of Q2 sees
Q3 at angle π(k − 1)/(k + 1), the sum of the indices of these paths with respect to

Q3 is (2k+2)(π−π(k−1)/(k+1))
2π = 2. It is thus enough to show that we can add points

inside Q2 but outside Q3 so that together with the points of Q1 they will constitute
the vertex set of a union of tangency paths of a total index k+ 1. This can indeed be
done. For every two opposite points of Q1 we add two points in Q2 \Q3 so that they
form a tangency path to Q3 with index 1 for Q3. This is illustrated in Figure 6.

We thus obtained a set G that skips k and k + 3. This remains true if we add
an arbitrary number of points inside Q3. This shows that {k, k + 3} is skippable. If
l > k + 3, we add to G l tangency paths of index 1 that are contained in Q2 \ Q3.
This completes the proof of the theorem.

We can now summarize our results in the following theorem that characterizes all
skippable sets of two elements.

Theorem 4.5. Let k < l be nonnegative integers. The set {k, l} is skippable if
and only if one of the following two conditions is satisfied:

• k ≥ 2 and l ≥ k + 3, or
• k ≥ 4 and l = k + 1.
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Abstract. We consider the mixing set with flows:

s + xt ≥ bt, xt ≤ yt for 1 ≤ t ≤ n; s ∈ R
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It models a “flow version” of the basic mixing set introduced and studied by Günlük and Pochet [Math.
Program., 90 (2001), pp. 429–457], as well as the most simple stochastic lot-sizing problem with re-
course. More generally it is a relaxation of certain mixed integer sets that arise in the study of
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1. Introduction. We give an inequality (external) and extreme point and ex-
treme ray (internal) description for the convex hull of the mixing set with flows XFM :

s + xt ≥ bt for 1 ≤ t ≤ n,(1.1)

xt ≤ yt for 1 ≤ t ≤ n,(1.2)

s ∈ R

1
+, x ∈ R

n
+, y ∈ Z

n
+,(1.3)

where 0 ≤ b1 ≤ · · · ≤ bn, b ∈ R

n.
This set is a relative of the mixing set XMIX :

s + yt ≥ bt for 1 ≤ t ≤ n,(1.4)

s ∈ R

1
+, y ∈ Z

n
+,(1.5)

with b ∈ R

n introduced formally by Günlük and Pochet [5] and studied by Pochet
and Wolsey [7] and Miller and Wolsey [6]. Internal and external descriptions of the
convex hull of XMIX are given in [5].

The original motivation for studying XFM was to generalize XMIX by introduc-
ing the continuous (flow) variables x, noting that conv(XMIX) is a face of conv(XFM ).
However, XFM is also closely related to two lot-sizing models that we now present.
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The constant capacity lot-sizing model can be formulated as

s0 +

t∑
u=1

wu ≥
t∑

u=1

du for 1 ≤ t ≤ n,(1.6)

wu ≤ zu for 1 ≤ u ≤ n,(1.7)

s0 ∈ R

1
+, w ∈ R

n
+, z ∈ {0, 1}n,(1.8)

where dt is the demand in period t, s0 is the initial stock variable, wt is the amount
produced in t bounded above by the capacity C (we take C = 1 throughout without
loss of generality), and zt is a 0-1 set-up variable with zt = 1 if xt > 0. Summing the
constraints (1.7) over 1 ≤ u ≤ t (for each t = 1, . . . , n) leads to the relaxation

s0 +

t∑
u=1

wu ≥
t∑

u=1

du for 1 ≤ t ≤ n,

t∑
u=1

wu ≤
t∑

u=1

zu for 1 ≤ t ≤ n,

s0 ∈ R

1
+,

t∑
u=1

wu ∈ R

1
+,

t∑
u=1

zu ∈ Z

1
+ for 1 ≤ t ≤ n.

With s := s0, xt :=
∑t

u=1 wu, and yt :=
∑t

u=1 zu, this is precisely the set XFM .
The second link is to the two-period stochastic lot-sizing model with constant

capacities. Specifically, at time 0 one must choose to produce a quantity s at a per
unit cost of h. Then in period 1, n different outcomes are possible. For 1 ≤ t ≤ n,
the probability of event t is φt, the demand is bt, and the unit production cost is pt,
with production in batches of size up to C = 1. There are also a fixed cost of qt per
batch and a possible bound kt on the number of batches. If we want to minimize the
total expected cost, the resulting problem is

(1.9) min

{
hs +

n∑
t=1

φt(ptxt + qtyt) : (s, x, y) ∈ XFM ; yt ≤ kt, 1 ≤ t ≤ n

}
.

Note that when kt = 1, 1 ≤ t ≤ n, this is the standard lot-sizing variant. Also the
uncapacitated case when bt ≤ 1, 1 ≤ t ≤ n, has been treated in Guan et al. [4].

It is also interesting to view XMIX and XFM as simple mixed integer sets with
special structure. One observation is that the associated constraint matrices are to-
tally unimodular, but the right-hand sides are typically noninteger as b ∈ Q

n. Miller
and Wolsey [6] and Van Vyve [9] have introduced and studied a different extension,
called a continuous mixing set, again having a totally unimodular system of con-
straints.

We now describe the contents of this paper, and then end the introduction with
some notation. In section 2 we develop a polyhedral result used later to establish that
a given polyhedron is “integral” (i.e., its vertices are points of the mixed integer set
under consideration). In section 3 we find an external description of conv(XFM ) and
two closely related sets, and in section 4 we give an internal description that leads to a
simple polynomial time algorithm for optimization over the set XFM . We conclude in
section 5 with a brief indication of related work on other generalizations of mixing sets.

Notation. Throughout we will use the following notation: N := {1, . . . , n}, eS for
the characteristic vector of a subset S ⊆ N , ei := e{i} for the ith unit vector, and
0 := e∅ and 1 := eN for the n-vectors of 0’s and 1’s, respectively.
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2. Some equivalences of polyhedra. In the next section we will relate the
polyhedra conv(XFM ) and conv(XMIX). To do this, we will need some polyhedral
equivalences that we introduce here.

For a nonempty polyhedron P in R

n and a vector α ∈ R

n, define μP (α) :=
min{αx : x ∈ P} and let MP (α) be the face {x ∈ P : αx = μP (α)}, where MP (α) = ∅
whenever μP (α) = −∞.

Lemma 2.1. Let P ⊆ Q be two nonempty polyhedra in R

n and let α be a nonzero
vector in R

n. Then the following conditions are equivalent:
1. μP (α) = μQ(α);
2. MP (α) ⊆ MQ(α).

Proof. Suppose μP (α) = μQ(α). Since P ⊆ Q, every point in MP (α) belongs to
MQ(α). So if 1 holds, then 2 holds as well. The converse is obvious.

Lemma 2.2. Let P ⊆ Q be two nonempty polyhedra in R

n, where P is not an
affine variety. Suppose that for every inequality αx ≥ β that is facet-inducing for P ,
at least one of the following holds:

1. μP (α) = μQ(α);
2. MP (α) ⊆ MQ(α).

Then P = Q.
Proof. We prove that if MP (α) ⊆ MQ(α) for every inequality αx ≥ β that is

facet-inducing for P , then every facet-inducing inequality for P is a valid inequality
for Q and every hyperplane containing P also contains Q. This shows Q ⊆ P and
therefore P = Q. By Lemma 2.1, the conditions μP (α) = μQ(α) and MP (α) ⊆ MQ(α)
are equivalent and we are done.

Let αx ≥ β be a facet-inducing inequality for P . Since MP (α) ⊆ MQ(α), then
β = μP (α) = μQ(α) and αx ≥ β is an inequality which is valid for Q. Now let γx = δ
be a hyperplane containing P . If Q �⊆ {x : γx = δ}, then there exists x̄ ∈ Q such
that γx̄ �= δ. We assume without loss of generality that σ = γx̄ − δ > 0. Since P is
not an affine variety, there exists an inequality αx ≥ β which is facet-inducing for P
(and so it is valid for Q). Then, for λ > 0 the inequality (λα − γ)x ≥ λβ − δ is also
facet-inducing for P , so it is valid for Q. Choosing λ > 0 such that λ(αx̄ − β) < σ
gives a contradiction, as (λα− γ)x̄ = λαx̄− γx̄ < λβ + σ − γx̄ = λβ − δ.

If P is not full-dimensional, for each facet F of P there are infinitely many distinct
inequalities that define F (two inequalities are distinct if their associated half-spaces
are distinct—that is, if one is not the positive multiple of the other). Observe that the
hypotheses of the lemma must be verified for all distinct facet-defining inequalities
(not just one facet-defining inequality for each facet), otherwise the result is false. For
instance, consider the polyhedra P = {(x, y) : 0 ≤ x ≤ 1, y = 0} ⊂ Q = {(x, y) : 0 ≤
x ≤ 1, 0 ≤ y ≤ 1}. The hypotheses of Lemma 2.2 are satisfied for the inequalities
x ≥ 0 and x ≤ 1, which define all the facets of P .

Also note that the assumption that P is not an affine variety cannot be removed:
indeed, in such a case P does not have proper faces, so the hypotheses of the lemma
are trivially satisfied, even if P �= Q.

Corollary 2.3. Let P ⊆ Q be two pointed polyhedra in R

n, with the property
that every vertex of Q belongs to P . Let Cx ≥ d be a system of inequalities that are
valid for P such that for every inequality γx ≥ δ of the system, P �⊂ {x ∈ R

n : γx = δ}.
If for every α ∈ R

n such that μP (α) is finite but μQ(α) = −∞, Cx ≥ d contains
an inequality γx ≥ δ such that MP (α) ⊆ {x ∈ R

n : γx = δ}, then P = Q ∩ {x ∈ R

n :
Cx ≥ d}.

Proof. We first show that dim(P ) = dim(Q). If not, there exists a hyperplane
αx = β containing P but not Q. Without loss of generality we can assume that
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μQ(α) < β = μP (α). So μQ(α) = −∞, otherwise there would exist an α-optimal
vertex x̄ of Q such that αx̄ < β, contradicting the fact that x̄ ∈ P . Now the system
Cx ≥ d must contain an inequality γx ≥ δ such that P = MP (α) ⊆ {x ∈ R

n : γx =
δ}, a contradiction.

Let Q′ = Q ∩ {x ∈ R

n : Cx ≥ d}. Note that P ⊆ Q′ ⊆ Q; thus dim(P ) =
dim(Q′) = dim(Q). Let αx ≥ β be a facet-inducing inequality for P . If μQ(α) is
finite, then Q contains an α-optimal vertex which is in P and therefore β = μP (α) =
μQ′(α) = μQ(α). If μQ(α) = −∞, the system Cx ≥ d contains an inequality γx ≥ δ
such that MP (α) ⊆ {x ∈ R

n : γx = δ} and P �⊆ {x ∈ R

n : γx = δ}. It follows that
γx ≥ δ is a facet-inducing inequality for P and that it defines the same facet of P as
αx ≥ β (that is, MP (α) = MP (γ)). This means that there exist ν > 0, a vector λ,
and a system Ax = b which is valid for P such that γ = να + λA and δ = νβ + λb.
Since dim(P ) = dim(Q′) and P ⊆ Q′, the system Ax = b is valid for Q′ as well. As
γx ≥ δ is also valid for Q′, it follows that αx ≥ β is valid for Q′ (because α = 1

ν γ−
λ
νA

and β = 1
ν δ −

λ
ν b). Therefore β = μP (α) = μQ′(α).

Now assume that P consists of a single point and P �= Q. Then Q is a cone
having P as apex. Given a ray α of Q, μP (α) is finite while μQ(α) = −∞, so the
system Cx ≥ d contains an inequality γx ≥ δ such that P ⊆ {x ∈ R

n : γx = δ}, a
contradiction. So we can assume that P is not a single point and thus P is not an
affine variety, as it is pointed. Now we can conclude by applying Lemma 2.2 to the
polyhedra P and Q′.

We remark that in the statement of Corollary 2.3 the condition that the two
polyhedra are pointed is not necessary: if we replace the property “every vertex of Q
belongs to P” with “every minimal face of Q belongs to P ,” the proof needs a very
slight modification to remain valid. (However, in this case we should assume that P
is not an affine variety, so that we can apply Lemma 2.2 in the proof.)

We also observe that the condition “for every inequality γx ≥ δ of the system,
P �⊂ {x ∈ R

n : γx = δ}” is necessary. For instance, consider the polyhedra P =
{(x, y) : 0 ≤ x ≤ 1, y = 0} ⊂ Q = {(x, y) : x ≥ 0, y = 0} and the system consisting of
the single inequality y ≥ 0.

3. An external description of XF M . The approach taken to derive an in-
equality description of conv(XFM ) is first outlined briefly. We work with two inter-
mediate mixed integer sets Z and XINT for which we establish several properties.
The first two link conv(XFM ) and conv(Z), and the next two provide an external
description of conv(Z):

(i) First we observe that XFM = Z ∩ {(s, x, y) : 0 ≤ x ≤ y}.
(ii) Using Corollary 2.3, we prove that conv(XFM ) = conv(Z) ∩ {(s, x, y) : 0 ≤

x ≤ y}.
(iii) We then show that the polyhedra conv(Z) and conv(XINT ) are in 1-1 cor-

respondence via an affine transformation.
(iv) Finally we note that XINT is the intersection of mixing sets, and therefore

external descriptions of conv(XINT ) and conv(Z) are known.

3.1. A relaxation of XF M . Consider the set Z:

s + yt ≥ bt for 1 ≤ t ≤ n,(3.1)

s + xk + yt ≥ bt for 1 ≤ k < t ≤ n,(3.2)

s + xt ≥ bt for 1 ≤ t ≤ n,(3.3)

s ∈ R

1
+, x ∈ R

n, y ∈ Z

n
+.(3.4)
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Proposition 3.1. Let XFM and Z be defined on the the same vector b. Then
XFM ⊆ Z and XFM = Z ∩ {(s, x, y) : 0 ≤ x ≤ y}.

Proof. To see that XFM ⊆ Z, observe that for (s, x, y) ∈ XFM , s+ yt ≥ s+xt ≥
bt, so s + yt ≥ bt is a valid inequality. Also s + yt ≥ bt and xk ≥ 0 imply that
s + xk + yt ≥ bt is a valid inequality. The only inequalities that define XFM but do
not appear in the definition of Z are the inequalities 0 ≤ x ≤ y.

Since the left-hand sides of inequalities (1.1)–(1.3) and (3.1)–(3.4) have integer
coefficients, the recession cones of XFM and Z coincide with the recession cones of
their linear relaxations. Thus we have the following.

Observation 1. The extreme rays of conv(XFM ) are the following 2n + 1 vec-
tors: (1, 0, 0), (0, 0, ek), (0, ek, ek). The 2n + 1 extreme rays of conv(Z) are (0, 0, ek),
(0, ek, 0), (1,−1, 0). Therefore both recession cones of conv(XFM ) and conv(Z) are
full-dimensional simplicial cones, thus showing that conv(XFM ) and conv(Z) are both
full-dimensional polyhedra.

Observation 2. Let (s∗, x∗, y∗) be a vertex of conv(Z). Then

s∗ = max

⎧⎪⎪⎨
⎪⎪⎩

0,
bt − y∗t , 1 ≤ t ≤ n,
bt − x∗

t , 1 ≤ t ≤ n,
bt − y∗t − x∗

k, 1 ≤ k < t ≤ n,

x∗
k = max

{
bk − s∗,
bt − s∗ − y∗t , k < t ≤ n.

Lemma 3.2. Let (s∗, x∗, y∗) be a vertex of conv(Z). Then 0 ≤ x∗ ≤ y∗.
Proof. Assume x∗

k < 0 for some index k. Then s∗ > 0; otherwise, if s∗ = 0, the
constraints s + xk ≥ bk, bk ≥ 0 imply x∗

k ≥ 0.
We now claim that there is an index t ∈ N such that s∗ = bt − y∗t . If not,

s∗ > bt − y∗t , 1 ≤ t ≤ n, and there is an ε �= 0 such that (s∗, x∗, y∗) ± ε(1,−1, 0)
belong to conv(Z), a contradiction.

So there is an index t ∈ N such that s∗ = bt − y∗t > 0. Since bt − y∗t ≥ bt −
y∗t − x∗

k, 1 ≤ k < t, this implies x∗
k ≥ 0, 1 ≤ k < t. Observation 2 also implies

bt − y∗t ≥ bk − x∗
k, 1 ≤ k ≤ n. Together with y∗t ≥ 0 and bt ≤ bk, k ≥ t, this implies

x∗
k ≥ y∗t ≥ 0, k ≥ t. This completes the proof that x∗ ≥ 0.

Assume x∗
k > y∗k for some index k. Then y∗k ≥ 0 implies x∗

k > 0. Assume
x∗
k = bk − s∗. Then y∗k ≥ bk − s∗ implies that x∗

k ≤ y∗k, a contradiction. Therefore by
Observation 2, x∗

k = bt − s∗ − y∗t for some t > k. Since x∗
k > 0, then bt − s∗ − y∗t > 0,

a contradiction to s∗ + y∗t ≥ bt. This shows x∗ ≤ y∗.
We now can state the main theorem of this section.
Theorem 3.3. Let XFM and Z be defined on the the same vector b. Then

conv(XFM ) = conv(Z) ∩ {(s, x, y) : 0 ≤ x ≤ y}.
Proof. By Proposition 3.1, conv(XFM ) ⊆ conv(Z). By Lemma 3.2 and Proposi-

tion 3.1, every vertex of conv(Z) belongs to conv(XFM ).
Let α = (h, p, q), h ∈ R

1, p ∈ R

n, q ∈ R

n, be such that μconv(XFM )(α) is finite
and μconv(Z)(α) = −∞. Since by Observation 1 the extreme rays of conv(Z) that are
not rays of conv(XFM ) are (0, ek, 0) and (1,−1, 0), then either pk < 0 for some index
k or h <

∑n
t=1 pt.

If pk < 0, then Mconv(XFM )(α) ⊆ {(s, x, y) : xk = yk}.
If h <

∑n
t=1 pt, let N+ = {j ∈ N : pj > 0} and k = min{j : j ∈ N+}. We show

that Mconv(XFM )(α) ⊆ {(s, x, y) : xk = 0}. Suppose that xk > 0 in some optimal
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solution. As the solution is optimal and pk > 0, we cannot decrease only the variable
xk and remain feasible. Thus s + xk = bk, which implies that s < bk. However this
implies that for all j ∈ N+, we have xj ≥ bj − s > bj − bk ≥ 0 as j ≥ k. Now as
xj > 0 for all j ∈ N+, we can increase s by ε > 0 and decrease xj by ε for all j ∈ N+.
The new point is feasible in XFM and has lower objective value, a contradiction.

To complete the proof, since conv(XFM ) is full-dimensional, the system 0 ≤ x ≤ y
does not contain an improper face of conv(XFM ). So we can now apply Corollary 2.3
to conv(XFM ), conv(Z), and the system 0 ≤ x ≤ y.

3.2. The intersection set. The following set is the intersection set XINT :

σk + yt ≥ bt − bk for 0 ≤ k < t ≤ n,

σ ∈ R

n+1
+ , y ∈ Z

n
+,

where 0 = b0 ≤ b1 ≤ · · · ≤ bn.
Note that XINT is the intersection of the following n+1 mixing sets XMIX

k , each
one associated with a single variable σk:

σk + yt ≥ bt − bk for k < t ≤ n,

σk ∈ R

1
+, y ∈ Z

n−k
+ .

Theorem 3.4. Let XINT be an intersection set and let XFM be defined on the
same vector b. The affine transformation σ0 = s and σt = s + xt − bt, 1 ≤ t ≤ n,
maps conv(XFM ) into conv(XINT ) ∩ {(σ, y) : 0 ≤ σk − σ0 + bk ≤ yk, 1 ≤ k ≤ n}.

Proof. Let Z be defined on the same vector b. It is straightforward to check that
the affine transformation σ0 = s and σt = s + xt − bt, 1 ≤ t ≤ n, maps conv(Z) into
conv(XINT ). By Theorem 3.3, conv(XFM ) = conv(Z) ∩ {(s, x, y) : 0 ≤ x ≤ y} and
the result follows.

The above theorem shows that an external description of conv(XFM ) can be
obtained from an external description of conv(XINT ). Such a description is already
known.

Proposition 3.5 (Günlük and Pochet [5]). Consider the mixing set XMIX

defined in (1.4)–(1.5). For t = 1, . . . , n we define ft := bt − �bt�. Let T ⊆ N and
suppose that i1, . . . , i|T | is an ordering of T such that fi|T | ≥ · · · ≥ fi1 ≥ fi0 := 0.
Then the mixing inequalities

s ≥
|T |∑
t=1

(fit − fit−1
)(�bit� + 1 − yit),

s ≥
|T |∑
t=1

(fit − fit−1)(�bit� + 1 − yit) + (1 − fi|T |)(�bi1� − yi1)

are valid for XMIX . Moreover, adding all mixing inequalities to the linear constraints
defining XMIX gives the convex hull of XMIX .

Proposition 3.6 (Miller and Wolsey [6]). Let XMIX
k (nk, sk, yk, bk) for 1 ≤ k ≤

m be m mixing sets with some or all y variables in common. Let X∗ = ∩m
k=1X

MIX
k .

Then

(3.5) conv(X∗) =

m⋂
k=1

conv(XMIX
k ).
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Observation 3. Günlük and Pochet [5] have shown that there is a compact formu-
lation of the polyhedron conv(XMIX); see also [2]. Therefore it follows from Theorem
3.4 and Proposition 3.6 that a compact formulation of conv(XFM ) can be obtained
by writing the compact formulations of all the mixing polyhedra conv(XMIX

k ), to-
gether with the inequalities 0 ≤ σt − σ0 + bt ≤ yt, 1 ≤ t ≤ n, and then applying the
transformation s = σ0 and xt = −s + σt + bt, 1 ≤ t ≤ n.

3.3. Variants of XF M . Here for the purpose of comparison we examine the
convex hulls of two sets closely related to XFM .

The first is the relaxation obtained by dropping the nonnegativity constraint on
the flow variables x. The unrestricted mixing set with flows XUFM is the set

s + xt ≥ bt for 1 ≤ t ≤ n,

xt ≤ yt for 1 ≤ t ≤ n,

s ∈ R

1
+, x ∈ R

n, y ∈ Z

n
+,

where 0 < b1 ≤ · · · ≤ bn, b ∈ Q

n. Its convex hull turns out to be much simpler, and
in fact the unrestricted mixing set with flows and the mixing set are closely related.

Proposition 3.7. For an unrestricted mixing set with flows XUFM and the
mixing set XMIX defined on the same vector b,

conv(XUFM ) = {(s, x, y) : (s, y) ∈ conv(XMIX); bt − s ≤ xt ≤ yt, 1 ≤ t ≤ n}.

Proof. Let P = {(s, x, y) : (s, y) ∈ conv(XMIX); bt − s ≤ xt ≤ yt, 1 ≤ t ≤ n}.
The inclusion conv(XUFM ) ⊆ P is obvious. In order to show that P ⊆ conv(XUFM ),
we prove that the extreme rays (resp., vertices) of P are rays (resp., feasible points)
of conv(XUFM ).

The cone {(s, x, y) ∈ R

1
+ × R

n × R

n
+ : −s ≤ xt ≤ yt, 1 ≤ t ≤ n} is the recession

cone of both P and conv(XUFM ); thus P and conv(XUFM ) have the same rays.
We now prove that if (s∗, x∗, y∗) is a vertex of P , then (s∗, x∗, y∗) belongs to

conv(XUFM ). It is sufficient to show that y∗ is integer. We do so by proving that
(s∗, y∗) is a vertex of conv(XMIX). If not, there exists a nonzero vector (u,w) ∈ R×R

n

such that (s∗, y∗)±(u,w) ∈ conv(XMIX) and wt = −u whenever y∗t = bt−s∗. Define a
vector v ∈ R

n as follows: If x∗
t = bt−s∗, set vt = −u and if x∗

t = y∗t , set vt = wt. (Since
x∗
t satisfies at least one of these two equations, this assignment is indeed possible.)

It is now easy to check that, for ε > 0 sufficiently small, (s∗, x∗, y∗) ± ε(u, v, w) ∈ P ,
a contradiction. Therefore (s∗, y∗) is a vertex of conv(XMIX) and thus (s∗, y∗) ∈
XMIX . Then (s∗, x∗, y∗) ∈ XUFM and the result is proved.

The second set we consider is a restriction of the set XFM in which we add simple
bounds and network dual constraints on the integer variables y. Specifically, consider
the following inequalities:

li ≤ yi ≤ ui, 1 ≤ i ≤ n,(3.6)

αij ≤ yi − yj ≤ βij , 1 ≤ i, j ≤ n,(3.7)

where li, ui, αij , βij ∈ Z ∪ {+∞,−∞} and define the following set:

W = {(s, x, y) ∈ R

1 × R

n × Z

n : y satisfies (3.6)–(3.7)}.

We assume that for every index i, W contains a vector with yi > 0.
Theorem 3.8.

conv(XFM ∩W ) = conv(XFM ) ∩W.
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Proof. The proof uses the same technique as in sections 3.1–3.2, where Z (resp.,
XFM ) has to be replaced with Z ∩W (resp., XFM ∩W ). We only point out the main
differences.

To see that the proof of Theorem 3.3 is still valid, note that the extreme rays of
conv(Z ∩W ) are of the following types:

(i) (1, 0, 0) and (0, ek, 0);
(ii) (0, 0, y) for suitable vectors y ∈ Z

n.
However, the rays of type (ii) are also rays of conv(XFM ∩W ). Also, the condition
that for every index i, W contains a vector with yi > 0 shows that none of the
inequalities 0 ≤ xi ≤ yi defines an improper face of conv(XFM ∩W ) and Corollary
2.3 can still be applied. Thus the proof of Theorem 3.3 is still valid.

Finally, the following extension of (3.5) (due to Miller and Wolsey [6]) is needed:
conv(X∗ ∩W ) = ∩m

k=1conv(XMIX
k ) ∩W.

Note that since the feasible region of problem (1.9) is of the type XFM ∩ W ,
Theorem 3.8 yields a linear inequality description of the feasible region of the two-
period stochastic lot-sizing model with constant capacities.

4. An internal description of XF M . Since the extreme rays of conv(XFM )
are described in Observation 1, in order to give a complete internal description of
conv(XFM ) we only have to characterize its vertices. These will then be used to
describe a simple polynomial algorithm for optimizing over XFM .

First we state a result concerning the vertices of any mixed integer set.
Lemma 4.1. Let P = {(x, y) ∈ R

n ×Z

p : Ax+By ≤ c}. If (x∗, y∗) is a vertex of
conv(P ), then x∗ is a vertex of the polyhedron P (y∗) = {x ∈ R

n : Ax ≤ c−By∗}.
Proof. If x∗ is not a vertex of P (y∗), there exists a nonzero vector ε ∈ R

n, ε �= 0,
such that A(x∗ ± ε) ≤ c−By∗. But then (x∗, y∗) ± (ε, 0) is in P and thus (x∗, y∗) is
not a vertex of conv(P ).

In the following, given a point p = (s̄, x̄, ȳ) in conv(XFM ), we denote by fs̄ the
fractional part of s̄.

Claim 4.2. Let v = (s∗, x∗, y∗) be a vertex of conv(XFM ). If s∗ > 0, there exists
j ∈ N such that s∗ + x∗

j = bj, fs∗ = fj, and s∗ ≤ bj.
Proof. By Lemma 4.1, (s∗, x∗) is a vertex of the polyhedron P (y∗) defined by

s + xt ≥ bt for 1 ≤ t ≤ n,(4.1)

xt ≤ y∗t for 1 ≤ t ≤ n,(4.2)

s ∈ R

1
+, x ∈ R

n
+.(4.3)

Then among the constraints defining P (y∗) there exist n + 1 inequalities which are
tight for (s∗, x∗) and whose left-hand sides form a nonsingular (n+1)×(n+1) matrix.
Therefore, if s∗ > 0, there exists an index j such that s∗ +x∗

j = bj and either x∗
j = y∗j

or x∗
j = 0. Thus x∗

j ∈ Z and thus fs∗ = fj . Also x∗
j ≥ 0 implies s∗ ≤ bj .

Claim 4.3. Let v = (s∗, x∗, y∗) be a vertex of conv(XFM ). Then for 1 ≤ t ≤ n

(4.4) y∗t = max{0, �bt − s∗�}.

Proof. Suppose bt − s∗ < 0. Then either x∗
t = 0 or x∗

t = y∗t . Now if y∗t ≥ 1, in the
first case both points v ± (0, 0, et) are in XFM , and in the second case both points
v ± (0, et, et) are in XFM , a contradiction.

Suppose bt−s∗ ≥ 0. If y∗t ≥ �bt−s∗�+1, then, setting ε = min{x∗
t − (bt−s∗), 1},

both points v ± (0, εet, et) are in XFM , a contradiction.
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Claim 4.4. Let v = (s∗, x∗, y∗) be a vertex of conv(XFM ). Then for 1 ≤ t ≤ n

(4.5) x∗
t =

{
0 if bt − s∗ < 0,
bt − s∗ or �bt − s∗� if bt − s∗ ≥ 0.

Proof. As (s∗, x∗) is a vertex of the polyhedron P (y∗) defined by (4.1)–(4.3), it is
easy to verify as in the proof of Claim 4.2 that for each t one of the following holds:
either s∗ + x∗

t = bt or x∗
t = 0 or x∗

t = y∗t = max{0, �bt − s∗�} (where the last equality
follows from Claim 4.3). It follows that if bt−s∗ < 0, then x∗

t = 0 (otherwise inequality
x∗
t ≥ 0 would be violated), and that if bt − s∗ ≥ 0, then x∗

t ∈ {bt − s∗, �bt − s∗�}
(otherwise inequality s∗ + x∗ ≥ bt would be violated).

Given a point p = (s̄, x̄, ȳ) in conv(XFM ), we define the following subsets of N :

Np = {t ∈ N : −1 < bt − s̄ ≤ 0},
Pp = {t ∈ N : 0 < bt − s̄ < 1}.

Claim 4.5. Let v = (s∗, x∗, y∗) be a vertex of conv(XFM ). If s∗ ≥ 1, then
Nv ∪ Pv �= ∅. Moreover, if s∗ ≥ 1 and Nv = ∅, then there exists t ∈ Pv such that
0 < x∗

t < 1.
Proof. Suppose s∗ ≥ 1 and Nv ∪ Pv = ∅. Then |bt − s∗| ≥ 1, 1 ≤ t ≤ n. Let

I ⊆ N be the set of indices t such that bt − s∗ ≥ 1. Note that if t ∈ I, then x∗
t ≥ 1

by Claim 4.4, and that if t /∈ I, then s∗ + x∗
t ≥ bt + 1. It follows that both points

v ± (1,−eI ,−eI) are in XFM , a contradiction as v is a vertex of conv(XFM ).
Now suppose s∗ ≥ 1 and Nv = ∅ and assume that for every t ∈ Pv either x∗

t = 0
or x∗

t ≥ 1. Then Claim 4.4 implies that x∗
t = 1 for every t ∈ Pv. If t /∈ Pv, then

either bt − s∗ ≤ −1 or bt − s∗ ≥ 1, as Nv = ∅. Let I be the set of indices t such
that bt − s∗ ≥ 1. Note that if t ∈ I, then x∗

t ≥ 1, and that if t /∈ Pv ∪ I, then
s∗+x∗

t ≥ bt+1. Thus it follows that both points v±(1,−ePv∪I ,−ePv∪I) are in XFM ,
again a contradiction.

We need the following lemma.
Lemma 4.6. Let p = (s̄, x̄, ȳ) ∈ conv(XFM ). Suppose that the components of

p satisfy both conditions (4.4) and (4.5). If for every convex combination of points
in XFM giving p, all the points appearing with nonzero coefficient have s-component
equal to s̄, then p is a vertex of conv(XFM ).

Proof. Consider any convex combination of points in XFM giving p and let C
be the set of points in XFM appearing with nonzero coefficient in such combination.
Given t ∈ N , either ȳt = 0 or ȳt = �bt − s̄�. If ȳt = 0, then, since all points in
C satisfy yt ≥ 0, they all satisfy yt = 0. If ȳt = �bt − s̄�, then, since all points in
C satisfy yt ≥ �bt − s̄�, they all satisfy yt = �bt − s̄�. Thus all points in C have
the same y-components. As to the x-components, either x̄t = 0 or x̄t = bt − s̄ or
x̄t = �bt − s̄�. If x̄t = 0, then, since all points in C satisfy xt ≥ 0, they all satisfy
xt = 0. If x̄t = bt − s̄, then, since all points in C satisfy xt ≥ bt − s̄, they all satisfy
xt = bt − s̄. If x̄t = �bt − s̄�, then x̄t = ȳt and so, since all points in C satisfy
xt ≤ yt, they all satisfy xt = yt. Thus all points in C have the same x-components.
Therefore all points in C are identical. This shows that p cannot be expressed as
a convex combination of points in XFM distinct from p, and thus p is a vertex of
conv(XFM ).

Claim 4.7. Let p = (s̄, x̄, ȳ) ∈ conv(XFM ). Suppose that the components of p
satisfy both conditions (4.4) and (4.5). If s̄ = 0, or s̄ = fj for some j ∈ N , or s̄ = bj
for some j ∈ N , then p is a vertex of conv(XFM ).



MIXING SET WITH FLOWS 405

Proof. Consider an arbitrary convex combination of points in XFM giving p and
let C be the set of points appearing with nonzero coefficient in such combination.
Suppose s̄ = 0. Then all points in C satisfy s = 0. Thus, by Lemma 4.6, p is a vertex
of conv(XFM ). Suppose s̄ = fj for some j. Condition (4.4) implies that s̄ + ȳj = bj .
Then all points in C satisfy s + yj = bj and thus they all have fs = fj , in particular
s ≥ fj . It follows that they all satisfy s = fj . The conclusion now follows from
Lemma 4.6. Suppose s̄ = bj for some j. Then x̄j = 0, and thus all points in C satisfy
xj = 0 and so they satisfy s ≥ bj . It follows that they all satisfy s = bj . Again the
conclusion follows from Lemma 4.6.

Claim 4.8. Let p = (s̄, x̄, ȳ) ∈ conv(XFM ). Let s̄ = m+fj for some j ∈ N , where
0 < m < �bj�, m ∈ Z. Suppose that there exists an index h such that −1 < bh− s̄ < 0.
Suppose that the components of p satisfy both conditions (4.4) and (4.5). Then p is a
vertex of conv(XFM ).

Proof. Consider an arbitrary convex combination of points in XFM giving p and
let C be the set of points appearing with nonzero coefficient in such a combination.
Since bj − s̄ ≥ 0 by assumption, condition (4.4) implies that s̄ + ȳj = bj ; then all
points in C satisfy s + yj = bj and thus they all have fs = fj = fs̄. Since bh − s̄ < 0,
Claim 4.4 implies that x̄h = 0; then all points in C satisfy xh = 0. Suppose that there
exists a point in C satisfying s �= s̄. Then there exists a point in C satisfying s < s̄,
i.e., s ≤ s̄− 1. Therefore, for such a point, s + xh = s ≤ s̄− 1 < bh, a contradiction.
Thus all points in C satisfy s = s̄. Lemma 4.6 concludes the proof.

Claim 4.9. Let p = (s̄, x̄, ȳ) ∈ conv(XFM ). Let s̄ = m+fj for some j ∈ N , where
0 < m < �bj�, m ∈ Z. Suppose that there exists an index h such that 0 < bh − s̄ < 1.
Suppose that the components of p satisfy both conditions (4.4) and (4.5) and that
x̄h = bh − s̄. Then p is a vertex of conv(XFM ).

Proof. Consider an arbitrary convex combination of points in XFM giving p and
let C be the set of points appearing with nonzero coefficient in such a combination.
Since by assumption bj − s̄ ≥ 0, condition (4.4) implies that s̄ + ȳj = bj ; then all
points in C satisfy s+ yj = bj and thus they all have fs = fj = fs̄. Since s̄+ x̄h = bh,
all points in C satisfy s + xh = bh. Suppose that there exists a point in C satisfying
s �= s̄. Then there exists a point in C satisfying s > s̄, i.e., s ≥ s̄ + 1 since fs = fs̄.
Therefore, for such point, xh = bh − s ≤ bh − s̄ − 1 < 0, a contradiction. Thus all
points in C satisfy s = s̄. Lemma 4.6 concludes the proof.

Theorem 4.10. The point p = (s∗, x∗, y∗) is a vertex of conv(XFM ) if and only
if its components satisfy one of the following conditions:

(i) s∗ = 0,

x∗
t = bt or x∗

t = �bt� for 1 ≤ t ≤ n,

y∗t = �bt� for 1 ≤ t ≤ n;

(ii) s∗ = fj for some 1 ≤ j ≤ n,

x∗
t =

{
0 if bt − fj < 0,

bt − fj or �bt − fj� if bt − fj ≥ 0,

y∗t = max{0, �bt − fj�} for 1 ≤ t ≤ n;

(iii) s∗ = bj for some 1 ≤ j ≤ n,

x∗
t =

{
0 if bt − bj < 0,

bt − bj or �bt − bj� if bt − bj ≥ 0,

y∗t = max{0, �bt − bj�} for 1 ≤ t ≤ n;
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(iv) s∗ = m + fj for some 1 ≤ j ≤ n, where 0 < m < �bj�, m ∈ Z, and
−1 < bh − s∗ < 0 for some 1 ≤ h ≤ n,

x∗
t =

{
0 if bt − s∗ < 0,
bt − s∗ or �bt − s∗� if bt − s∗ ≥ 0,

y∗t = max{0, �bt − s∗�} for 1 ≤ t ≤ n;

(v) s∗ = m + fj for some 1 ≤ j ≤ n, where 0 < m < �bj�, m ∈ Z, and
0 < bh − s∗ < 1 for some 1 ≤ h ≤ n,

x∗
t =

⎧⎪⎨
⎪⎩

0 if bt − s∗ < 0,

bt − s∗ or �bt − s∗� if bt − s∗ ≥ 0 and t �= h,

bt − s∗ if t = h,

y∗t = max{0, �bt − s∗�} for 1 ≤ t ≤ n.

Proof. Claim 4.7 shows that points of types (i), (ii), and (iii) are vertices of
conv(XFM ). Claims 4.8 and 4.9 show that points of types (iv) and (v) are vertices of
conv(XFM ). It remains to prove that there are no other vertices. If p = (s∗, x∗, y∗)
is a vertex of conv(XFM ), then its components satisfy conditions (4.4) and (4.5). By
Claim 4.2, either s∗ = 0 or fs∗ ∈ {f1, . . . , fn}. If s∗ = 0, p satisfies the conditions of
case (i). If s∗ = fj for some j, then p satisfies the conditions of case (ii). If s∗ = bj
for some j, then p satisfies the conditions of case (iii). Otherwise, by Claim 4.2
there exists j ∈ N such that fs∗ = fj and 1 ≤ s∗ < bj . Then s∗ = m + fj , where
0 < m < �bj�, m ∈ Z. Claim 4.5 implies that Np ∪Pp �= ∅. If Np �= ∅, then p satisfies
the conditions of case (iv). Otherwise Pp �= ∅ and Claim 4.5 implies the existence of
an index h ∈ Pp such that 0 < x∗

h < 1. But then necessarily x∗
h = bh − s∗ and thus p

satisfies the conditions of case (v).
Corollary 4.11. The problem of optimizing a rational linear function over the

set XFM (defined on a rational vector b) can be solved in polynomial time.
Proof. Let α = (h, p, q) ∈ Q

1 × Q

n × Q

n and consider the optimization problem

(4.6) min{hs + px + qy : (s, x, y) ∈ XFM}.

Observation 1 shows that problem (4.6) is unbounded if and only if h < 0 or pt+qt < 0
or qt < 0 for some t ∈ N . Otherwise there exists an optimal extreme point solution.
Let S be the set of all possible values taken by variable s at a vertex of conv(XFM ).
By Theorem 4.10, |S| = O(n2). For each s̄ ∈ S, let Vs̄ be the set of vertices of
conv(XFM ) such that s = s̄ and let vs̄(α) be an optimal solution of the problem

min{hs + px + qy : (s, x, y) ∈ Vs̄}.

The components of vs̄(α) satisfy s = s̄, yt = max{0, �bt − s̄�} for 1 ≤ t ≤ n and

x∗
t =

⎧⎨
⎩

0 if bt − s̄ < 0,
bt − s̄ if bt − s̄ ≥ 0 and pt ≥ 0,
�bt − s̄� if bt − s̄ ≥ 0 and pt < 0

if the value s = s̄ corresponds to one of cases (i)–(iv), and similarly for case (v).
Since solving problem (4.6) is equivalent to solving the problem min{αvs̄(α) : s̄ ∈

S}, we only need to compute the objective function in O(n2) points. This requires
O(n3) time.
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5. Concluding remarks. Several other generalizations of the mixing set appear
to be interesting, some of which are already being investigated.

A common generalization of the set studied in this paper and the continuous
mixing set [6, 9] is the continuous mixing set with flows:

XCFM = {(s, r, x, y) ∈ R

1
+ × R

n
+ × R

n
+ × Z

n
+ : s + rt + xt ≥ bt, xt ≤ yt, 1 ≤ t ≤ n}.

Though a compact extended formulation of this set has been found recently [1], the
question of finding an inequality description in the original space of variables is still
open.

The mixing-MIR set with divisible capacities

XMMIX = {(s, y) ∈ R

1
+ × Z

n : s + Ctyt ≥ bt},

where C1|C2| · · · |Cn, has been studied by de Farias and Zhao [3]. An interesting
question is to give a polyhedral description of conv(XMMIX). The special case when
the Ci only take two distinct values has been treated in Van Vyve [8].

Another intriguing question is the complexity status of the problem of optimizing
a linear function over the divisible mixing set

XDMIX =

⎧⎨
⎩(s, y) ∈ R

1
+ × Z

mn
+ : s +

m∑
j=1

Cjyjt ≥ bt

⎫⎬
⎭ ,

with again C1|C2| · · · |Cn. For the case m = 2, a compact extended formulation of
conv(XDMIX) is given in Conforti and Wolsey [2].
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RANDOM 2-SAT DOES NOT DEPEND ON A GIANT∗

DAVID KRAVITZ†

Abstract. Here we introduce a new model for random 2-SAT. It is well known that on the
standard model there is a sharp phase transition; the probability of satisfiability quickly drops as the
number of clauses exceeds the number of variables. The location of this phase transition suggests
that there is a direct connection between the appearance of a giant in the corresponding 2n-vertex
graph and satisfiability. Here we show that the giant has nothing to do with satisfiability and that
in fact the expected degree of a randomly chosen vertex is the important thing.

Key words. satisfiability, SAT, random processes, Boolean, clauses, literals, online, offline,
algorithms
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1. Introduction. Let {x1, x2, . . . , xn} be a set of n Boolean variables. The
corresponding set of literals is

X := {x1, x1, . . . , xn, xn}.
A k-clause is a set of k literals from X. We say a clause is satisfied by an assignment of
the variables if and only if at least one of its literals is true. The model of RANDOM k-
SAT takes a family of k-clauses, chosen at random, and asks if there is an assignment
to the Boolean variables for which every clause in the family is satisfied. We are
interested in what happens as n → ∞.

Notation 1. For any n,m, and k, let Fk(n,m) denote a set of m random k-
clauses, where each k-clause is chosen uniformly at random from the set of all

(
kn
k

)
possible k-clauses.

We consider random 2-SAT. While it appears that the structure of the corre-
sponding graph, in particular the appearance of a giant component in this graph, has
a lot to do with satisfiability, we present results that indicate this is not the case.

Random 2-SAT is well understood. (See [6, 10] for a survey of known results.)
The following were proven by Chvátal and Reed in [8] and Goerdt in [11] for any fixed
constant ε > 0:

1. F2(n, (1 − ε)n) is unsatisfiable whp.1

2. F2(n, (1 + ε)n) is satisfiable whp.
There have also been several other results which strengthened this to the case where
ε = o(1) (see [4, 15] and others), but from now on we will assume ε > 0 is a
constant.

In [8], Chvátal and Reed define a bicycle as a formula with at least two dis-
tinct variables x1, . . . , xs and clauses C0, C1, . . . , Cs that have the following structure:
There are literals w1, . . . , ws such that each wr is either xr or xr, each Cr with
0 < r < s is {wr, wr+1}, and C0 = {u,w1}, Cs = {ws, v} with literals u, v chosen

∗Received by the editors June 6, 2006; accepted for publication (in revised form) January 18,
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1An event E happens with high probability, or whp, if Pr(E) = 1 − 0n(1).
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from {x1, . . . , xs, x1, . . . , xs}. They prove that every unsatisfiable family of 2-clauses
contains a bicycle.

Each family of clauses F is easily seen to correspond to a graph GF on 2n vertices,
where each vertex of GF corresponds to a literal in F and each edge corresponds to a
clause. It is well known (see [9, 5, 12] and many others) that GF undergoes a major
change right when the number of clauses exceeds n. When F has (1 − ε)n clauses,
the largest connected component of GF has O(log n) vertices, and all components are
either trees or unicyclic, making a bicycle extremely unlikely. However, when there
are (1+ ε)n clauses, a giant component of size Ω(n) appears; this component contains
a lot of cycles and has a substantial 2-core.

It is very reasonable to think that the appearance of this complex component has
something to do with the first appearance of at least one bicycle, and therefore the
change in satisfiability, but here we introduce a natural random model in which there
is no connection between the appearance of a giant in GF and satisfiability.

Model. Given any simple graph G on 2n vertices, we will make a family of
clauses S(G) by randomly assigning labels from X to the vertices; then each edge
corresponds to one clause.

This model is equivalent to a random instance of 2-SAT where one condition
on G is the underlying subgraph. This is the most natural way of examining the
question of how the structure of the underlying subgraph can affect the probability
of satisfiability.

We would like to know the probability that S(G) is satisfiable over the space of
all possible assignments to the vertices. This question is equivalent to the one with
F2(n,m) if G is a random graph with m edges; however, we allow G to be anything
(provided Δ(G) isn’t extremely large). This model does allow clauses xi ∨ xi, which
are usually excluded in 2-SAT; however, whp we will have O(1) such clauses, which
makes no difference in our results.

Note that S(G) is satisfiable if and only if there are exactly n vertices in G which
cover E(G) ∪M , where M is a random perfect matching added to G. We must take
exactly one vertex from each edge in M for an edge cover of size n, and these n vertices
must cover every edge in G. Vertices in the edge cover are “true,” while vertices out
of the edge cover are “false.” We will primarily use this model; in most cases we will
expose one matching edge at a time by matching a given vertex with a randomly
chosen unmatched vertex.

Roughly speaking, we will show that when the number of edges in G is cn, c = 1
is a threshold for satisfiability, subject to a few technical conditions. This indicates
that there is no connection between a giant component in G and satisfiability; for
example, G could be a graph with (1− ε) edges all in one giant component or (1 + ε)
edges in many small components.

Theorem 1. If G is a graph with 2n vertices, less than (1 − ε)n edges for some

ε > 0, and Δ(G) = o(n
1/10

logn ), then S(G) is satisfiable whp.
This can be thought of as an extension of the result from Chvátal and Reed stated

above; in that case G would be a random graph with 2n vertices and up to (1 − ε)n
edges. The necessity of a condition on Δ(G) is discussed in section 5.

Our result in the case when there are (1 + ε)n edges requires an additional con-
dition, namely, that enough of the edges come from vertices of degree less than
O(log n).

Notation 2. For all i ≥ 0, define di = di(G) as the number of vertices of degree
i in graph G.
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Theorem 2. If G is a graph with 2n vertices and Δ(G) = o(n1/8), and there is
some ε > 0 and function τ ≤ c log n for some constant c < 3ε

16 such that

(1)

τ∑
i=0

idi = (1 + ε)2n,

then S(G) is not satisfiable whp.
This is also an extension of the Chvátal and Reed result because a random graph

with (1+ε)n edges will whp satisfy (1) with τ equal to some sufficiently large constant.
Theorems 1 and 2 are proven in section 3.

If there is a collection of high-degree vertices incident with more than εn edges, the
structure of the graph is much more important. However, we do believe the following
to be true.

Conjecture 1. Let ε > 0. There exists φ > 0 such that if G is a graph with 2n
vertices and more than (1 + ε)n edges, and Δ(G) ≤ nφ, then S(G) is not satisfiable
whp.

Theorem 2 implies that Conjecture 1 holds when nφ is replaced by c log n. In
section 6 we discuss some results that lead us to believe Conjecture 1 is true, and in
section 5 we show that Conjecture 1 does not hold for φ ≥ 0.5.

1.1. Inequalities. We will make use of an Azuma–Hoeffding type of inequality
for supermartingales as discussed in [13, 16, 3]: If Y0, Y1, Y2, . . . , Yt is a sequence of
random variables such that E[Yi|Y1, Y2, . . . , Yi−1] ≤ Yi−1 and |Yi−Yi−1| ≤ λ for some
constant λ and all i ≤ t, then for all α > 0

(2) Pr(Yt − Y0 ≥ α) ≤ exp

(
− α2

2tλ2

)
.

The following are easily obtained from the Azuma–Hoeffding inequality: If {Xi}i≥0 is
a sequence of random variables such that all differences Xk+1 −Xk are independent
and |Xk+1 −Xk| ≤ z for all k ≥ 0, then

(3) Pr(Xk − E[Xk] ≥ λ) ≤ exp

(
− λ2

8kz2

)

and

(4) Pr(E[Xk] −Xk ≥ λ) ≤ exp

(
− λ2

8kz2

)

for all λ > 0.

2. When d0 is small. The proof of Theorem 2 will use the following. If G
has few isolated vertices, then it is not satisfiable provided at least some ratio of the
vertices has degree 2 or more.

Theorem 3. If G is a 2n-vertex graph such that

(5)
∑
i≥2

di � n7/8Δ1/2 + n1/2d
1/2
0 ,

then S(G) is not satisfiable whp.2

Note that in this case Δ = o(n1/4) and d0 = o(n) are implied since
∑

i≥0 di = 2n.

2We say that f(n) � g(n) if
g(n)
f(n)

= on(1).
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Proof of Theorem 3. Suppose that G is any graph with 2n vertices. Begin by
iteratively removing any edges which join two vertices of degree at least 3. Note that
this doesn’t change n or (5), and when finished it will allow us to say that G satisfies:

(a) Every edge in G is incident with at least one vertex of degree 1 or 2.
Now define functions α(n) and μ(n) such that α(n) → ∞ as n → ∞, and the following
are true:

(b) Δ(G) ≤ n1/4

α2(n) ;

(c) d0 ≤ n
α2(n) ;

(d) Either (b) or (c) is satisfied with equality;
(e) d1 = 2n(1 − μ(n));
(f) α(n)μ(n) → ∞ as n → ∞.

Existence of α(n) is clear from the conditions of Theorem 3, and (e) defines μ(n). To
show that (5) also implies (f), note that

αμ ≥ α

2n

∑
i≥2

di � αn−1/8Δ1/2 + αn−1/2d
1/2
0 ≥ 1,

with the last inequality coming from (d).
To help with technical details, we will define a vertex as free if at least one of its

neighbors was set or if it is isolated.
First, we will pick any nonisolated vertex v0 from G. Start by setting v0 false;

we are going to prove that whp this will lead to a contradiction. To do this, we are
going to expose the matching of G one edge at a time and simultaneously keep track
of the following three sets:

• T is the set of “active” true vertices, vertices which must be true but are
not yet matched. Our contradiction will be a matching edge within T . Ini-
tially T = N(v0) since v0 is false, and T 	= ∅ when we start because v0 is a
nonisolated vertex.

• U is the set of all unmatched vertices which are “free.” Initially U will be the
set of all isolated vertices along with N(N(v0)).

• V is the set of all other unmatched vertices not in T∪U . Initially V = X\T\U .
Notation 3. For any vertex v, we will write N2(v) = N(N(v)) − v.
So T ∪ U ∪ V is the set of currently unmatched vertices. As long as T 	= ∅ we

are going to select v ∈ T and match it with a randomly chosen unmatched vertex v.
Then N(v) must be true so it goes to T , and N2(v) will be declared free. It seems
unnatural to not set vertices of N(vi) to be true if they are in U or if they are already
matched, but we will show that this is an unimportant detail because the number of
such vertices is negligible.

This is the precise algorithm we will follow.
1. Start with i = 0 and initial sets T0, U0, V0 described above.
2. While Ti 	= ∅ and i ≤ α(n)

√
n:

Pick any vertex vi ∈ Ti and match it with a random vertex vi ∈ Ti∪Ui∪Vi−vi.
Then update T,U, V as follows:

• If vi ∈ Ti, then STOP; we have our contradiction;
• If vi ∈ Ui, then Ti+1 = Ti − vi, Ui+1 = Ui − vi ∪N(vi);
• If vi ∈ Vi, then Ti+1 = Ti ∪ N(vi) − vi, Ui+1 = Ui ∪ N2(vi), Vi+1 =
Vi \N2(vi) \N(vi) − vi.

• i = i + 1.
3. STOP. (Note that either Ti = ∅ or i ≥ α(n)

√
n.)
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Note that in this algorithm the graph we work with at step i is the graph induced by
Ui ∪ Vi.

We note some bounds on |Ui| and |Vi| in the course of the algorithm. For any
vertex u, we have N2(u) ≤ 2Δ from (a). Therefore, |Ui+1| − |Ui| ≤ 2Δ for all i, and
since i ≤ α(n)

√
n through our process, we have

|Ui| ≤ 2iΔ + |U0| ≤ 2n3/4

α(n)
+

n

α(n)2
= O

(
n

α2(n)

)
,

Similarly, |Vi| − |Vi+1| ≤ 3Δ for all i and |V0| ≥ 2n− 2Δ; therefore, for all i

|Vi| ≥ 2n− 3(i + 1)Δ ≥ 2n− o(n3/4).

Now we look at |Ti|. We have |Ti+1| < |Ti| only if vi ∈ U , and in this case |Ti+1| =
|Ti| − 1. We have

Pr (|Ti+1| < |Ti|) ≤ |Ui|
|Ti ∪ Vi ∪ Ui| − 1

≤
O
(

n
α2(n)

)
2n− o(n3/4)

= O

(
1

α2(n)

)
.

Now if vi ∈ Vi, then |Ti+1|−|Ti| = |N(vi)|−1; therefore, we increase |Ti| if deg(vi) > 1.
Define

pL = max
i

Pr(deg(vi) = 1 | vi ∈ Vi).

The number of degree 1 vertices in V never increases through the process, because
any vertex which loses an edge is immediately free; therefore, if a vertex of degree 1
is created, it would move from V to U . Thus, we have

pL ≤ d1

mini |Vi|
≤ 2n(1 − μ(n))

2n− o(n3/4)
= 1 − μ(n) + o(n−1/4).

So

Pr(|Ti+1| − |Ti| ≥ 1) ≥ (1− pL)
|Vi|

|Ti ∪ Vi ∪ Ui|
≥
[
μ(n) − o(n−1/4)

] 2n− o(n3/4)

2n

≥ μ(n) − o(n−1/4).

Lemma 1. With high probability
(i) |Ti| 	= 0 for all i ≤ α(n)

√
n;

(ii) if j = 
√
nα(n)�, then |Tj | ≥ μ(n)

2 j.
We prove this below, but for now assume it is true. So whp our algorithm will

end either with vi ∈ Ti or with i > α(n)
√
n, not with Ti = ∅. If it ends with

vi ∈ Ti, we are done; if not, then Lemma 1 implies that whp we will finish with

|T | ≥ μ(n)α(n)
2

√
n. In this case it is extremely likely that a matching edge will occur

within T ; the probability of no such edge can be bounded above by

|T |∏
i=1

(
1 − |T | − i

2n

)
≤ exp

⎛
⎝− 1

2n

|T |−1∑
i=1

|T | − i

⎞
⎠ = exp

(
−Ω

(
|T |2
n

))

≤ exp
(
−Ω(μ(n)2α(n)2)

)
= o(1).

Thus, from Lemma 1 we can say that whp we will have a matching edge within T ;
therefore, we have our contradiction.
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We have

Pr(S(G) satisfiable) ≤ Pr(∃ satisfying assignment with v0 false)
+ Pr(∃ satisfying assignment with v0 false);

therefore,

Pr(S(G) satisfiable) ≤ Pr(∃ satisfying assignment with v0 false)
+ Pr(v0 is isolated)
+ Pr(∃ satis. assignment with v0 false and not isol.).

The first and third summands on the right-hand side are o(1) because of our contra-
diction, and the second is 1

no(n) = o(1) because there are only o(n) isolated vertices
in G. Thus, Pr(S(G) is satisfiable) = o(1).

Proof of Lemma 1. We first note that {|Ti|}i≥0 can be thought of as a series of
random variables whose differences aren’t quite independent, but clearly there is a
series {Xi}i≥0 of random variables such that Xi+1 −Xi are independent for all i ≥ 0,
and the following are all true:

1. {|Ti|}i≥0 majorizes {Xi}i≥0; i.e., Xi ≤ |Ti| for all i ≥ 0.
2. X0 = |T0| ≥ 1 because we chose a nonisolated vertex to start.
3. Δ ≥ Xi+1 −Xi ≥ −1 for all i ≥ 0.

4. Pr(Xi+1 < Xi) = O
(

1
α2(n)

)
.

5. Pr(Xi+1 ≥ Xi + 1) = (1 − o(1))μ(n).
Let P1 be the probability that Xi = 0 for some i ≤ α(n)

√
n. Furthermore, define

p< = Pr(X1 < X0) and p> = Pr(X1 > X0). A simple recursion gives us

P1 ≤ p< + (1 − p< − p>)P1 + p>P
2
1 ,

which leads to

0 ≤ (p< − p>P1)(1 − P1).

Certainly P1 < 1; therefore,

P1 ≤ p<
p>

≤
O
(

1
α2(n)

)
(1 − o(1))μ(n)

= O
(

1
α(n)2μ(n)

)
= o(1).

Now define P2 as the probability that (i) is true and (ii) is false. Since

E [Xi+1 −Xi] ≥ (1 − o(1))μ(n) −O
(

1
α(n)2

)
= (1 − o(1))μ(n)

for all i ≤ j, we have E[Xj ] ≥ (1 − o(1))μ(n)j. So

P2 ≤ Pr
(
E[Xj ] − |Xj | ≥ μ(n)

3 j
)

= Pr
(
|Xj | − E[Xj ] ≤ −μ(n)

3 j
)
.

Condition 3 above allows us to use (4):

P2 ≤ exp

(
−μ(n)2j

72Δ2

)
= exp

(
−Ω(α(n)5μ(n)2)

)
= o(1),

with the last equality following from (f) and the fact that α(n) → ∞. Since P1 +P2 =
o(1), we know that (i) and (ii) are true whp.

3. Proof of Theorem 2. Suppose that G is a graph with 2n vertices and
Δ(G) = o(n1/8). Also, assume there is some ε > 0 and some function τ ≤ c log n for
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some constant c < 3ε
16 such that

τ∑
i=0

idi = (1 + ε)2n.

Notation 4. For any number x, we will write x+ = x + o(1).
Let δ be some small positive function satisfying

exp
(
−τ [ 2

+

ε + φ]
)
> δ > n−3/8+φ

for some φ > 0, a fixed constant; we know such a δ exists because of our assumption
on τ .

If v is an isolated vertex in G, then any optimal assignment algorithm can set v
to be false and v to be true. This defines a procedure which is commonly called pure
literal elimination. We are going to do pure literal elimination on G and show that
whp it leads to a graph which is not satisfiable whp by Theorem 3.

Notation 5. We will write di as a function of s, since it will change throughout
the process.

(a) Set s = 0.
(b) While d0(s) > 0 and s < (1 − δ)n:

Step s: Choose any isolated vertex v, and then randomly choose its match v
from all other vertices. Make v false and v true, and then delete both vertices
from the graph, along with any edges incident with v.
Increment s by 1.

First, we will show that the ratio between the number of edges and the number
of vertices is likely not to decrease too much. Define

DT
s :=

T∑
i=0

idi(s)

for any integer T ≤ τ , and

Vs :=
∑
i≥0

di(s) − 1.

Note that at any time Vs = 2n− 2s− 1. This will be the size of the “pool” of vertices
that we have to choose from for v.

Furthermore, define s1 to be the step when the above process stops.
Notation 6. Let d(s) = {d0(s), d1(s), d2(s), . . . } be the entire degree sequence at

Step s.
Lemma 2. For any i ≥ 0 and s < s1, we have

VsE[di(s + 1) − di(s) | d(s)] = (i + 1) (di+1(s) − di(s)) − Vs1i=0.

Lemma 3. With high probability, for all s < (1 − δ)n and s < s1, we have

(6)

τ∑
i=2

di(s) ≥ εVs

1+τ
.

Let s2 denote the first Step s in which (6) does not hold, if such a step exists, and
let s = min{s1, s2} (if s2 does not exist, then s = s1). We will continue our process
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beyond s = s for the sake of defining a martingale, but the graph (and hence the
degree sequence) will not change after this point.

Lemma 4. With high probability, s < (1 − δ)n.
Lemmas 3 and 4 show that whp either we will stop because (6) does not hold or

there is some number s < (1 − δ)n such that s steps of pure literal elimination will
lead to a graph with Vs ≥ 2δn vertices, d0 = 0, Δ = o(n1/8), and

∑
i≥2 di ≥ Ω(Vs

τ ).
Theorem 3 shows this is not satisfiable whp whenever n is sufficiently large with
respect to δ = δ(T, ε) and δ ≥ n−1/2. It remains only to prove the lemmas.

Proof of Lemma 2. First, fix any i ≥ 1. To make notation easier, let Si, Si+1

be the set of all vertices of degree i, i + 1, respectively, and let wi, wi+1 be arbitrary
vertices in their respective sets. We have

E[di(s+ 1)− di(s) | d(s)] = E[|Si(s+ 1) \ Si(s)| | d(s)]−E[|Si(s) \ Si(s+ 1)| | d(s)].

Choose an arbitrary wi ∈ Si(s). We have

Pr(wi ∈ Si(s) \ Si(s + 1)) = Pr(v = wi or v ∈ N(wi)) =
i + 1

Vs
.

Thus,

E[Si(s) \ Si(s + 1) | d(s)] = |Si|
(
i + 1

Vs

)
= di

(
i + 1

Vs

)
.

Now the only way a vertex is in Si(s+ 1) \ Si(s) is if it had degree i+ 1 and it lost a
neighbor. Therefore,

Pr(wi+1 ∈ Si(s + 1) \ Si(s)) = Pr(v ∈ N(wi+1)) =
|N(wi+1)|

Vs
=

i + 1

Vs
.

Thus,

E[Si(s + 1) \ Si(s) | d(s)] = |Si+1|
(
i + 1

Vs

)
= di+1

(
i + 1

Vs

)
.

When i = 0, the only difference is that E[S0(s + 1) \ S0(s)] is one less because pure
literal elimination randomly matches a degree 0 vertex.

Proof of Lemma 3. We will examine the series of variables {Dτ
i

Vi
}i≥0. First, we

bound the expected change. Lemma 2 gives

VsE[Dτ
s+1 −Dτ

s | d(s)] =

τ∑
i=1

i(i + 1) (di+1(s) − di(s))

for all s; therefore,

VsE[Dτ
s+1 −Dτ

s | d(s)] = −2

τ∑
i=1

idi(s) + τ(τ + 1)dτ+1(s) ≥ −2Dτ
s ,

because dτ+1 ≥ 0. Since Vs is known and Vs+1 = Vs − 2, we use this to get

E

[
Dτ

s+1

Vs+1
− Dτ

s

Vs
| d(s)

]
=

E[Dτ
s+1Vs −Dτ

s (Vs − 2) | d(s)]
Vs(Vs − 2)

=
VsE[Dτ

s+1 −Dτ
s | d(s)] + 2Dτ

s

Vs(Vs − 2)
≥ 0
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for all s during our process. So for all s we have

(7) E

[
Dτ

s

Vs

]
≥ Dτ

0

V0
= 1 + ε.

Now we bound the actual difference. Each step deletes at most one nonisolated vertex;
therefore, |Dτ

s+1 −Dτ
s | ≤ 2Δ. Furthermore, Dτ

s ≤ VsΔ.

∣∣∣∣Dτ
s+1

Vs+1
− Dτ

s

Vs

∣∣∣∣ ≤
∣∣Dτ

s+1 −Dτ
s

∣∣
Vs − 2

+
2Dτ

s

Vs(Vs − 2)
≤

2Δ +
Dτ

s

Vs

Vs − 2
≤ 3Δ

Vs − 2

for all s.
Define β(n) = n−φ/2 to be a small positive function, and fix any s < (1 − δ)n.

We use the above with (7), (2), s < n, and Vs ≥ 2δn to get

Pr

(
Dτ

s

Vs
≤ (1 + ε) − β(n)

)
≤ exp

(
− 1

2s

[
β(n)Vs

3Δ

]2)
≤ exp

(
− 1

2n

[
n−φ/22δn

3n1/8

]2)

= exp
(
− 2

9n
3/4−φδ2

)
< exp

(
− 2

9n
φ
)
.

So the probability that this is true for any s < (1 − δ)n can be bounded from above
by n exp(− 2

9n
φ) = o(1). Therefore, whp we have

0 ≤ Dτ
s − (1 + ε)Vs + β(n)Vs = Dτ

s − Vs − (1 − o(1))εVs

whp for all s < (1 − δ)n; this yields

τ
τ∑

i=2

di(s) ≥
τ∑

i=2

(i− 1)di(s) ≥ Dτ
s − Vs ≥ (1 − o(1))εVs =

εVs

1+
.

Proof of Lemma 4. We will examine the random variables {d0(i)
Vi

}i≥0. First, we
bound the difference for all s. Here we use Vs+1 = Vs − 2 and |d0(s+1)− d0(s)| ≤ Δ.∣∣∣∣d0(s + 1)

Vs+1
− d0(s)

Vs

∣∣∣∣ =

∣∣∣∣d0(s + 1) − d0(s)

Vs − 2
+

2d0(s)

Vs(Vs − 2)

∣∣∣∣ = O

(
Δ

Vs

)
.

Now we look at the expected change. First using Lemma 2:

E

[
d0(s + 1)

Vs+1
− d0(s)

Vs
| d(s)

]
=

d1(s) + d0(s) − Vs

Vs(Vs − 2)
≤ −

∑τ
i=2 di(s)

Vs(Vs − 2)
.

Now we can use Lemma 3 and Vs = 2(n − s) − 1 (for s < s) to say that whp either
s < s or

E

[
d0(s + 1)

Vs+1
− d0(s)

Vs
| d(s)

]
≤ − ε

2+τ(n− s)

holds for all s < (1− δ)n. Although the differences in {d0(i)
Vi

}i≥0 are not independent,

and the process stops if d0(s) = 0, the “2+” function clearly leaves room for a series
of random variables {Xi}i≥0 such that the differences Xi+1 −Xi are independent for
all i ≥ 0, and the following are true whp for all s ∈ [0, (1 − δ)n]:
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1. Either d0(s) = 0 or s2 < s < s1 or Xs ≥ d0(s)
Vs

.

2. X0 = d0(0)
V0

≤ 1.

3. |Xs+1 −Xs| = O( Δ
Vs

).
4. E[Xi+1 −Xi] ≤ − ε

2+τ(n−s) .

So

E [Xs] ≤ X0 −
ε

2+τ

s∑
r=1

1

n− r
≤ 1 +

ε

2+τ
log
(
1 − s

n

)

for all s provided n is sufficiently large. So, if δ < exp(− 2+τ
ε − φτ), we will have

s < (1− δ)n satisfying E[Xs] < − εφ
2+ , a constant. This allows us to use (3), so for any

function α(n) → ∞,

Pr(Xs > 0) ≤ exp

[
−Ω

(
Vs

Δ
√
s

)2
]

≤ exp

[
−Ω

(
δn

n1/8
√
n

)2
]

≤ exp
(
−Ω(n2φ)

)
= o(1).

Therefore, whp we have s1 < (1 − δ)n or s2 < (1 − δ)n. In either case we have
s̄ < (1 − δ)n.

4. Proof of Theorem 1. Suppose that G is any graph with 2n vertices and
ε > 0 satisfies the following:

1. G has less than (1 − ε)n edges;

2. Δ(G) ≤ n1/10

α(n) , where α(n) = 5
ε2 log n.

To make notation easier, we will define

i∗ :=
⌊
Δ2α(n)

⌋
.

We begin by selecting any vertex v0 ∈ G and setting it false; a set T will give rise to
a process similar to section 2. However, now that the expected degree is less than 1,
we will show that whp there will be no contradiction, and we will most likely finish
with T = ∅ instead of an edge within T or i > i∗.

Here is the exact procedure we will follow. In section 2, we kept track only of U
so we could find a lower bound of |T |. Since we are interested only in an upper bound,
we will not keep track of it here. All neighborhoods are in the “current” graph, i.e.,
not including vertices which have been removed from consideration.

1. Choose any vertex v0, and set i = 0, T0 = N(v0), V = X \N(v0) \ v0.
2. While Ti 	= ∅ and i ≤ i∗:

Pick any vertex vi ∈ Ti, and match it with a random vertex vi ∈ Ti ∪ Vi − vi.
• If vi ∈ Ti, then STOP; we have a contradiction.
• If vi ∈ Vi, then Ti+1 = Ti ∪N(vi) − vi, Vi+1 = Vi \N(vi) − vi.
• i = i + 1.

3. STOP; either Ti = ∅ or i ≥ i∗.
The only thing that can raise the expected degree of vi above 1− ε is deleting iso-

lated vertices, as deletion of any other vertices will also delete edges. However, we have

|Vi| > 2n− (i∗ + 1)Δ − (Δ + 1) = 2n−O(i∗Δ) ≤ 2n− o(n).

Since we start with at least 2εn isolated vertices and won’t lose more than o(n) of
them, we know that the increase in expected degree must be small; namely,

E[|N(vi)|] ≤ 1 − ε + o(1)
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for all i∗ ≥ i ≥ 0 is easily obtained when we divide by 2n. So we bound E[|Ti|] with
the following:

(8) E[|Ti| | Ti−1] = |Ti−1| − 1 + [1 − ε + o(1)] = |Ti−1| − ε + o(1).

Much like the proof of Lemma 1, we take the random variables {|Ti|}i≥0 and note
that the o(1) term in (8) clearly leads to a series of random variables {Xi}i≥0 such
that for all i in our process we have Xi ≥ |Ti|, |Xi+1 −Xi| ≤ Δ, and all differences
Xi+1 −Xi are independent. Furthermore, the Xi variables can “continue” even after
Ti = ∅ and our process stops, so we have

(9) E[Xi] ≤ −εi + Δ + o(i) for all i ≤ i∗.

For any vertex v ∈ V (G), we have defined a process which begins by setting v
false and continues keeping track of set T (as defined in the proof of Theorem 3)
until either T = ∅, vi ∈ T , or i = i∗. Let Ev be the event that this process does
not end with T = ∅, and define Zv to be the set of all vertices which appear in the
corresponding T at any time.

Lemma 5. For any v ∈ V (G), Pr(Ev) = O(n−3/5).
Lemma 6. If u is fixed and u is chosen randomly from V (G), then

Pr(Eu ∧ Eu) = o

(
1

n

)
.

Lemmas 5 and 6 are proven below.
Consider an instance not in the union⋃

u

Eu ∧ Eu.

By Lemma 6, the probability of such an instance is 1 − o( 1
n )O(n) = 1 − o(1) by the

union bound. Therefore this deterministic entity has a satisfying assignment. (We
can iteratively choose a pair of vertices u, u and set one of them false because this
instance is not in Eu ∧ Eu.) So we are done once we prove Lemmas 5 and 6.

Proof of Lemma 6. Assume Zu is fixed. When we choose v (the partner of v) we
need v /∈ Zu and N(v) ∩ Zu = ∅. The probability of a problem is bounded above by

(Δ + 1)|Zu|
n

= O

(
Δ2i∗
n

)

for any randomly chosen u ∈ V (G), whether Eu is true or not. We make i∗ choices
in the formation of Zu, so the probability of a problem is bounded from above by

O

(
Δ2i2∗
n

)
= O

(
Δ6α(n)2

n

)
= O

(
n−2/5

α(n)4

)
= o(n−2/5).

Therefore,

(10) Pr(Zu ∩ Zu 	= ∅|Eu) = o(n−2/5).

Define A = Au,u to be the event that Zu ∩ Zu = ∅. We have

Pr(Eu ∧ Eu) = Pr(Eu)
[
Pr(Eu|A,Eu) Pr(A|Eu) + Pr(Eu|A,Eu) Pr(A|Eu)

]
≤ Pr(Eu)

[
Pr(Eu|A,Eu) + Pr(A|Eu)

]
.
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For the second term, note that being given A,Eu ensures that the process starting at
u avoids Zu at all times. Therefore, the exact same proof of Lemma 5 with G−Zu in
place of G tells us that Pr(Eu|A,Eu) = O(n−3/5). So, using Lemma 5 and (10), we
see that

Pr(Eu ∧ Eu) ≤ O(n−3/5)
[
O(n−3/5) + o(n−2/5)

]
= o

(
1

n

)
.

Proof of Lemma 5. We will prove that all of the following are true with probability
1 −O(n−3/5):

(a) |Ti| = 0 for some i ≤ i∗.
(b) |Ti| ≤ 2i∗α(n) for all i ≤ i∗.
(c) No edges will occur within T .

We have i∗ � Δ, so (9) tells us that E[Xi∗ ] ≤ − ε
1+ i∗. We use (3) with this and the

fact that |Xi+1 −Xi| ≤ Δ for all i ≥ 0:

Pr((a) false) ≤ Pr(Xi∗ > 0) ≤ exp

(
− ε2i∗

8+Δ2

)
≤ exp

(
−ε2α(n)

8+

)

= exp

(
− ε2

8+

5

ε2
log n

)
= n−5/8+ ≤ n−3/5.

For (b), it is easy to see that

Xi > 2i∗α(n) ⇒ Xi − E[Xi] ≥ i∗α(n),

because E[Xi] ≤ Δ + o(1) � i∗α(n). So by (3):

Pr (Xi > 2i∗α(n)) ≤ exp

(
− (i∗α(n))2

8Δ2i

)
≤ exp

(
−1

8
α(n)3

)
= o

(
1

n

)

for all i ≤ i∗; therefore, the probability of this happening for any i ≤ i∗ is actually
o(n−4/5). Finally, if (b) is true, then we have for all i ≤ i∗

Pr(vi ∈ Ti) =
|Ti|

|Ti| + |Vi| − 1
=

|Ti|
2n− o(n)

<
Xi

n
<

2i∗α(n)

n
.

Therefore, the probability that (b) is true and (c) is false is bounded by

i∗∑
i=0

Pr(vi ∈ Ti) ≤
(

2i∗α(n)

n

)
i∗ = O

(
Δ4α(n)3

n

)
= O

(
n−3/5

α(n)

)
.

5. Why the maximum degree condition is needed. If the maximum degree
is large, then the satisfiability depends much more on where the large degree vertices
are matched and less on the actual graph. One example of this is a graph G which is
the union of Kα

√
n and 2n− α

√
n isolated vertices. Note that S(G) is not satisfiable

if and only if two or more of the matching edges end up within the complete graph
Kα

√
n. So

Pr(S(G) is satisfiable)

=

α
√
n−1∏

i=0

2n− α
√
n− i

2n− 1 − 2i
+

(
α
√
n

2

)
1

2n− 1

α
√
n−1∏

i=2

2n− α
√
n− (i− 2)

2n− 1 − 2i

≈
(

1 +
α2

4

) α
√
n−1∏

i=2

2n− α
√
n− (i− 2)

2n− 1 − 2i
.
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By taking the logarithm of the product and using log(1 − x) ≈ −x for x ≈ 0, we can
approximate the value of the product, and we arrive at the following:

Pr(S(G) is satisfiable) ≈
(

1 +
α2

4

)
exp

(
−α2

4

)
.

Thus, G has about α2n edges, but the probability of satisfiability of S(G) does not
have a threshold; it is a smooth function of α.

6. Concerning Conjecture 1. Here we present two graphs G1, G2 with (1+ε)n
edges each but which violate (1), and both S(G1) and S(G2) are not satisfiable whp.
Since these graphs are vastly different and they are both such extreme cases, we
believe that this is strong evidence that Conjecture 1 should be true.

6.1. Two examples.
Graph G1. Fix logn � α(n) ≤ nφ. Let Gα be any α(n)-regular graph with

2(1 + ε)n
α vertices. Let G1 be Gα plus 2n − |VGα | isolated vertices. We give the

following “informal” argument to show that S(G1) is satisfiable whp.
Match all vertices which start out isolated; those which are matched may be

“deleted” because they are no longer relevant. We will be left with an induced sub-

graph of Gα, say, G′
α, where v ∈ V (Gα) exists in G′

α with probability |V (Gα)|
2n−1 ≈ 1+ε

α .
Also, e ∈ E(Gα) makes it to G′

α only if both of its vertices survive, which happens

with probability close to
(

1+ε
α

)2
. So whp G′

α has about 2(1 + ε)2 n
α2 vertices and whp

|E(G′
α)|

|V (G′
α)| ≈

(
1+ε
α

)2 |EGα
|(

1+ε
α

)
|VGα |

=

(
1 + ε

α

)
α

2
=

1 + ε

2
.

Also, we can most likely say a lot more about the degrees of the vertices. It is
extremely unlikely that Gα has many high-degree vertices; in fact, whp G′

α satisfies
(1) with τ equal to some sufficiently large constant; therefore, G1 is not satisfiable
whp by Theorem 2.

Graph G2. Again fix logn � α(n) ≤ nφ, and assume that φ < 1
4 . Take (1+ ε)n

α
disjoint stars, each with α leaves and then add (1 − ε)n − (1 + ε)n

α isolated vertices
to make G2. We can use a procedure similar to that of section 2, starting at any
nonisolated vertex and stopping if i ≥

√
n. With stars we know exactly what we

are working with, for any vi we have a clearly defined N(vi), N2(vi), and we know
that declaring N2(vi) free doesn’t assume anything; leaves whose parent is deleted are
indeed isolated. It is easy to see that for all i ≤ α3 (since each step involves moving
at most α + 1 vertices) we have

|Ui| ≤ (1 − ε)n + o(n) and |Vi| ≥ (1 + ε)n− o(n).

If vi ∈ Ti for any i, we are done. Otherwise, |Ti| behaves as follows:

|Ti+1| − |Ti| =

⎧⎪⎨
⎪⎩
−1 prob. 1−ε

2 − o(1),

+α− 1 prob. 1
α ( 1+ε

2 − o(1)),

0 otherwise.

The first of the three cases above corresponds to when vi ∈ Ui, so the only change
to T is vi is removed. The second case corresponds to when vi ∈ Vi, and vi is a star
center; therefore, vi gets removed from T and α leaves get added. The third case is
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when vi ∈ Vi is a leaf; therefore, vi is removed from T but the center of the respective
star is added.

Regardless of our what our nonisolated starting vertex is, for some constant c we
have Pr(|T�

√
n logn�| �

√
n) ≥ c, because on every step the expected change in |T |

is a positive constant. Since whp |T | �
√
n forces an edge within T , whp we have

unsatisfiability.

6.2. Starting with a bounded degree. Suppose we run the pure literal al-
gorithm on a graph with a bounded degree sequence whose degree sum is at least
(1 + ε) times its number of vertices. Here we show that as Step s approaches n in the
pure literal algorithm, the degrees fall exponentially. It seems likely that this should
continue even if the largest degree is at least nφ for some φ, so long as φ < 1

2 . If this is
the case, then Conjecture 1 is true, because we can begin by running the pure literal
algorithm and then create a graph which will meet the conditions Theorem 2.

During the pure literal algorithm, we started with s = 0, and we increased s until
it was something close to n. If we let t = s

n and vi(t) = 1
ndi(s) for all i, then we can

look at this as a function of t, as t goes from 0 to 1. If the maximum degree starting
out is a constant T , then we can use Lemma 2 along with methods discussed in [16]
to create a system of differential equations, which whp is accurate within O(n−1/2).
Here is what the system looks like for T = 4; the pattern should be clear:

(11) 2(1 − t)

⎡
⎢⎢⎣

v′1(t)
v′2(t)
v′3(t)
v′4(t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−2 2 0 0
0 −3 3 0
0 0 −4 4
0 0 0 −5

⎤
⎥⎥⎦
⎡
⎢⎢⎣

v1(t)
v2(t)
v3(t)
v4(t)

⎤
⎥⎥⎦ .

This can be solved using the diagonalization MΛM−1 of the square matrix. In this
case Λii = −(i + 1) for all i, and M is an upper triangular matrix defined by

Mi,j =

{
(−1)i+j

(
j
i

)
i ≤ j,

0 otherwise.

As it turns out, (M−1)ij = |Mij | for all i, j. The solution to this system is

(12)

⎡
⎢⎢⎣

v1(t)
v2(t)
v3(t)
v4(t)

⎤
⎥⎥⎦ = Mdiag

[
M−1d(0)

]
⎡
⎢⎢⎣

(1 − t)
(1 − t)3/2

(1 − t)2

(1 − t)5/2

⎤
⎥⎥⎦ ,

where diag(w) for any vector w is the diagonal matrix W , where Wii = wi for all i.
(Again the pattern should be clear for any T , not just T = 4.)

To see that this is indeed the solution, let μ(t) be the last vector on the right-hand
side of (12). Note that 2(1− t)μ′(t) = Λμ(t), where Λ is defined above. Using this, it
is easy to see that (11) is satisfied.

So if the largest degree is bounded to start, then so are the binomial coefficients;
thus we have

vi(t) = Θ
(
(1 − t)(i+1)/2

)
for all i. This implies that for any N there exists τ > 0 such that by time 1− τ , whp
we have

di(τ)

di+1(τ)
> N.
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Although it seems much more difficult to prove, we believe that this nice distribution
will continue even if the starting degree is larger than a constant T but not quite as
large as

√
n. If this is the case, then Conjecture 1 is true.
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Abstract. A set of vertices S resolves a graph G if every vertex is uniquely determined by its
vector of distances to the vertices in S. The metric dimension of G is the minimum cardinality of a
resolving set of G. This paper studies the metric dimension of cartesian products G�H. We prove
that the metric dimension of G�G is tied in a strong sense to the minimum order of a so-called
doubly resolving set in G. Using bounds on the order of doubly resolving sets, we establish bounds
on G�H for many examples of G and H. One of our main results is a family of graphs G with
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AMS subject classification. 05C12

DOI. 10.1137/050641867

1. Introduction. A set of vertices S resolves a graph if every vertex is uniquely
determined by its vector of distances to the vertices in S. This paper undertakes a
general study of resolving sets in cartesian products of graphs.

All the graphs considered are finite, undirected, simple, and connected. The
vertex set and edge set of a graph G are denoted by V (G) and E(G). The distance
between vertices v, w ∈ V (G) is denoted by dG(v, w), or d(v, w) if the graph G is
clear from the context. A vertex x ∈ V (G) resolves a pair of vertices v, w ∈ V (G) if
d(v, x) �= d(w, x). A set of vertices S ⊆ V (G) resolves G, and S is a resolving set of
G, if every pair of distinct vertices of G is resolved by some vertex in S. A resolving
set S of G with the minimum cardinality is a metric basis of G, and |S| is the metric
dimension of G, denoted by β(G).

The cartesian product of graphs G and H, denoted by G�H, is the graph with
vertex set V (G)×V (H) := {(a, v) : a ∈ V (G), v ∈ V (H)}, where (a, v) is adjacent to
(b, w) whenever a = b and {v, w} ∈ E(H), or v = w and {a, b} ∈ E(G). Where there
is no confusion the vertex (a, v) of G�H will be written av. Observe that if G and H
are connected, then G�H is connected. In particular, d(av, bw) = dG(a, b)+dH(v, w)
for all vertices av, bw of G�H. Assuming isomorphic graphs are equal, the cartesian
product is associative, and G1 �G2 � · · · �Gd is well-defined.
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Resolving sets in general graphs were first defined by Harary and Melter [24] and
Slater [42], although, as we shall see, resolving sets in hypercubes were studied earlier
under the guise of a coin weighing problem [1, 5, 6, 7, 16, 19, 23, 26, 29, 30, 31, 32,
34, 44]. Resolving sets have since been widely investigated [4, 8, 9, 10, 11, 12, 14, 17,
18, 27, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 48] and arise in many diverse areas,
including network discovery and verification [2], robot navigation [27, 41], connected
joins in graphs [40], and strategies for the Mastermind game [3, 13, 20, 21, 22, 26].

Part of our motivation for studying the metric dimension of cartesian products is
that in two of the above-mentioned applications, namely, Mastermind strategies and
coin weighing, the graphs that arise are in fact cartesian products. These connections
are explained in sections 2 and 6, respectively.

The main contributions of this paper are based on the notion of doubly resolving
sets, which are introduced in section 4. We prove that the minimum order of a doubly
resolving set in a graph G is tied in a strong sense to β(G�G). Thus doubly resolving
sets are essential in the study of metric dimension of cartesian products. We then
give a number of examples of bounds on the metric dimension of cartesian products
through doubly resolving sets. In particular, sections 5, 6, 7, 8, and 9, respectively,
study complete graphs, Hamming graphs, paths and grids, cycles, and trees. One of
our main results here is a family of (highly connected) graphs with bounded metric
dimension for which the metric dimension of the cartesian product is unbounded.

2. Coin weighing and hypercubes. The hypercube Qn is the graph whose
vertices are the n-dimensional binary vectors, where two vertices are adjacent if they
differ in exactly one coordinate. It is well known that

Qn = K2 �K2 � · · · �K2︸ ︷︷ ︸
n

.

It is easily seen that β(Qn) ≤ n; see equation (7.4). The first case when this bound is
not tight is n = 5. A laborious calculation verifies that Q5 is resolved by the 4-vertex
set {00000, 00011, 00101, 01001}. We have determined β(Qn) for small values of n by
computer search.

n 2 3 4 5 6 7 8 10 15
β(Qn) 2 3 4 4 5 6 6 ≤ 7 ≤ 10

The asymptotic value of β(Qn) turns out to be related to the following coin
weighing problem first posed by Söderberg and Shapiro [44]. (See [23] for a survey
on various coin weighing problems.) Given n coins, each with one of two distinct
weights, determine the weight of each coin with the minimum number of weighings.
We are interested in the static variant of this problem, where the choice of sets of
coins to be weighed is determined in advance. Weighing a set S of coins determines
how many light (and heavy) coins are in S, and no further information. It follows
that the minimum number of weighings differs from β(Qn) by at most 1 [26, 40]. A
lower bound on the number of weighings by Erdős and Rényi [16] and an upper bound
by Lindström [29] imply that

lim
n→∞

β(Qn) · log n

n
= 2,

where, as always in this paper, logarithms are binary. Note that Lindström’s proof is
constructive. He gives an explicit scheme of 2k − 1 weighings that suffice for k · 2k−1

coins.
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3. Projections. Let S be a set of vertices in the cartesian product G�H of
graphs G and H. The projection of S onto G is the set of vertices a ∈ V (G) for
which there exists a vertex av ∈ S. Similarly, the projection of S onto H is the set
of vertices v ∈ V (H) for which there exists a vertex av ∈ S. A column of G�H is
the set of vertices {av : v ∈ V (H)} for some vertex a ∈ V (G), and a row of G�H
is the set of vertices {av : a ∈ V (G)} for some vertex v ∈ V (H). Observe that each
row induces a copy of G, and each column induces a copy of H. This terminology is
consistent with a representation of G�H by the points of the |V (G)| × |V (H)| grid.

Lemma 3.1. Let S ⊆ V (G�H) for graphs G and H. Then every pair of vertices
in a fixed row of G�H is resolved by S if and only if the projection of S onto G
resolves G. Similarly, every pair of vertices in a fixed column of G�H is resolved by
S if and only if the projection of S onto H resolves H.

Proof. Consider two vertices av and aw in a common column. For every other
vertex bx of G�H, we have d(av, bx) − d(aw, bx) = dH(v, x) − dH(w, x). Thus
d(av, bx) �= d(aw, bx) if and only if dH(v, x) �= dH(w, x). That is, av and aw are
resolved by bx if and only if v and w are resolved by x in H. Hence av and aw are
resolved by S if and only if v and w are resolved by the projection of S onto H. We
have the analogous result for the projection onto G by symmetry.

Corollary 3.2. For all graphs G and H, and for every resolving set S of G�H,
the projection of S onto G resolves G, and the projection of S onto H resolves H. In
particular, β(G�H) ≥ max{β(G), β(H)}.

4. Doubly resolving sets. Many of the results that follow are based on the
following definitions. Let G �= K1 be a graph. Two vertices v, w ∈ V (G) are doubly
resolved by x, y ∈ V (G) if

d(v, x) − d(w, x) �= d(v, y) − d(w, y).

Note that this definition generalizes the Djoković–Winkler relation Θ, which can be
defined as follows: two edges xy, vw ∈ E(G) are in Θ if and only if v, w are doubly
resolved by x, y; see [25, 15, 47].

A set of vertices S ⊆ V (G) doubly resolves G, and S is a doubly resolving set, if
every pair of distinct vertices v, w ∈ V (G) is doubly resolved by two vertices in S.
Every graph with at least two vertices has a doubly resolving set. Let ψ(G) denote
the minimum cardinality of a doubly resolving set of a graph G �= K1. Note that
if x, y doubly resolves v, w, then d(v, x) − d(w, x) �= 0 or d(v, y) − d(w, y) �= 0, and
at least one of x and y (singly) resolves v, w. Thus a doubly resolving set is also a
resolving set, and

β(G) ≤ ψ(G).

Our interest in doubly resolving sets is based on the following upper bound.
Theorem 4.1. For all graphs G and H �= K1,

β(G�H) ≤ β(G) + ψ(H) − 1.

Proof. Let S be a metric basis of G. Let T be a doubly resolving set of H with
|T | = ψ(H). Fix vertices s ∈ S and t ∈ T . Let

X := {sv : v ∈ T} ∪ {at : a ∈ S}.

Observe that |X| = |S| + |T | − 1. To prove that X resolves G�H, consider two
vertices av and bw of G�H. By Lemma 3.1, if a = b then av and bw are resolved
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since the projection of X onto H is T . Similarly, if v = w then av and bw are resolved
since the projection of X onto G is S. Now assume that a �= b and v �= w. Since T is
doubly resolving for H, there are two vertices x, y ∈ T such that

dH(v, x) − dH(w, x) �= dH(v, y) − dH(w, y).

Thus for at least one of x and y, say x,

dH(v, x) − dH(w, x) �= dG(b, s) − dG(a, s).

Hence

d(av, sx) = dG(a, s) + dH(v, x) �= dG(b, s) + dH(w, x) = d(bw, sx).

That is, sx ∈ X resolves av and bw.
The relationship between resolving sets of cartesian products and doubly resolving

sets is strengthened by the following lower bound.
Lemma 4.2. Suppose that S resolves G�G for some graph G. Let A and B be

the two projections of S onto G. Then A ∪B doubly resolves G. In particular,

β(G�G) ≥ 1
2ψ(G).

Proof. For any two vertices v, w ∈ V (G), there is a vertex pq ∈ S that resolves
vw,wv. That is, d(vw, pq) �= d(wv, pq). Thus d(v, p) + d(w, q) �= d(w, p) + d(v, q),
which implies d(v, p) − d(w, p) �= d(v, q) − d(w, q). Thus p, q doubly resolves v, w in
G. Now p ∈ A and q ∈ B. Hence A ∪ B doubly resolves G. If, in addition, S is a
metric basis of G�G, then ψ(G) ≤ |A ∪B| ≤ |A| + |B| ≤ 2|S| = 2 · β(G�G).

Observe that Theorem 4.1 and Lemma 4.2 prove that β(G�G) is always within
a constant factor of ψ(G). In particular,

(4.1) 1
2ψ(G) ≤ β(G�G) ≤ ψ(G) + β(G) − 1 ≤ 2ψ(G) − 1.

Thus doubly resolving sets are essential in the study of the metric dimension of carte-
sian products.

A natural candidate for a resolving set of G�G is S×S for a well-chosen set S ⊆
V (G). It follows from Lemma 4.2 and the proof technique employed in Theorem 4.1
that S × S resolves G�G if and only if S doubly resolves G.

Now consider the following elementary bound on ψ(G).
Lemma 4.3. Every graph G with n ≥ 3 vertices satisfies ψ(G) ≤ n− 1.
Proof. Clearly G has a vertex x of degree at least two. Let S := V (G) \ {x}. To

prove that S doubly resolves G, consider two vertices u, v ∈ V (G). If both u, v ∈ S,
then the pair u, v doubly resolves itself. Otherwise, without loss of generality, u ∈ S
and v = x. Since deg(x) ≥ 2, there is a neighbor y �= u of x. Now d(u, u) − d(v, u) ≤
0−1 = −1 and d(u, y)−d(v, y) ≥ 1−1 = 0. Thus u, y ∈ S doubly resolve u, v. Hence
S doubly resolves G.

Note that if G is a graph with n ≥ 3 vertices, then Theorem 4.1 and Lemma 4.3
imply that β(G�H) ≤ β(H) + n− 2 for every graph H.

5. Complete graphs. Let Kn denote the complete graph on n ≥ 1 vertices. It
is well known [9, 27] that for every n-vertex graph G,

(5.1) β(G) = n− 1 ⇐⇒ G = Kn.
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Lemma 5.1. ψ(Kn) = max{n− 1, 2} for all n ≥ 2.
Proof. Since ψ(G) ≥ 2 for every graph G �= K1, we have ψ(K2) = 2. Now suppose

that n ≥ 3. By Lemma 4.3, ψ(Kn) ≤ n− 1. Conversely, ψ(Kn) ≥ β(Kn) = n− 1 by
equation (5.1).

Theorem 4.1 and Lemma 5.1 imply that every graph G satisfies

(5.2) β(Kn �G) ≤ β(G) + max{n− 2, 1}.

In certain cases, this result can be improved as follows.
Lemma 5.2. For every graph G and for all n ≥ 1,

β(Kn �G) ≤ max{n− 1, 2 · β(G)}.

Proof. Let S be a metric basis of G. Fix a vertex r of Kn. As illustrated in
Figure 5.1, there is a set T of max{n− 1, 2|S|} vertices of Kn �G such that

(a) for all vertices a ∈ V (Kn) \ {r}, there is at least one vertex x ∈ S for which
ax ∈ T ; and

(b) for all x ∈ S, there are at least two vertices a, b ∈ V (Kn) for which ax ∈ T
and bx ∈ T .

S

G

K9 r
(a)

S

G

K7 r
(b)

Fig. 5.1. The resolving set T of Kn �G in Lemma 5.2: (a) n − 1 ≥ 2β(G) and (b) n − 1 ≤
2β(G).

To prove that T resolves Kn �G, consider two vertices av and bw of Kn �G. If
v = w then since the projection of T onto G is the resolving set S, by Lemma 3.1, av
and bw are resolved by T . Now suppose that v �= w. Then there is a vertex x ∈ S
that resolves v and w in G. Hence dG(v, x) < dG(w, x) without loss of generality.
By (b) there are distinct vertices c, d ∈ V (Kn) for which cx ∈ T and dx ∈ T . If c �= a
and c �= b, then

d(av, cx) = dG(v, x) + 1 < dG(w, x) + 1 = d(bw, cx));

that is, cx resolves av and bw in Kn �G. Similarly, if d �= a and d �= b, then dx
resolves av and bw. Otherwise c = a or c = b, and d = a or d = b. Since c �= d,
without loss of generality c = a and d = b. Then

d(av, cx) = dG(v, x) < dG(w, x) < dG(w, x) + 1 = d(bw, cx),
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and again cx resolves av and bw in Kn �G.
When n is large in comparison with β(G) we know β(Kn �G) exactly.
Theorem 5.3. For every graph G and for all n ≥ 2 · β(G) + 1,

β(Kn �G) = n− 1.

Proof. The lower bound β(Kn �G) ≥ n− 1 follows from Corollary 3.2 and (5.1).
The upper bound β(Kn �G) ≤ n− 1 is a special case of Lemma 5.2.

6. Mastermind and Hamming graphs. Mastermind is a game for two play-
ers, the code setter and the code breaker.1 The code setter chooses a secret vector
s = [s1, s2, . . . , sn] ∈ {1, 2, . . . , k}n. The task of the code breaker is to infer the se-
cret vector by a series of questions, each a vector t = [t1, t2, . . . , tn] ∈ {1, 2, . . . , k}n.
The code setter answers with two integers, the first being the number of positions
in which the secret vector and the question agree, denoted by a(s, t) = |{i : si = ti,
1 ≤ i ≤ n}|. The second integer b(s, t) is the maximum of a(s̃, t), where s̃ ranges over
all permutations of s.

In the commercial version of the game, n = 4 and k = 6. The secret vector and
each question is represented by four pegs each colored with one of six colors. Each
answer is represented by a(s, t) black pegs and b(s, t)− a(s, t) white pegs. Knuth [28]
showed that four questions suffice to determine s in this case. Here the code breaker
may determine each question in response to the previous answers. Static mastermind
is the variation in which all the questions must be supplied at once. Let g(n, k) denote
the maximum, taken over all vectors s, of the minimum number of questions required
to determine s in this static setting.

The Hamming graph Hn,k is the cartesian product of cliques

Hn,k = Kk �Kk � · · · �Kk︸ ︷︷ ︸
n

.

Note that the hypercube Qn = Hn,2. The vertices of Hn,k can be thought of as
vectors in {1, 2, . . . , k}n, with two vertices being adjacent if they differ in precisely
one coordinate. Thus the distance dH(v, w) between two vertices v and w is the
number of coordinates in which their vectors differ. That is,

dH(v, w) = n− a(v, w).

Suppose for the time being that we remove the second integer b(s, t) from the
answers given by the code setter in the static mastermind game. Let f(n, k) denote
the maximum, taken over all vectors s, of the minimum number of questions required
to determine s without b(s, t) in the answers. For the code breaker to correctly infer
the secret vector s from a set of questions T , s must be uniquely determined by the
values {a(s, t) : t ∈ T}. Equivalently, for any two vertices v and w of Hn,k, there is
a t ∈ T for which a(v, t) �= a(w, t); that is, the distances dH(v, t) �= dH(w, t). Hence
the secret vector can be inferred if and only if T resolves Hn,k. Thus

g(n, k) ≤ f(n, k) = β(Hn,k).

Chvátal [13] proved the upper bound

β(Hn,k) = f(n, k) ≤ (2 + ε)n
1 + 2 log k

log n− log k

1Chvátal [13] referred to the code setter and code breaker as S.F. and P.G.O.M. (in honor of
P.E.).
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K7

K7

Fig. 6.1. Resolving set of K7 �K7 with one empty row, one empty column, and no lonely vertex.

for large n > n(ε) and small k < n1−ε. For k ∈ {3, 4}, improvements to the constant
in the above upper bound are stated without proof by Kabatianski, Lebedev, and
Thorpe [26]. They also state that a “straightforward generalization” of the lower
bound on β(Qn) by Erdős and Rényi [16] gives, for large n,

β(Hn,k) ≥ g(n, k) ≥ (2 + o(1))
n log k

log n
.

Here we study β(Hn,k) for large values of k rather than for large values of n. A
similar approach is taken for static mastermind by Goddard [20, 21], who proved that
g(2, k) = 
 2

3k� and g(3, k) = k − 1. Our contribution is to determine the exact value
of β(H2,k). We show that for all k ≥ 1,

(6.1) β(H2,k) =
⌊

2
3 (2k − 1)

⌋
.

Equation (6.1) is a special case (with m = n = k) of the following more general result.
Theorem 6.1. For all n ≥ m ≥ 1,

β(Kn �Km) =

{⌊
2
3 (n + m− 1)

⌋
if m ≤ n ≤ 2m− 1,

n− 1 if n ≥ 2m− 1.

We prove Theorem 6.1 by a series of lemmas. First note that two vertices of
Kn �Km are adjacent if and only if they are in a common row or column. Otherwise
they are at distance two. Fix a set S of vertices of Kn �Km. With respect to S, a
row or column is empty if it contains no vertex in S, and a vertex v ∈ S is lonely if v
is the only vertex of S in its row and in its column. As illustrated in Figure 6.1, we
have the following characterization of resolving sets in Kn �Km.

Lemma 6.2. For m,n ≥ 2, a set S of vertices resolves Kn �Km if and only if
(a) there is at most one empty row and at most one empty column;
(b) there is at most one lonely vertex; and
(c) if there is an empty row and an empty column, then there is no lonely vertex.
Proof. (=⇒) First suppose that S resolves Kn �Km. By Corollary 3.2, the

projections of S, respectively, resolve Km and Kn. By (5.1), there is at most one
empty row and at most one empty column. Thus (a) holds.
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Suppose on the contrary that v and w are two lonely vertices in S. Thus v and
w are in distinct rows and columns, and no other vertex of S is in a row or column
that contains v or w. Let x be the vertex in the row of v and the column of w. Let
y be the vertex in the column of v and the row of w. Then d(x, v) = d(y, v) = 1,
d(x,w) = d(y, w) = 1, and d(x, u) = d(y, u) = 2 for every vertex u ∈ S \ {v, w}. Thus
S does not resolve x and y. This contradiction proves that S satisfies (b).

Finally, suppose that there is an empty row, an empty column, and a lonely vertex
v ∈ S. Let x be the vertex in the row of v and in the empty column. Let y be the
vertex in the column of v and in the empty row. We have d(x, v) = d(y, v) = 1, and
d(x, u) = d(y, u) = 2 for every vertex u ∈ S \ {v}. Thus S does not resolve x and y.
This contradiction proves that S satisfies (c).

(⇐=) Now suppose that S is a set of vertices satisfying (a), (b), and (c). We will
prove that S resolves any two vertices x and y. If x ∈ S then x resolves x, y. If y ∈ S
then y resolves x, y. Now suppose that x �∈ S and y �∈ S.

If x and y are in the same row, then at least one of the columns of x and y contains
a vertex v ∈ S. Suppose v is in the column of x. Thus d(x, v) = 1 and d(y, v) = 2,
and v resolves x, y. Similarly, if x and y are in the same column, then some v ∈ S
resolves x, y.

Suppose now that x and y are in distinct rows and columns. Then there is a
vertex of S in the column of x or in the column of y. Suppose v ∈ S is in the column
of x. If v is not in the row of y, d(x, v) = 1 �= 2 = d(y, v), and v resolves x, y. If v is
in the row of y, by (b) and (c), at least one of the vertices in the rows and columns
of x and y, but not in the intersection of two of them, is in S. This vertex resolves x
and y.

Lemma 6.3. For all n,m ≥ 3, if S resolves Kn �Km, then there exists a resolving
set S∗ of Kn �Km such that |S∗| ≤ |S|, and S contains two vertices v and w in the
same row or column, such that v and w are the only vertices in S∗ in the row(s) and
column(s) that contain v and w.

Proof. By Lemma 6.2, there are two vertices v, w ∈ S in the same row or column.
By symmetry, we can suppose that v and w are in the same row. If v and w are
the only vertices in S∗ in the row and columns that contain v and w, then we are
done. Otherwise there is a vertex x ∈ S in the row or columns that contain v and
w. It suffices to prove that x can be deleted from S, or replaced in S by some other
vertex not in the row or columns that contain v and w, such that S still satisfies the
conditions of Lemma 6.2, and thus resolves Kn �Km. We can then repeat this step
to obtain the desired set S∗.

First suppose that x is in the same row as v and w. If all the vertices of the
column of x are in S, then delete x from S; clearly S still satisfies the conditions
of Lemma 6.2. Otherwise, let y be a vertex not in S such that y is in the column
containing x, and if x is the only vertex in its column that is in S, then y is in a
row that contains at least one vertex of S. This is always possible, since S satisfies
condition (a). Then (S \ {x}) ∪ {y} satisfies the conditions of Lemma 6.2.

Now suppose that x is in the column of v or w. If every vertex in the row
containing x is in S, then delete x from S; clearly S still satisfies the conditions of
Lemma 6.2. Otherwise, proceeding as in the preceding case, let y be a vertex in the
same row as x, but not in the columns of v and w, such that there is at least one
other vertex of S in the row or column that contains y. Then (S \ {x})∪{y} satisfies
the conditions of Lemma 6.2. This completes the proof.
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Lemma 6.4. For all n,m ≥ 3,

β(Kn �Km) = 2 + min{β(Kn−2 �Km−1), β(Kn−1 �Km−2)}.

Proof. We first prove that

(6.2) β(Kn �Km) ≤ 2 + min{β(Kn−2 �Km−1), β(Kn−1 �Km−2)}.

Without loss of generality β(Kn−2 �Km−1) ≤ β(Kn−1 �Km−2). Let S be a metric
basis of Kn−2 �Km−1. Construct S′ ⊆ V (Kn �Km) from S by adding two new
vertices that are positioned in one new row and in two new columns. The number
of empty rows, empty columns, and lonely vertices is the same in S and S′. Since
S resolves Kn−2 �Km−1, S

′ resolves Kn �Km by Lemma 6.2. Thus β(Kn �Km) ≤
|S′| = |S| + 2 = 2 + β(Kn−2 �Km−1), which implies (6.2). It remains to prove that

(6.3) min{β(Kn−2 �Km−1), β(Kn−1 �Km−2)} ≤ β(Kn �Km) − 2.

Let S be a metric basis of Kn �Km. By Lemma 6.3, we can assume that S contains
two vertices v and w in the same row or column, such that v and w are the only
vertices in S in the row(s) and column(s) that contain v and w. Without loss of
generality, v and w are in the same row. Construct S′ ⊆ V (Kn−2 �Km−1) from S by
deleting the row containing v and w, and by deleting the two columns containing v
and w. The number of empty rows, empty columns, and lonely vertices is the same in
S and S′. Since S resolves Kn �Km, S′ resolves Kn−2 �Km−1 by Lemma 6.2. Thus
β(Kn−2 �Km−1) ≤ |S′| ≤ |S| − 2 = β(Kn �Km) − 2, which implies (6.3).

Proof of Theorem 6.1. We proceed by induction on n + m in increments of 3.
(Formally speaking, we are doing induction on � 1

3 (n + m).)
First observe that for m = 1, we know that β(Kn �Km) = n − 1. For m = 2,

we have β(K2 �K2) = 2 = � 2
3 (2 + 2 − 1), β(K3 �K2) = 2 = � 2

3 (3 + 2 − 1), and
β(Kn �K2) = n− 1 for all n ≥ 3. Thus the assertion is true for m ≤ 2. Now suppose
that m ≥ 3. By Lemma 6.4,

(6.4) β(Kn �Km) = 2 + min{β(Kn−2 �Km−1), β(Kn−1 �Km−2)}.

Case 1. n ≥ 2m− 1: Then n ≥ 2 · β(Km) + 1 by (5.1), and β(Kn �Km) = n− 1
by Theorem 5.3 with G = Km.

Case 2. n = 2m− 2: First consider Kn′ �Km′ , where n′ = n− 1 = 2m− 3 and
m′ = m− 2. Then m′ ≤ n′ and n′ ≥ 2m′ − 1. By induction,

β(Kn′ �Km′) = n′ − 1 = n− 2 = � 2
3 (n + m− 1) − 2.

Now consider Kn′ �Km′ , where m′ = m − 1 and n′ = n − 2 = 2m − 4. Then
m′ ≤ n′ ≤ 2m′ − 1. By induction

β(Kn′ �Km′) = � 2
3 (n′ + m′ − 1) = � 2

3 (n + m− 1) − 2.

By (6.4), β(Kn �Km) = � 2
3 (n + m− 1).

Case 3. n = 2m − 3: First consider Kn′ �Km′ , where m′ = m − 2 and n′ =
n− 1 = 2m− 4. Then m′ ≤ n′ and n′ ≥ 2m′ − 1. By induction,

β(Kn′ �Km′) = n′ − 1 = n− 2 = � 2
3 (n + m− 1) − 2.
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Now consider Kn′ �Km′ , where m′ = m − 1, n′ = n − 2 = 2m − 5. For m ≥ 4, we
have m′ ≤ n′ ≤ 2m′ − 1. By induction

β(Kn′ �Km′) = � 2
3 (n′ + m′ − 1) = � 2

3 (n + m− 1) − 2.

For m = 3, we have n = 2m − 3 = 3. It is easily verified that β(K3 �K3) = 3 =
� 2

3 (3 + 3 − 1). In all cases we obtain β(Kn �Km) = � 2
3 (n + m− 1) by (6.4).

Case 4. n ≤ 2m − 4: First consider Kn′ �Km′ , where m′ = m − 2 and n′ =
n− 1 ≤ 2m− 5. Then m′ ≤ n′ ≤ 2m′ − 1. By induction,

β(Kn′ �Km′) = � 2
3 (n′ + m′ − 1) = � 2

3 (n + m− 1) − 2.

Now consider Kn′ �Km′ , where m′ = m− 1 and n′ = n− 2 ≤ 2m− 6. If m ≤ n− 1,
then m′ ≤ n′ < 2m′ − 1, and by induction

β(Kn′ �Km′) = � 2
3 (n′ + m′ − 1) = � 2

3 (n + m− 1) − 2.

If m = n ≥ 4, then n′ ≤ m′ ≤ 2n′ − 1, and by induction

β(Km′ �Kn′) = � 2
3 (m′ + n′ − 1) = � 2

3 (n + m− 1) − 2.

Finally, if m = n = 3, then β(Kn′ �Km′) = β(K2 �K1) = 1 = � 2
3 (3 + 3− 1) − 2. In

all cases, we obtain β(Kn �Km) = � 2
3 (m + n− 1) by (6.4).

7. Paths and grids. Let Pn denote the path on n ≥ 1 vertices. Khuller,
Raghavachari, and Rosenfeld [27] and Chartrand et al. [9] proved that an n-vertex
graph G has

(7.1) β(G) = 1 ⇐⇒ G = Pn.

Thus, by Theorem 5.3, for all n ≥ 3,

(7.2) β(Kn �Pm) = n− 1.

Minimum doubly resolving sets in paths are easily characterized.
Lemma 7.1. For all n ≥ 2 we have ψ(Pn) = 2. Moreover, the two endpoints of

Pn are in every doubly resolving set of Pn.
Proof. By definition ψ(G) ≥ 2 for every graph G �= K1. Let Pn = (v1, v2, . . . , vn).

For all 1 ≤ i < j ≤ n, we have d(vi, v1) − d(vj , v1) = (i − 1) − (j − 1) = i − j, and
d(vi, vn) − d(vj , vn) = (n − i) − (n − j) = j − i. Thus {v1, vn} doubly resolve Pn,
and ψ(Pn) = 2. Finally, observe that v1 is in every doubly resolving set, as otherwise
v1 and v2 would not be doubly resolved. Similarly vn is in every doubly resolving
set.

Lemma 7.2. If β(G�H) = 2, then G or H is a path.
Proof. Say S = {av, bw} resolves G�H. Suppose that a = b. Then the projection

of S onto G is a single vertex. By Lemma 3.1, the projection of S onto G resolves
G, and by (7.1), only paths have singleton resolving sets. Thus G is a path, and we
are done. Similarly, if v = w then H is a path, and we are done. Now suppose that
a �= b and v �= w. Let c be the neighbor of b on a shortest path from a to b. Note
that c may equal a. Then dG(a, c) + 1 = dG(a, b) and dG(b, c) = 1. Similarly, let x be
the neighbor of w on a shortest path from v to w. Then dH(v, x) + 1 = dH(v, w) and
dH(x,w) = 1. This implies that S does not resolve bx and cw, since

d(bx, av) = dG(a, b) + dH(x, v) = dG(a, c) + dH(v, w) = d(cw, av)
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and

d(bx, bw) = dH(x,w) = 1 = dG(b, c) = d(cw, bw).

This contradiction proves the result.
Theorem 4.1 and Lemma 7.1 imply that every graph G satisfies

(7.3) β(G) ≤ β(G�Pn) ≤ β(G) + 1,

as proved by Chartrand et al. [9] in the case that n = 2.
An n-dimensional grid is a cartesian product of paths Pm1

�Pm2
� · · · �Pmn

.
Equations (7.1) and (7.3) imply that

(7.4) β(Pm1 �Pm2 � · · · �Pmn) ≤ n,

as proved by Khuller, Raghavachari, and Rosenfeld [27], who in addition claimed that

β(Pm1
�Pm2

� · · · �Pmn
) = n.

They wrote “we leave it for the reader to see why n is a lower bound.” This claim
is false if every mi = 2 and n is large, since β(P2 �P2 � · · · �P2) → 2n/log n, as
discussed in section 2. Sebő and Tannier [40] claimed without proof that “using a
result of Lindström [30]” one can prove that

(7.5) lim sup
n→∞

β(Pk �Pk � · · · �Pk︸ ︷︷ ︸
n

) · log n

n log k
≤ 2.

8. Cycles. Let Cn denote the cycle on n ≥ 3 vertices. Two vertices v and w of
Cn are antipodal if d(v, w) = n

2 . Note that no two vertices are antipodal in an odd
cycle.

Lemma 8.1 (see [27, 39]). β(Cn) = 2 for all n ≥ 3. Moreover, two vertices
resolve Cn if and only if they are not antipodal.

Lemma 8.2. For all n ≥ 3,

ψ(Cn) =

{
2 if n is odd,

3 if n is even.

Proof. We have ψ(Cn) ≥ 2 by definition. Now we prove the upper bound. Denote
Cn = (v1, v2, . . . , vn). Let k := �n

2 . Consider two vertices vi and vj of Cn. Without
loss of generality i < j.

Case 1. 1 ≤ i < j ≤ k + 1: Then d(vi, v1) − d(vj , v1) = (i− 1) − (j − 1) = i− j
and d(vi, vk+1)− d(vj , vk+1) = (k + 1− i)− (k + 1− j) = j − i �= i− j. Thus v1, vk+1

doubly resolve vi, vj .
Case 2. k+1 ≤ i < j ≤ n: Then d(vi, v1)−d(vj , v1) = (n+1−i)−(n+1−j) = j−i

and d(vi, vk+1)− d(vj , vk+1) = (i− k− 1)− (j − k− 1) = i− j �= j − i. Thus v1, vk+1

doubly resolve vi, vj .
Case 3. 1 ≤ i ≤ k + 1 < j ≤ n: Suppose that v1, vk+1 does not doubly resolve

vi, vj . That is, d(vi, v1)−d(vj , v1) = d(vi, vk+1)−d(vj , vk+1). Thus (i−1)−(n+1−j) =
(k + 1 − i) − (j − k − 1). Hence n = 2i + 2j − 2k − 4 is even.

Therefore for odd n, {v1, vk+1} doubly resolves Cn, and ψ(Cn) = 2.
For even n, in Case 3, suppose that v1, v2 does not doubly resolve vi, vj . That is,

d(vi, v1)−d(vj , v1) = d(vi, v2)−d(vj , v2). Thus (i−1)−(n+1−j) = (i−2)−(n+2−j)
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and −2 = −4, a contradiction. Hence for even n, {v1, v2, vk+1} doubly resolve Cn,
and ψ(Cn) ≤ 3.

It remains to prove that ψ(Cn) ≥ 3 for even n. Suppose that ψ(Cn) ≤ 2 for some
even n = 2k. By symmetry we can assume that {v1, vi} doubly resolves Cn for some
2 ≤ i ≤ k + 1.

Case 1. 2 ≤ i ≤ k − 1: Then d(vi+1, v1) − d(vi+2, v1) = i − (i + 1) = −1 and
d(vi+1, vi) − d(vi+2, vi) = 1 − 2 = −1. Thus v1, vi does not resolve vi+1, vi+2.

Case 2. i = k: Then d(v2, v1) − d(vn−1, v1) = 1 − 2 = −1 and d(v2, vi) −
d(vn−1, vi) = (k − 2) − (k − 1) = −1. Thus v1, vi does not resolve v2, vn−1.

Case 3. i = k+1: Then d(v2, v1)−d(vn, v1) = 1−1 = 0 and d(v2, vi)−d(vn, vi) =
(k − 1) − (k − 1) = 0. Thus v1, vi does not resolve v2, vn.

In each case we have derived a contradiction. Thus ψ(Cn) ≥ 3 for even n.
Theorem 4.1 and Lemma 8.2 imply that every graph G satisfies

(8.1) β(G) ≤ β(G�Cn) ≤
{
β(G) + 1 if n is odd,

β(G) + 2 if n is even.

Theorem 8.3. For every graph G and for all n ≥ 3, we have β(G�Cn) = 2 if
and only if G is a path and n is odd.

Proof. (⇐=) Since G is a path, β(G) = 1 by (7.1). Since n is odd, ψ(Cn) = 2 by
Lemma 8.2. Thus β(G�Cn) ≤ ψ(Cn) + β(G) − 1 = 2 by Theorem 4.1.

(=⇒) Suppose that β(G�Cn) = 2. Say S = {av, bw} resolves G�Cn. Then G
is a path by Lemma 7.2. It remains to show that n is odd. Suppose on the contrary
that n = 2r is even. Let C = Cn. By Corollary 3.2, the projection {v, w} of S onto
C resolves C. By Lemma 8.1, we have β(C) = 2, and thus v �= w. Moreover, v and
w are not antipodal. That is, dC(v, w) ≤ r − 1. Hence there is a neighbor x of w in
C with dC(v, x) = dC(v, w) + 1. Now consider G. If a �= b, then using the argument
from the proof of Lemma 7.2, we can construct a pair of vertices that are not resolved
by S. So now assume a = b. That is, our resolving set is contained in a single column
of G�Cn. Let p be a neighbor of a in G. Then S does not resolve pw and ax, since
d(pw, bw) = 1 = d(ax, bw) and d(pw, av) = 1 + dC(v, w) = dC(x, v) = d(ax, av). This
contradiction proves the result.

By Lemma 8.2 and (7.1), we have β(Pm �Cn) ≤ ψ(Cn)+β(Pm)−1 ≤ 3+1−1 = 3.
Thus Theorem 8.3 implies that for all m ≥ 2 and n ≥ 3 we have

(8.2) β(Pm �Cn) =

{
2 if n is odd,

3 if n is even.

Theorem 8.4. For all m,n ≥ 3,

β(Cm �Cn) =

{
3 if m or n is odd,

4 otherwise.

Proof. We have β(Cm �Cn) ≥ 3 by Theorem 8.3. If m or n is odd, then
β(Cm �Cn) ≤ 3 by (8.1) and since β(Cm) = 2. It remains to prove that β(Cm �Cn) ≥
4 when m and n are even. Let G := C2r �C2s. We denote each vertex U of G by
u1u2, where u1 ∈ C2r and u2 ∈ C2s.

Observe that in C2r, every vertex u is antipodal with a unique vertex v; thus
d(x, u) + d(x, v) = r for every vertex x of C2r.
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Two vertices U and V of G are antipodal if u1 and v1 are antipodal in C2r and
u2 and v2 are antipodal in C2s. Suppose that U and V are antipodal. Then for every
vertex W of G,

(8.3) dG(W,U) + dG(W,V ) = d(w1, u1) + d(w2, u2) + d(w1, v1) + d(w2, v2) = r + s.

Claim 8.5. Let U be a vertex in a resolving set S of G. Say U and V are
antipodal. Then the set S′ obtained by replacing U by V in S also resolves G.

Proof. Suppose on the contrary that S′ does not resolve G. Thus there exist
vertices X,Y of G such that dG(X,Z) = dG(Y,Z) for every vertex Z ∈ S′. In
particular, dG(X,V ) = dG(Y, V ). By (8.3), dG(X,U) − r − s = dG(Y,U) − r − s,
implying dG(X,U) = dG(Y,U). Thus dG(X,Z) = dG(Y,Z) for every vertex Z ∈ S;
that is, X and Y are not resolved by S. This contradiction proves the claim.

Suppose on the contrary that S = {U, V,W} is a resolving set of G. Represent
G by the points of a 2r × 2s grid. Consecutive points in the same row or column
are adjacent, and the first and last points of the same row or column are adjacent.
Observe that antipodal vertices of G are in opposite quadrants of the grid. Thus, by
the above claim, we can assume that U, V,W are in one of the four halves of the grid.
Without loss of generality, U, V,W are in the left half of the grid. This implies that
d(u1, v1) < r, d(u1, w1) < r and d(v1, w1) < r. Furthermore, U, V,W are in at least
two different rows and two different columns, since the projections of S resolve C2r

and C2s.

By symmetry, it suffices to consider the following cases:

1. U, V,W are in different rows and different columns.

2. U, V,W are in different rows, but U, V are in the same column.

3. U, V are in the same column and V,W in the same row.

In each case we will find vertices X,Y such that d(X,U) = d(Y,U), d(X,V ) = d(Y, V ),
and d(X,W ) = d(Y,W ); that is, S does not resolve the pair X,Y .

Case 1. Assume that if one of the vertices u2, v2, w2 is in the shortest path
determined by the other two vertices, then that vertex is v2. It is then possible to
draw the grid in such a way that the projections u2, v2, w2 appear from bottom to top
in C2s, d(u2, v2) < s, and d(v2, w2) < s. Now, if v1 is in the shortest path between
u1 and w1 in C2r, then let X,Y be the two neighbors of V lying in shortest paths
between V and W ; see Figure 8.1(a). Otherwise, assume that u1 is in the shortest
path between v1 and w1. Let Z be the vertex u1v2. Let X,Y be the neighbors of Z in
shortest paths between Z and W ; see Figure 8.1(b). It is easy to verify that in both
cases d(X,U) = d(Y,U), d(X,V ) = d(Y, V ), and d(X,W ) = d(Y,W ).

Case 2. Observe that at least two of the distances d(u2, v2), d(v2, w2), and
d(u2, w2) in C2s must be less than s. If u2, v2 are not antipodal in C2s and w2 is not in
the shortest path between u2 and v2 in C2s, then d(u2, w2) < s or d(v2, w2) < s. Let
us assume that d(v2, w2) < s. Let X,Y be the vertices adjacent to V lying in a short-
est path between V and W ; see Figure 8.2(a). If u2, v2 are not antipodal in C2s and
w2 is in the shortest path between u2 and v2 in C2s, then let X,Y be the neighbors of
V not lying in a shortest path between V and W ; see Figure 8.2(b). Finally, if u2, v2

are antipodal in C2s, consider the vertices X,Y at distance two from V ; see Figure
8.2(c). It is easy to verify that in all cases d(X,U) = d(Y,U), d(X,V ) = d(Y, V ), and
d(X,W ) = d(Y,W ).

Case 3. In this case, d(u2, v2) < s since the projection {u2, v2, w2} = {u2, v2}
resolves C2s. Let Z := (w1, u2). Let X,Y be the neighbors of Z not lying in a shortest
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Fig. 8.1. Illustration for Case 1 in the proof of Theorem 8.4.
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Fig. 8.2. Illustration for Case 2 in the proof of Theorem 8.4.
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Fig. 8.3. Illustration for Case 3 in the proof of Theorem 8.4.

path between Z and V ; see Figure 8.3. It is easy to verify that d(X,U) = d(Y,U),
d(X,V ) = d(Y, V ), and d(X,W ) = d(Y,W ).

Theorem 8.6. For all n ≥ 1 and m ≥ 3,

β(Kn �Cm) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 if n = 1,

2 if n = 2 and m is odd,

3 if n = 2 and m is even,

3 if n = 3,

3 if n = 4 and m is even,

4 if n = 4 and m is odd,

n− 1 if n ≥ 5.
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Proof. The case n ≥ 2β(Cn) + 1 = 5 is an immediate corollary of Theorem 5.3
and Lemma 8.1. The case n = 3 is a special case of Theorem 8.4 since K3 = C3.
The case n = 2 is a special case of (8.2) since K2 = P2. The case n = 1 is a repetition
of Lemma 8.1. It remains to prove the case n = 4. Say V (K4) = {a, b, c, d}. First note
that β(K4 �Cm) ≥ β(K4) = 3 by Corollary 3.2 and (5.1). By Lemma 5.1 we have
ψ(K4) = 3. Thus β(K4 �Cm) ≤ 4 by Lemma 8.1 and Theorem 4.1 with H = K4.
For even m, it is easily verified that {av, bv, cw} resolves K4 �Cm for any edge vw
of Cm.

It remains to prove that β(K4 �Cm) ≥ 4 for odd m = 2h + 1. Consider the
vertices of K4 �Cm to be in a 4 × m grid, where two vertices in the same row are
adjacent, and two vertices in the same column are adjacent if and only if they are
consecutive rows or they are in the first and last rows. Suppose on the contrary that
S = {u, v, w} resolves K4 �Cm. Then u, v, w are in three different columns and in at
least two different rows (by considering the projections of S onto K4 and Cm).

Case 1. Suppose that two vertices in S, say u and v, are in the same row. Consider
the grid centered at the row of u, v. Without loss of generality, u and v are in the first
and second columns, and w is in a row above u and v. Let x and y be the vertices
shown in Figure 8.4(a). Then d(x, u) = d(y, u) = h + 1, d(x, v) = d(y, v) = h + 1,
and d(x,w) = d(y, w) = p. Thus S does not resolve x and y, which is the desired
contradiction.

u v

w

y

x

h

h

p

(a)

u

v

w

y

x

h

h

p

q

(b)

Fig. 8.4. Illustration for Theorem 8.6.

Case 2. Now suppose that u, v, w are in different rows. Without loss of generality,
u is in the middle row and the first column, and v is in the second column and in a
row below u, and w is in the third column and in a row above u. Let x and y be the
vertices shown in Figure 8.4(b). Then d(x, u) = d(y, u) = h+ 1, d(x, v) = d(y, v) = q,
and d(x,w) = d(y, w) = p. Thus S does not resolve x and y, which is the desired
contradiction.
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9. Trees. Let v be a vertex of a tree T . Let �v be the number of components
of T \ v that are (possibly edgeless) paths. Slater [42], and subsequently a number of
other authors [9, 24, 27], proved that for every tree T that is not a path,

(9.1) β(T ) =
∑

v∈V (T )

max{�v − 1, 0}.

A leaf of a graph is a vertex of degree 1. The following result for doubly resolving
sets in trees is a generalization of Lemma 7.1 for paths.

Lemma 9.1. The set of leaves L is the unique minimum doubly resolving set for
a tree T , and ψ(T ) = |L|.

Proof. Every pair of vertices v, w of T lies on a path whose endpoints are leaves
x, y. Clearly x, y doubly resolve v, w. Thus L is a doubly resolving set. Say v is a leaf
of T whose neighbor is w. Every shortest path from v passes through w. Thus v, w
can only be doubly resolved by a pair including v. Thus v is in every doubly resolving
set of T . The result follows.

Theorem 4.1 and Lemma 9.1 imply that for every tree T with k leaves and for
every graph G,

(9.2) β(T �G) ≤ β(G) + k − 1.

Moreover, many leaves force up the metric dimension of a cartesian product.
Lemma 9.2. Every graph G with k ≥ 2 leaves satisfies β(G�G) ≥ k.
Proof. Let S be a metric basis of G�G. Let b and w be distinct leaves of G

adjacent to a and v, respectively. There is a vertex xy ∈ S that resolves aw and bv.
Suppose on the contrary that x �= b and y �= w. Thus dG(b, x) = dG(a, x) + 1 and
dG(w, y) = dG(v, y)+1. Hence dG(a, x)− dG(b, x) = dG(v, y)− dG(w, y) = −1, which
implies that dG(a, x)+ dG(w, y) = dG(b, x)+ dG(v, y). That is, d(aw, xy) = d(bv, xy).
Thus xy does not resolve aw and bv. This contradiction proves that x = b or y = w.
Thus for every pair of leaves b, w there is a vertex by or xw in S. Suppose that
for some leaf b, there is no vertex by ∈ S. Then for every leaf w, there is a vertex
xw ∈ S, and |S| ≥ k. Otherwise for every leaf b, there is a vertex by ∈ S, and again
|S| ≥ k.

The following result implies that ψ is not bounded by any function of metric
dimension.

Theorem 9.3. For every integer n ≥ 4 there is a tree Bn with β(Bn) = 2 and

n = ψ(Bn) ≤ β(Bn �Bn) ≤ n + 1.

Proof. Let Bn be the comb graph obtained by attaching one leaf at every vertex
of Pn. Now �v = 0 for every leaf v of Bn, and �w = 1 for every other vertex w of Bn,
except for the two vertices x and y indicated in Figure 9.1, for which �x = �y = 2.
Thus β(Bn) = 2 by (9.1). Since Bn has n leaves, we have ψ(Bn) = n by Lemma 9.1.
Moreover, β(Bn �Bn) ≥ n by Lemma 9.2. The upper bound β(Bn �Bn) ≤ n + 1
follows from Theorem 4.1.

Given that the proof of Theorem 9.3 is heavily dependent on the presence of
leaves in Bn, it is tempting to suspect that such behavior does not occur among more
highly connected graphs. This is not the case.

Theorem 9.4. For all k ≥ 1 and n ≥ 2 there is a k-connected graph Gn,k for
which β(Gn,k) ≤ 2k and β(Gn,k �Gn,k) ≥ n.
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0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1
x y

2 21 1

Fig. 9.1. An illustration of the comb graph B10 showing the �-values at each vertex.
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Fig. 9.2. The construction in Theorem 9.4 with k = 3 and n = 2.

Proof. As illustrated in Figure 9.2, let Gn,k be the graph with vertex set {vi, wi :
1 ≤ i ≤ 2kn}, where every viwi is an edge, vivj is an edge whenever |i − j| ≤ k,
and wiwj is an edge whenever 
i/k� = 
j/k�. Note that Gn,1 = B2n. Clearly Gn,k

is k-connected. It is easily seen that {vi, v2kn+1−i : 1 ≤ i ≤ k} resolves Gn,k. Thus
β(Gn,k) ≤ 2k.

Say S doubly resolves Gn,k. On the contrary, suppose that

S ∩ {w�k+1, w�k+2, . . . , w�k+k} = ∅

for some � with 0 ≤ � ≤ 2n−1. This implies that d(w�k+1, x) = d(v�k+1, x)+1 for every
vertex x ∈ S. Hence S does not doubly resolve w�k+1 and v�k+1. This contradiction
proves that S ∩ {w�k+1, w�k+2, . . . , w�k+k} �= ∅ for every � with 0 ≤ � ≤ 2n− 1. Thus
|S| ≥ 2n and ψ(Gn,k) ≥ 2n. That β(Gn,k �Gn,k) ≥ n follows from Lemma 4.2.

We conclude that for all k ≥ 1, there is no function f such that β(G�H) ≤
f(β(G), β(H)) for all k-connected graphs G and H.

Note added in proof. The metric dimension of the cartesian product of a cycle
and a graph was independently studied by Peters-Fransen and Oellermann [33]. They
independently proved (8.1), Theorem 8.4, and Theorem 8.6 with n = 2.
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1. Introduction. Given two hypergraphs, G and F , we write F −→ G if every
two-coloring of the edges of F results in a monochromatic copy of G. We then say that
F has the Ramsey property with respect to G. Note that for fixed G, this property,
viewed as the family of hypergraphs {F : F −→ G}, is increasing; that is, it is closed
under taking superhypergraphs.

In this paper we study Ramsey properties of random k-uniform hypergraphs.
Given k ≥ 2 and 0 ≤ p = p(n) ≤ 1, let G

(k)(n, p) be a random hypergraph obtained
by declaring each k-element subset of {1, 2, . . . , n} = [n] an edge, independently, with
probability p.

We say that G

(k)(n, p) possesses a property P asymptotically almost surely (a.a.s.)
if P

(
G

(k)(n, p) ∈ P
)
→ 1 as n → ∞. For an increasing hypergraph property P, the

most relevant question in the theory of random hypergraphs is to find a threshold
sequence p̂(n) above which the random hypergraph possesses P a.a.s., while below
which it does not possess P a.a.s. More precisely, we say that property P has a
threshold p̂(n) if

lim
n→∞

P

(
G

(k)(n, p) ∈ P
)

=

{
0 if p = o(p̂),

1 if p̂ = o(p) .

The two parts of the above definition will be referred to as the 0-statement and
the 1-statement, respectively. It is known that for increasing set properties a threshold
always exists (see [3] and [12]).

In [18] and [20] thresholds for Ramsey properties of graphs have been found. To
state this and other results we need further notation.
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The numbers of vertices and edges of a hypergraph G will be denoted by vG
and eG (or e(G)), respectively. For a k-uniform hypergraph G with at least one edge,
we define the parameters

d
(k)
G =

⎧⎪⎪⎨
⎪⎪⎩

eG − 1

vG − k
if eG > 1,

1

k
if eG = 1

and

m
(k)
G = max

{
d
(k)
G : H ⊆ G and eH ≥ 1

}
.

Note that for all hypergraphs G with at least one edge

• m
(k)
G > 0,

• m
(k)
G = 1/k if and only if Δ(G) = 1, that is, G consists of isolated edges and

vertices,

• m
(k)
G ≥ 1/(k − 1) otherwise.

The parameter m
(k)
G is defined in such a way that for p = Ω(n−1/m

(k)
G ), we have

nvHpeH = Ω(nkp) for each H ⊆ G with eH > 0; that is, the expected number of
copies of each subgraph H of G in G

(k)(n, p) is at least of the order of magnitude of
the expected number of edges. This seems to be a necessary condition for the property
G

(k)(n, p)−→G to hold a.a.s. (see [18] for a proof in the graph case).

Below is an abridged version of the threshold theorem for Ramsey properties of
random graphs (k = 2). For the full version see [12, Theorem 8.1].

Theorem 1 (see [18, 20]). Given a graph G, other than a forest, the threshold

for the Ramsey property with respect to G is p(n) = n−1/m
(2)
G . Moreover, there exist

constants c and C > 0 such that

(1) lim
n→∞

P

(
G

(2)(n, p)−→G
)

=

{
0 if p ≤ cn−1/m

(2)
G ,

1 if p ≥ Cn−1/m
(2)
G .

As a by-product of our approach in this paper, we obtain a simple proof of the
1-statement of Theorem 1. This proof will be outlined in section 4. As opposed to [20],
where a stronger version of Theorem 1 with arbitrarily many colors was shown, our
current proof does not require any use of the regularity lemma from [23].

Note that (1) is stronger than what the definition of the threshold says. It has
been recently shown in [7] that in the case G = K3 the threshold is even sharper.

The only result about Ramsey properties of random hypergraphs was obtained

in [21]. There it is shown that limn→∞ P(G(3)(n, p) −→ K
(3)
4 ) = 1 if p � n−1/3, where

K
(3)
4 is the complete 3-uniform hypergraph on four vertices. (Note that m

(3)

K
(3)
4

= 3.)

That proof used a recent regularity lemma for hypergraphs from [6] and the ideas
from [19] and [20].

In this paper we extend the 1-statement of Theorem 1 to the class of k-partite,
k-uniform hypergraphs for all k ≥ 2. Recall that a k-uniform hypergraph is k-partite
if its vertex set can be partitioned into k nonempty sets in such a way that every edge
intersects every set of the partition in exactly one vertex.
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Theorem 2. For all k ≥ 2 and every k-uniform, k-partite hypergraph G with

Δ(G) ≥ 2, there exists C > 0 such that for every sequence p = p(n) ≥ Cn−1/m
(k)
G ,

lim
n→∞

P

(
G

(k)(n, p)−→G
)

= 1 .

For hypergraphs G with Δ(G) = 1, Theorem 2 is not true (see discussion after the
statement of Theorem 9 below). For some other special hypergraphs G, such as stars,

the actual threshold is lower than n−1/m
(k)
G . More precisely, for integers k, t ≥ 2 and

s ≥ 1 let S
(k)
s,t denote the star (or Δ-system or sunflower) with t edges in which every

two edges intersect in precisely the same set of s vertices (e.g., S
(2)
1,t = K1,t). Clearly,

a hypergraph has the Ramsey property with respect to S
(2)
1,t = K1,t if it contains a

copy of S
(k)
s,2t−1 as a subhypergraph. Hence, if p � n−k+s−s/(2t−1), then

lim
n→∞

P

(
G

(k) −→ S
(k)
s,t

)
= 1.

On the other hand, for t ≥ 2 we have for S = S
(k)
s,t

n−1/m
(k)
S = n−(t(k−s)+s−k)/(t−1) � n−k+s−s/(2t−1).

However, we believe that the corresponding 0-statement is true with C replaced
by a smaller constant c for “most” hypergraphs G. For k = 2, a tedious proof was
given in [18]. We are convinced that it will be possible to extend it for k > 2 and we
hope to get back to this in the near future. In fact, in [21] a similar proof of the 0-
statement of an analogous threshold result in the vertex-coloring case for hypergraphs
was given.

We provide a complete proof of Theorem 2 in section 3. In this proof, the special
structure of k-partite hypergraphs allows for replacing the regularity lemma by an old
result of Erdős; see Lemma 8 below. As a technical tool, we will actually be proving a
stronger theorem, Theorem 9. Being stronger, it will easily imply yet another related
result.

We write F
ind−→ G if every two-coloring of the edges of F results in an induced

monochromatic copy of G. Note that this property is not monotone.

Theorem 3. For all ε > 0, k ≥ 2, and every k-uniform, k-partite hypergraph
G with Δ(G) ≥ 2 there exists C > 0 such that for every sequence p = p(n) with

Cn−1/m
(k)
G ≤ p(n) ≤ 1 − ε

lim
n→∞

P

(
G

(k)(n, p)
ind−→ G

)
= 1 .

All three results, Theorems 1, 2, and 3, have generalizations to an arbitrary
number r ≥ 2 of colors. Interestingly enough, the parameter r does not influence the
order of magnitude of the threshold (only the constant C depends on r). In section 4
we outline the proof of such a generalization of Theorem 2. This is possible, because
in Theorem 2 we restrict ourselves to k-partite hypergraphs only. In general, even for
graphs the proofs for r ≥ 3 colors are technically more involved. In particular, we are
unable to simplify the proof of the r-color version of Theorem 1 from [20], as we do
here for r = 2.
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2. Preliminaries. Unless noted otherwise, throughout the paper all hypergraphs
are k-uniform for a fixed integer k ≥ 2. We will use notation G− f for a hypergraph
obtained from G by removing the edge f , and G + f for the hypergraph obtained
from G by adding the edge f , where f is a fixed set of k vertices of G.

2.1. Exponentially small probabilities. Let Γ be a finite set, |Γ| = N , and
let 0 ≤ p ≤ 1 and 0 ≤ M ≤ N , where M is an integer. Then the random subset Γp

is obtained by including in Γp each element of Γ, independently, with probability p.
The random subset ΓM is obtained by selecting uniformly at random one M -element
subset of Γ.

By Chernoff’s bound (see, e.g., [12, inequality (2.6), page 26]), we have

(2) P(|Γp| ≤ Np− t) ≤ exp{−t2/(2Np)}.

Further, let S be a family of subsets of Γ, and for A ∈ S, let IA be the indicator
random variable equal to 1 if A ⊂ Γp and equal to 0 otherwise. Finally, let X =∑

A∈S IA be the random variable counting all subsets belonging to S which are present
in Γp. The following inequality may be thought of as an extension of (2) to sums of
dependent indicators.

Lemma 4 (Janson’s inequality [11]). With the above notation, let

Δ̄ =
∑
A∈S

∑
B∈S:A∩B �=∅

E(IAIB).

Then, for all t ≥ 0

(3) P(X ≤ EX − t) ≤ exp

{
− t2

2Δ̄

}
.

As a useful illustration, let Γ ⊂
(
[n]
k

)
be a k-uniform hypergraph, and let S be the

family of the edge sets of all copies of a given hypergraph G present in Γ. Then Γp is
a random subhypergraph of Γ, and X counts the copies of G in Γp. Set

ΨG = nvGpeG

and

ΦG = min{ΨG′ : G′ ⊆ G and eG′ ≥ 1}.

Assume that |S| ≥ cnvG for some c > 0. Then EX ≥ cnvGpeG = cΨG. Note that
for every H ⊆ G, there are in Γ no more than n2vG−vH pairs of copies of G which
intersect in a subgraph isomorphic to H. Thus,

Δ̄ ≤
∑

H⊆G,eH≥1

n2vG−vHp2eG−eH ≤ 2eG
Ψ2

G

ΦG
,

and, for every ε > 0, by (3) with t = εEX,

(4) P(X ≤ (1 − ε)EX) ≤ exp

{
−1

2
ε2c22−eGΦG

}
.

In our main proof we will also need a stronger property to be held by Γp, namely,
that with probability very close to one, the number of copies of a given hypergraph
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remains large even after deleting from Γp a fraction of its edges. To this end, for an
increasing family P of subsets of Γ and a nonnegative integer s, define

Ps = {A ∈ P : ∀B ⊆ A with |B| ≤ s, A \B ∈ P}.

Note that Ps is also increasing.
The following lemma has appeared already in different forms in [20] and [12]. We

provide the short proof for completeness.
Lemma 5. Let Γ be a set of size N . For every 0 < p < 1, every 0 < δ < 1

and b > 0 such that δ(2 + log(1/δ)) ≤ b, every 0 < s ≤ δNp/2, and every increasing
family P of subsets of Γ, if N/ log n � p and

P(Γ(1−δ)p ∈ ¬P) < e−bNp,

then

P(Γp ∈ ¬Ps) < e−0.1δ2Np .

Proof. We will switch to the uniform model ΓM and utilize the relations between
the two probability spaces. Without loss of generality, we may assume that s =
δNp/2. By Chernoff’s bound (2),

P(|Γp| ≤ Np− s) ≤ e−δ2Np/8.

Hence, for every increasing property P,

P(Γp ∈ ¬P) ≤ P(ΓNp−s ∈ ¬P) + e−δ2Np/8.

After applying the above inequality to Ps, it remains to estimate P(ΓNp−s ∈
¬Ps). To do this, it is convenient to view ΓM as a random sequence of M elements,
chosen one by one from Γ, uniformly and without replacements. Observe that any
subsequence of length M ′ ≤ M generates a random copy of ΓM ′ of its own.

If ΓNp−s ∈ ¬Ps, then, by the definition of Ps, there exists a subsequence of length
Np− 2s such that the set of the elements of this subsequence does not have property
P. Thus, by Boole’s inequality,

P(ΓNp−s ∈ ¬Ps) ≤
(
Np− s

Np− 2s

)
P(ΓNp−2s ∈ ¬P).

Since
(
n
k

)
≤ (en/k)k for all n and k, the binomial term can be bounded by(

Np− s

Np− 2s

)
=

(
Np− s

s

)
≤ (2e/δ)s.

By Pittel’s inequality (see, e.g., [12, page 17]),

P(ΓNp−2s ∈ ¬P) ≤ 3
√
NP(Γ(1−δ)p ∈ ¬P).

Hence, by our assumption on δ and b,

P(Γp ∈ ¬Ps) ≤ (2e/δ)s3
√
Ne−bNp + e−δ2Np/8

≤ 3
√
Ne−bNp/2 + e−δ2Np/8 ≤ e−0.1δ2Np ,

where the last inequality holds for sufficiently large N .
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2.2. Intersecting copies. Next we prove an elementary result about the num-
ber of small subhypergraphs of G

(k)(n, p), with a special structure relevant to our
proof of Theorem 2. We will need a simple fact first.

Given a hypergraph H, let XH be the number of copies of H in G

(k)(n, p). We
recall from section 2.1 that the expectation of XH can be well upper-bounded by

ΨH = nvHpeH

and that

ΦH = min{ΨH′ : H ′ ⊆ H and eH′ ≥ 1}.

Claim 6. If ΦH → ∞, then a.a.s. XH ≤ 2EXH .
Proof. By estimates similar to those in the case of random graphs (see, e.g., [12,

Lemma 3.5]),

VarXH = O

⎛
⎝ ∑

H′⊆H,eH′>0

(EXH)2

ΨH′

⎞
⎠ ,

and so, by Chebyshev’s inequality,

P(XH > 2EXH) ≤ P(|XH − EXH | > EXH) ≤ VarXH

(EXH)2
= o(1).

Now we are ready to prove the main result of this subsection.
Lemma 7. Let G be a k-uniform hypergraph with Δ(G) ≥ 2, and let T be a union

of two copies G1 and G2 of G, intersecting in at least one edge. Furthermore, let T̃

be obtained from T by removing an edge f ∈ G1 ∩ G2. If p = p(n) ≥ n−1/m
(k)
G , then

a.a.s.

XT̃ ≤ 2n2vG−kp2eG−2 .

Proof. Set I = G1 ∩ G2 and, for every H ⊆ T , set H̃ = H − f , regardless of
whether f ∈ H or not. Then

(5) ΨT̃ =
ΨG̃1

ΨG̃2

ΨĨ

.

The probability p = p(n) was chosen in such a way that for every H ⊆ G, eH ≥ 1,
we have

(6) ΨH = nvHpeH−1p ≥ nvHn−(eH−1)/m
(k)
H p ≥ nkp,

and, in particular, for H = I, we get

ΨĨ =
1

p
ΨI ≥ nk

and, consequently,

EXT̃ ≤ ΨT̃ ≤ n2vG−kp2eG−2.
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G1 G2

I

f

J

S1 S2

Fig. 1. Illustration for the proof of Lemma 7.

Hence, if ΦT̃ → ∞, then we are done by Claim 6. On the other hand, by (5), if
n−kΨĨ → ∞, then EXT̃ = o

(
n2vG−kp2eG−2

)
, and, by Markov’s inequality,

P(XT̃ > 2n2vG−kp2eG−2) = o(1).

It remains to show that either ΦT̃ → ∞ or n−kΨĨ → ∞. Quite arbitrarily,
suppose that ΦT̃ ≤

√
n. Note that for every H ⊆ T we have

ΨH =

{
Ψ

H̃
if f ∈ H,

pΨ
H̃

if f ∈ H

and thus, ΨH ≤ Ψ
H̃

and ΦT ≤ ΦT̃ ≤
√
n.

Let ΦT = ΨS ; that is, S is a subhypergraph of T which achieves the minimum in
ΦT . Set Si = S ∩Gi, i = 1, 2, and J = S1 ∩ S2 (see Figure 1). Note that S ∩ I = J .
Note also that e(Si) ≥ 1, i = 1, 2, since otherwise S would consist of a subgraph
S′ of G and, possibly, some isolated vertices. However, then we would have, by (6),
ΨS ≥ ΨS′ ≥ nkp, and since Δ(G) ≥ 2 we have

(7) nkp ≥ nk−1/m
(k)
G ≥ nk−(k−1) = n,

a contradiction with the choice of S.
But then, again by (6), we have

ΨS =
ΨS1

ΨS2

ΨJ
≥ (nkp)2

ΨJ
,

which yields that

ΨJ ≥ (nkp)2√
n

.

Finally, observe that

ΨS ≤ ΨS∪I =
ΨSΨI

ΨJ
,

so ΨI ≥ ΨJ and, consequently,

ΨĨ =
1

p
ΨI ≥ nk n

kp√
n

(7)

≥ nk
√
n.
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2.3. Erdős’ k-partite counting lemma. For two hypergraphs, F and H, let
N(F,H) stand for the number of labeled copies of H in F , that is, the number of
injective mappings f : V (H) → V (F ) such that if e ∈ E(H), then f(e) ∈ E(F ). For
a fixed labeling on V (H), say, v1, . . . , vvH

, we will identify a labeled copy f of H in F
with the sequence (f(v1), . . . , f(vvH

)). We use labeled copies just for convenience,
noting that the number of ordinary copies of H in F , that is, the number of sub-
hypergraphs of F which are isomorphic to H, equals N(F,H)/aut(H).

Lemma 8. For every integer k ≥ 2, every d > 0, and every k-uniform, k-partite
hypergraph H, there exist c > 0 and n0 such that for every k-uniform hypergraph F
on n ≥ n0 vertices with eF ≥ dnk, we have N(F,H) ≥ cnvH .

A similar statement was first proved by Erdős in [4] (see also [5]). For completeness
we give a short proof.

Proof. It suffices to prove Lemma 8 for complete k-uniform, k-partite hypergraphs
H. Let k ≥ 2 and d > 0 be given and let H = K(�1, . . . , �k) be the complete k-uniform,
k-partite hypergraph with vertex classes W1∪̇ · · · ∪̇Wk = V (H) of sizes Wi = �i. (For
the sake of defining labeled copies of H in F , we impose on V (H) an arbitrary labeling
in which each vertex of Wi precedes each vertex of Wi+1, i = 1, . . . , k − 1.)

Let LH be the set of indices i for which �i = |Wi| > 1, i.e.,

LH = {i ∈ [k] : �i ≥ 2} .

The proof is by induction on |LH |. The induction base is trivial, as for |LH | = 0 the
hypergraph H = K(1, . . . , 1) contains only one edge and we can choose c = dk!.

Suppose |LH | = � > 0 and Lemma 8 holds for hypergraphs H ′ with |LH′ | < �.
Without loss of generality assume that k ∈ LH and consider the subhypergraph
H ′ = K(�1, . . . , �k−1, 1). Clearly, |LH′ | = � − 1, and from the induction assumption
we infer that

(8) N(F,H ′) ≥ c′nv(H′) = c′nv(H)−�k+1

for some constant c′ = c′(k, d,H ′). Set �̃ = v(H) − �k and consider the set X of all
�̃-element sequences of distinct vertices of F . Note that

(9) |X | = n(n− 1) · · · (n− �̃ + 1) = (n)�̃ < n�̃.

For a sequence X = (v1, . . . , v�̃) ∈ X we define

deg(X) =
∣∣{v ∈ V (F ) : (v1, . . . , v�̃, v) is an labeled copy of H ′ in F}

∣∣ .
Therefore,

(10) N(F,H ′) =
∑
X∈X

deg(X).

By Jensen’s inequality and by (8), (9), and (10) we conclude that

N(F,H) =
∑
X∈X

(deg(X))�k ≥ |X |
(
N(F,H ′)

|X |

)
�k

≥ (n)�̃

(
c′n�̃+1

n�̃

)
�k

≥ cnv(H)

for some suitably chosen c = c(c′, H ′, H) = c(k, d,H) and n sufficiently large.
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3. Proof of Theorem 2.

3.1. The idea of the proof. The underlying idea of our proof comes from
classical Ramsey theory, where often to force a monochromatic object, a coloring
process is put into a dead end. A simplest and best known illustration of this strategy
is the proof of the “six-person-party theorem,” which says that every 2-coloring of
the edges of K6 results in a monochromatic triangle. In that proof, at some point a
vertex is known to be connected to three others by edges of the same color, while the
edges between the three neighbors are yet uncolored. But then no matter how they
are colored, a monochromatic triangle is guaranteed.

To facilitate this idea in the context of random hypergraphs, we employ the
two-round exposure technique (see [12, section 1.1]), where the random hypergraph
G

(k)(n, p) is generated in two installments; that is, it is expressed as the union of
two independent random hypergraphs G1 = G

(k)(n, p1) and G2 = G

(k)(n, p2) with p1

and p2 suitably chosen and such that

(11) p1 + p2 − p1p2 = p .

From now on, by a coloring we will always mean a 2-coloring where the colors are blue
and red. For every instance of G1 and every coloring χ of its edges, we will consider a
hypergraph Γχ = Γχ(G1) consisting of all edges f ∈ G1 such that G1 + f contains a
copy Gf of G, where one edge is f and all other edges are of the same color (in fact,
G1 will contain many such copies; see the precise definition later). Depending on the
color of Gf − f , we may refer to each f ∈ Γχ as “blue-closing” or “red-closing,” and
thus express Γ as a union

Γχ = Γblue
χ ∪ Γred

χ ,

with the obvious meaning of the superscripts. Note that Γblue
χ and Γred

χ are not
necessarily disjoint, as an edge f may close blue and red copies of G − f at the
same time. We think of Γχ as the hypergraph of “closing edges” after round one or,
alternatively, as the hypergraph of “useful” edges for round two.

The ultimate goal of the first round is to show that a.a.s. for every χ, either Γblue
χ

or Γred
χ contains many copies of G. Say it is the case of Γred

χ . Then, in the second

round, we focus exclusively on the random subhypergraph of Γred
χ , that is, on

(
Γred
χ

)
p2

= Γred
χ ∩ G2,

and argue that, with probability very close to 1, at least one copy G0 of G in Γred
χ

(in fact, many) will be present in G2. But if this is the case, then there is no way to
extend χ without creating a monochromatic copy of G. Indeed, either every edge of
G0 is blue, or an edge f ∈ G0 is red, turning Gf into a red copy of G.

There is one important refinement to the above simplified argument. Whatever
we claim to hold in round two must hold for all colorings χ of the outcome of the first
round, G1. Thus, it must hold with probability so close to 1 that the probability of
failure, multiplied by the number of colorings, still converges to 0. Since a.a.s. e(G1) =

Θ(nkp1), the number of colorings of G1 is 2Θ(nkp1), and we need the probability of
having a copy of G in (Γred

χ )p to be 1 − exp{−Θ(nkp2)}. To achieve this goal we will

prove first that a.a.s. the number of copies of G in Γred
χ is Θ(nvG) and then apply

Janson’s inequality.
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It remains to explain how we prove that a.a.s. Γred
χ contains Θ(nvG) copies of G.

Since G is k-partite, by Erdős’ k-partite counting lemma, Lemma 8, it is enough to
show that a.a.s. |Γχ| = Θ(nk), and then apply Lemma 8 to the majority color class,
Γred
χ or Γblue

χ .

To show that |Γχ| = Θ(nk), we will argue that a.a.s. for every coloring χ of G1

there are Θ(nvG) monochromatic copies of G̃ := G − f0, a hypergraph obtained by
removing from G one fixed edge f0. This is how we come across the idea of using
induction on eG. But the induction hypothesis must be stronger than the theorem
itself, claiming not one but Θ(nvGpeG) monochromatic copies of G in every coloring
(see Theorem 9 below).

As a consequence of strengthening Theorem 2, our argument has to be modi-
fied slightly. First, we should request that f ∈ Γχ if G1 + f contains not one but
Θ(nvG−kpeG−1

1 ) copies of G which contain f , and, except for f , are monochromatic.
Assume, again, that red is the majority color. Then, after G2 is exposed, either an
extension of coloring χ colors at least Θ(nkp2) edges of Γred

χ ∩ G2 red, creating

Θ(nkp2 × nvG−kpeG−1
1 ) = Θ(nvGpeG)

red copies of G, or not. In the latter case, though, Janson’s inequality combined with
Lemma 5 guarantees, with probability 1 − exp{−Θ(nkp2)}, that the remaining blue
part of Γred

χ ∩ G2 contains Θ(nvGpeG2 ) copies of G.
Returning to round one, it is a bit tedious to show that having Θ(nvG) monochro-

matic copies of G̃ in G1 implies |Γχ| = Θ(nk). The proof involves Jensen’s inequality

and an upper tail estimate for the number of pairs of copies of G̃ in G1 sharing the
same nonedge.

As an example, suppose k = 2 and G = C4, the four-cycle. Then G̃ = P4, the
path on four vertices, and an edge f belongs to Γχ if together with some Θ(n2p3

1)
monochromatic copies of P4 in G1 it forms a copy of C4. Hence, many monochromatic
copies of P4 in G1 will give rise to many edges in Γχ, provided that not too many
P4’s will “sit” on the same edge f . One way to forbid this is to bound the number of
six-cycles C6 in G1, which can be viewed as pairs of copies of P4 that share the same
“closing nonedge” but are otherwise disjoint.

3.2. The strengthening. We will, in fact, be proving by induction on eG the
following strengthening of Theorem 2. For a real number a > 0, we write F

a−→ G
if every coloring of the edges of F results in at least aN(F,G) monochromatic copies

of G. For example, it is well known that K6
0.1−→ K3, since every two-coloring of K6

yields two monochromatic triangles. Note that for given G and a, property F
a−→ G

is not a monotone property of F .
Theorem 9. For all k ≥ 2 and every k-uniform, k-partite hypergraph G with

at least one edge there exist C ≥ 1 and a > 0 such that if p = p(n) > Cn−1/m
(k)
G ,

nkp → ∞ but p → 0, then

lim
n→∞

P

(
G

(k)(n, p)
a−→ G

)
= 1 .

By a standard application of the second moment method, it can be easily proved
that in the above range of p, G

(k)(n, p) contains at least one copy (in fact, Θ(nvGpeG)
copies) of G. Hence, Theorem 9 does, indeed, imply Theorem 2. (We may assume that
p → 0, since the Ramsey property in Theorem 2 is increasing.) Although Theorem 9
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is about a nonmonotone property, it is also true for p constant, a fact which we will
not need here.

Another consequence of Theorem 9 is Theorem 3—the induced version of Theo-
rem 2. Indeed, if p → 0, then a.a.s. only o(nvGpeG) copies of G in G

(k)(n, p) are not
induced. Thus, in view of Theorem 9, a.a.s. for every coloring of G

(k)(n, p) there is
at least one (in fact, many) induced copy of G which is monochromatic.

To prove Theorem 3 also for p < 1 constant, we argue as follows. By the result

from [1, 17], there exists a hypergraph F such that F
ind−→ G. For p constant it is easy

to show that a.s.s. there is at least one induced copy of F in G

(k)(n, p) (see [2] for the
graph case), and thus every coloring of G

(k)(n, p) produces an induced, monochromatic
copy of G.

Our proof of Theorem 9 is by induction on eG, the number of edges in G, and
it is convenient to begin with the case eG = 1. (This is why, unlike in Theorem 2,

we included here the case Δ(G) = 1.) But then m
(k)
G = 1/k and thus, for p =

Θ(n−1/m
(k)
G ), the expected number of edges in G

(k)(n, p) equals Θ(nkp) = Θ(1). This
is why we added the assumption that nkp → ∞. Note that in this case C is irrelevant.
As another convenience, in Theorem 9 we require that C ≥ 1, which is not a restriction
at all.

3.3. The case Δ(G) = 1. To begin the inductive proof of Theorem 9, let
Δ(G) = 1, which includes the case eG = 1. The following two properties are true for
all p = p(n) satisfying nkp → ∞. The random variable e(Gk(n, p)) has the binomial
distribution with Ee(Gk(n, p)) =

(
n
k

)
p < nkp and Var e(Gk(n, p)) =

(
n
k

)
p(1 − p).

Hence, by Chebyshev’s inequality

(12) P

(
|e(Gk(n, p)) − p

(
n
k

)
| > 1

2p
(
n
k

))
≤ Var e(Gk(n, p))

( 1
2p

(
n
k

)
)2

<
4

p
(
n
k

) = o(1).

For each � ≥ 2, let X� be the number of (unordered) �-tuples of distinct edges
of G

(k)(n, p), not all of which are pairwise disjoint. We have EX� ≤ n�k−1p�, and by
Markov’s inequality,

P(X� > (nkp)�/
√
n) ≤ 1/

√
n.

Hence, a.a.s., we have e(Gk(n, p)) > 1
2

(
n
k

)
p, and, taking � = eG, XeG ≤ (nkp)eG/

√
n.

Consequently, a.a.s., after coloring the edges of G

(k)(n, p), the number of eG-tuples of
edges of G

(k)(n, p) which are pairwise disjoint and monochromatic (in the majority
color alone) is, a.a.s., at least( 1

4

(
n
k

)
p

eG

)
− 1√

n
(nkp)eG = (1 − o(1))

( 1
4

(
n
k

)
p

eG

)
.

Each set of eG pairwise disjoint edges can be extended to
(

n−keG
vG−keG

)
copies of G, by

adding vG − keG arbitrary vertices. Therefore, a.a.s., for every coloring there are at
least

(1 − o(1))

( 1
4

(
n
k

)
p

eG

)
×
(

n− keG
vG − keG

)
> anvGpeG

monochromatic copies of G for some constant a > 0 independent of n. This proves
Theorem 9 for all graphs with Δ(G) = 1.
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induction 
G = G – f 

c = c(G,d) 

G d 

a,C 

(14) 

(14) 
(29),(30) 

(28),(30) 

(29),(30) 

(25) 

Lemma 8 

(29) 
a,C 

δ

~ ~ ~ 

Fig. 2. Flowchart of constants for the proof of Theorem 9.

3.4. Mainstream proof. The proof of the induction step requires several con-
stants. We will specify those constants later in the proof instead of defining them all
up front. We believe this eases the reading. The dependencies of the main constants
are given in Figure 2.

Assume that eG ≥ 2 and p ≥ Cn−1/m
(k)
G , where C will be specified later (see (30)).

Let p1 and p2 be suitably chosen (see (27) and (31)), so that p2 is sufficiently larger
than p1 and (11) holds. Throughout the proof we will assume that p, p1, and p2 all
tend to 0 as n → ∞. As before, we will be using abbreviated notation G = G

(k)(n, p),
G1 = G

(k)(n, p1), and G2 = G

(k)(n, p2).
For a suitably selected constant a > 0 (see (28) and (29) below), let BAD be the

event that there is a coloring of the edges of G with less than anvGpeG monochromatic
copies of G. Since by (12), a.a.s. e(G) = Θ(nkp), Theorem 9 is equivalent to the fact
that P(BAD) = o(1) for some a > 0.

Fix an arbitrary edge f0 of G and let G̃ be the hypergraph obtained from G by

removing the edge f0. By the induction assumption applied to G̃, there exist ã and C̃

such that if p ≥ C̃n−1/m
(k)

G̃ , then limn→∞ P(G(k)(n, p)
ã−→ G̃) = 1 .

For a copy G̃′ of G̃ in G1, let cl(G̃′) be the set of edges f ∈ K
(k)
n such that G̃′ + f

is isomorphic to G. For a coloring χ of G1, we define the auxiliary hypergraph

Γblue
χ = {f ∈ K(k)

n \ G1 : |{G̃′ ⊆ G1 : f ∈ cl(G̃′) and G̃′ is blue copy of G̃}| ≥ z} ,

where

(13) z =
ã

2
nvG−kpeG−1

1 .

We set

Γχ = Γblue
χ ∪ Γred

χ ,

where Γred
χ is defined as Γblue

χ with the word “blue” replaced by “red.” Further, let

(14) d =
ã2

2(2vG−k
k )+8vkG

,
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and let GOOD be the event that

(15) e(G1) < nkp1

and, for every coloring χ of G1,

(16) max{|Γred
χ |, |Γblue

χ |} ≥ dnk .

Note that GOOD is not the complement of BAD.
Conditioning on G1 and fixing some coloring χ of G1, let BADχ be the event

that there is an extension of χ, χ̄ : G → {blue, red}, with fewer than anvGpeG

monochromatic copies of G in both colors. We will later verify the following two
facts.

Fact 10. The event GOOD holds a.a.s.
Fact 11. For every G1 ∈ GOOD and every coloring χ of G1,

P(BADχ | G1) ≤ e−nkp1 .

Assuming these two facts, we may easily complete the proof of Theorem 9. Indeed,
we have

P(BAD) ≤ P(¬GOOD) +
∑

G1∈GOOD

P(BAD | G1)P(G1) ,

and, for every G1 ∈ GOOD,

P(BAD | G1) =
∑
χ

P(BADχ | G1) ≤ 2n
kp1

P(BADχ0
| G1) ,

where the summation is taken over all, at most 2n
kp1 , colorings χ of the edges of G1,

and χ0 maximizes the conditional probability. Therefore, by Facts 10 and 11,

P(BAD) ≤ o(1) + (2/e)n
kp1 = o(1).

3.5. Round one: Proof of Fact 10. Due to the choice of p1 (cf. (31)) and
the concentration of the number of edges in G1 as given in (12), G1 a.a.s. contains at
most nkp1 edges as claimed in (15). For the rest of this subsection our goal will be to
prove that a.a.s. (16) also holds.

Since m
(k)

G̃
≤ m

(k)
G , we have by (31) p1 ≥ C̃n−1/m

(k)

G̃ , and we are in position to

apply the induction assumption, that is, Theorem 9, to G̃. Consequently, a.a.s., for
every coloring χ of the edges of G1 there is a color (say, red) such that at least

(17) � :=
ã

2
nvGpeG−1

1

copies of G̃ are colored red in G1. Note that, by (13), (31), and (14),

(18) � = znk ≥ ã

2
nk ≥ 8dnk.

For every f ∈ K
(k)
n , let xf be the number of red copies G̃′ of G̃ in G1 for which

f ∈ cl(G̃′). Then, a.a.s.

(19)
∑

f∈K
(k)
n

xf ≥ �.
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Let T = {T1, T2, . . . , Tt} be the family of all pairwise nonisomorphic hypergraphs

which are the unions of two copies of G̃, say G̃′ ∪ G̃′′, with the property that there
is a k-tuple f which makes both G̃′ + f and G̃′′ + f isomorphic to G. We will say
that f is a common G-closing nonedge of G̃′ and G̃′′. Clearly, |T | does not exceed the
number of all graphs on 2vG − k vertices, that is,

t := |T | ≤ 2(2vG−k
k ) .

Then, by Lemma 7, G1 contains a.a.s. at most

(20) 2tn2vG−kp2eG−2
1

copies of members of T . As | cl(G̃)| ≤
(
vG

k

)
< vkG, a particular copy of a graph from

T may be obtained as a union of two copies of G̃ with a common G-closing nonedge
in at most vkG ways. Thus, a.a.s.

(21)
∑

f∈K
(k)
n

(
xf

2

)
< 2tvkGn

2vG−kp2eG−2
1 .

Let Z ⊆ K
(k)
n be the set of edges f such that xf ≥ z. We are going to show that

(22) |Z| ≥ 2dnk.

First, observe that

∑
f∈K

(k)
n \Z

xf < z

(
n

k

)
≤ �

2

and consequently, in view of (19),

(23)
∑
f∈Z

xf ≥ �

2
.

If |Z| ≥ �/4, then, by (18), inequality (22) holds. Assuming that |Z| ≤ �/4, we derive
by Jensen’s inequality and by (23) that

∑
f∈Z

(
xf

2

)
≥ |Z|

(∑
f∈Z xf

|Z|
2

)
≥ |Z|

( �
2|Z|
2

)
≥ �2

16|Z| =
ã2n2vGp2eG−2

1

64|Z| ,

which, by (21) and (14), yields (22) again. Thus, by (15) and the fact that p1 → 0,
a.a.s.

|Γred
χ | ≥ 2dnk − |G1| > (2d− p1)n

k ≥ dnk,

and the property GOOD holds.

3.6. Round two: Proof of Fact 11. We condition on the event that G1 sat-
isfies property GOOD. Let a coloring χ of the edges of G1 be given. According to
property (16), let, say, |Γred

χ (G1)| ≥ dnk. Set Γred = Γred
χ (G1).
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Let c = c(G, d) be given by Lemma 8. Hence N(Γred, G) ≥ cnvG . Later we use
Lemma 5. Therefore, we first consider a random subhypergraph Γred

q , with

(24) q := (1 − δ)p2 ,

where δ > 0 is so small that

(25) δ(2 − log δ) < b :=
c2

400 · 2eG .

We want to apply Janson’s inequality (in the form of inequality (4)) with ε = 0.1,
Γ = Γred, and X = N(Γred

q , G). Note that E[X] ≥ cnvGqeG . By (24), (31), and (27),

we have q ≥ n−1/m
(k)
G and, consequently, nvK qeK ≥ nkq for every K ⊆ G with eK ≥ 1.

Hence,

P(X ≤ 0.9cnvGqeG) ≤ P(X ≤ 0.9EX)

≤ exp

(
− c2nkq

200 · 2eG

)
≤ e−bnkp2 ≤ e−b|Γred|p2 ,

where we also use the fact that δ < 1/2.
Next we apply Lemma 5 with

(26) s := δ(dnk)p2/2 ≤ δ|Γred|p2/2 .

We conclude that, for sufficiently large n, with probability at least

1 − 3
√
|Γred|e−b|Γred|p2/2 − e−δ2|Γred|p2/8 ≥ 1 − e−δ2cnkp2/10 ≥ 1 − e−nkp1

we have

N(Γred
p2

\D,G) ≥ 0.9cnvGqeG ≥ 0.8cnvGpeG2

for all D ⊆ Γred
p2

of size |D| ≤ s. For the last inequality in the above bound on
probability, we need the relation

(27) p2 ≥ 10p1/(cδ
2).

We will now verify that, with probability at least 1− e−nkp1 , for every extension χ̄ of
the coloring χ, Γred

p2
either contains at least anvGpeG blue copies of G or it completes

at least anvGpeG red copies of G in G.
Let D be the set of edges of Γred

p2
colored red by χ̄. If |D| < s, then, by the above

property and with a suitably chosen a, there are at least

(28) 0.8cnvGpeG2 ≥ anvGpeG

copies of G in Γred
p2

\D, all of them blue.

If, on the other hand, |D| ≥ s, then, as each edge of Γred closes at least z red

copies of G̃ in G1, there are, with a suitably chosen a, at least

(29)
s× z

vkG
≥ δdnkp2 × ãnvG−kpeG−1

4vkG
≥ anvGpeG
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red copies of G in G.
To complete the proof, we choose

(30) C = C̃

(
10

cδ2
+ 1

)
,

where δ is defined by (25) and c = c(G, d) comes from Lemma 8. Then, with

(31) p1 = C̃n−1/m
(k)
G ,

(27) is satisfied. We leave the determination of the constant a for an interested reader.

4. Outlines of other proofs.

4.1. Theorem 1: Two colors. The proof we present here follows the main
strategy of the proof from [20] but avoids the use of the regularity lemma. Therefore,
rather than outlining the whole proof, we just point out how it differs from the original
argument. To this end, we first give a sketch of the original proof in [20], in a simplified
version for r = 2 colors.

One of the ingredients of the proof of Theorem 1 in [20] was the following simple
result which could be viewed as an extension of Lemma 8 to the nonpartite case, but
limited to graphs only.

For 0 < d ≤ 1 and 0 < ρ ≤ 1 we call an n-vertex graph F (ρ, d)-dense if every
induced subgraph of F on v = �ρn� vertices contains at least d

(
v
2

)
edges.

Lemma 12 (see [20]). For every d > 0 and every graph H there exist ρ > 0 and
c > 0 such that for every n-vertex (ρ, d)-dense graph F we have N(F,H) ≥ cnvH .

Thus, Lemma 8 specifies that for bipartite graphs H, Lemma 12 holds with ρ = 1.
The original proof of Theorem 1, similarly to the above presented proof of Theo-

rem 9, was based on induction on eG and the two-round exposure technique. Applying
the induction assumption to all induced subgraphs of G(n, p1) on ρn vertices, viewed
as random graphs on their own, resulted in showing that a.a.s., for every coloring χ,
the graph Γχ was (ρ, d)-dense.

Then, by an application of Szemerédi’s regularity lemma for graphs, it was shown
that either Γblue

χ or Γred
χ contained a (ρ′, d′)-dense subgraph F with some new param-

eters. By Lemma 12 with H := G, the graph F contained lots of copies of G and
from that point on, the proof went along the same lines as the proof of Theorem 9.

Now, we describe how one can avoid the use of the regularity lemma. The crucial
change is to apply Lemma 12 directly to the graph F = Γχ with H = KR, where
R = R(G) is the Ramsey number for the graph G. As a result, Γχ contains Θ(nR)
copies of KR. Consequently, by the definition of R(G), the partition Γχ = Γblue

χ ∪Γred
χ

contains Θ(nvG) copies of G in one class, say Γred
χ , and the proof can be completed as

before.

4.2. Theorem 2: More colors. As we have mentioned in section 1, Theo-
rems 1, 2, and 3 remain true for r ≥ 3 colors, but the proofs become more technical.
While for r > 2, the r-colored version of Theorem 1 seems to be much harder to prove
than the 2-colored version, for Theorem 2 the proofs of these two cases do not differ
essentially.

Below we outline the proof of the r-colored version of Theorem 2, r ≥ 2. We
write F −→ (G, r) if every r-coloring of the edges of F results in a monochromatic
copy of G.
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Theorem 13. For all k ≥ 2 and r ≥ 2 and for every k-uniform, k-partite
hypergraph G with Δ(G) ≥ 2 there exists C > 0 such that for every sequence p =

p(n) ≥ Cn−1/m
(k)
G ,

lim
n→∞

P

(
G

(k)(n, p)−→(G, r)
)

= 1 .

For two colors we argued that in round two, either Γred
p2

had many edges colored
red, or it contained many copies of G colored blue. With more colors we may only
claim that either Γred

p2
has many edges colored red, or not so many. Since, in view of

Lemma 5, these few red edges can be deleted, this calls for induction on the number
of colors r.

To make this idea work, we have to generalize and strengthen the statement of
Theorem 13 in three ways. First, note that Γred

p2
is a random subhypergraph of an

incomplete hypergraph Γred. Hence, for the sake of induction, we must generalize
our statement to random subhypergraphs Fp of dense hypergraphs F . But then, not
every closing nonedge is in F , and we more appropriately restrict our attention to
those monochromatic copies of G̃ in F whose complements are also in F . We call
such copies of G nested. We write

F
a−−−−→

nested
(G, r)

if every r-coloring of the edges of F results in at least aN(F,G) nested, monochromatic
copies of G.

Finally, since the second round will now be successful if our statement holds
for r − 1 colors, the probability of the failure must be, as all failures in round two,
exponentially small (to beat the number of colorings χ from the first round). All in
all, we are to prove the following statement.

Theorem 14. For all integers k ≥ 2 and r ≥ 1, every k-uniform, k-partite
hypergraph G with at least one edge, and for every real 0 < d ≤ 1, there exist positive
numbers a, b, C, and n0 such that if

(i) n > n0,
(ii) F is a k-uniform hypergraph with eF ≥ dnk, and

(iii) p = p(n) > Cn−1/m
(k)
G ,

then

P

(
Fp

a−−−−→
nested

(G, r)

)
> 1 − e−beF p .

The proof of Theorem 14 is by double induction on r and eG. The case eG = 1
or, more generally, Δ(G) = 1, is practically the same as in the proof of Theorem 9,
while the case r = 1 relies on Lemma 8 and Janson’s inequality (4).

The proof of the induction step boils down to showing analogues of Facts 10
and 11, except that now also Fact 10 must hold with probability exponentially close
to 1. The most difficult part is then to prove that (20) holds with probability ex-
ponentially close to 1, for which we apply a technique for bounding upper tails of
subgraph counts called the deletion method (see Lemma 2.51 in [12] and also [13]),
combined with Lemma 5.

We also employ Lemma 5, as before, inside the proof of the analogue of Fact 11.
This is no longer preceded by Janson’s inequality, but, instead, the induction’s hy-
pothesis with r−1 colors. In a sense, Janson’s inequality is equivalent to Theorem 14
for r = 1.
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5. Open problems. The main problem which remains open is to prove Theo-
rem 2 for arbitrary (not necessarily k-partite) k-uniform hypergraphs G. To do so,
we need to find the right notion of a dense hypergraph F , for which, on the one hand,
an extension of Lemma 12 holds, while on the other hand, it could be proved that Γχ

(cf. section 4.1) is dense in the sense of that new concept.
Another related problem is to find threshold probabilities for the Turán properties

of G

(k)(n, p). For a k-uniform hypergraph G, let

ex(n,G) = max{e(F ) : F is a k-uniform hypergraph, G � F, and v(F ) = n},

and let π(G) = limn→∞ ex(n, F )/
(
n
k

)
. It is well known that the limit π(G) exists

for every G (see, e.g., [14]). For example, Lemma 8 implies that π(G) = 0 for every
k-partite, k-uniform hypergraph G.

Given a hypergraph G, we say that a family of hypergraphs F has the Turán
property if for every δ > 0 every sufficiently large hypergraph F ∈ F has the property
that every subhypergraph F ′ of F with e(F ′) ≥ (π(G) + δ)e(F ) contains a copy of
G. In the case of random graphs, i.e., F = {G(n, p) : n ∈ N}, thresholds for Turán
properties were established so far only for very few cases, including odd and even
cycles [10, 9], and small cliques K4 and K5 [8, 15] (see also [22, 16] for weaker bounds
for general graphs G). This experience with random graphs suggests that Turán
thresholds should coincide with those for Ramsey properties.

As opposed to Ramsey properties, the 0-statements for Turán properties are

rather easy. Indeed, we know that for p = o(n−1/m
(k)
G ), there are in G

(k)(n, p) a.a.s.
o(nkp) copies of the least likely (the densest) subgraph H of G. These copies, and
thus all copies of G in G

(k)(n, p), can be destroyed by removing o(nkp) edges. This

shows that for p = o(n−1/m
(k)
G ), the Turán property with respect to G does not hold

a.a.s. (see [12, section 8.1] for the case k = 2).
The real challenge is the 1-statement, but, in view of Lemma 8, we believe that

similarly to Ramsey properties, the case of k-partite G is somewhat easier. In partic-
ular, the following conjecture seems to be true.

Conjecture 15. For all integers k ≥ 2, for every k-partite, k-uniform hyper-

graph G, and for all δ > 0 there exists C > 0 such that if p ≥ Cn−1/m
(k)
G , then a.a.s.

every subhypergraph F of G

(k)(n, p) with e(F ) ≥ δe(G(k)(n, p)) contains a copy of G.

In particular, if pn1/m
(k)
G → ∞, then a.a.s. G

(k)(n, p) has the Turán property with
respect to G.

For k = 2 (graphs), the conjecture was proved only for even cycles in [9]. It would
be most interesting to settle it for G = K3,3. For k ≥ 3 nothing is known, except
that for p constant, Lemma 8 implies the conclusion of the above conjecture for all
k-partite, k-uniform hypergraphs G, k ≥ 2.
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Abstract. The unit distance graph R is the graph with vertex set R
2 in which two vertices

(points in the plane) are adjacent if and only if they are at Euclidean distance 1. We prove that
the circular chromatic number of R is at least 4, thus improving the known lower bound of 32/9
obtained from the fractional chromatic number of R.
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1. Introduction. The unit distance graph R is defined to be the graph with
vertex set R

2 in which two vertices (points in the plane) are adjacent if and only
if they are at Euclidean distance 1. Every subgraph of R is also said to be a unit
distance graph. It is known that (cf. [1, 2])

4 � χ(R) � 7

and that (cf. [3, pp. 59–65])

32

9
� χf (R) � 4.36.

Here χ(R) denotes the chromatic number of R, and χf (R) is the fractional chromatic
number of R defined as follows: a b–fold coloring of a graph G is an assignment of
sets of b colors to the vertices of G. The fractional chromatic number of G, denoted
χf (G), is defined by

χf (G) = inf
{a

b
| G has a b–fold coloring using a colors

}
.

In this paper we study the circular chromatic number of the unit distance graph R.
Let r � 2, a, b ∈ [0, r), and a � b. We define the circular distance of a and b,

denoted by δ(a, b) = δr(a, b), to be min{b−a, r+a−b}. One may identify the interval
[0, r) with a circle Cr having circumference r, and then δ(a, b) will be the distance
between a and b in Cr. It is easy to see that δ satisfies the triangle inequality.

If a, b ∈ [0, r) (or equivalently a, b ∈ Cr), we define the circular interval from a to
b, denoted [a, b], as follows (see Figure 1.1):

[a, b] =

{
{x | a � x � b} if a � b,

{x | 0 � x � b or a � x < r} if a > b.
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a

b

0

a < b

a

b

0

a > b

Fig. 1.1. Circular intervals (clockwise direction is the positive direction).

a b

x

y

Fig. 2.1. The unit distance graph Ha,b.

An r-circular coloring of a graph G is a function c : V (G) → Cr such that for
every edge xy in G, δ(c(x), c(y)) � 1. The circular chromatic number of G, denoted
by χc(G), is

χc(G) = inf{r | G admits an r-circular coloring}.

It is well known [4] that for every graph G, χf (G) � χc(G) � χ(G). For the unit
distance graph R, these inequalities give

32

9
� χf (R) � χc(R) � χ(R) � 7.

We improve the lower bound for χc(R) to 4. We give two proofs of this result. The
second one is constructive and gives a construction of finite unit distance graphs whose
circular chromatic numbers are arbitrarily close to 4.

2. Proof. Let a and b be two points in the plane, and let d(a, b) denote the
Euclidean distance between a and b. If d(a, b) =

√
3, then we may find points x and y

in the plane such that the subgraph of R induced on the set {a, b, x, y} is isomorphic
to the graph H obtained by deleting one edge from K4 (see Figure 2.1). We denote
this unit distance graph by Ha,b. On the other hand, it is easy to see that, in any
embedding of H as a unit distance graph in the plane, the Euclidean distance between
the two vertices of degree 2 in H is

√
3.

Lemma 2.1. Let 0 < ε < 1 and let a, b ∈ R

2 with d(a, b) =
√

3. Let c be a
(3 + ε)-circular coloring of Ha,b. Then δ(c(a), c(b)) � ε.

Proof. Without loss of generality, we may assume c(a) = 0. Since a, x, y form a
triangle in Ha,b, we have c(x) ∈ [1, 1 + ε] and c(y) ∈ [2, 2 + ε] up to symmetry. On



CIRCULAR COLORING THE PLANE 463

the other hand, b is adjacent to both x and y. Thus

c(b) ∈ [c(x) + 1, c(x) − 1] ∩ [c(y) + 1, c(y) − 1]

⊆ [2, ε] ∩ [−ε, 1 + ε]

= [−ε, ε].

The last equality is true since 1 + ε < 2.
Theorem 2.2. χc(R) � 4.
Proof. Suppose that c is a (3 + ε)-circular coloring of R where 0 � ε < 1. Let

μ = sup{δ(c(a), c(b)) | a, b ∈ R

2 and d(a, b) =
√

3}.

By Lemma 2.1, μ � ε. By the definition of μ, for every 0 < μ′ < μ, there exist points
a and b at distance

√
3 in the plane such that δ(c(a), c(b)) > μ′. Consider the graph

Ha,b as in Figure 2.1. Without loss of generality we may assume

0 = c(a) � c(b) < c(x) < c(y) � 2 + ε.

Since 3 + ε < 4, we have

δ(c(a), c(x)) = c(x) = δ(c(a), c(b)) + δ(c(b), c(x)) > μ′ + 1.

On the other hand, since a and x are at distance 1, there exists a point z which is at
distance

√
3 from both a and x. Therefore

1 + μ′ < δ(c(a), c(x)) � δ(c(a), c(z)) + δ(c(z), c(x)) � 2μ.

Since this is true for every μ′ < μ, we have μ � 1. This is a contradiction since
μ � ε < 1.

3. A constructive proof. The graph G0 = K2 is obviously a unit distance
graph. In our construction of graphs Gn (n � 0) we distinguish two vertices in each
of them. To emphasize the distinguished vertices x and y of Gn, we write Gx,y

n . We
identify subgraphs of R with their geometric representation given by their vertex set.

For n � 0, the graph Gn+1 is constructed recursively from four copies of Gn. Let
S = V (Gx,y

n ) ⊆ R

2. Let us rotate the set S in the plane about the point x, so that
the image y′ of y under this rotation is at distance 1 from y. Let S′ be the image of
S under this rotation. Let T be the set of all points in S ∪ S′ and their reflections
across the line yy′. In particular let z ∈ T be the reflection of x across the line yy′.
We define Gx,z

n+1 to be the subgraph of R induced on T . This construction is depicted
in Figure 3.1.

Note that G1 is the graph Ha,b of Figure 2.1 and G2 contains the Moser graph
shown in Figure 3.2 as a subgraph. The Moser graph, also known as the spindle
graph, was the first 4–chromatic unit distance graph discovered [2].

Lemma 3.1. For every n � 1, χc(Gn) � 4 − 21−n. Moreover, for every r =
4 − 21−n + ε with 0 � ε < 21−n and every circular r-coloring c of Gx,z

n , we have
δ(c(x), c(z)) � 2n−1ε.

Proof. We use induction on n. The nontrivial part of the case n = 1 is proved in
Lemma 2.1. Let n � 1 and Gx,z

n+1 be as shown in Figure 3.1. Let r = 4 − 21−n + ε
for some ε � 0, and let c be a circular r-coloring of Gx,z

n+1. Without loss of generality
we may assume that c(x) = 0. By the induction hypothesis, δ(0, c(y)) and δ(0, c(y′))
are both at most 2n−1ε. Hence δ(c(y), c(y′)) � 2nε. On the other hand, since y and
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Fig. 3.1. Construction of Gn+1 from Gn.

Fig. 3.2. The Moser (spindle) graph.

y′ are adjacent in Gx,z
n+1, we have δ(c(y), c(y′)) � 1. Therefore ε � 2−n, and we have

χc(Gn+1) � 4 − 21−n + 2−n = 4 − 2−n.
Now let r = 4 − 2−n + ε for some 0 � ε < 2−n, and let c be a circular r-coloring

of Gn+1 with c(x) = 0. Note that r = 4 − 21−n + ε′, with ε′ = 2−n + ε < 21−n. By
the induction hypothesis, δ(0, c(y)), δ(0, c(y′)), δ(c(z), c(y)), and δ(c(z), c(y′)) are all
at most 2n−1ε′ < 1. Therefore we have

c(y), c(y′) ∈ [−2n−1ε′, 2n−1ε′]

and

c(z) ∈ [c(y) − 2n−1ε′, c(y) + 2n−1ε′] ∩ [c(y′) − 2n−1ε′, c(y′) + 2n−1ε′].

Since δ(c(y), c(y′)) � 1, one of c(y) and c(y′), say c(y), is in the circular interval
[−2n−1ε′, 2n−1ε′ − 1], and c(y′) ∈ [−2n−1ε′ + 1, 2n−1ε′]. Therefore

[c(y) − 2n−1ε′, c(y) + 2n−1ε′] ⊆ [−2nε′, 2nε′ − 1] = [−2nε′, 2nε]

and

[c(y′) − 2n−1ε′, c(y′) + 2n−1ε′] ⊆ [−2nε′ + 1, 2nε′] = [−2nε, 2nε′].

Finally, since ε′ < 21−n, we have 2nε′ < r − 2nε′. Hence

c(z) ∈ [−2nε′, 2nε] ∩ [−2nε, 2nε′] = [−2nε, 2nε].

This completes the induction step.
Let us observe that, when constructing Gn+1 from four copies of Gn, it may

happen that vertices in distinct copies of Gn correspond to the same points in the
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plane. Additionally, it may happen that some edges between vertices in distinct copies
of Gn are introduced. We may define in the same way a sequence of abstract graphs
Hn, where neither of these two issues occur. Clearly χc(Gn) � χc(Hn), but we cannot
argue equality in general. The proof of Lemma 3.1 applied to the graphs Hn gives
slightly more, as follows.

Theorem 3.2. For every n � 0, χc(Hn) = 4 − 21−n.
Proof. The cases n = 0, 1 are trivial. Let n � 1, and let Hn+1 be as in Figure 3.1.

Let r = 4 − 2−n = 4 − 21−n + 2n. By the proof of Lemma 3.1, Hx,y
n admits a

circular r-coloring c1, with c1(x) = 0 and c1(y) = 1
2 . Similarly the graphs Hx,y′

n ,

Hy,z
n , and Hy′,z

n admit circular r-colorings c2, c3, and c4, respectively, with c2(x) = 0,
c2(y

′) = c4(y
′) = − 1

2 , c3(y) = 1
2 , and c3(z) = c4(z) = 0. Now a circular r-coloring c

of Hn+1 can be obtained by combining the partial colorings c1, c2, c3, c4.
The construction of this section gives an infinite subgraph of R with a circular

chromatic number of at least 4. It remains open whether or not R has a finite subgraph
with the same property.
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Abstract. The Lempel–Ziv complexity is a fundamental measure of complexity for words, closely
connected with the famous LZ77 compression algorithm. We investigate this complexity measure
for one of the most important families of infinite words in combinatorics, namely, the fixed points of
morphisms. We give a complete characterization of the complexity classes which are Θ(1), Θ(log n),
and Θ(n1/k), k ∈ N, k ≥ 2, depending on the periodicity of the word and the growth function of
the morphism. The relation with the well-known classification of Ehrenfeucht, Lee, Rozenberg, and
Pansiot for factor complexity classes is also investigated. The two measures complete each other,
giving an improved picture for the complexity of these infinite words.
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1. Introduction. Before publishing their famous papers introducing the well-
known compression schemes LZ77 and LZ78 in [36] and [37], resp., Lempel and Ziv
introduced a complexity measure for words in [21] which attempted to detect “suf-
ficiently random looking” sequences. In contrast with the fundamental measures of
Kolmogorov [19] and Chaitin [4], Lempel and Ziv’s measure is computable. The def-
inition is purely combinatorial; its basic idea, splitting the word into minimal never-
seen-before factors, proved to be at the core of the well-known compression algorithm
LZ77, as well as subsequent variations. Another, closely related variant is to decom-
pose the word into maximal already-seen factors, as introduced by Crochemore [7] as
a tool for algorithm design.

Lempel–Ziv-type complexity and factorizations have important applications in
many areas, such as data compression [36, 37], string algorithms [7, 20, 25, 32], cryp-
tography [26], molecular biology [5, 15, 16], and neural computing [1, 34, 35].

Lempel and Ziv [21] investigate various properties which are expected from a
complexity measure which intends to detect randomness. They prove it to be sub-
additive and also that most (but not too many) sequences are complex; see [21] for
details. Also, they test it against de Bruijn words [3] as a well-established case of
complex words—de Bruijn words contain as factors all words of a given length within
the minimum possible space. Therefore, they establish the first connection with the
factor complexity, which is also one of our topics.

In this paper, we investigate the Lempel–Ziv complexity from the combinatorial
point of view and not from an information theoretical perspective. Nevertheless, some
implications of our results to data compression are obtained. We shall consider the
Lempel–Ziv complexity for one of the most important classes of infinite words in
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combinatorics, namely, the fixed points of morphisms. Many famous infinite words,
such as Fibonacci or Thue–Morse, belong to this family; see, e.g., [23].

The fundamental nature of this measure allows for a complete characterization
of the complexity of infinite fixed points of morphisms. The lowest complexity, con-
stant, or Θ(1), is encountered for the simplest words, that is, ultimately periodic. For
nonperiodic words, the complexity depends on the growth function of the underly-
ing morphism for the letter on which the morphism is iterated. Thus, for polynomial
growth we obtain Θ(n1/k), k ∈ N, k ≥ 2, whereas for exponential growth the complex-
ity is Θ(logn). We give examples for which each of the above complexities is reached.

An interesting by-product of this research is the observation that LZ77 will suc-
ceed in compressing these infinite fixed points down to 0 bits/symbol asymptotically
which is desirable of any good compression algorithm since the underlying mechanism
generating these infinite words has only a finite amount of information.

Our results are similar with the well-known ones of Ehrenfeucht, Lee, and Rozen-
berg [9], Ehrenfeuct and Rozenberg [10, 11, 12, 13, 14, 30], and Pansiot [27, 28],
who provided the same characterization for the factor complexity. Comparing the
two characterizations, we find out that they complete each other in an interesting
way. While theirs distinguishes four complexity classes for the exponential case, ours
gives an infinite hierarchy (given by the parameter k above) in the polynomial case,
corresponding to their quadratic complexity.

The paper is structured as follows. After some basic definitions in the next section,
we introduce the Lempel–Ziv complexity and related concepts in section 3. Section 4
contains an important intermediate result which characterizes the complexity of pow-
ers of a morphism. Using it, our complete characterization is proved in section 5,
where examples which reach each complexity involved are shown. The comparison
with the characterization of factor complexity is included in section 6. Many problems
need to be investigated about the Lempel–Ziv complexity. We propose several in the
last section.

2. Basic notations. We introduce here the basic definitions and concepts we
need. For further details we refer the reader to [6, 22, 23, 24].

Let Σ be an alphabet (finite nonempty set) and denote by Σ∗ the free monoid
generated by Σ, that is, the set of all finite words over Σ. The elements of Σ are called
letters, and the empty word is denoted ε. The length of a word w is denoted |w| and
represents the number of letters in w; e.g., |abaab| = 5 and |ε| = 0.

Given the words w, x, y, z ∈ Σ∗ such that w = xyz, x is called a prefix, y is a
factor and z a suffix of w; we use the notation x ≤ w. If moreover x �= w, then x is a
proper prefix of w, denoted x < w. The prefix of length n of w is denoted prefn(w).

An infinite word is a function w : N \ {0} → Σ. A finite word can be viewed as
a function w : {1, 2, . . . , |w|} → Σ. In either case, the factor of w starting at position
i and ending at position j will be denoted by w(i, j) = wiwi+1 . . . wj . The set of
all factors of w is F (w). The set of letters of Σ that actually occur in w is denoted
Σ(w). The set of infinite words over Σ is denoted Σω. An infinite word w is ultimately
periodic if w = uvvv . . . , for some u, v ∈ Σ∗, v �= ε. When we say w is nonperiodic,
we mean it is not ultimately periodic.

A morphism is a function h : Σ∗ → Δ∗ such that h(ε) = ε and h(uv) = h(u)h(v)
for all u, v ∈ Σ∗. Clearly, a morphism is completely defined by the images of the
letters in the domain. For all of our morphisms, Σ = Δ.

A morphism h : Σ∗ → Σ∗ is called nonerasing if h(a) �= ε for all a ∈ Σ, uniform
if |h(a)| = |h(b)| for all a, b ∈ Σ, and prolongable on a ∈ Σ if a < h(a).
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If h is prolongable on a, then hn(a) is a proper prefix of hn+1(a) for all n ∈ N.
Therefore, the sequence (hn(a))n≥0 of words defines an infinite word h∞(a) ∈ Σω that
is a fixed point of h. Formally, the ith letter of h∞(a) is defined as being the ith letter
of a power hn(a) whose length is greater than i. The fact that h∞(a) is a well-defined
fixed point of h is easily verified. Also, for h and a fixed, the fixed point is unique.

It is possible to have finite strings as fixed points of morphisms, and one can also
consider erasing morphisms, but the interesting case is that of nonerasing prolongable
morphisms. Therefore, when we say fixed point h∞(a), we mean an infinite word
obtained by iterating a nonerasing morphism h that is prolongable on a.

3. Word histories and Lempel–Ziv complexity. Let w be a (possibly infi-
nite) word. We now introduce a fundamental notion for the Lempel–Ziv complexity.
We define the operator π that removes the final letter of a finite word w:

π(w) = w(1, |w| − 1) .

A history H = (u1, u2, . . . , un) of w �= ε is a factorization of w, w = u1u2 . . . un,
having the property that u1 ∈ Σ and

π(ui) ∈ F (π2(u1u2 . . . ui))

for all 2 ≤ i ≤ n. We assume also that all ui’s are nonempty. This definition requires
that any new factor ui, excepting its last letter, appears before in the word. However,
it is still possible that the whole ui does occur before in w, or ui ∈ F (π(u1u2 . . . ui)).
In this case ui is called reproductive. Otherwise, ui is innovative.

Example 1. Consider the word w = aaabaabbaba. A possible history of w is
(a, aab, aab, bab, a). The second and fourth components are innovative, whereas the
third and fifth are reproductive.

By definition, n is called the length of the history H and is denoted by |H|.
Two kinds of history are important to us. The first, directly connected to the

definition of Lempel–Ziv complexity, is the exhaustive history. A history H is exhaus-
tive if all ui, 2 ≤ i ≤ |H| − 1, are innovative. In other words, the whole new factor
ui does not occur before in the word even if all of its proper prefixes do. Clearly, the
exhaustive history of a word is unique. Sometimes (e.g., in [2]) the exhaustive history
is called Lempel–Ziv factorization.

By contrast with the exhaustive history, a reproductive history requires that all of
its factors have occurred before (they are reproductive), with the necessary exceptions
of never-seen-before letters: A history H = (u1, u2, . . . , un) is reproductive if either

ui ∈ F (π(u1u2 . . . ui)) or ui /∈ F (π(u1u2 . . . ui)) but then ui ∈ Σ.

The innovative factors in a reproductive history are single letters. A reproductive
history need not be unique.

Example 2. For the word in Example 1, (a, aab, aabb, aba) is the exhaustive
history, whereas (a, aa, b, aa, b, ba, ba) and (a, aa, b, aab, ba, ba) are two reproductive
histories.

The following result, due to [21], relates the exhaustive history with all other
histories of a word.

Lemma 1. The exhaustive history of a word is the shortest history of that word.
By definition, the Lempel–Ziv complexity of a finite word w, denoted by lz(w),

is the length of the exhaustive history of w, that is, the number of factors in the
Lempel–Ziv factorization. Therefore, by Lemma 1, for any history H, lz(w) ≤ |H|.
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The Lempel–Ziv complexity of an infinite word w is the function
lzw : N → N defined by

lzw(n) = lz(prefn(w))

as the complexity of finite prefixes of w.
Remark 1. The Lempel–Ziv complexity of finite words can be computed in linear

time by using suffix trees; see [7, 17].

4. The complexity of powers. The main result of this section is that the
complexity of hn(a), as a function of n, is either linear or bounded for a nonerasing
morphism h prolongable on a. That is, either lz(hn(a)) = Θ(n) or lz(hn(a)) = Θ(1).
Throughout this section, a is fixed, and h is nonerasing and prolongable on a.

Given the morphism h, we can assume, without loss of generality, that each letter
of Σ occurs in h∞(a), the fixed point of h. If that is not the case, h can be restricted
to the set of those letters that do occur in w, and the fixed point of the restriction
will still be the same.

4.1. Maximal reproductive history. We show first that the complexity of
powers is at most linear. To this end, we define the maximal reproductive history1

of a finite word w, denoted RH(w). For w = w1w2 . . . w|w|, wi ∈ Σ, we define
RH(w) = (u1, u2, . . . , un) as follows:

• u1 = w1, the first letter of w;

• ui+1 =

⎧⎪⎨
⎪⎩

w|u1u2...ui|+1 if w|u1u2...ui|+1 /∈ Σ(u1u2 . . . ui),

longest w with w ∈ F (π(u1u2 . . . uiw))
if w|u1u2...ui|+1 ∈ Σ(u1u2 . . . ui)

for all i ≥ 2.
With the exception of new single letters, RH(w) is created by taking at each step the
maximal factor that has occurred before. For the word in Example 1, the maximal
reproductive history is (a, aa, b, aab, ba, ba).

From the definition it is clear that RH(w) is a reproductive history. It follows
from Lemma 1 that |RH(w)| ≥ lz(w).

Remark 2. The maximally reproductive history has been introduced indepen-
dently by Crochemore [7] as a tool for algorithm design. It is more natural than
the Lempel–Ziv factorization. Indeed, most applications we mentioned above use
Crochemore’s factorization. On the other hand, the two factorizations are very closely
related. For historical reasons, we defined the Lempel–Ziv complexity as the number
of factors in the Lempel–Ziv factorization, but our asymptotical results hold as well
for Crochemore’s factorization. This can be seen directly by looking at the proofs or
from the following lemma, which connects the lengths of the two histories.

Lemma 2. For any w ∈ Σ∗, we have

lz(w) ≤ |RH(w)| ≤ 2 lz(w) − 1.

Proof. The first inequality follows by Lemma 1. For the second, we show first that
the maximal reproductive history is the shortest among all reproductive histories. De-
note RH(w) = (u1, . . . , un), and consider another reproductive history, (v1, . . . , vm).
First, for all 1 ≤ i ≤ min(n,m), we have |v1 . . . vi| ≤ |u1 . . . ui|. Indeed, if this is not
the case, consider the smallest i0 for which it does not hold. In this case, i0 ≥ 2 and

1This is called s-factorization in [7, 25], f-factorization in [8], Lempel–Ziv factorization in [32],
and Crochemore factorization in [2].
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ui0 appears in vi0 as a factor but not at the end of vi0 . Thus |vi0 | ≥ 2, so vi0 is not
a letter, and, by the definition of the reproductive histories, vi0 must have occurred
before. Therefore, ui0 is not the longest prefix of ui0 . . . un which has occurred before,
a contradiction. It follows immediately that n ≤ m.

Consider then the exhaustive history of w: (t1, . . . , tk). Put, for all 2 ≤ i ≤ k,
tk = skak, ak ∈ Σ. We construct the history H obtained from the factorization
(t1, s2, a2, s3, a3, . . . , sk, ak) by removing the empty factors, if any. We then have
|H| ≤ 2k − 1 = 2 lz(w) − 1. By the above, |RH(w)| ≤ |H|, which concludes the
proof.

Notice that Lemma 1 can be easily proved in a similar way.

4.2. Morphic images of histories. The next step is to iterate reproductive
histories through a morphism h. We will show a way to create a reproductive history
of h(w), given a reproductive history of w.

Let w be a word and H = (v0, v1, . . . , vn) be a reproductive history of w. Let
1 = i1 < i2 < · · · < i|Σ(w)| be the indexes corresponding to the single letter factors of
H that have not occurred before. We define a factorization of h(w), denoted h(H),
by replacing all factors of w that have occurred before by their image through h and
the single letters vij , by the history RH(h(vij )). We claim that this is a reproductive
history of h(w).

Example 3. Let us consider the Thue–Morse morphism

t(a) = ab ,
t(b) = ba ,

and the word from Example 1, w = aaabaabbaba. A reproductive history H (in fact,
RH(w)) and its image through t, t(H), are

H = (a , aa , b , aab , ba , ba) ,
h(H) = (a, b, abab, b, a, ababba, baab, baab) .

Lemma 3. If H is a reproductive history of w, then h(H) is a reproductive history
of h(w).

Proof. There are two kinds of factors in h(H). One originates from a factor of
H that has already occurred. If a factor u has already occurred in w, then its image
h(u) will have also occurred in h(w).

Also, each factor of the history RH(h(vij )) is either a new single letter or has
already occurred in the factor h(vij ) of w and therefore has occurred in w.

By selecting the first occurrence of all of the single letters in h(w), we conclude
that each factor of h(H) is either a factor that has already occurred or a letter
that has not been previously seen. Equivalently, h(H) is a reproductive history of
h(w).

4.3. Linear upper bound. With respect to the length of h(H), we note that
each letter in Σ(w), originally a stand-alone factor of H, is transformed into the fac-
torization RH(h(vij )), and, consequently, each letter x of w prompts a |RH(h(x))|−1
increase in the length of h(H):

|h(H)| ≤ |H| +
∑

x∈Σ(w)

(|RH(h(x))| − 1) .

If we assume that all letters of Σ occur in w, then the increase in length is constant,
which leads us to the following result.
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Proposition 1. If h : Σ∗ → Σ∗ is nonerasing and a < h(a), a ∈ Σ, then
lz(hn(a)) = O(n).

Proof. We will use the above method for iteratively creating histories for hn(a)
that will have a linearly increasing length.

Let n0 be the first integer for which hn0(a) contains all letters of Σ:

n0 = min{n ∈ N | Σ(hn(a)) = Σ},

and let H0 = RH(hn0(a)).
Applying the above method, h(H0) is a valid history for hn0+1(a) and

|h(H0)| = |H0| +
∑
x∈Σ

(|RH(h(x))| − 1) .

Iterating for n ≥ n0, we get

|hn−n0(H0)| = |H0| + (n− n0)
∑
x∈Σ

(|RH(h(x))| − 1)

or

|hn−n0(H0)| = A · n + B,

where B = |H0| − n0

∑
x∈Σ(|RH(h(x))| − 1) and A =

∑
x∈Σ(|RH(h(x))| − 1).

Since hn−n0(H0) is a valid history for hn(a), it follows that

lz(hn(a)) ≤ An + B

or lz(hn(a)) = O(n).
The next result gives the inferior asymptotic limit for lz(hn(a)). It is obvious that

lz(hn(a)), as a function of n, is increasing since hn(a) < hn+1(a). The remaining part
of this section is dedicated to showing that the growth of the Lempel–Ziv complexity
of powers is at least linear unless the fixed point word is ultimately periodic.

Throughout the rest of this section, the word u is defined by h(a) = au.

4.4. Some technical results. We prove next two technical lemmas to be used
later in the proof of the lower bound.

Lemma 4. If hp(u)hp+1(u) occurs at most |hp(u)| positions before its last occur-
rence in

hp+2(a) = auh(u) . . . hp(u)hp+1(u) ,

then h∞(a) is ultimately periodic.
Proof. Let α = hp(u). Since αh(α) occurs at most |α| positions from the end of

t = hp+2(a), there exists v, with |v| ≤ |α|, such that vαh(α) is a suffix of t and also
αh(α) is a prefix of vαh(α). Let v be the minimal word that satisfies this property—in
other words, v marks the occurrence of αh(α) that is the closest to the end of π(t);
see Figure 1.

Both α and αh(α) are fractional powers of v:

(1) α = vnv′, with v′ ≤ v, n ≥ 1,

(2) αh(α) = vmv′′, with v′′ ≤ v,m ≥ 2.



472 SORIN CONSTANTINESCU AND LUCIAN ILIE

Fig. 1. The occurrence of αh(α) that has v as a prefix is the closest to the end of π(hp+2(a)).

Let x be defined by t = xvαh(α). Therefore h(xv) = xvα. Since h is nonerasing,
|x| ≤ |h(x)|, which implies that h(v) is a suffix of vα.

By applying h to (1), we get that h(α) = h(v)nh(v′). This indicates that h(v)h(α)
has period |h(v)|. However, h(v)h(α) is a suffix of vαh(α), which has period |v|. By
Fine and Wilf’s theorem (see [6, 23]) h(v)h(α) has the period d = gcd (|v|, |h(v)|).

If d < |v|, then h(v) has period d. Since α has period |v|, all factors of α of length
|v| are circular shifts of v. Consequently, the circular shift of v occurring at the end
of vα is completely covered by h(v), and, therefore, that particular circular shift of v
has period d. However, the length of v is a multiple of d, so v is a nontrivial power of
one of its proper prefixes of length d. In this case, we could find another occurrence
of αh(α) closer to the end t which contradicts the choice of v.

Therefore d = |v|, or |v| divides |h(v)|. Furthermore h(v) is a factor of some
power of v since it is a factor of vα, a fractional power of v. Let r ∈ N be defined by
r|v| = |h(v)|. It follows that h(v) is a circular shift of vr. Inductively, if hs(v) is a
circular shift of vr

s

, then hs+1(v) is a circular shift of h(v)r
s

, which is a circular shift

of (vr)r
s

= vr
s+1

. This implies that |hs(v)| = rs|v| for all s ≥ 0.
Because h(v) is a suffix of vα, it follows that hs+1(v) is a suffix of hs(v)hs(α).

Inductively, if hs(v) has period |v|, then it is a power of some word of length |v|. Since
hs(v)hs(α) is a fractional power of hs(v) by (1), it must also have period |v|, which
implies that hs+1(v) has period v.

We have established that all hs(v) have period |v| and their lengths are all mul-
tiples of |v|. We can now apply hs to (1) and obtain

hs(α) = hs(v)nhs(v′), with v′ ≤ v, n ≥ 1.

Since hs(v) has period |v| and its length is a multiple of that period, hs(α) must also
have the period |v|.

By a similar argument, using (2), hs(α)hs+1(α) has period |v|. As this holds for
all s ≥ 0 and |hs(α)| ≥ |v|, it follows that αh(α) . . . hs(α) . . . has period |v|.

Lemma 5. If hq(u)hq+1(u)hq+2(u) occurs before its last occurrence in

hq+3(a) = auh(u) . . . hq(u)hq+1(u)hq+2(u)

and |hq(u)| < |hq+1(u)|, then h∞(a) is ultimately periodic.
Proof. Let α = hq(u) and t = hq+3(a). If αh(α)h2(α) occurs at most |α| positions

from its last occurrence in t as a suffix, then, by Lemma 4, h∞(a) is ultimately
periodic.

Otherwise, there exist words x and y such that

t = xαyαh(α)h2(α) = h(x)h(α)h(y)h(α)h2(α)
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Fig. 2. Here h(α)h2(α) is a prefix of yαh(α)h2(α), and so h2(α) is a prefix of h(y)h(α)h2(α).

and h(α)h2(α) is a prefix of yαh(α)h2(α); see Figure 2. By taking the lengths of the
two factorizations of t, we have

|x| + |α| + |y| + |α| = |h(x)| + |h(α)| + |h(y)|

or

|h(x)| − |x| = |α| − (|h(α)| − |α|) − (|h(y)| − |y|) .

Since h is nonerasing, |h(x)| − |x| < |α|. However, h(α)h2(α) is a prefix of
yαh(α)h2(α), so h2(α) is a prefix of h(y)h(α)h2(α). This leads to h(α)h2(α) occurring
at position |h(x)|−|x| in the first occurrence of αh(α)h2(α). Consequently, h(α)h2(α)
occurs in t at a distance less than |h(α)| symbols before its last occurrence in t,
which makes Lemma 4 applicable for p = q + 1, since h(α)h2(α) = hp(u)hp+1(u)
occurs at most |h(α)| = |hp(u)| positions before its last occurrence in t = hq+3(a) =
hp+2(a).

4.5. Growth functions. In order to be able to use Lemma 5, we need to find
values of q for which |hq(u)| < |hq+1(u)|. It is clear that |hq(u)| ≤ |hq+1(u)|, and, if
there exists a letter z in hq(u) satisfying |h(z)| ≥ 2, the inequality is strict. We shall
prove that such powers must exist or else the fixed point is ultimately periodic. We
need more definitions and results.

The growth function of the letter x ∈ Σ in h is the function hx : N → N defined
by

hx(n) = |hn(x)| .

The following result from [31, 33] is very useful.
Lemma 6. There exist an integer ea ≥ 0 and an algebraic real number ρa ≥ 1

such that

ha(n) = Θ(neaρna) .

The pair (ea, ρa) is called the growth index of a in h. We say that ha (and a
as well) is called bounded, polynomial, and exponential if a’s growth index w.r.t. h is
(0, 1), (> 0,= 1), (≥ 0, > 1), resp.

Example 4. All letters of a uniform morphism with images of length k share the
same growth index: (0, k). For instance, the growth index of a for the Thue–Morse
morphism of Example 3 is (0, 2).

Let us consider the morphism h defined by

h(a) = ab ,
h(b) = bc ,
h(c) = c .

The growth index of a is (2, 1), the growth index of b is (1, 1), and, finally, the growth
index of c is (0, 1).
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Fig. 3. The graph Gh for Example 5.

4.6. The associated graph. We introduce the following graph, which is very
useful for some proofs. Given a morphism h : Σ∗ → Σ∗, we denote the sets of bounded,
polynomial, and exponential letters by ΣB , ΣP , and ΣE , resp. The graph associated
with h is the directed graph

Gh = (Σ, {(a, b) | b ∈ F (h(a))}) .

Thus, the vertices of Gh are the letters of the alphabet, and there is an edge from a
to b if b appears in the image of a.

Consider its subgraphs Gh
X , induced by the sets ΣX , X ∈ {B,P,E}, of vertices,

resp. A few observations about the graphs we just defined are in order:
1. Any letter a belonging to two distinct cycles of Gh is exponential, as some

power hr(a) would contain at least two a’s.
2. Let us fix the order B < P < E. Then for any X and any a ∈ ΣX , the image

h(a) of a must contain at least one letter from ΣX and cannot contain any
letter from ΣY for any Y > X.

3. The above observation implies that, as soon as ΣX is nonempty, there is a
cycle (which might be a loop) in Gh

X and from each vertex in Gh
X there is a

path leading to a vertex in a cycle (everything in Gh
X).

Example 5. Consider the morphism h:

h(a) = acb ,
h(b) = bca ,
h(c) = c .

The graph Gh is shown in Figure 3. This is also the graph of a different morphism:
a �→ abc, b �→ bac, c �→ c, which indicates that different morphisms can produce
isomorphic graphs.

4.7. Linear lower bound for nonperiodic words. We need only one more
lemma before proving the main result of this section.

Lemma 7. If h(a) = au, u ∈ Σ∗, u �= ε, then there exist m, p ∈ N such that
|hm+jp(a)| < |hm+jp+1(a)|, for all j ≥ 0, or else h∞(a) is ultimately periodic.

Proof. Since h is prolongable on a, it means a is not bounded. Assume a ∈ ΣP ;
the case a ∈ ΣE is similar. Denote also u = u1u2 . . . u|u|, ui ∈ Σ. We have in Gh the
edges (a, a) and (a, ui) for all 1 ≤ i ≤ |u|.

If all ui’s are in ΣB , then |hn(u)| is bounded as |hn(u)| =
∑|u|

i=1 hui(n). Hence, we
can find n and r such that hn(u) = hn+r(u), implying that h∞(a) = auh(u)h2(u) . . .
is ultimately periodic.

Assume ui ∈ ΣP for some i. By the above properties of Gh, we can find in Gh
P a

path from ui to a vertex which belongs to a cycle which is also in Gh
P . There must be

a vertex, say, z, in that cycle, whose outdegree is at least two; otherwise, all vertices
in the cycle would be bounded. If we denote the length of the path from ui to z
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by m and the length of the cycle by p, then |hm+jp| < |hm+jp+1| for all j ≥ 0 as
claimed.

Using Lemmas 5 and 7, we obtain for all j ≥ 0 that either

(3) hm+jp(u)hm+jp+1(u)hm+jp+2(u)

has never occurred before or w is ultimately periodic.
If we assume w = h∞(a) to be nonperiodic, then all factors of the form (3)

can never occur before their last occurrence. This shows that there must exist a
factor in the exhaustive history of w that ends within each distinct factor of the
above-mentioned form. It follows that lz(hn(a)) ≥ 1

k (n − n0) + lz(hn0+1(a)) or
lz(hn(a)) = Ω(n).

Combining this result with Proposition 1 we obtain that lz(hn(a)) is either con-
stant or linear. On the other hand, the fact that ultimate periodicity is equivalent to
a bounded Lempel–Ziv complexity has been mentioned in [18]. Therefore, we proved
the main result of this section.

Proposition 2. For a nonerasing morphism h that admits the fixed point h∞(a),
lz(hn(a)) is either Θ(1), if h∞(a) is ultimately periodic, or Θ(n), otherwise.

5. Growth functions and infinite word complexity. Let w be an infinite
word generated by iterating a nonerasing morphism h, w = h∞(a). The prefix of a
given length m of w will fall between two consecutive powers of h:

(4) hn(m)(a) ≤ prefm(w) < hn(m)+1(a)

for a n(m) ∈ N. If lz(hn(a)) is bounded, then lzw(n) is bounded. This establishes
our first case for the complexity of lzw(·), Θ(1).

When lz(hn(a)) is not bounded, it has to be linear, by Proposition 2. Then a is
not bounded, and hence, by Lemma 6, we distinguish two cases:

1. ρa = 1 (ha is polynomial). Then |hn(a)| = Θ(nea) or n(m) = Θ(m1/ea).
Since, by (4), lz(hn(m)(a)) ≤ lz(prefm(w)) ≤ lz(hn(m)+1(a)) and lz(hn(a)) =
Θ(n), it follows that lzw(m) = Θ(m1/ea).

2. ρa > 1 (ha is exponential). There exist ρ1 and ρ2 positive numbers such
that ρn1 ≤ |hn(a)| ≤ ρn2 , which means that n(m) = Θ(logm). By the same
argument, lzw(m) = Θ(logm).

Notice, however, that ha growing does not imply lzw(·) unbounded. For instance,
if h(a) = ab, h(b) = b, then ha is polynomial, but w = h∞(a) = abbb . . . has bounded
lzw(·). For the exponential case we can take h(a) = aa, whose fixed point also has
bounded Lempel–Ziv complexity.

Also, in the first case above, we cannot have ea = 1 as this implies bounded
Lempel–Ziv complexity, contradicting the assumption on lz(hn(a)). Indeed, ea = 1
implies |hn(a)| = Θ(n), and so |hn+1(a)| − |hn(a)| is bounded. Assuming h(a) = au,
u �= ε, we have hn(a) = auh(u)h2(u) . . . hn−1(u). Consequently |hn(u)| is bounded;
hence, we can find hn(u) = hn+p(u), which implies that w = h∞(a) is ultimately
periodic.

We have just proved the main result of the paper.
Theorem 1. For a fixed point infinite word w = h∞(a) of a nonerasing morphism

h, we have the following:
1. The Lempel–Ziv complexity of w is Θ(1) if and only if w is ultimately periodic.
2. If w is not ultimately periodic, then the Lempel–Ziv complexity of w is Θ(logn)

or Θ(n1/k), k ∈ N, k ≥ 2, depending on whether ha is exponential or polyno-
mial, resp.
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Notice that the logarithmic Lempel–Ziv complexity in the exponential case was
already proved in a different context by Ilie, Yu, and Zhang [18, Lemma 12].

Remark 3. Notice that the Lempel–Ziv complexity of fixed points is lower than
the maximal Lempel–Ziv complexity, in the sense that there is no fixed point whose
Lempel–Ziv complexity is of the order Θ( n

logn ), which is the order of the maximum

Lempel–Ziv complexity for finite words of length n, as proved by Lempel and Ziv [21].
Furthermore, since the LZ77-compressed size of a word w is Θ(lz(w) log |w|), it

follows that the LZ77 compression algorithm will succeed in compressing the fixed
points down to 0 bits/symbol asymptotically, which is desirable of any good compres-
sion algorithm, since the underlying mechanism generating these infinite words has
only a finite amount of information. Therefore, this is a positive conclusion regarding
the usage of this algorithm to find random sequences, stating that the algorithm won’t
misclassify the infinite words considered in this paper.

Remark 4. For a morphism h prolongable on a, it is decidable to which of the
classes in Theorem 1 its Lempel–Ziv complexity function belongs. First of all, a
test for ultimate periodicity can be found in [29]. Assuming that the fixed point is
not ultimately periodic, ha is exponential if and only if there exists some letter b,
accessible from a, deriving in a number of steps a word containing two occurrences of
b (see [31]). As noted above, this is equivalent to b belonging to two different cycles
in the associated graph. This can be easily tested for each letter. An algorithm that
decides whether or not ha is exponential needs only to check if any of the letters
belonging to two different cycles are reachable from a.

5.1. Examples. We give next examples showing that all of the above complex-
ities are indeed possible.

Example 6. The highest Lempel–Ziv complexity is realized for k = 2, that is,
O(

√
n), for the three letter morphism h3 given by

h3(a) = ab ,
h3(b) = bc ,
h3(c) = c ,

for which hn
3 (a) = abc0bc1 . . . bcn−1. Clearly, the growth function of a, (h3)a, is

quadratic, whereas the complexity of powers is exactly linear, which gives a final
Lempel–Ziv complexity of

√
n; this can be checked directly by constructing the ex-

haustive history of h∞
3 (a):

(a, b, bc, bc2, bc3, . . . ) .

This example can be easily extended to k letters. Let

hk : {a1, a2, . . . , ak}∗ → {a1, a2, . . . , ak}∗

be defined by

hk(a1) = a1a2 ,
hk(a2) = a2a3 ,
...
hk(ak−1) = ak−1ak ,
hk(ak) = ak .
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We have that (hk)a1
is a polynomial of degree k − 1 (see [31, Theorem 3.5]). We

can also see that directly, as follows. Note that hk restricted to {a2, a3, . . . , ak}∗ is
actually hk−1 modulo the renaming a2 = a1, a3 = a2, . . . , ak = ak−1. Since

|(hk)a1(n)| = |a1a2h(a2) . . . h
n−1
k (a2)| = 1 +

n−1∑
i=0

|(hk−1)a1(n)| ,

we conclude inductively that, if (hk−1)a1(n) = Θ(nk−2), then (hk)a1
(n) = Θ(nk−1).

The base case follows from the previous example for k = 3.
Consequently, the Lempel–Ziv complexity of the fixed point h∞

k (a1) is Θ( k−1
√
n).

These examples illustrate the polynomial case.
Example 7. With respect to the exponential case, any uniform morphism with

images of length k has a growth function of exactly kn. Since the complexity of powers
is linear for nonperiodic words, the Lempel–Ziv complexity of the fixed point will be
Θ(log n).

Such an example is the famous Thue–Morse morphism (see Example 3), which fits
the requirements for k = 2. Both fixed points t∞(a) and t∞(b) are nonperiodic, and
the growth functions associated with both letters are exactly 2n. Their Lempel–Ziv
complexity is Θ(log n).

Example 8. Another famous example is given by the Fibonacci morphism

f(a) = ab ,
f(b) = a ,

for which we can precisely compute the value of lz(fn(a)) = n+1. The powers of the

Fibonacci morphism grow exponentially, at the rate (1−
√

5
2 )n+( 1+

√
5

2 )n, and therefore
the Lempel–Ziv complexity of the infinite word is again Θ(logn).

6. Comparison with factor complexity. We dedicate the final section to a
comparison between the Lempel–Ziv complexity and the factor complexity for infinite
words generated by morphisms. The factor complexity is a natural function defined
as the number of factors of a certain length occurring in an infinite word. For a word
w ∈ Σω, this is

fw(n) = card({u ∈ Σ∗ | u ∈ F (w), |u| = n}) .

The investigation of factor complexity for the fixed points of morphisms has been
initiated by Ehrenfeucht, Lee, and Rozenberg in [9] (they actually considered the
closely related D0L systems) and continued by Ehrenfeucht and Rozenberg in a series
of papers; see [10, 11, 12, 13, 14, 30]. The classification was completed by Pansiot
[27, 28], who also found the missing complexity class Θ(n log log n).

The following definitions appear, with different names, in [6]. The morphism h is
called2

- nongrowing if there exists a bounded letter in Σ;
- u-exponential if ρa = ρb > 1, ea = eb = 1 for all a, b ∈ Σ;
- p-exponential if ρa = ρb > 1 for all a, b and ea > 1 for some a; and
- e-exponential if ρa > 1 for all a and ρa > ρb for some a, b.

The characterization of Ehrenfeucht, Lee, Rozenberg, and Pansiot is as follows.

2What we call u-, p-, and e-exponential are quasi-uniform, polynomially diverging, and exponen-
tially diverging, resp., in [6, 27, 28]. We changed the terminology so that it does not conflict with
the corresponding notations for ha.
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Theorem 2 (Ehrenfeucht, Lee, Rozenberg, and Pansiot). Let w = h∞(a) be an
infinite nonperiodic word of factor complexity fw(·).

1. If h is growing, then fw(n) is either Θ(n), Θ(n log log n), or Θ(n log n), de-
pending on whether h is u-, p-, or e-exponential, resp.

2. If h is not growing, then either
(a) w has arbitrarily large factors over the set of bounded letters, and then

fw(n) = Θ(n2), or
(b) w has finitely many factors over the set of bounded letters, and then

fw(n) can be any of Θ(n), Θ(n log log n), or Θ(n log n).
In order to establish a correspondence with our hierarchy, we note that, in the

first case of Theorem 2, the function ha is exponential, which implies a logarithmic
Lempel–Ziv complexity. However, a logarithmic Lempel–Ziv complexity does not
necessarily imply one of the n, n log log n, or n log n cases for the factor complexity
as is illustrated by the following example.

Example 9. Consider the morphism h given by

h(a) = abc ,
h(b) = bac ,
h(c) = c .

Since ha grows exponentially, lz(h∞(a)) is, by Theorem 1, logarithmic. However,
there exist arbitrarily large factors of h∞(a) of the form cn (c is bounded), which
implies a Θ(n2) factor complexity.

On the other hand, a radical-type Lempel–Ziv complexity does imply a quadratic
factor complexity. To prove this, we again need the associated graph.

Lemma 8. Assume h : Σ∗ → Σ∗ is a nonerasing morphism prolongable on a ∈ Σ.
If ha is polynomial, then there exist arbitrarily large factors over ΣB in h∞(a).

Proof. Consider the associated graph introduced above. First, since ha is poly-
nomial, Gh

E must be empty.
By the properties of Gh, there exists at least one cycle in Gh

P , say, C. If there is a
vertex of C which has other outgoing edges (different from the one in C) in Gh

P , then
any path starting with such an edge cannot go back to C (this would make the letters
of C exponential). Therefore, further cycles can be constructed. As ΣP is finite, there
must be a cycle C ′ in Gh

P which has no outgoing edges in Gh
P except for those in the

cycle. On the other hand, at least one vertex (letter) of C ′, say, b, has an outgoing
edge to a vertex in Gh

B . We then have h(b) = ubv, uv ∈ Σ∗
B , uv �= ε. The letter b will

create in h∞(a) arbitrarily long factors from Σ∗
B , as claimed.

Therefore, Theorems 1 and 2, Example 9, and Lemma 8 imply the correspondence
between Lempel–Ziv and factor complexities for fixed points of morphisms shown in
Table 1, where all intersections are indeed possible.

We see that both measures of complexity recognize ultimately periodic words as
having bounded complexity, the lowest class of complexity.

In the nontrivial case of nonperiodic fixed points, the Lempel–Ziv complexity
groups together all words h∞(a) with the ha exponential, whereas the factor com-
plexity distinguishes four different complexities. On the other hand, the factor com-
plexity does not make any distinction among words with the ha polynomial, whereas
Lempel–Ziv gives an infinite hierarchy.

7. Further research. Most combinatorial aspects of the Lempel–Ziv complexity
need to be investigated. We mention a few problems below:
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Table 1

Lempel–Ziv vs. factor complexity.

Lempel–Ziv complexity Factor complexity

h∞(a) is ultimately
periodic

Θ(1) Θ(1)

h∞(a) is not
ultimately periodic

and ha is polynomial

Θ(n
1
2 )

Θ(n
1
3 )

...

Θ(n
1
k )

...

Θ(n2)

h∞(a) is not
ultimately periodic

and ha is exponential
Θ(logn)

Θ(n2)

Θ(n logn)

Θ(n log logn)

Θ(n)

1. Characterize the fixed points of morphisms in each Lempel–Ziv complexity
class (especially Θ(n

1
k )).

2. What is the connection between k in Θ(n1/k) and card(Σ)?
3. Investigate the relations, in general, between Lempel–Ziv complexity and

other complexity measures, especially the factor complexity.
4. How is Lempel–Ziv complexity affected by operations on words? For con-

catenation, it is subadditive, that is, lz(uv) ≤ lz(u) + lz(v), as proved by
Lempel and Ziv [21]. Also, it is easy to see that it is monotonic for prefixes,
that is, lz(u) ≤ lz(uv). But the same is not true for suffixes. Here is a
counterexample: lz(a.ab.aaba) = 3, lz(a.b.aa.ba) = 4. Also, the behavior
with respect to the reversal operation (already questioned in [18]) should be
investigated, that is, the relation between the Lempel–Ziv complexity of w
and that of wR, the reversal of w.

5. Another complexity measure can be defined naturally from the factorization
used in the LZ78 compression algorithm, which is w = u1.u2. · · · .un such
that, for all i ≥ 2, ui is the shortest prefix of uiui+1 . . . un that does not
belong to the set {u1, u2, . . . , ui−1}. That means ui may have appeared as
a factor of π(u1u2 . . . ui) but not as a member of the factorization so far.
In particular, this factorization is a history. Denoting the new complexity
by lz78(w) we have by Lemma 1 that lz(w) ≤ lz78(w). Investigating this
complexity measure is certainly of interest. The precise relation between
the two complexity measures is not obvious, and it may be that different
techniques are required for investigating lz78.

Acknowledgments. The authors thank the anonymous referees for very careful
reading of the paper and for useful comments which helped improve the clarity of the
presentation. Also, the second part of Remark 3 was suggested by one of the referees.
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296 (1983), pp. 781–784.

[8] M. Crochemore and W. Rytter, Text Algorithms, Oxford University Press, New York, 1994.
[9] A. Ehrenfeucht, K.P. Lee, and G. Rozenberg, Subword complexities of various classes

of deterministic developmental languages without interaction, Theoret. Comput. Sci., 1
(1975), pp. 59–75.

[10] A. Ehrenfeucht and G. Rozenberg, On the subword complexities of square-free D0L-
languages, Theoret. Comput. Sci., 16 (1981), pp. 25–32.

[11] A. Ehrenfeucht and G. Rozenberg, On the subword complexities of D0L-languages with a
constant distribution, Theoret. Comput. Sci., 13 (1981), pp. 108–113.

[12] A. Ehrenfeucht and G. Rozenberg, On the subword complexities of homomorphic images
of languages, RAIRO Inf. Théor., 16 (1982), pp. 303–316.
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[34] J. Szczepański, M. Amigó, E. Wajnryb, and M.V. Sanchez-Vives, Application of Lempel-
Ziv complexity to the analysis of neural discharges, Network: Comput. Neural Syst., 14
(2003), pp. 335–350.
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VIRTUAL PRIVATE NETWORK DESIGN: A PROOF OF THE TREE
ROUTING CONJECTURE ON RING NETWORKS∗
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Abstract. A basic question in virtual private network (VPN) design is if the symmetric version
of the problem always has an optimal solution which is a tree network. An affirmative answer would
imply that the symmetric VPN problem is solvable in polynomial time. We give an affirmative
answer in case the communication network, within which the VPN must be created, is a circuit.
This seems to be an important step towards answering the general question. The proof relies on a
dual pair of linear programs and actually implies an even stronger property of VPNs. We show that
this property also holds for some other special cases of the problem, in particular when the network
is a tree of rings.
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1. Introduction. In this paper, we consider a problem emerging in telecommu-
nication known as the symmetric virtual private network problem. Think of a large
communication network represented by an undirected graph G = (V,E), with a ver-
tex for each user and an edge for each link in the network. Within this network, a
subgroup W ⊆ V of the users wishes to reserve capacity on the links of the network for
communication among themselves: they wish to establish a virtual private network
(VPN). Vertices in W are also called terminals.

On each link, capacity (bandwidth) has a certain price per unit, c : E → R+.
The problem is to select one or more communication paths between every pair {i, j}
of users in W and to reserve enough capacity on the edges of the selected paths to
accommodate any possible communication pattern among the users in W . Possible
communication patterns are defined through an upper bound on the amount to be
communicated (transmitted and received) for each node in W , specified by b : W →
R+. More precisely, a communication scenario for the symmetric VPN problem can be
defined as a symmetric matrix D = (dij){i,j}⊆W with zeros on the diagonal, specifying
for each unordered pair of distinct nodes {i, j} ⊆ W the amount of communication
dij ≥ 0 between i and j. A communication scenario D = (dij){i,j}⊆W is said to be
valid if

∑
j∈W\{i} dij ≤ b(i) ∀i ∈ W . We denote the collection of valid communication

scenarios by D.
We call a network consisting of the selected communication paths with enough

capacity reserved on the edges to accommodate every valid communication scenario
a feasible VPN. The (symmetric) VPN problem is to find the cheapest feasible VPN.
There are several variants of the problem emerging from additional routing require-
ments.
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(i) SPR (single path routing): For each pair {i, j} ⊆ W , exactly one path
Pij ⊆ E is to be selected to accommodate all possible demand between i and j.
The problem is to choose the paths Pij so as to minimize {

∑
e∈E c(e)xe | xe ≥∑

{i,j}:e∈Pij
dij ∀e ∈ E ∀D = (dij) ∈ D}.

(ii) TTR (terminal tree routing): This is SPR with the additional restriction
that ∪j∈WPij should form a tree in G ∀i ∈ W .

(iii) TR (tree routing): This is SPR with the extra restriction that ∪{i,j}⊆WPij

is a tree in G.
(iv) MPR (multipath routing): For each pair {i, j} ⊆ W , and for each possible

path between i and j, the fraction of communication between i and j to be routed
along that path has to be specified.

(v) FR (flexible routing): No communication paths have to be selected before-
hand. Different demand scenarios are allowed to use different sets of paths.

The following lemma summarizes the rather obvious relations between the optimal
solution values of these variants. By OPT (SPR) we denote the cost of an optimal
solution for the SPR variant of the VPN problem. Similar notation is used for the
other optimal values.

Lemma 1.1.

OPT (FR) ≤ OPT (MPR) ≤ OPT (SPR) ≤ OPT (TTR) ≤ OPT (TR).

Proof. SPR is the MPR problem with the extra restriction that all fractions must
be 0 or 1. The other inequalities are similarly trivial.

A prominent open question in VPN design is whether SPR is polynomially solv-
able (SPR ∈ P ); cf. Italiano, Leonardi, and Oriolo [12]. This question would be
answered affirmatively if one could prove that OPT (SPR) = OPT (TR), since Ku-
mar et al. [13] have shown that TR ∈ P (see also [9]). Gupta et al. [9] showed that
OPT (TR) = OPT (TTR) and that OPT (TR) ≤ 2OPT (FR). To the best of our
knowledge the complexity of FR is unresolved. There are instances (even on circuits)
where OPT (FR) < OPT (MPR): if we take for G a triangle, c ≡ 1, b ≡ 1, then
for the optimal solution to FR it suffices to buy all three edges with capacity 1/2,
whereas for MPR it is optimal to buy two edges with capacity 1. Erlebach and Rüegg
[6] proved that MPR ∈ P , which also follows from our LP-formulation in section
2. They also mention that no VPN instance has been found so far for which even
OPT (MPR) < OPT (TR). Indeed, our conjecture is that OPT (MPR) = OPT (TR),
from which SPR ∈ P would follow. OPT (SPR) = OPT (TR) was not known to
be true for any class of graphs other than trees. It seems to be a crucial step
forward to prove it for circuits, which is implied by the main result in this pa-
per.

Theorem 1.2. Let G = (V,E) be a circuit. Then OPT (MPR) = OPT (TR).
This theorem is proved in section 3. The proof boils down to showing that the

cost of an optimal solution to TR equals the value of an optimal dual solution in
a formulation of MPR as a linear program (LP). The LP for MPR is given in sec-
tion 2, where the conjecture OPT (MPR) = OPT (TR) is restated in terms of this
LP.

In section 4, we proceed to prove our conjecture, OPT (MPR) = OPT (TR), for
some other special cases. We prove it for any graph G and any cost function c if
the communication bound of some terminal is larger than the sum of the bounds
of the other terminals. We also prove it for any graph on at most 4 vertices, and
for any complete graph if the cost function c is identical to 1. We also prove that
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the property OPT (MPR) = OPT (TR) is preserved under taking 1-sums of graphs,
implying a common generalization of all the aforementioned results.

The model of the VPN problem presented above was proposed for the first time
by Fingerhut, Suri, and Turner [7], and later independently by Duffield et al. [3]. They
also formulated the asymmetric version of the problem in which for each node there
is a distinction between a bound b− : W → R+ for incoming communication and a
bound b+ : W → R+ for outgoing communication. Gupta et al. [9] proved that even
the TR problem is NP-hard for the VPN problem with asymmetric communication
bounds. However, the TR problem is solvable in polynomial time if b−(v) = b+(v)
for all v ∈ W . Italiano, Leonardi, and Oriolo [12] showed that this is true already
if
∑

v∈W b−(v) =
∑

v∈W b+(v). Gupta et al. [9] claimed that FR is co-NP-hard for
the asymmetric problem. The polynomial time algorithm for MPR by Erlebach and
Rüegg [6] has been derived for the asymmetric problem. Altin et al. [1] presented
an LP-formulation of the general asymmetric MPR VPN problem of polynomial size,
immediately implying polynomial solvability of this problem. Independently, we found
a similar formulation, which we present in a technical report [11]. The LP-formulation
in that report covers MPR-variants with four types of asymmetry: asymmetric bounds
(b−(v) 
= b+(v)), asymmetric costs (cuv 
= cvu), asymmetric routing, and asymmetric
communication scenarios (dij 
= dji). If b−(v) = b+(v) ∀v, and either cost or routing
is symmetric, then attention can be restricted to symmetric communication scenarios,
and Theorem 1.2 still holds. For symmetric routing this is easy to see. In section 6 of
[11] it is argued that allowing asymmetric routing under symmetric arc costs does not
yield any advantage; there is always an optimal LP-solution with symmetric routing
patterns.

As soon as both cost and routing are allowed to be asymmetric, Theorem 1.2 is
false, even for symmetric bounds: if we consider a (bidirected) circuit where clockwise
arcs have zero cost and counterclockwise arcs have cost 1, then buying all clockwise
arcs is cheaper than buying any tree.

Gupta et al. [9], Gupta, Kumar, and Roughgarden [10], and Eisenbrand et al. [4]
studied approximation algorithms for NP-hard versions of the VPN problem. More
hardness results appear in Chekuri et al. [2].

The challenge remains to prove or disprove that SPR is polynomially solvable on
any graph.

2. A linear programming formulation. Let G = (V,E) be a graph, W ⊆ V
a set of terminals, b : W → R+ communication (upper) bounds, and c : E → R+ unit
edge costs. To facilitate the exposition, we will regard b as a function on V rather
than on W , defining b(v) = 0 for v /∈ W , and simply identify W with the set of
vertices {v ∈ V | b(v) > 0}. Thus, the triple (G, b, c) defines an instance of the MPR
or SPR or TR problem. We also use the notation bv for b(v) and ce for c(e).

The set of all paths between vertices i and j in W is denoted by Pij . Let P =
∪{i,j}⊆WPij . We introduce the variable xp for each p ∈ P. In the SPR VPN problem
we are to select one path for each pair {i, j} of distinct nodes in W ; i.e., we are to
select values for the x-variables that satisfy

∑
p∈Pij

xp = 1 ∀{i, j} ⊆ W and xp ∈ {0, 1}
∀p ∈ P. In the MPR VPN problem values for xp are allowed to be fractional, ∀p ∈ P,
still satisfying

∑
p∈Pij

xp = 1 ∀{i, j} ⊆ W .
Once paths have been selected, i.e., values for xp, p ∈ P, have been set, the

computation of the capacity that has to be reserved on the edges, ze, e ∈ E, is
straightforwardly formulated in the following LP. Let αe

p = 1 if edge e is on path p,
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and 0 otherwise.

ze = max
∑

{i,j}⊆W

∑
p∈Pij

αe
pxpdij

s.t.
∑
j∈W

dij ≤ bi ∀ i ∈ W,

dij ≥ 0 ∀ {i, j} ⊆ W,

which, by strong duality, is equal to

ze = min
∑
i∈W

biy
e
i

s.t. yei + yej ≥
∑

p∈Pij

αe
pxp ∀ {i, j} ⊆ W,

yei ≥ 0 ∀ i ∈ W.

The MPR problem is to make a feasible choice for the variables xp such as to min-
imize total reservation costs

∑
e∈E ceze, which by the above duality can be formulated

as

min
∑
e∈E

ce
∑
i∈W

biy
e
i

s.t. yei + yej −
∑

p∈Pij

αe
pxp ≥ 0 ∀ {i, j} ⊆ W, ∀ e ∈ E,

∑
p∈Pij

xp = 1 ∀ {i, j} ⊆ W,

yei ≥ 0 ∀ i ∈ W, ∀ e ∈ E,

xp ≥ 0 ∀ p ∈ P.

(1)

In the SPR problem, of which MPR is the LP-relaxation, all variables xp are restricted
to be 0 or 1. The dual of MPR is given by

max
∑

{i,j}⊆W

μij

s.t.
∑
j∈W

λe
ij ≤ cebi ∀ i ∈ W, ∀ e ∈ E,

μij −
∑
e∈E

αe
pλ

e
ij ≤ 0 ∀ {i, j} ⊆ W, ∀ p ∈ Pij

λe
ij ≥ 0 ∀ {i, j} ⊆ W, ∀ e ∈ E.

(2)

At this point, let us note that the separation problem over the dual polytope can
be solved in polynomial time. There is only a polynomial number of constraints of
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the first type. For the second set of constraints, suppose we are given λe
ij ∀{i, j} ⊆

W, ∀e ∈ E, and μij ∀{i, j} ⊆ W . Take for any pair {i, j} ⊆ W the constraints
∀p ∈ Pij together. To check if they are satisfied is a matter of computing a shortest
path between i and j in W , where each edge e ∈ E has weight λe

ij . There are only
polynomially many i, j pairs in W .

It follows, using the ellipsoid method (see [8]), that MPR can be solved in poly-
nomial time, which was also proved in [6]. The formulation above, as well as the
formulation in [6], is not of polynomial size, however. As mentioned before, in [1]
and [11] LP-formulations are presented of the general asymmetric version of the MPR
VPN problem of polynomial size, immediately implying polynomial solvability of this
problem.

A possible economic interpretation of the dual is the following. Consider λe
ij

to be the price at which the competition of the current provider of the VPN offers
to accommodate all communication between i and j along (an alternative for) link
e. Evidently this price should be nonnegative, but in order to be competitive, it
should not be too high. Here, not too high means that

∑
j λ

e
ij should not exceed bice

because this is the maximum amount i is willing to pay for the use of this edge in all
his communication (given the prices ce of the current provider). Setting a price λe

ij

on edge e of course causes the pair {i, j} to choose the cheapest i–j path, with cost
μij , for their communication. Now, the optimum dual value is the maximum revenue
the competing provider can expect from accommodating this particular VPN.

We finish this section by investigating some properties of the problem. A tree
solution for the instance (G, b, c) is a solution to the TR problem with these param-
eters: a tree solution is a Steiner tree in G spanning the set of terminals W = {v ∈
V | b(v) > 0}, together with optimal capacity reservations on the edges of the tree.

By weak duality, and by OPT (MPR) ≤ OPT (TR), we have for any feasible
solution (λ, μ) to (2) that

∑
{i,j}⊆W μij is at most the cost of any tree solution. Thus,

the following conjecture is equivalent to the conjecture that OPT (MPR) = OPT (TR).
Conjecture 2.1. For any instance (G, b, c), the cost of an optimal tree solution

equals the value of an optimal solution of the dual problem (2).
In this paper, we will show that Conjecture 2.1 holds in several special cases, the

most important one being the case where G is a circuit, and b and c are arbitrary.
The next paragraph, which is essentially extracted from [9], summarizes how to

compute the cost of a given tree solution. Let (G, b, c) be given, and let W be the set
of terminals. We write b(U) for

∑
v∈U b(v), U ⊆ V . Given a tree T ⊆ E spanning

a vertex set V (T ) ⊇ W , a directed tree can be constructed by directing the edges
of T towards the lighter side: if Le and Re are the components of T − e, and if
b(Le) < b(Re), direct e towards Le; if b(Le) = b(Re), direct e away from some fixed
leaf l of the tree (the latter is a correction of what is written in [9]). This directed
tree has a unique vertex r of in-degree zero which is what we call a balance-point of
the tree: every edge in the directed tree is directed away from r. The cost of the tree
T is clearly equal to

(3)
∑
e

min{b(Le), b(Re)}c(e).

Another expression for the cost of the tree is given in the following proposition from
[9]. Here, we denote by dcG(u, v) the distance from u to v in a graph G with respect
to the length function c.

Proposition 2.2 (see [9]). Let G = (V,E), b : V → R+, c : E → R+ be given.
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Then the cost of an optimal tree solution T equals∑
v∈W

b(v)dcT (r, v)

for some balance-point r. This cost is bounded from below by
∑

v∈W b(v)dcG(r, v), and
bounded from above by

∑
v∈W b(v)dcT (u, v) for any u ∈ V (T ).

As a consequence, we have that an optimal tree solution can be found by comput-
ing a shortest path tree Tu from every vertex u ∈ V and taking the one with minimal
cost

∑
v∈W b(v)dcTu

(u, v) =
∑

v∈W b(v)dcG(u, v). Hence TR is solvable in polynomial
time.

3. The circuit. In this section, we prove Conjecture 2.1 for circuits, that is, we
prove Theorem 1.2. We will restrict ourselves to circuits G = (V,E) with |V | even
and b(v) = 1 ∀v ∈ V . To show that this is not an essential restriction, we prove a few
preliminary lemmas. Some of the results here will be used in section 4 as well.

Notice that, for a fixed graph G, the optimum values of the various (integer) LPs
are continuous functions in b and c. Hence, for proving the conjecture, we may restrict
ourselves to rational vectors b and c.

Lemma 3.1. Let G be a fixed graph. If for any rational-valued b and c the cost of
an optimal tree solution to (G, b, c) equals the value of an optimal dual solution, then
the same is true for any instance (G, b, c), where b and c are real-valued.

The next lemma claims that scaling of b or c is allowed when proving Conjecture
2.1.

Lemma 3.2. For any β ∈ R+, the instance (G, βb, c) has a feasible dual solution
of value βK if and only if the instance (G, b, c) has a feasible dual solution of value
K. Moreover, (G, βb, c) has a tree solution of cost βK if and only if (G, b, c) has a
tree solution of cost K. A similar statement holds if c is scaled instead of b.

Proof. Multiply all λ and μ values by β to obtain a feasible dual solution for the
scaled instance from a feasible dual solution of the original instance. The cost of any
tree changes by a factor β in the new situation as well (see (3) for the cost of a tree
solution).

The next lemma claims that edges of zero cost may be contracted or decontracted
when proving Conjecture 2.1. Contraction of e = {u′, v′}, by identifying the two
vertices u′ and v′ with one new vertex w′, transforms G into G/e = (V \ {u′, v′} ∪
{w′}, E′), with

E′ := {{u, v} ∈ E | {u, v} ∩ {u′, v′} = ∅} ∪ {{w′, v} | {u′, v} ∈ E, v 
= v′}
∪{{w′, v} | {v′, v} ∈ E, v 
= u′}.

By the contraction of e in the instance (G, b, c) we mean the instance (G′, b′, c′),
where G′ = G/e, b′(v) = b(v) for v 
= u′, v′, and b′(w′) = b(u′) + b(v′), and moreover
c′({u, v}) = c({u, v}) if w′ 
∈ {u, v} ∈ E′, and c′({w′, v}) = c({u′, v}) or c({v′, v}),
or both values occur, in case parallel edges arise (edges in G′ can be identified with
those in E \ {e}). We will denote this contraction (G′, b′, c′) by (G, b, c)/e.

Lemma 3.3. Let (G = (V,E), b, c) be an instance, where e ∈ E has c(e) = 0.
Then (G, b, c) has a feasible dual solution of value K if and only if the contraction
(G, b, c)/e has a feasible dual solution of value K. Moreover, (G, b, c) has an optimal
tree solution of cost K if and only if (G, b, c)/e has an optimal tree solution of cost
K.

Proof. For the proof of the first statement, consider a feasible dual solution
(λ, μ) for (G, b, c)/e. Then the dual solution (λ̂, μ̂) for (G, b, c), defined by λ̂e

ij := 0,
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λ̂f
ij := λf

ij , f 
= e, μ̂ij := μij , is evidently feasible too. Conversely, μ := μ̂, λf := λ̂f for

f 
= e also maintains feasibility, because each feasible dual solution (λ̂, μ̂) for (G, b, c)

has the property that 0 ≤ λ̂e
ij ≤ c(e)bi = 0. Solutions (λ, μ) and (λ̂, μ̂) have the same

value.
One implication of the second statement of the lemma is obvious: if we decontract

the edge e, we obtain from a tree solution in (G, b, c)/e of cost K a tree solution in
(G, b, c) of the same cost (see Proposition 2.2).

The other implication is also obvious if edge e is in an optimal tree solution for
(G, b, c), or if at most one of its end points is covered by the tree. The remaining
case is one in which the tree solution T = (V ′, E′) of cost K does not contain edge
e = {u, v}, but {u, v} ⊂ V ′, so contraction would lead to a cycle. Let T have balance-
point r, and let Tr be a shortest path tree rooted at r for the graph (V ′, E′ ∪ {e}),
which does contain e. Tr has tree cost Kr ≤ K. As T is optimal, Tr must also have
cost K. Contraction of e in Tr yields a tree solution for (G, b, c)/e of cost K.

The next lemma says that vertices with communication bound 0 and degree 2 in
an instance (G = (V,E), b, c) can be neglected when proving Conjecture 2.1. Suppose
v′ ∈ V has degree 2 in V , and e1 = {u, v′}, e2 = {v′, w} are the two edges incident
with v′. Let e3 := {u,w} be a new edge. Then shortcutting v′ in (G, b, c) results in the
instance (G′, b′, c′), where G′ = (V \ v′, E \ {e1, e2} ∪ {e3}), b′(v) = b(v) ∀v ∈ V \ v′,
and c′(e3) = c(e1) + c(e2), c

′(e) = c(e) ∀e ∈ E \ {e1, e2}.
Lemma 3.4. Let (G = (V,E), b, c) be an instance, and v ∈ V a vertex of degree

2 in G with b(v) = 0. Denote the instance obtained from (G, b, c) by shortcutting
v by (G′, b′, c′). Then (G′, b′, c′) has a feasible dual solution of value K if and only
if (G, b, c) has a feasible dual solution of value K. Moreover, (G′, b′, c′) has a tree
solution of cost K if and only if the same holds for (G, b, c).

Proof. For the first statement, consider the dual solution (λ, μ) for (G, b, c). Define

(λ̂, μ̂) by λ̂e3
ij := λe1

ij +λe2
ij , λ̂e

ij := λe
ij ∀e ∈ E \{e1, e2}, and μ̂ij = μij ∀{i, j} ⊆ W . For

feasible (λ, μ) this yields a feasible (λ̂, μ̂). Similarly, for a feasible dual solution (λ̂, μ̂)

for (G′, b′, c′), define a feasible (λ, μ) by taking, in particular, λe1
ij := λ̂e3

ij c(e1)/c
′(e3),

and λe2
ij := λ̂e3

ij c(e2)/c
′(e3). A tree solution for (G′, b′, c′) (not) using edge e3 can be

translated into a tree solution of the same cost for (G, b, c) (not) using both e1 and
e2, and vice versa.

We are now ready to justify that we restrict ourselves to even circuits in which
each vertex has communication bound 1 (an even circuit is a circuit with an even
number of vertices).

Lemma 3.5. If Conjecture 2.1 holds for every instance (G, b, c) where G is an
even circuit and b ≡ 1, then it holds for every instance (G, b, c) where G is a circuit
and b is arbitrary.

Proof. Consider a general circuit instance (G = Cn, b, c). From Lemma 3.4 we
know that without loss of generality b(v) > 0 for all nodes v. Lemma 3.1 implies
that we may assume that b is rational. Dividing b by gcd{ 1

2b(v) | v ∈ V } is allowed
by Lemma 3.2. So we may assume that each b(v) is a positive even integer. Finally,
by Lemma 3.3, any path u, v, w, for v with b(v) 
= 1, may be substituted by a path
u, v1, v2, . . . , vN , w, where N = b(v), setting b(v1) = · · · = b(vN ) = 1, and c({u, v1}) =
c({u, v}), c({vk, vk+1}) = 0, c({vN , w}) = c({v, w}). Thus, we arrive at an even circuit
with b ≡ 1.

3.1. The even circuit with unit bounds: Properties. Given an even circuit
G = C2n = (V,E) on which all vertices have communication bound 1, we number
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the vertices starting at some vertex and following the circuit in a counterclockwise
direction 0, 1, 2, . . . , 2n−1. All vertex and edge labels are taken modulo 2n. The edge
{i− 1, i} is denoted by ei, or by i in case it is used as an index and no confusion with
vertices is possible, i = 0, . . . , 2n − 1; e.g., we will write ck for the unit cost c(ek) of
edge ek. On even circuits each edge ek has an opposite edge ek+n.

The cost of the tree solution on the circuit obtained from deleting the edge ek is
denoted by C(ek; c); we explicitly indicate dependence on c as the unit cost function
of the edges, since we will use other unit cost functions later. Applying (3) yields

C(ek; c) =
∑n−1

i=1 i(ck−i+ck+i)+nck+n, which, by regrouping of terms, can be written
as

C(ek; c) =

k+n−1∑
j=k

j+n∑
i=j+1

ci =

k+n−1∑
j=k

H(j; c),(4)

where H(j; c) :=
∑j+n

i=j+1 ci is the so-called half-sum for vertex j, i.e., the sum of
the unit costs of the n edges on the path starting in j, going in a counterclockwise
direction, and ending with the edge opposite to ej . From this expression the following
equations are easily derived:

C(ek; c) − C(ek+1; c) = H(k; c) −H(k + n; c) ∀ k = 0, 1, . . . , 2n− 1;(5)

H(j; c) −H(j − 1; c) = cj+n − cj ∀ j = 0, 1, . . . , 2n− 1.(6)

Now suppose that the tree obtained by deleting edge ek has minimum cost among all
spanning trees of the circuit, in other words C(ek; c) = mine∈E C(e; c). Then, using
(5), we have

H(k; c) −H(k + n; c) = C(ek; c) − C(ek+1; c) ≤ 0,(7)

H(k − 1; c) −H(k + n− 1; c) = C(ek−1; c) − C(ek; c) ≥ 0.(8)

Subtracting (8) from (7) and applying (6) yields

2ck+n − 2ck = H(k; c) −H(k + n; c) −H(k − 1; c) + H(k + n− 1; c)
= 2C(ek; c) − C(ek+1; c) − C(ek−1; c) ≤ 0.

(9)

Consequently, if ck = 0, then ck+n = 0 and 2C(ek; c) − C(ek+1; c) − C(ek−1; c) = 0.
Hence,

ck = 0 ∧ C(ek; c) = mine∈E C(e; c) ⇒
C(ek+1; c) = C(ek−1; c) = C(ek; c) = mine∈E C(e; c),

(10)

i.e., if ek minimizes C(e; c) and ck = 0, then ek−1 and ek+1 also minimize C(e; c).
In the case of an even circuit with b ≡ 1, the constraints of the dual LP (2) reduce

to the following. (In a circuit there are only two possible paths between any pair of
vertices.) ∑

j∈V \{i}
λe
ij ≤ ce ∀ i ∈ V, ∀ e ∈ E,

μij ≤
j∑

l=i+1

λel
ij ∀ {i, j} ⊆ V,

μij ≤
i∑

l=j+1

λel
ij ∀ {i, j} ⊆ V,

λe
ij ≥ 0 ∀ {i, j} ⊆ V, ∀ e ∈ E.

(11)
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a

b

Fig. 1. Example of a singular subset, denoted by bold lines.

3.2. The even circuit with unit bounds: Proof. Given a cost function
c : E → R+, we call the set of edges with nonzero unit cost the support of c, i.e.,
supp(c) = {e ∈ E|ce > 0}. The following lemma is crucial to the main result.

Lemma 3.6. Let G = (V,E) = C2n be an even circuit, and let b ≡ 1. Let F be a
nonempty subset of E. Then there exist a nonnegative cost function ĉ : E → R+, not
identical to 0, with supp(ĉ) ⊆ F , and a constant K, such that ∀f ∈ F , K = C(f ; ĉ) =

mine∈E C(e; ĉ). Moreover, there is a dual solution (λ̂, μ̂) for the problem with cost
function ĉ, with value K.

Proof. The proof is by induction on |F |. The theorem is clearly true if |F | = 1.
For suppose F = {ek}. Then we can take ĉk = 1 and ĉi = 0 for other i. Clearly,

mine∈E C(e; ĉ) = C(ek; ĉ) = 0. A feasible dual solution with value 0 is λ̂e
ij = 0, μ̂ij = 0

∀e ∈ E, ∀{i, j} ⊆ V . For |F | > 1 we distinguish three cases.
Case 1. There exists a k such that ek ∈ F and its opposite ek+n ∈ F .
In this case we call the edge set F singular (see Figure 1).
Consider the cost function ĉ : E → R+ defined by ĉk = ĉk+n = 1 and ĉi = 0

otherwise. It satisfies C(e; ĉ) = n ∀e ∈ E. The following dual solution is feasible with
respect to this cost function ĉ (see (11)) and has objective value

∑
i<j μ̂ij = n:

λ̂ek
i,i+n := 1 ∀ i = 0, 1, . . . , n− 1,

λ̂
ek+n

i,i+n := 1 ∀ i = 0, 1, . . . , n− 1,

λ̂e
ij := 0 otherwise,

μ̂i,i+n := 1, i = 0, . . . , n− 1,

μ̂ij := 0 otherwise.

Case 2. F is not singular, and there exist k and m, k < m < k + n, such that
ek ∈ F , em ∈ F , el /∈ F ∀k < l < m, and el /∈ F ∀k + n ≤ l ≤ m + n.

See Figure 2 for an example, with e = ek and f = em.
We contract the edges ek, . . . , em to a new edge e′ = (k − 1,m), and the edges

ek+n, . . . , em+n to a new edge ē′ = (k − 1 + n,m + n), to arrive at a new even
cycle (V ′, E′), with |V ′| = |E′| = 2(n − m + k). We maintain the vertex la-
bels V ′ = {m,m + 1, . . . , k − 1 + n,m + n, . . . , k − 1}. The new edge set is E′ =
{em+1, . . . , ek−1+n, ē

′, em+n+1, . . . , ek−1, e
′}. Note that edges that were opposite be-

fore contraction remain opposite after contraction. Also, the new edges e′ and ē′ are
opposite.
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f

e

Fig. 2. Contracting the circuit to a smaller one.

Consider the subset of edges F ′ = F\{ek, em} ∪ {e′}. As 0 < |F ′| < |F |, we can
apply the induction hypothesis. Thus, there exist a cost function c′ : E′ → R+, not
identical to 0, with supp(c′) ⊆ F ′, a constant K ′ = mine∈E′ C(e; c′) = C(f ; c′) ∀f ∈
F ′, and a dual solution (λ, μ), with value K ′.

Since e′ is a minimizer of C(e; c′), using (9) and the fact that c′(ē′) = 0, we have

c′(e′) =
1

2
(H ′(m + n; c′) −H ′(m; c′)) +

1

2
(H ′(k − 1; c′) −H ′(k + n− 1; c′)),

where H ′(j; c′) is the half-sum for vertex j on the smaller, contracted, circuit with its
corresponding cost function c′. Now we define the cost ĉ : E → R+ from c′ as follows:

ĉm := 1
2 (H ′(m + n; c′) −H ′(m; c′)),

ĉk := 1
2 (H ′(k − 1; c′) −H ′(k + n− 1; c′)),

ĉi := c′i ∀ {i− 1, i} ∈ F, i 
= k,m,

ĉi := 0 ∀ {i− 1, i} ∈ E\F.

It follows from (7) and (8) that ĉm ≥ 0 and ĉk ≥ 0. Note that ĉk + ĉm = c′(e′) and

ĉk + H ′(k + n− 1; c′) = ĉm + H ′(m; c′) =
1

2

∑
e∈E′

c′e =
1

2

∑
f∈F ′

c′f

=
1

2

∑
f∈F

ĉ(f) =
1

2

∑
e∈E

ĉ(e).

Hence, for the half-sums in the larger circuit, we have

H(j; ĉ) = ĉm + H ′(m; c′) =
1

2

∑
e∈E

ĉ(e), j = k, . . . ,m− 1,

H(j; ĉ) = ĉk + H ′(k + n− 1; c′) =
1

2

∑
e∈E

ĉ(e), j = k + n, . . . ,m− 1 + n,

H(j; ĉ) = H ′(j; c′) otherwise.

Using this in (4) yields C(ek; ĉ) = C(em; ĉ), and C(ek; ĉ)−C(f ; ĉ) = C(e′; c′)−C(f ; c′)
∀f ∈ F ′ \ {e′}. Hence, C(f ; ĉ) = mine∈E C(e; ĉ) = K ∀f ∈ F , with K = K ′ + 1

2 (m−
k)

∑
e∈E ĉ(e).
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Fig. 3. Example of an edge set with alternating edges and opposites.

To define the feasible dual solution with value K we represent V as V = V ′∪Ve′ ∪
Vē′ , with Ve′ = {k, k+1, . . . ,m−1} and Vē′ = {k+n, k+n+1, . . . ,m+n−1}. Again

we construct the dual solution (λ̂, μ̂) for (V,E, ĉ) from the solution (λ, μ) associated
with (V ′, E′, c′):

λ̂e
ij := λe

ij for e ∈ F \ {ek, em}, {i, j} ⊆ V ′,

λ̂ek
ij :=

λe′

ij ĉk

c′(e′)
for {i, j} ⊆ V ′,

λ̂em
ij :=

λe′

ij ĉm

c′(e′)
for {i, j} ⊆ V ′,

λ̂e
ij := ĉ(e) for e ∈ E, i ∈ Ve′ , j = i + n,

λ̂e
ij := 0 otherwise,

μ̂ij := μij for {i, j} ⊆ V ′,

μ̂ij :=
1

2

∑
e∈E

ĉ(e) for i ∈ Ve′ , j = i + n,

μ̂ij := 0 otherwise.

Case 2 is settled by easy verification that (λ̂, μ̂) satisfies the dual constraints (11) and
has value∑

i,j∈V,i<j

μ̂ij =
∑

i,j∈V ′,i<j

μij +
∑
i∈Ve′

μ̂i,i+n = K ′ +
1

2
(m− k)

∑
e∈E

ĉ(e) = K.

Case 3. F is not singular, and Case 2 does not apply, meaning that between each
pair of consecutive edges from F , e and f say, there is exactly one opposite edge ḡ of
some edge g ∈ F .

See Figure 3 for an example.
Hence F consists of an odd number of edges, 2k + 1 say, such that these edges

and their opposites are perfectly alternating. As a consequence, an edge e ∈ F and its
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opposite ē split the other edges of F into two groups of size k. Therefore, we call this a
uniform configuration. Let F = {f0, f1, . . . , f2k}, with fi = (mi − 1,mi), and denote
the number of nodes between edge fi and fi+1 by νi, i.e., νi = mi+1 −mi modulo 2n.

We have that
∑2k

i=0 νi = 2n. Please note that from now on subscripts i for ν, f, etc.,
are taken modulo 2k + 1. Define

τi :=

k∑
j=0

νi+j −
2k∑

j=k+1

νi+j = 2(mi+k+1 −mi) mod 2n, i = 0, 1, . . . , 2k.

By uniformity,
∑k

j=0 νi+j >
∑2k

j=k+1 νi+j , whence τi > 0, i = 0, . . . , 2k. Notice that
1
2τi is equal to the number of nodes between f̄i and fi+k+1 (or equivalently between
fi and f̄i+k+1). Note that, by definition, νi+k = 1

2 (τi + τi+k). We propose the cost
function

ĉ(fi) :=
νi+k

τiτi+k
=

1

2

(
1

τi
+

1

τi+k

)
, i = 0, 1, . . . , 2k; ĉ(e) := 0, e /∈ F.

Observe the following identity: for i = 0, 1, . . . , 2k,

i+k∑
j=i

ĉ(fj) −
i+2k∑

j=i+k+1

ĉ(fj)

=

i+k−1∑
j=i

(ĉ(fj) − ĉ(fj+k+1)) + ĉ(fi+k)

=
1

2

⎛
⎝i+k−1∑

j=i

((
1

τj
+

1

τj+k

)
−
(

1

τj+k+1
+

1

τj

))
+

(
1

τi+k
+

1

τi+2k

)⎞⎠(12)

=
1

τi+k
> 0.

As a consequence, we have that consecutive edges from F yield the same cost, since

C(fi; ĉ) − C(fi+1; ĉ)

= C(fi; ĉ) − C(f̄i+k+1; ĉ) + C(f̄i+k+1; ĉ) − C(fi+1; ĉ)

=
1

2
τi(ĉ(fi+1) + · · · + ĉ(fi+k) − ĉ(fi+k+1) − · · · − ĉ(fi+2k+1))

+
1

2
τi+k+1(ĉ(fi+1) + · · · + ĉ(fi+k+1) − ĉ(fi+k+2) − · · · − ĉ(fi+2k+1))

=
1

2
τi

(
− 1

τi

)
+

1

2
τi+k+1

1

τi+k+1
= 0.

(13)

Using (10), we conclude that C(fi; ĉ) = mine∈E C(e; ĉ) ∀fi ∈ F .
We introduce the following entities to facilitate the exposition of the dual solution
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that we propose:

Λe
i :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

2

τi
νiνi+k

ĉ(e)

(
1 +

1

τi

1∑
j ĉ(fj)

)
if fi < e ≤ fi+k,

1

2

τi
νiνi+k

ĉ(e)

(
1 − 1

τi

1∑
j ĉ(fj)

)
if fi+k < e ≤ fi+2k+1.

Now we define the dual solution as

λ̂e
st :=

⎧⎨
⎩

Λe
i ∀ e ∈ E, ∀ i = 0, 1, . . . , 2k, ∀ s, t : mi ≤ s < mi+1,mi+k ≤ t < mi+k+1,

0 otherwise,

μ̂st :=
∑

e:s<e≤t

λ̂e
st ∀ {s, t} ⊆ V.

To verify feasibility of this solution, first notice that from (12) we have

0 <
1

τi+k

1∑
j ĉ(fj)

≤
∑i+k

j=i ĉ(fj)∑
j ĉ(fj)

≤ 1 ∀ i,

whence λe
uv ≥ 0 is satisfied ∀u, v ∈ V and ∀e ∈ E. Simple algebraic computations

show that, ∀e ∈ E, ∀i = 0, 1, . . . , 2k, and ∀s with mi ≤ s < mi+1,

mi+k+1−1∑
t=mi+k

λ̂e
st +

mi+k+2−1∑
t=mi+k+1

λ̂e
ts = νi+kΛ

e
i + νi+k+1Λ

e
i+k+1 ≤ ĉ(e).

Actually, the inequality is tight except for e = fi+k+1.
To show that (λ̂, μ̂) satisfies the second and third types of dual constraints in

(11), it suffices to show that the sum of λ̂-values over edges along the s–t path is

the same as the sum of λ̂-values over edges along the t–s path; i.e.,
∑

e:s<e≤t λ̂
e
st =∑

e:t<e≤s λ̂
e
st ∀s, t ∈ V . Clearly we need to show this only for pairs {s, t} with mi ≤

s < mi+1,mi+k ≤ t < mi+k+1 for some i. The claim follows straightforwardly from
the fact that the equality

(ĉ(fi+1) + · · · + ĉ(fi+k))

(
1 +

1

τi

1∑
f ĉ(f)

)

= (ĉ(fi+k+1) + · · · + ĉ(fi+2k+1))

(
1 − 1

τi

1∑
f ĉ(f)

)

is equivalent to the equality

1

τi

1∑
f ĉ(f)

(ĉ(fi+1) + · · · + ĉ(fi+k) + ĉ(fi+k+1) + · · · + ĉ(fi+2k+1))

= (ĉ(fi+k+1) + · · · + ĉ(fi+2k+1)) − (ĉ(fi+1) + · · · + ĉ(fi+k)),

which is evident, since the right-hand side equals 1
τi

by (12). This completes the
feasibility check.
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It remains to verify that
∑

{s,t}⊂V μ̂st = C(f0; ĉ). We use that C(f0; ĉ) =

C(fi; ĉ) ∀i = 0, 1, . . . , 2k implies that C(f0; ĉ) = 1
2k+1

∑2k
i=0 C(fi; ĉ). According to (4),

the half-sums that constitute the cost C(fi; ĉ) start in nodes j = mi, . . . ,mi + n− 1.
These starting nodes can be subdivided into 2k + 1 subsets: for j = i, . . . , i + k the
half-sums starting in the 1

2τj nodes between fj and f̄j+k+1 all have value
∑j+k

t=j+1 ĉ(ft),

whereas for j = i, . . . , i + k − 1 the half-sums starting in the 1
2τj+k+1 nodes between

f̄j+k+1 and fj+1 all have value
∑j+k+1

t=j+1 ĉ(ft). Altogether, the total cost is

1

2k + 1

2k∑
i=0

C(fi; ĉ) =
1

2k + 1

2k∑
i=0

⎛
⎝i+k−1∑

j=i

⎛
⎝1

2
τj

j+k∑
t=j+1

ĉ(ft) +
1

2
τj+k+1

j+k+1∑
t=j+1

ĉ(ft)

⎞
⎠

+
1

2
τi+k

i+2k∑
t=i+k+1

ĉ(ft)

⎞
⎠

=
2k∑
i=0

⎛
⎝1

2
τi

k + 1

2k + 1

i+k∑
j=i+1

ĉ(fj) +
1

2
τi+k+1

k

2k + 1

i+k+1∑
j=i+1

ĉ(fj)

⎞
⎠ .(14)

In turn, the value of the dual solution can be rewritten as

∑
{s,t}⊂V

μ̂st =

2k∑
i=0

νiνi+k

∑
e=fi+1,...,fi+k

Λe
i

=

2k∑
i=0

1

2
τi

⎛
⎝ i+k∑

j=i+1

ĉ(fj) +
1

τi

∑i+k
j=i+1 ĉ(fj)∑

f ĉ(f)

⎞
⎠

=
2k∑
i=0

1

2
τi

⎛
⎝ i+k∑

j=i+1

ĉ(fj) +
1

τi

k

2k + 1

⎞
⎠

=
2k∑
i=0

1

2
τi

⎛
⎝ i+k∑

j=i+1

ĉ(fj) +

⎛
⎝ i+2k+1∑

j=i+k+1

ĉ(fj) −
i+k∑

j=i+1

ĉ(fj)

⎞
⎠ k

2k + 1

⎞
⎠

=
2k∑
i=0

1

2
τi

⎛
⎝ k + 1

2k + 1

i+k∑
j=i+1

ĉ(fj) +
k

2k + 1

i+2k+1∑
j=i+k+1

ĉ(fj)

⎞
⎠ ,

which equals (14). This settles the proof of Case 3, and thereby the proof of the
lemma.

We are now ready to prove the main result of this section.
Theorem 3.7. Let G = (V,E) be an even circuit, let c : E → R+, and let

b(i) = 1 ∀i ∈ V . Then the cost of an optimal tree solution equals the value of an
optimal dual solution.

Proof. The proof is by induction on | supp(c)|. The theorem is clearly true if
| supp(c)| = 1, when deleting the only edge with positive unit cost yields a tree
solution with total cost 0. Setting all dual variables to 0 is feasible and yields value 0.

Now suppose | supp(c)| > 1. Lemma 3.6 (applied to F := supp(c)) tells us that
there exist a nonnegative nonzero cost function ĉ, such that C(f ; ĉ) = mine∈E C(e; ĉ)

∀f ∈ supp(c), and a dual solution (λ̂, μ̂) with respect to ĉ with the same objective
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value. Define cost vector c′ as c′ := c− σĉ, where σ is a scalar chosen such that c′ is
nonnegative and at least one f ∈ supp(c) has c′(f) = 0. Such a scalar exists, since
supp(ĉ) ⊆ supp(c) and supp(ĉ) 
= ∅.

Let C(e∗; c′) = mine∈E C(e; c′). By (10), we can assume that e∗ ∈ supp(c′) ⊂
supp(c). Since | supp(c′)| < | supp(c))|, the induction hypothesis may be applied to
c′, giving a feasible dual (λ′, μ′) with respect to c′ of value

∑
μ′
vw = C(e∗; c′). The

solution (λ, μ) := (λ′, μ′) + σ(λ̂, μ̂) is feasible with respect to c, as c = c′ + σĉ. Its
value is equal to C(e∗; c′) + σC(e∗; ĉ) = mine∈E C(e; c).

This theorem together with Lemma 3.5 implies our main result, Theorem 1.2.

4. Other cases where the conjecture holds. In this section, we present other
classes of instances of the VPN problem on which the Conjecture 2.1 holds, which is
equivalent to stating that OPT (TR) = OPT (MPR) on these instances. We will use
the shorthand notation cuv for c({u, v}).

We start with the observation that Conjecture 2.1 holds for trees. This is trivial,
since it is equivalent to the statement that OPT (TR) = OPT (MPR), which is trivially
true for trees. In fact, it is possible to construct, for any instance (G, b, c) where G is
a tree, an explicit dual (λ, μ) with value equal to the cost of the tree.

Indeed, denote the unique path in the tree G between two distinct vertices i, j ∈ V
by Pij . Let K be the cost of the tree G given by (3): K =

∑
e min{b(Le), b(Re)}c(e),

where Le and Re are the two components of G− e. Define the dual as follows:

λe
ij :=

b(i)b(j)

b(Le)b(Re)
min{b(Le), b(Re)}c(e) if |{i, j} ∩ Le| = 1,

λe
ij := 0 otherwise,

μij :=
∑
e∈Pij

λe
ij for {i, j} ⊆ V .

Then λ, μ is a feasible dual: for i ∈ Le we have

∑
j 	=i

λe
ij =

∑
j∈Re

b(i)b(j)

b(Le)b(Re)
min{b(Le), b(Re)}c(e)

=
b(i)

b(Le)
min{b(Le), b(Re)}c(e) ≤ c(e)b(i),

and similarly for i ∈ Re. Since there is only one path between any two vertices i and
j, the constraint for μ holds by definition. The value of this dual is, as required,∑

i,j

μij =
∑
e

∑
i,j:e∈Pij

λe
ij =

∑
e

min{b(Le), b(Re)}c(e) = K.

As we gather from the next lemma, for proving Conjecture 2.1, we may assume
that the graph G is complete, and that the cost function c is a metric (satisfies the
triangle inequality), i.e., cuw ≤ cuv + cvw for any three vertices u, v, and w.

An observation that we will use frequently is that for an instance (G, b, c), with G
complete and c a metric, an optimal tree solution T , with balance-point r, has cost (cf.
Proposition 2.2)

∑
v∈V b(v)dcT (r, v), which is equal to the cost of the star subgraph

centered at r. Thus, such instances always have a star as an optimal tree solution.
Lemma 4.1. Let G = (V,E), b : V → R+, c : E → R+ be given. Let H = (V, F )

be the complete graph on V . Define c′({u, v}) for {u, v} ∈ F as the length of a shortest
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path between u and v with respect to the length function c. If Conjecture 2.1 is true
for the instance (H, b, c′) and the optimal tree solution has value K, then it is also
true for the instance (G, b, c) with the same optimal tree solution value K.

Proof. A dual solution (λ, μ) which is feasible for c′ and F is also feasible for c
and E, since c′e ≤ ce ∀e ∈ E. Take an optimal tree solution S for (H, b, c′), having
balance-point r and cost

∑
v∈V b(v)dc

′

S (r, v). As argued above we may assume that S
is a star centered at r. Replacing the star S by a shortest path tree T (with respect
to c) rooted at r, we obtain

∑
v b(v)d

c
T (r, v) =

∑
v b(v)d

c′

S (r, v).
The next lemma is in itself not very significant, but the result allows for developing

further proof tools presented directly hereafter.
Lemma 4.2. For any instance (G = (V,E), b, c) such that r ∈ V exists with

b(r) ≥
∑

v 	=r b(v), the cost of an optimal tree solution equals the value of an optimal
dual solution.

Proof. By Lemma 4.1, we may assume that G is complete, and that c is metric,
whence a star S is an optimal tree solution. The cost of the star centered at r is at
most the cost of any other star. Indeed, by Proposition 2.2, the star centered at s 
= r
has cost ∑

v 	=s

b(v)csv = b(r)csr +
∑

s 	=v 	=r

b(v)csv

≥
∑
v 	=r

b(v)csr +
∑

s 	=v 	=r

b(v)csv

= b(s)csr +
∑

s 	=v 	=r

b(v)(csr + csv)

≥ b(s)csr +
∑

s 	=v 	=r

b(v)crv

=
∑
v 	=r

b(v)crv,

where the first inequality holds by assumption and the second one by the triangle
inequality. Therefore, the cost of an optimal tree solution is

∑
v 	=r b(v)crv.

Define λ and μ as

λe
rv := ceb(v) for v 
= r and e ∈ E,

λe
uv := 0 for u 
= r 
= v and e ∈ E,

μrv := crvb(v) for v 
= r,

μuv := 0 for u 
= r 
= v.

Using the assumption of the lemma and the triangle inequality, it is not hard to
check that (λ, μ) is feasible for (2) the dual of MPR and has value

∑
uv∈F μuv =∑

v 	=r crvb(v).
The next lemma shows that the property that Conjecture 2.1 holds is preserved

under taking 1-sums. A 1-sum of two graphs is the graph obtained by identifying a
vertex of one graph with a vertex of the other graph. More precisely, let G1 = (V1, E1)
and G2 = (V2, E2) be disjoint graphs, take any v1 ∈ V1 and v2 ∈ V2 and identify
them, creating a vertex z, which is then the only vertex common to V1 and V2, i.e.,
V1∩V2 = {z}. The 1-sum of G1 and G2 in z is then the graph G = (V1∪V2, E1∪E2).
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Lemma 4.3. Let G = (V,E) be the 1-sum of G1 = (V1, E1) and G2 = (V2, E2) in
a vertex z. Then, for any b : V → R+ and c : E → R+, the cost of an optimal tree
solution equals the value of an optimal dual solution for (G, b, c) if the same holds for
(G1, b1, c1) for every b1 : V1 → R+, and for (G2, b2, c2) for every b2 : V2 → R+, where
ci denotes the restriction of c to Ei, i = 1, 2.

Proof. Define Bi := b(Vi) for i = 1, 2. Then without loss of generality, B1 ≤ B2.
Consider the instance (G1, b1, c1) with b1(z) = B2 and b1(v) = b(v), v ∈ V1 − z.
For this instance z is a dominant vertex in the sense of Lemma 4.2 and therefore
the shortest path tree T1 rooted at z is a tree solution of minimum cost K1 :=∑

v∈V1
b1(v)d

c1
T1

(z, v). Similarly, consider the instance (G2, b2, c2) with b2(z) = B1

and b2(v) = b(v), v ∈ V2 − z. This instance has a tree solution T2 of minimum cost
K2, which is a shortest path tree with respect to c2 as length function on the edges,
rooted at some r ∈ V2 (not necessarily r = z this time). Now, remembering (3), it
is easy to see that T := T1 ∪ T2 is a tree solution of (G, b, c), rooted at r, with cost
K1 + K2.

Next, we show that a feasible dual solution for (G, b, c) exists with value K1 +K2.
We use the fact that a feasible dual solution λi, μi of value Ki exists for (Gi, bi, ci),
i = 1, 2. Define

λe
st :=

b(t)

B2
λ1,e
sz for s ∈ V1 − z, t ∈ V2, and e ∈ E1,

λe
st :=

b(s)

B1
λ2,e
zt for s ∈ V1, t ∈ V2 − z, and e ∈ E2,

λe
st := λ1,e

st for s, t ∈ V1 − z, e ∈ E1,

λe
st := λ2,e

st for s, t ∈ V2 − z, e ∈ E2,

λe
st := 0 otherwise,

μst := μ1
st for s ∈ V1 − z, t ∈ V1 − z,

μst := μ2
st for s ∈ V2 − z, t ∈ V2 − z,

μst :=
b(t)

B2
μ1
sz +

b(s)

B1
μ2
zt for s ∈ V1, t ∈ V2 (where μ1

zz := 0 =: μ2
zz).

We verify feasibility for s ∈ V1 − z, e ∈ E1, using that
∑

t∈V2

b(t)
B2

= 1,

∑
t	=s

λe
st =

∑
t∈V1−z−s

λ1,e
st +

∑
t∈V2

b(t)

B2
λ1,e
sz =

∑
t∈V1−s

λ1,e
st ≤ c1(e)b1(s),

and similarly for s ∈ V2 − z, e ∈ E2. For s ∈ V1, e ∈ E2 we verify

∑
t	=s

λe
st =

∑
t∈V2−z

b(s)

B1
λ2
zt(e) ≤

b(s)

B1
b2(z)c2(e) = b(s)c(e),

and we do similarly for s ∈ V2, e ∈ E1. The definition of μ is exactly such that it
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satisfies the constraints for μ in (2). Finally, we have

∑
s,t

μst =
∑

s,t∈V1−z

μ1
st +

∑
s,t∈V2−z

μ2
st +

∑
s∈V1−z

∑
t∈V2

b(t)

B2
μ1
sz +

∑
s∈V1

∑
t∈V2−z

b(s)

B1
μ2
zt

=
∑

s,t∈V1−z

μ1
st +

∑
s,t∈V2−z

μ2
st +

∑
s∈V1−z

μ1
sz +

∑
t∈V2−z

μ2
zt

=
∑

s,t∈V1

μ1
st +

∑
s,t∈V2

μ2
st = K1 + K2.

As a corollary of this lemma we obtain that Conjecture 2.1 holds for graphs in
which each block (defined below) is an edge or a circuit. This gives a slight extension of
Theorem 1.2. We use the following definitions. The connectivity of a graph G = (V,E)
is the minimum size of a subset U of V for which G− U is not connected. If no such
U exists (or, equivalently, if G is complete), then the connectivity is ∞. A graph
is k-connected if its connectivity is at least k. Now, a k-connected component of a
graph G = (V,E) is an inclusion-wise maximal subset U of V for which G[U ] (the
subgraph of G induced by the vertices in U) is k-connected. A block is a 2-connected
component U with |U | ≥ 2. We identify the blocks of a graph with the subgraphs
they induce. A connected graph may be obtained from its blocks by taking repeated
1-sums.

Theorem 4.4. If G is a graph in which each block is an edge or a circuit, then
the cost of an optimal tree solution equals the value of an optimal dual solution for
any instance (G, b, c).

Proof. We obtain the proof directly from Theorem 1.2, from the fact that Con-
jecture 2.1 holds for trees, and from Lemma 4.3, since G is a 1-sum of edges (a special
kind of trees) and circuits.

Note that the class of graphs described in the above theorem contains those graphs
that are often referred to in the network literature as “trees of rings” (see [5]).

The next lemma says that if Conjecture 2.1 holds for an instance, it still holds if
we add edges to the graph with cost equal to the length of a shortest path between
their end points. It provides a kind of converse to Lemma 4.1.

Lemma 4.5. Suppose for the instance (G = (V,E), b, c) a tree solution of cost K
and a feasible dual solution of value K exist, and suppose f := {s, t} /∈ E for s, t ∈ V .
Let the instance (G′, b, c′) be defined by G′ := (V,E ∪ {s, t}), c′(e) = c(e), e ∈ E,
and c′(f) = dcG(s, t). Then (G′, b, c′) has a tree solution of cost K and a feasible dual
solution of value K.

Proof. A tree solution for (G, b, c) is also a tree solution for (G′, b, c′), of the
same cost. Moreover, suppose (λ, μ) is a feasible dual solution for (G, b, c) of value
K =

∑
u,v μuv. Let Pst be a shortest s–t path in G with respect to the length function

c. Define, ∀u, v ∈ V , λ̂f
uv :=

∑
e∈Pst

λe
uv. Set λ̂e

uv = λe
uv ∀u, v ∈ V, e ∈ E, and μ̂ := μ.

Then (λ̂, μ̂) is a feasible dual solution for (G′, b, c′) of value K. Indeed,∑
j 	=i

λ̂e
ij =

∑
j 	=i

λe
ij ≤ c(e)b(i) = c′(e)b(i) ∀ i ∈ W, ∀ e ∈ E,

∑
j 	=i

λ̂f
ij =

∑
j 	=i

∑
e∈Pst

λe
ij =

∑
e∈Pst

∑
j 	=i

λe
ij ≤

∑
e∈Pst

c(e)b(i) = dcG(s, t)b(i) = c′(f)b(i).

We call c a circuit metric if it satisfies the triangle inequality, and every edge
outside some Hamilton circuit has cost equal to the length of a shortest path, along
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the circuit, between its end points. From the above lemma together with Theorem
1.2 it follows that Conjecture 2.1 holds if the cost function c on the graph is a circuit
metric.

For the remaining results in this section, we rephrase our conjecture as follows.
Let Φ(b, c) denote the minimum value of the LP-formulation (1) of the MRP VPN
problem as a function of b and c. It is easy to see that Φ is concave in c for fixed b,
and concave in b for fixed c. For instance, fix b, and let c, c̄, and ĉ = λc+ (1− λ)c̄ be
cost functions for some λ ∈ (0, 1). Let (x, y), (x̄, ȳ), and (x̂, ŷ) denote the respective
optimal solutions to Φ(b, c), Φ(b, c̄), and Φ(b, ĉ). Then Φ(b, ĉ) =

∑
biĉeŷ

e
i = λ

∑
biceŷ

e
i

+ (1 − λ)
∑

bic̄eŷ
e
i ≥ λ

∑
bicey

e
i + (1 − λ)

∑
bic̄eȳ

e
i = λΦ(b, c) + (1 − λ)Φ(b, c̄). By

Lemma 4.1, we may assume that the graph is complete and the cost function c is a
metric. As argued before, an optimal star solution is an optimal tree solution for such
instances. If it has nonzero cost, then by scaling the cost function c (Lemma 3.2),
it is always possible to arrive at an instance with an optimal star solution of cost 1.
Therefore, Conjecture 2.1 is true if for every complete graph G = (V,E) the minimum
over all b and c of Φ(b, c) in the following optimization problem is at least 1:

minb,c Φ(b, c)

s.t. bv ≥ 0 ∀ v ∈ V,

∑
v 	=s

bvcsv ≥ 1 ∀ s ∈ V,

ce ≥ 0 ∀ e ∈ E,

cuw ≤ cuv + cvw ∀ u, v, w ∈ V.

(15)

For fixed c, the constraints are linear, and the feasible region for b over which we
minimize the concave function Φ(b, c) is therefore polyhedral. Hence, for fixed c, the
minimum is attained in a vertex of the polyhedron determined by (15). Similarly, for
fixed b the minimum of Φ(b, c) is attained in a vertex of the polyhedral feasible region
for c.

We will prove that Conjecture 2.1 holds for graphs on at most 4 vertices, by
proving that it holds when b is fixed, for all vertices c of (15) for such a graph.

Theorem 4.6. For any instance (G = (V,E), b, c) with |V | ≤ 4, the cost of an
optimal tree solution equals the value of an optimal dual solution.

Proof. We assume that c is a metric. For a graph on 3 or fewer vertices, c is
necessarily a circuit or tree metric, and the conjecture holds by Theorem 1.2 and
Lemma 4.5. Since we may assume that the graph is complete, it suffices to prove the
theorem for G = K4. Therefore, interpreted as vectors, we have b ∈ R

4
+ and c ∈ R

6
+.

We may also assume that c > 0, since otherwise applying Lemma 3.3 would bring
us back to the case of a graph with 3 vertices. In the case of K4, there are 4 constraints
in (15) saying that every star solution has cost at least 1, 12 triangle inequalities, and
10 nonnegativity constraints. For fixed b ≥ 0 (chosen such that there exists at least
one nonzero metric c such that the optimal star solution has cost 1), the polyhedron
of feasible c-vectors has vertices, in which 6 linearly independent constraints for c are
tight. Since c > 0, in any vertex of this polyhedron at least 2 triangle inequalities are
tight. We distinguish 4 cases.

Case 1. There are two tight triangle inequalities on the same triangle.
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That is, possibly after renaming the vertices, we have c12 = c13 + c23 and c13 =
c12 + c23. Hence, c23 = 0, contradicting our assumption that c > 0.

Thus, triangle inequalities can be tight only on distinct triangles. In K4, any two
distinct triangles intersect in exactly one edge. Suppose from now on that the two
triangles with tight triangle inequalities are {1, 2, 3} and {2, 3, 4}, sharing the edge
{2, 3}.

Case 2. The common edge and one of the other edges give the tight inequalities.
That is, possibly after renaming the vertices, we have c12 = c13 + c23 and c23 =

c24 + c34. Inserting the latter in the former equality yields c12 = c13 + c24 + c34. This
together with c12 ≤ c14 + c42 ≤ c13 + c34 + c42 yields c14 = c13 + c34. This means that
c is a tree metric completely determined by its value on only the edges {1, 3}, {2, 4},
and {3, 4}. Since Conjecture 2.1 is true for trees, by Lemma 4.5 it is also true for K4

in this case.
Case 3. Two noncommon edges give the tight inequalities.
That is, possibly after renaming the vertices, we have that c12 = c13 + c23 and

c24 = c23 + c34 or c12 = c13 + c23 and c34 = c23 + c24. In the latter case, c is a
circuit metric, completely determined by its value on the edges {2, 3}, {1, 3}, {1, 4},
and {2, 4}; the result follows from Theorem 1.2, using Lemma 4.5. In the former case,
c is determined by its value on the edges {1, 3}, {2, 3}, {1, 4}, {3, 4}, and hence is a
tree plus edge metric; the result follows from Theorem 4.4, using Lemma 4.5.

Case 4. The common edge gives both tight inequalities.
That is, c23 = c12+c13 and c23 = c24+c34. If any of the other triangle inequalities

is also tight, we are back in one of the previous cases. So we may assume that the
set of six linearly independent tight constraints consists of the above two triangle
inequalities together with all four star-inequalities. Hence, the stars centered at the
four different vertices all have the same cost of 1, which together with the tight triangle
inequalities yields

b2c12 + b3c13 + b4c14 = 1,

b1c12 + b3c23 + b4c24 = 1,

b1c13 + b2c23 + b4c34 = 1,

b1c14 + b2c24 + b3c34 = 1,

c23 − c12 − c13 = 0,

c23 − c24 − c34 = 0.

The determinant of the matrix of coefficients of the above set of 6 equations is
2b1b4(b3 − b2)(b1 + b2 + b3 + b4). As the equations are linearly independent, this
determinant is nonzero. This implies that the system has a unique solution for c.
Straightforward calculations yield

c13 + c34 − c14 =
(b1 − b2 + b3 − b4)(b3 − b1 − b2 + b4)(b1 − b2 + b3 + b4)

2(b3 − b2)b1b4(b1 + b2 + b3 + b4)

and

c12 + c24 − c14 =
(b3 − b1 − b2 − b4)(b1 − b2 + b3 − b4)(b3 − b1 − b2 + b4)

2(b3 − b2)b1b4(b1 + b2 + b3 + b4)
.

Since both expressions are strictly positive (no more triangle inequalities are tight),
their ratio is also positive:

b1 − b2 + b3 + b4
b3 − b1 − b2 − b4

> 0.
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Thus, either b1 − b2 + b3 + b4 and b3 − b1 − b2 − b4 are both positive or they are both
negative. In the former case b3 > b1 + b2 + b4, in the latter case b2 > b1 + b3 + b4. In
either case, there is a dominant vertex, and the result follows from Lemma 4.2.

Conjecture 2.1 also holds if G is a complete graph, and the unit cost of all edges
is the same.

Theorem 4.7. For any instance (G, b, c) with G a complete graph and c(e) = 1
∀e ∈ E, the cost of an optimal tree solution equals the value of an optimal dual
solution.

Proof. Since c ≡ 1, c satisfies the triangle inequality, but no triangle inequality
is tight. We may assume that b is such that the cost of an optimal tree solution is
greater than zero. Then, by scaling b instead of c (Lemma 3.2), it is still possible to
arrive at a situation where the star-solution of minimal cost has a cost of 1. Thus,
we study the minimization problem (15) for fixed c. The minimum is attained in a
vertex of the polyhedron in R

|V | determined by

bv ≥ 0 ∀ v ∈ V,

∑
u 	=v

bu ≥ 1 ∀ v ∈ V.
(16)

In a vertex of this |V |-dimensional polyhedron, |V | independent inequalities are
tight. Choose a vertex minimizing Φ(b, 1) over (16). Suppose that in this vertex
some subsets U ⊂ V and W ⊂ V with |U | + |W | = |V | correspond to the |V | tight
inequalities:

bv = 0 ∀ v ∈ U,

∑
u∈V

bu − bv = 1 ∀ v ∈ W.

We will argue that we may assume that U ∩W = ∅. For any v ∈ |U ∩W |, we have
bv = 0 and

∑
u∈V bu − bv = 1, together implying that

∑
u∈V bu = 1 and therefore∑

u∈V bu − bw ≤ 1 for any w ∈ V . This enforces bw = 0 ∀w ∈ V , which is infeasible.
Thus, U ∩W = ∅. Since

∑
u∈V bu − 1 is a constant, bv is a constant, b say, for

every v ∈ W . Feasibility for (16) requires that |W | > 1. We will explicitly construct
a tree solution of minimum cost and a dual solution of the same value.

As argued before, since c satisfies the triangle inequality, there exists a star that
is an optimal tree solution. The star centered at a vertex v with bv = 0 has cost |W |b,
whereas the star centered at a vertex v with bv = b has cost (|W | − 1)b. Thus, any
star centered at a vertex of W is an optimal tree solution of cost (|W | − 1)b. Define
the following:

λe
st :=

2b

|W | if bs = bt = b and e = {s, t},

λe
st :=

b

|W | if bs = bt = b and e 
= {s, t},

λe
st := 0 if bs = 0 or bt = 0,

μst :=
2b

|W | if bs = bt = b,

μst := 0 if bs = 0 or bt = 0.
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It is not hard to check that (λ, μ) is feasible and has value

∑
s,t

μst =
|W |(|W | − 1)

2
· 2b

|W | = (|W | − 1)b.

For completeness, we now formulate the most general statement that we can
obtain by combining all the results in this section.

Theorem 4.8. Suppose G = (V,E) is a connected graph and c ∈ R

|E|
+ is a cost

function such that every block H = (V ′, E′) of G endowed with the cost function c|E′

is either a circuit, a graph on at most 4 vertices, or a complete graph with uniform
edge costs. Then the cost of an optimal tree solution equals the value of an optimal

dual for the instance (G, b, c) for any b ∈ R

|V |
+ .

Proof. The theorem follows directly from Theorems 1.2, 4.6, and 4.7 and Lemma
4.3, since G can be obtained from its blocks by taking repeated 1-sums.

Note that Theorem 4.8 extends Theorem 4.4, since edges are complete graphs for
which any cost function is uniform.
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Abstract. The concept of a jump system, introduced by Bouchet and Cunningham [SIAM J.
Discrete Math., 8 (1995), pp. 17–32], is a set of integer points with a certain exchange property. In
this paper, we discuss several linear and convex optimization problems on jump systems and show
that these problems can be solved in polynomial time under the assumption that a membership
oracle for a jump system is available. We first present a polynomial-time implementation of the
greedy algorithm for the minimization of a linear function. We then consider the minimization
of a separable-convex function on a jump system and propose the first polynomial-time algorithm
for this problem. The algorithm is based on the domain reduction approach developed in Shioura
[Discrete Appl. Math., 84 (1998), pp. 215–220]. We finally consider the concept of M-convex functions
on constant-parity jump systems which has been recently proposed by Murota [SIAM J. Discrete
Math., 20 (2006), pp. 213–226]. It is shown that the minimization of an M-convex function can be
solved in polynomial time by the domain reduction approach.
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1. Introduction. The concept of a jump system, introduced by Bouchet and
Cunningham [7], is a set of integer points with a certain exchange property (to be
described in section 2); see also [9, 13, 18]. It is a generalization of a matroid [17,
24, 27], a delta-matroid [6, 8], and the base polyhedron of an integral polymatroid
(or a submodular system) [11, 24, 27]. Jump systems have various examples (see
[7, 9, 13, 18]); in particular, the degree sequences of subgraphs of a graph are a
fundamental example of jump systems. In this paper, we investigate the following
linear and convex optimization problems on jump systems:
(LFMin) minimization of a linear function on a jump system,
(ScFMin) minimization of a separable-convex function on a jump system,
(McFMin) minimization of an M-convex function on a constant-parity jump system.

The main aim of this paper is to show that these problems can be solved in polynomial
time under the assumption that a membership oracle for a jump system is available.

1.1. Linear optimization on jump systems. We discuss the greedy algorithm
for the problem (LFMin) in section 3. It is shown [7] (see also [9, 13, 18]) that the
problem (LFMin) can be solved by a greedy algorithm. The greedy algorithm finds an
optimal solution by iteratively calling a procedure for solving a problem of minimizing
(or maximizing) some component of a vector on a jump system. However, the time
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complexity of the greedy algorithm is not analyzed in [7, 9, 13, 18], and it is not
known so far whether the greedy algorithm runs in polynomial time or not, provided
a membership oracle for a jump system is available.

In this paper, we show that the greedy algorithm runs in polynomial time. In
particular, we present an implementation of the procedure mentioned above and prove
that the procedure runs in polynomial time.

1.2. Convex optimization on jump systems. In section 4, we consider two
convex optimization problems (ScFMin) and (McFMin) and propose polynomial-time
algorithms for these problems.

We first consider the problem (ScFMin) in section 4.1. A canonical example
of this problem arises from the minimization of a separable-convex function on the
degree sequences of an undirected graph; a related problem called the minsquare
factor problem is discussed in [4, 5]. The problem (ScFMin) is studied in [3], where
a local criterion for optimality, as well as a greedy algorithm, is given. Although it is
shown that the greedy algorithm runs in pseudopolynomial time, it is not known so
far whether the problem (ScFMin) can be solved in polynomial time.

On the other hand, some special cases of (ScFMin) can be solved in polynomial
time. One such case is the problem on integral base polyhedra, which is extensively
discussed and for which several efficient algorithms have been proposed [14, 15, 20].
Another well-solved case is the problem on integral bisubmodular polyhedra, to which
Fujishige [10] applied a min-max theorem for bisubmodular polyhedra and developed
a polynomial-time algorithm.

In this paper, we present the first polynomial-time algorithm for the problem
(ScFMin). Our algorithm is based on the domain reduction approach [25], which was
originally developed for the minimization of a class of discrete convex functions called
M-convex functions on base polyhedra [21]. One of the key properties to the domain
reduction approach is the “minimizer cut property,” which states that a given feasible
vector can be easily separated from an optimal solution. We show that the minimizer
cut property indeed holds for the problem (ScFMin). By repeatedly applying the
minimizer cut property to appropriately chosen feasible vectors, we show that the
algorithm finds an optimal solution in polynomial time.

We then discuss in section 4.2 an application of our algorithm to the problem of
finding least weakly sub- and supermajorized elements. The concept of (weak) ma-
jorization plays a fundamental role in fair resource allocation and related problems
(see [19]), and it is shown that any jump system has least weakly sub- and super-
majorized elements [1]. By using our algorithm as well as the result in [1], we show
that the problem of finding least weakly sub- and supermajorized elements in jump
systems can be solved in polynomial time.

We finally consider the problem (McFMin) in section 4.3. The concept of M-
convex functions was originally introduced by Murota [21] for functions defined on
base polyhedra and recently generalized for functions defined on constant-parity jump
systems [22], with a view to providing a general framework for the minsquare factor
problem on undirected graphs [4, 5]. Examples of M-convex functions on constant-
parity jump systems include a nonseparable-convex function arising from the mini-
mum weight perfect b-matching problem as well as a separable-convex function on the
degree sequences of an undirected graph (see section 2). Fundamental properties of
M-convex functions on constant-parity jump systems are investigated in [16, 22, 23],
where it is shown that a local optimality criterion guarantees global optimality and
that a greedy algorithm solves the problem (McFMin) in pseudopolynomial time.
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In this paper, we present the first polynomial-time algorithm for the problem
(McFMin), which is also based on the domain reduction approach. In fact, the min-
imizer cut property for (McFMin) is already shown in [23]. By using this fact, we
show that a variant of the polynomial-time algorithm for (ScFMin) finds an optimal
solution of (McFMin) in polynomial time.

2. Preliminaries on jump systems. Let V be a nonempty finite set and put
n = |V |. We denote the set of reals and integers by R and Z, respectively. Also, we
denote by Z+ the set of nonnegative integers. For x = (x(v) | v ∈ V ) ∈ R

V , we define

x(Y ) =
∑
v∈Y

x(v) (Y ⊆ V ), ‖x‖1 =
∑
v∈V

|x(v)|, supp(x) = {v ∈ V | x(v) �= 0}.

We denote by 0 the zero vector in R

V . For u ∈ V we denote by χu the characteristic
vector of u, with χu(u) = 1 and χu(v) = 0 for v �= u. We denote by N1 the set of
all integral vectors x with ‖x‖1 = 1, i.e., N1 = {+χv,−χv | v ∈ V }. For a nonempty
finite set S ⊆ Z

V , we define the size Φ(S) of S by

Φ(S) = max
v∈V

{
max
y∈S

y(v) − min
y∈S

y(v)
}
.

For x, y ∈ Z

V , a vector s ∈ N1 is said to be an (x, y)-increment if it satisfies
‖(x+ s)− y‖1 = ‖x− y‖1 − 1. We denote by inc(x, y) the set of all (x, y)-increments.
A nonempty set J ⊆ Z

V is said to be a jump system if it satisfies the exchange axiom

(J-EXC0) For any x, y ∈ J and for any s ∈ inc(x, y), if x + s /∈ J ,
then there exists t ∈ inc(x + s, y) such that x + s + t ∈ J .

A set J ⊆ Z

V is said to be a constant-parity system if x(V ) − y(V ) is even for any
x, y ∈ J .

We mention here some elementary operations which preserve the property (J-
EXC0). Jump systems are closed under reflection.

Proposition 2.1 (see [7]). Let J ⊆ Z

V be a jump system and u ∈ V . Then, the
set

Ju = {y ∈ Z

V | ∃x ∈ J such that y(u) = −x(u), y(v) = x(v) (v ∈ V \ {u})}

is a jump system.

For any vectors a, b ∈ Z

V with a ≤ b, we define a box [a, b] by

[a, b] = {x ∈ Z

V | a(v) ≤ x(v) ≤ b(v) (v ∈ V )}.

Proposition 2.2 (cf. [7]). Let J ⊆ Z

V be a jump system and a, b ∈ Z

V be
vectors with a ≤ b. Then, J ∩ [a, b] is a jump system if it is nonempty.

A univariate function ϕ : Z → R is convex if it satisfies

2ϕ(α) ≤ ϕ(α− 1) + ϕ(α + 1) (∀α ∈ Z).

A function f : Z

V → R is said to be separable-convex if it is a function of the form
f(x) =

∑
v∈V fv(x(v)) with univariate convex functions fv : Z → R (v ∈ V ). The

sum of squares f(x) =
∑

v∈V (x(v))2 is a special case of a separable-convex function.
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Let J ⊆ Z

V be a constant-parity jump system. A function f : J → R is said to
be M-convex if it satisfies the following property:

For any x, y ∈ J and for any s ∈ inc(x, y), there exists t ∈ inc(x+s, y)
such that x + s + t ∈ J , y − s− t ∈ J , and

f(x) + f(y) ≥ f(x + s + t) + f(y − s− t).

We note that the exchange axiom

(J-EXC) For any x, y ∈ J and for any s ∈ inc(x, y), there exists
t ∈ inc(x + s, y) such that x + s + t ∈ J and y − s− t ∈ J

characterizes a constant-parity jump system, a fact credited to J. Geelen (see [22] for
a proof).

Proposition 2.3. A nonempty set J ⊆ Z

V is a constant-parity jump system if
and only if it satisfies (J-EXC).

Examples of jump systems and M-convex functions follow.
Example 2.4. Let G = (V,E) be an undirected graph that may contain loops

and parallel edges. For a subgraph H = (V, F ) of G, denote its degree sequence by
degH =

∑
{χu + χv | (u, v) ∈ F} ∈ Z

V . It is well known [7, 9, 13, 18] that

J = {degH | H is a subgraph of G}

forms a constant-parity jump system, called the degree system of G. Minimization of
a separable-convex function on the degree system J has been investigated in [4, 5].

Given an edge weight function w : E → R, we define a function f : J → R by

f(x) = min

{∑
e∈F

w(e) | H = (V, F ) is a subgraph of G with degH = x

}
,

which represents the minimum weight of a subgraph with degree sequence x. Then,
f is an M-convex function on a constant-parity jump system [22].

Example 2.5 (see [23]). Let G = (V,E) be an undirected graph that may have
loops, but no parallel edges. Let w : E → R be an edge weight function and c :
E → Z+ be an edge capacity function. We define J ⊆ Z

V as the set of vectors
x ∈ Z

V such that a c-capacitated perfect x-matching exists in G, i.e., such that there
exists λ ∈ Z

E satisfying∑
{λ(e) | edge e is incident to v} = x(v) (∀v ∈ V ), 0 ≤ λ(e) ≤ c(e) (∀e ∈ E).

Then, J is a constant-parity jump system.
We then define a function f : J → R as the minimum weight of a c-capacitated

perfect x-matching, i.e.,

f(x) = min

{∑
e∈E

λ(e)w(e)

∣∣∣∣
∑

{λ(e) | edge e is incident to v} = x(v) (∀v ∈ V ),
λ(e) ∈ Z, 0 ≤ λ(e) ≤ c(e) (∀e ∈ E)

}
.

Then, f is an M-convex function on a constant-parity jump system. Moreover, the
function f̃ : J → R given as

f̃(x) = f(x) +
∑
v∈V

fv(x(v)),

where fv : Z → R (v ∈ V ) is a family of univariate convex functions, is also M-convex.
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3. Polynomiality of the greedy algorithm for linear optimization on
jump systems. In this section, we consider the problem of minimizing a linear
function on a jump system:

(LFMin) Minimize wTx subject to x ∈ J,

where w ∈ R

V and J is a finite jump system. We show that the greedy algorithm for
the problem (LFMin) runs in polynomial time. We assume that a membership oracle
for the jump system J is available and that a vector in J is given.

3.1. Greedy algorithm. It is shown [7, 18] that the problem (LFMin) can be
solved by the following greedy algorithm.

Algorithm Greedy.

Step 0: Let x0 be any vector in J . Put J0 = J . Compute an integer k and an
ordering of the elements in V = {v1, v2, . . . , vn} such that

|w(v1)| ≥ · · · ≥ |w(vk)| > |w(vk+1)| = · · · = |w(vn)| = 0.

Step 1: For i = 1, 2, . . . , k, do the following:
Step 1-1: Compute the value αi ∈ Z given by

αi =

{
min{y(vi) | x ∈ Ji−1} (if wi > 0),
max{y(vi) | x ∈ Ji−1} (if wi < 0).

Step 1-2: Let xi be any vector in Ji−1 with xi(vi) = αi. Put

Ji = {y ∈ Ji−1 | y(vi) = αi}.

Step 2: Output xk.
Theorem 3.1 (see [7, 18]). The algorithm Greedy outputs an optimal solution

of (LFMin).
We show that the algorithm Greedy runs in polynomial time.
Theorem 3.2. The algorithm Greedy finds an optimal solution of (LFMin) in

O(n2 log Φ(J)) time, provided a vector in J is given.
Proof. The most time-consuming part is the computation of αi in Step 1-1,

which can be done in O(n log Φ(J)) time by using the vector xi−1, as shown later in
section 3.2. Hence, the algorithm Greedy runs in O(n2 log Φ(J)) time.

In the next section, we explain in detail how to compute αi in O(n log Φ(J)) time.

3.2. Computation of upper and lower bounds of jump systems. We
present two procedures to compute the values max{y(u) | y ∈ J} and min{y(u) |
y ∈ J} in polynomial time for a finite jump system J ⊆ Z

V and an element u ∈ V .
Procedure Upper Bound(J, u).
Step 0: Let x := x0 be an initial vector in J .
Step 1: Put x := x + ᾱχu, where ᾱ = max{α ∈ Z+ | x + αχu ∈ J}.
Step 2: For each v ∈ V \ {u}, do the following:

Step 2-1: Put x := x + β̄v(χu + χv), where

β̄v = max{β ∈ Z+ | x + β(χu + χv) ∈ J}.

Step 2-2: Put x := x + γ̄v(χu − χv), where

γ̄v = max{γ ∈ Z+ | x + γ(χu − χv) ∈ J}.

Step 3: Output x.
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Procedure Lower Bound(J, u).
Step 0: Let x := x0 be an initial vector in J .
Step 1: Put x := x− ᾱχu, where ᾱ = max{α ∈ Z+ | x− αχu ∈ J}.
Step 2: For each v ∈ V \ {u}, do the following:

Step 2-1: Put x := x + β̄v(−χu + χv), where

β̄v = max{β ∈ Z+ | x + β(−χu + χv) ∈ J}.

Step 2-2: Put x := x + γ̄v(−χu − χv), where

γ̄v = max{γ ∈ Z+ | x + γ(−χu − χv) ∈ J}.

Step 3: Output x.
Theorem 3.3. For a finite jump system J and u ∈ V , the procedure Up-

per Bound(J, u) (resp., Lower Bound(J, u)) finds a vector x ∈ J satisfying x(u) =
max{y(u) | y ∈ J} (resp., x(u) = min{y(u) | y ∈ J}) in O(n log Φ(J)) time, provided
a vector x0 ∈ J is given.

The proof of Theorem 3.3 is given in sections 3.2.1 and 3.2.2.
Corollary 3.4. Suppose that J is a jump system given as the intersection

J = J̃ ∩ [a, b] of another jump system J̃ and a box [a, b], and that a membership
oracle for J̃ is available. For any u ∈ V , we can find vectors x, x′ ∈ J with x(u) =
max{y(u) | y ∈ J} and x′(u) = min{y(u) | y ∈ J} in O(n log Φ(J)) time, provided a
vector in J is given.

Proof. Although it takes O(n) time to check whether a given vector is contained in
J̃∩[a, b], we can implement the procedures Upper Bound(J, u) and Lower Bound(J, u)
so that they run in O(n log Φ(J)) time.

When the procedures need to check whether x ∈ J̃ ∩ [a, b], the vector x is of the
form x = y + α(χu ± χv) with y ∈ J̃ ∩ [a, b], α ∈ Z+, and v ∈ V . Hence, we have
x ∈ J̃ ∩ [a, b] if and only if x ∈ J̃ , a(u) ≤ x(u) ≤ b(u), and a(v) ≤ x(v) ≤ b(v), which
can be checked in constant time. This shows that the procedures run in O(n log Φ(J))
time for the jump system J = J̃ ∩ [a, b] as well.

3.2.1. Validity. We show the validity of the procedure Upper Bound(J, u).
The validity of Lower Bound(J, u) can be shown similarly and therefore omitted.

Lemma 3.5. Let x ∈ J and u ∈ V . Suppose that x + χu + t /∈ J holds for all
t ∈ (N1 ∪ {0}) \ {−χu}. Then, we have x(u) = max{y(u) | y ∈ J}.

Proof. Assume, to the contrary, that there exists some x′ ∈ J with x′(u) > x(u).
Since x+χu /∈ J by assumption, (J-EXC0) implies that there exists some t ∈ inc(x+
χu, x

′) such that x+ χu + t ∈ J , which is a contradiction since t ∈ N1 \ {−χu}.
Lemma 3.6. Let u ∈ V and x, y ∈ J be vectors such that

y(u) − x(u) ≥
∑

v∈V \{u}
|x(v) − y(v)| + 1.

Then, we have {x + χu, x + 2χu} ∩ J �= ∅.
Proof. We prove the claim by induction on the value ‖x− y‖1.
We first consider the case where x(v) = y(v) for all v ∈ V \ {u}, which contains

the base case where ‖x − y‖1 = 1. Then, (J-EXC0) for x and y implies {x + χu,
x + 2χu} ∩ J �= ∅.

We then assume that x(w) �= y(w) for some w ∈ V \{u}, where it may be assumed
that x(w) < y(w). Since −χw ∈ inc(y, x), (J-EXC0) for y and x implies that there



510 AKIYOSHI SHIOURA AND KEN’ICHIRO TANAKA

exists t ∈ inc(y − χw, x) ∪ {0} such that y′ = y − χw + t ∈ J . The vector y′ satisfies

y′(u) − x(u) ≥ y(u) − x(u) − 1 ≥
∑

v∈V \{u}
|x(v) − y(v)| ≥

∑
v∈V \{u}

|x(v) − y′(v)| + 1

and ‖y′−x‖1 < ‖y−x‖1. Hence, the induction hypothesis implies {x+χu, x+2χu}∩
J �= ∅.

Lemma 3.7. Let u ∈ V and x, y ∈ J be vectors such that

y(u) − x(u) ≥
∑

v∈V \{u}
|x(v) − y(v)|.

If {x + χu, x + 2χu} ∩ J = ∅, then {y + χu, y + 2χu} ∩ J = ∅.
Proof. Suppose, to the contrary, that {y + χu, y + 2χu} ∩ J �= ∅ and let y′ ∈

{y+χu, y+2χu}∩J . Then, we have y′(u)−x(u) ≥
∑

v∈V \{u} |x(v)− y′(v)|+1, and

therefore {x + χu, x + 2χu} ∩ J �= ∅ by Lemma 3.6, a contradiction.
Lemma 3.8. Let u,w ∈ V be distinct elements and x, y ∈ J be vectors such that

y(u) − x(u) ≥
∑

v∈V \{u}
|x(v) − y(v)|, |x(w) − y(w)| ≥ 1.

(i) If x(w) < y(w), then {x + χu, x + 2χu, x + χu + χw} ∩ J �= ∅.
(ii) If x(w) > y(w), then {x + χu, x + 2χu, x + χu − χw} ∩ J �= ∅.
Proof. We prove (i) by induction on the value ‖x − y‖1. The claim (ii) can be

shown similarly.
We first consider the case where x(v) = y(v) holds for all v ∈ V \ {u,w}, which

contains the base case where ‖x−y‖1 = 2. Then, y = x+αχu+βχw for some positive
integers α and β with α ≥ β. Since +χu ∈ inc(x, y), (J-EXC0) for x and y implies
{x + χu, x + 2χu, x + χu + χw} ∩ J �= ∅.

We then assume x(v′) �= y(v′) for some v′ ∈ V \ {u,w}, where we may assume
x(v′) < y(v′). Since −χv′ ∈ inc(y, x), (J-EXC0) for y and x implies y′ = y−χv′ +t ∈ J
for t ∈ inc(y − χv′ , x) ∪ {0}.

Case 1 (t �= −χu). y′ satisfies

y′(u) − x(u) = y(u) − x(u) ≥
∑

v∈V \{u}
|x(v) − y(v)| ≥

∑
v∈V \{u}

|x(v) − y′(v)| + 1.

Hence, we have {x + χu, x + 2χu} ∩ J �= ∅ by Lemma 3.6.
Case 2 (t = −χu). We have

y′(u) − x(u) = y(u) − x(u) − 1 ≥
∑

v∈V \{u}
|x(v) − y(v)| − 1 =

∑
v∈V \{u}

|x(v) − y′(v)|

and y′(w) = y(w) > x(w). Since ‖y′ − x‖1 = ‖y − x‖1 − 2, the induction hypothesis
implies {x + χu, x + 2χu, x + χu + χw} ∩ J �= ∅.

Lemma 3.9. Let u,w ∈ V be distinct elements and x, y ∈ J be vectors such that

y(u) − x(u) ≥
∑

v∈V \{u}
|x(v) − y(v)|.

Then, we have the following:
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(i) If {x + χu, x + 2χu, x + χu + χw} ∩ J = ∅, then y + χu + χw /∈ J .
(ii) If {x + χu, x + 2χu, x + χu − χw} ∩ J = ∅, then y + χu − χw /∈ J .
Proof. We prove (i) only. Assume, to the contrary, that y′ = y + χu + χw ∈ J .
We first consider the case where y(w) ≥ x(w). Then,

y′(u) − x(u) = y(u) − x(u) + 1 ≥
∑

v∈V \{u}
|x(v) − y(v)| + 1

=
∑

v∈V \{u}
|x(v) − y′(v)|

and y′(w)−x(w) = y(w)−x(w)+1 > 0. Hence, Lemma 3.8 implies {x+χu, x+2χu,
x + χu + χw} ∩ J �= ∅, a contradiction.

We then consider the case where y(w) < x(w). Then,

y′(u) − x(u) = y(u) − x(u) + 1 ≥
∑

v∈V \{u}
|x(v) − y(v)| + 1

=
∑

v∈V \{u}
|x(v) − y′(v)| + 2.

Hence, Lemma 3.6 implies {x + χu, x + 2χu} ∩ J �= ∅, a contradiction.
Lemma 3.10. The procedure Upper Bound(J, u) finds a vector x ∈ J satisfying

x(u) = max{y(u) | y ∈ J}.
Proof. By the definition of ᾱ, we have {x + χu, x + 2χu} ∩ J = ∅ immediately

after Step 1. Therefore, {x + χu, x + 2χu} ∩ J = ∅ holds during the iterations in
Step 2 by Lemma 3.7. Similarly, we have x + χu + χw /∈ J (resp., x + χu − χw /∈ J)
immediately after Step 2-1 (resp., Step 2-2) with v = w is performed, and therefore
x+χu +χw /∈ J (resp., x+χu−χw /∈ J) holds in the following iterations in Step 2 by
Lemma 3.9. At the end of the procedure, the vector x satisfies x + χu + t /∈ J for all
t ∈ (N1 ∪ {0}) \ {−χu}. Hence, Lemma 3.5 implies x(u) = max{y(u) | y ∈ J}.

3.2.2. Time complexity. We then analyze the time complexity of the pro-
cedure Upper Bound(J, u). The analysis of Lower Bound(J, u) is similar and
therefore omitted.

Lemma 3.11. Let x ∈ J and u ∈ V , and put ᾱ = max{α ∈ Z+ | x + αχu ∈ J}.
Then, we have {x + αχu, x + (α + 1)χu} ∩ J �= ∅ for any α ∈ Z with 0 ≤ α < ᾱ.

Proof. The claim follows immediately from (J-EXC0).
Lemma 3.12. Let x ∈ J and u,w ∈ V be distinct elements. Suppose that

{x + χu, x + 2χu} ∩ J = ∅.
(i) Let β̄w = max{β ∈ Z+ | x + β(χu + χw) ∈ J}. Then, x + β(χu + χw) ∈ J for

all β ∈ Z with 0 ≤ β ≤ β̄w.
(ii) Let γ̄w = max{γ ∈ Z+ | x + γ(χu − χw) ∈ J}. Then, x + γ(χu − χw) ∈ J for

all γ ∈ Z with 0 ≤ γ ≤ γ̄w.
Proof. We prove (i) only. It suffices to show that for any positive integer β with

β ≥ 2 and x+ β(χu +χw) ∈ J , it holds that x+ (β − 1)(χu +χw) ∈ J . By (J-EXC0)
applied to y = x+β(χu+χw) and x, we have y−χw+t ∈ J for some t ∈ {0,−χu,−χw}.
Since {x+χu, x+2χu}∩J = ∅, it follows from Lemma 3.6 that {y−χw, y−2χw}∩J =
∅. Therefore, we have y − χw − χu = x + (β − 1)(χu + χw) ∈ J .

Lemma 3.13. For any u ∈ V , the procedure Upper Bound(J, u) runs in
O(n log Φ(J)) time, provided a vector x0 ∈ J is given.
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Proof. By Lemma 3.11, the value ᾱ in Step 1 can be computed in O(log Φ(J))
time by a variant of binary search. Similarly, we can compute β̄v and γ̄v (v ∈ V \{u})
by binary search in O(log Φ(J)) time by Lemma 3.12. Hence, the claim follows.

This concludes the proof of Theorem 3.3.

4. Polynomial-time algorithms for convex optimization on jump sys-
tems. In this section, we consider the following two convex optimization problems
on jump systems. The first problem is the minimization of a separable-convex function
on a jump system:

(ScFMin) Minimize f(x) ≡
∑
v∈V

fv(x(v)) subject to x ∈ J,

where fv : Z → R (v ∈ V ) is a family of univariate convex functions and J is a finite
jump system. The second problem is the minimization of an M-convex function on a
constant-parity jump system:

(McFMin) Minimize f(x) subject to x ∈ J,

where J ⊆ Z

V is a finite constant-parity jump system and f : J → R is an M-convex
function. For both of the problems, we assume that a membership oracle for J and
an oracle for evaluating the function value of f are available and that a vector in J is
given. We present polynomial-time algorithms for the two problems.

4.1. A polynomial-time algorithm for minimizing a separable-convex
function on a jump system. We first show some properties for optimal solutions
of the problem (ScFMin). The global optimality of the problem (ScFMin) is charac-
terized by a local optimality.

Theorem 4.1 (see [3, Corollary 4.2]). A vector x ∈ J is an optimal solution of
(ScFMin) if and only if f(x) ≤ f(x+ s+ t) for all s, t ∈ N1 ∪{0} with x+ s+ t ∈ J .

The next property shows that a given nonoptimal vector in J can be easily sepa-
rated from an optimal solution.

Theorem 4.2 (minimizer cut property for (ScFMin)). Let x ∈ J be a vector
which is not an optimal solution of (ScFMin). Suppose that s∗ ∈ N1 satisfies

s∗ ∈ arg min{f(x + s) | s ∈ N1, ∃t ∈ N1 ∪ {0}
such that x + s + t ∈ J and f(x + s + t) < f(x)}.(4.1)

Then, there exists an optimal solution x∗ of (ScFMin) satisfying{
x∗(u) ≤ x(u) − 1 (if s∗ = −χu),
x∗(u) ≥ x(u) + 1 (if s∗ = +χu).

The proof of Theorem 4.2 will be given in section 4.4.1.
Our algorithm maintains a box [a, b] containing an optimal solution of (ScFMin).

Note that J ∩ [a, b] is a jump system by Proposition 2.2. The box [a, b] is reduced
iteratively by using the minimizer cut property (Theorem 4.2), and finally, an optimal
solution is found.

Given a finite set J ⊆ Z

V , we define a set J◦ ⊆ Z

V by

(4.2) J◦ = J ∩ [a◦J , b
◦
J ],
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where

aJ(v) = min{y(v) | y ∈ J}, bJ(v) = max{y(v) | y ∈ J} (v ∈ V ),

a◦J(v) =

⌊(
1 − 1

n

)
aJ(v) +

1

n
bJ(v)

⌋
(v ∈ V ),

b◦J(v) =

⌈
1

n
aJ(v) +

(
1 − 1

n

)
bJ(v)

⌉
(v ∈ V ).

The set J◦ is intended to represent a set of vectors in J lying away from the boundary.
Theorem 4.3. Let J be a finite jump system.
(i) J◦ is nonempty and hence a jump system.
(ii) A vector in J◦ can be found in O(n2 log Φ(J)) time, provided a vector in J is

given.
Proof. The proof is given in sections 4.4.2 and 4.4.3.
Algorithm Domain Reduction ScFMin.

Step 0: Set a(v) := aJ(v) and b(v) := bJ(v) for v ∈ V .
Step 1: Find a vector x ∈ (J ∩ [a, b])◦.
Step 2: If f(x) ≤ f(x+ s+ t) for all s, t ∈ N1 ∪ {0} with x+ s+ t ∈ J , then stop

(x is optimal).
Step 3: Find s∗ ∈ N1 satisfying (4.1).
Step 4: Put {u} = supp(s∗). Modify a or b as follows:{

b(u) := x(u) − 1 (if s∗ = −χu),
a(u) := x(u) + 1 (if s∗ = +χu).

Go to Step 1.
We analyze the number of iterations of the algorithm. Denote by ai, bi the vectors

a, b at the beginning of the ith iteration. It is clear that bi(v)− ai(v) is nonincreasing
w.r.t. i. Furthermore, we have the following property.

Lemma 4.4. Let u ∈ V be the element with {u} = supp(s∗), where s∗ is the
vector chosen in Step 2 of the ith iteration. Then, we have

bi+1(u) − ai+1(u) <

(
1 − 1

n

)
{bi(u) − ai(u)}.

Proof. We show the inequality in the case s∗ = −χu only. Let x ∈ (J ∩ [ai, bi])
◦

be the vector chosen in Step 1 of the ith iteration. Then,

bi+1(u) − ai+1(u) = x(u) − 1 − ai(u)

≤
⌈

1

n
ai(u) +

(
1 − 1

n

)
bi(u)

⌉
− 1 − ai(u)

<

(
1 − 1

n

)
{bi(u) − ai(u)}.

We have b0(v) − a0(v) ≤ Φ(J) for all v ∈ V at the beginning of the algorithm,
and if bi(v)−ai(v) < 1 for all v ∈ V , then we obtain an optimal solution immediately.
Hence, it follows from Lemma 4.4 that the algorithm Domain Reduction ScFMin

terminates in O(n2 log Φ(J)) iterations.
By Theorem 4.3, a vector in (J ∩ [a, b])◦ can be found in O(n2 log Φ(J)) time.

Steps 2, 3, and 4 can be done in O(n2) time.
Theorem 4.5. The algorithm Domain Reduction ScFMin finds an optimal

solution of the problem (ScFMin) in O(n4(log Φ(J))2) time, provided a vector in J is
given.
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4.2. Application to weak majorized elements in jump systems. We ex-
plain an application of our algorithm to the problem of finding least weakly sub- and
supermajorized elements in jump systems discussed in [1] (see also [26]).

For a vector x ∈ R

V , let x[1] ≥ x[2] ≥ · · · ≥ x[n] denote the components of x
in decreasing order. For two vectors x, y ∈ R

V , the vector x is said to be weakly
submajorized by y if

j∑
i=1

x[i] ≤
j∑

i=1

y[i] (j = 1, 2, . . . , n).

For a nonempty subset S of R

V , a vector x ∈ S is said to be a least weakly submajorized
element of S if x is weakly submajorized by y for all y ∈ S.

The concept of weak supermajorization is similarly defined. For a vector x ∈ R

V ,
let x(1) ≤ x(2) ≤ · · · ≤ x(n) denote the components of x in increasing order. For two
vectors x, y ∈ R

V , the vector x is said to be weakly supermajorized by y if

j∑
i=1

x(i) ≥
j∑

i=1

y(i) (j = 1, 2, . . . , n).

It is easy to see that x is weakly supermajorized by y if and only if −x is weakly
submajorized by −y. For a nonempty subset S of R

V , a vector x ∈ S is said to be
a least weakly supermajorized element of S if x is weakly supermajorized by y for all
y ∈ S.

The following statement conjectured by Tamir [26] is proven by Ando [1].
Theorem 4.6 (see [1]). Any finite jump system has a least weakly sub- and

supermajorized elements.
The proof of Theorem 4.6 in [1] shows that the problem of finding a least weakly

submajorized element of a jump system J can be reduced to the following convex
quadratic optimization problem:

Minimize
∑
v∈V

(x(v) + M)2 subject to x ∈ J,

where M is a nonnegative real number such that x(v) + M ≥ 0 for all x ∈ J and
v ∈ V . Such M is given by

M =

{
0 (if J ⊆ Z

V
+),

−min
v∈V

{min{y(v) | y ∈ J}} (otherwise)

and can be computed in O(n2 log Φ(J)) time by Theorem 3.3. Then, the convex
quadratic optimization problem above can be solved in O(n4(log Φ(J))2) time by
using the algorithm Domain Reduction ScFMin.

Theorem 4.7. Least weakly sub- and supermajorized elements of a finite jump
system J can be computed in O(n4(log Φ(J))2) time, provided a vector in J is given.

4.3. A polynomial-time algorithm for minimization of an M-convex
function on a constant-parity jump system. The problem (McFMin) can be
solved in polynomial time in a similar way as the problem (ScFMin), due to the
following useful properties. The global optimality of the problem (McFMin) is char-
acterized by a local optimality.



POLYNOMIAL-TIME ALGORITHMS FOR JUMP SYSTEMS 515

Theorem 4.8 (see [22, Theorem 3.3]). A vector x ∈ J is an optimal solution of
(McFMin) if and only if f(x) ≤ f(x+s+ t) holds for all s, t ∈ N1 with x+s+ t ∈ J .

The minimizer cut property holds for the problem (McFMin) as well.
Theorem 4.9 (minimizer cut property for (McFMin) [23, Theorem 4.1]). Let

x ∈ J be a vector which is not an optimal solution of (McFMin), and s∗, t∗ ∈ N1

satisfy

f(x + s∗ + t∗) = min{f(x + s + t) | s, t ∈ N1}.

Put {u} = supp(s∗) and {w} = supp(t∗). Then, there exists x∗ ∈ arg min f such that

x∗(u)

{
≤ x(u) − 1 (if s∗ = −χu),
≥ x(u) + 1 (if s∗ = +χu),

x∗(w)

{
≤ x(w) − 1 (if t∗ = −χw),
≥ x(w) + 1 (if t∗ = +χw).

Based on Theorems 4.8 and 4.9, we consider a variant of the algorithm Do-

main Reduction ScFMin in section 4.1.
Algorithm Domain Reduction McFMin.

Step 0: Set a(v) := aJ(v) and b(v) := bJ(v) for v ∈ V .
Step 1: Find a vector x ∈ (J ∩ [a, b])◦.
Step 2: If f(x) ≤ f(x + s + t) for all s, t ∈ N1 with x + s + t ∈ J , then stop (x is

optimal).
Step 3: Find s∗, t∗ ∈ N1 satisfying f(x+ s∗ + t∗) = min{f(x+ s+ t) | s, t ∈ N1}.
Step 4: Put {u} = supp(s∗) and {w} = supp(t∗). Modify a and b as follows:{
b(u) := x(u) − 1 (if s∗ = −χu),
a(u) := x(u) + 1 (if s∗ = +χu),

{
b(w) := x(w) − 1 (if t∗ = −χw),
a(w) := x(w) + 1 (if t∗ = +χw).

Go to Step 1.
We can show the following result, where the proof is quite similar to that for

Theorem 4.5 and therefore omitted.
Theorem 4.10. The algorithm Domain Reduction McFMin solves the prob-

lem (McFMin) in O(n4(log Φ(J))2) time, provided a vector in J is given.

4.4. Proofs.

4.4.1. Proof of the minimizer cut property for (ScFMin). In this section,
we prove Theorem 4.2. A proof of Theorem 4.2 is given for a special case where J is a
convex jump system [2, Theorem 5.2]. A jump system J is said to be convex if every
integral point in the convex hull of J is contained in J . In the following, we give a
proof for the general case.

The proof uses the following fundamental properties of separable-convex func-
tions.

Proposition 4.11. Let f : Z

V → R be a separable-convex function.
(i) For any x, y ∈ Z

V and any s ∈ inc(x, y), we have

f(x) + f(y) ≥ f(x + s) + f(y − s).

(ii) For any x ∈ Z

V and any s, t ∈ N1 with supp(s) �= supp(t), we have

f(x + s + t) − f(x) = {f(x + s) − f(x)} + {f(x + t) − f(x)}.

Let x ∈ J be a vector which is not an optimal solution of (ScFMin) and s∗ ∈ N1

be a vector satisfying (4.1). We assume, without loss of generality, that s∗ = +χu
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for some u ∈ V . Let x∗ be an optimal solution of (ScFMin) maximizing the value
x∗(u), and assume that x∗ minimizes ‖x∗ − x‖1 among all such x∗. We assume, to
the contrary, that x∗(u) ≤ x(u) and derive a contradiction.

By the definition of s∗, there exists t∗ ∈ N1 ∪ {0} such that

(4.3) x + s∗ + t∗ ∈ J, f(x + s∗ + t∗) < f(x).

Lemma 4.12. f(x + s∗) < f(x).
Proof. We assume t∗ �= 0 since otherwise the claim is obvious from (4.3). If

t∗ = s∗, then the separable convexity of f and (4.3) imply {f(x + s∗) − f(x)} ≤
{f(x + 2s∗) − f(x)}/2 < 0. If t∗ �= s∗, then (4.1) and Proposition 4.11(ii) imply

2{f(x + s∗) − f(x)} ≤ {f(x + s∗) − f(x)} + {f(x + t∗) − f(x)}
= f(x + s∗ + t∗) − f(x),

which, together with (4.3), yields f(x + s∗) < f(x).
Lemma 4.13. There exists p ∈ inc(x∗, x) such that f(x∗ + p) > f(x∗) and

f(x− p) < f(x + s∗).
Proof. Since s∗ ∈ inc(x∗, x + s∗), Proposition 4.11(i) and Lemma 4.12 imply

(4.4) f(x∗ + s∗) − f(x∗) ≤ f(x + s∗) − f(x) < 0,

which, together with the optimality of x∗, yields x∗ + s∗ /∈ J . Since s∗ ∈ inc(x∗,
x+ s∗ + t∗), (J-EXC0) implies that there exists p ∈ inc(x∗ + s∗, x+ s∗ + t∗) such that
x∗ + s∗ + p ∈ J . By the optimality of x∗, we have

(4.5) f(x∗ + s∗ + p) > f(x∗).

Claim 1. p �= s∗.
Proof of claim. Assume, to the contrary, that p = s∗. We consider the following

two cases and derive a contradiction.
Case 1 (s∗ = t∗). Separable convexity of f , the inequality x∗(u) ≤ x(u), and

(4.3) imply

f(x∗ + 2s∗) − f(x∗) ≤ f(x + 2s∗) − f(x) < 0,

which contradicts the inequality (4.5).
Case 2 (s∗ �= t∗). Inequality (4.5) implies f(x∗+2s∗) > f(x∗), from which follows

(4.6) f(x∗ + 2s∗) − f(x∗ + s∗) ≥ (1/2){f(x∗ + 2s∗) − f(x∗)} > 0.

Since s∗ = p ∈ inc(x∗ + s∗, x + s∗ + t∗), Proposition 4.11(i) implies

(4.7) f(x + s∗ + t∗) − f(x + t∗) ≥ f(x∗ + 2s∗) − f(x∗ + s∗).

Since f(x+ s∗ + t∗)− f(x+ t∗) = f(x+ s∗)− f(x) by Proposition 4.11(ii), it follows
from (4.6) and (4.7) that f(x + s∗) > f(x), a contradiction to Lemma 4.12.

We first show that p ∈ inc(x∗, x). Assume, to the contrary, that p /∈ inc(x∗, x).
Since p ∈ inc(x∗ + s∗, x+ s∗ + t∗) = inc(x∗, x+ t∗), we have p = t∗. Then, t∗ �= s∗ by
Claim 1. Therefore, Proposition 4.11(ii) implies

f(x∗ + s∗ + p) − f(x∗) = f(x∗ + s∗ + t∗) − f(x∗)

= {f(x∗ + s∗) − f(x∗)} + {f(x∗ + t∗) − f(x∗)}
≤ {f(x + s∗) − f(x)} + {f(x + t∗) − f(x)}
= f(x + s∗ + t∗) − f(x) < 0,
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where the first inequality is by s∗ ∈ inc(x∗, x + s∗) and t∗ = p ∈ inc(x∗, x + t∗), and
the second inequality by (4.3). This, however, is a contradiction to (4.5).

We then show that f(x∗ + p) > f(x∗) and f(x − p) < f(x + s∗). By (4.5),
Proposition 4.11(ii), and Claim 1, we have

(4.8) 0 < f(x∗ + s∗ + p) − f(x∗) = {f(x∗ + s∗) − f(x∗)} + {f(x∗ + p) − f(x∗)}.

Therefore, it holds that

f(x− p) − f(x) ≤ f(x∗) − f(x∗ + p)

< f(x∗ + s∗) − f(x∗)

≤ f(x + s∗) − f(x) < 0,

where the first inequality is by Proposition 4.11(i) and p ∈ inc(x∗, x), the second is
by (4.8), and the last two inequalities are by (4.4). This implies f(x∗ + p) > f(x∗)
and f(x− p) < f(x + s∗).

Let p1 ∈ inc(x∗, x) be a vector with f(x∗ + p1) > f(x∗) minimizing the value
f(x− p1) among all such vectors. It follows from Lemmas 4.12 and 4.13 that

(4.9) f(x− p1) < f(x + s∗) < f(x),

which implies x − p1 /∈ J by (4.1). Hence, (J-EXC0) implies that there exists q ∈
inc(x− p1, x∗) such that x− p1 + q ∈ J . By (4.1) and (4.9), we have

(4.10) f(x− p1 + q) ≥ f(x).

Lemma 4.14. q �= −p1.
Proof. Assume, to the contrary, that q = −p1. Since −p1 = q ∈ inc(x − p1, x∗),

Proposition 4.11(i) implies

(4.11) f(x∗) − f(x∗ + p1) ≥ f(x− 2p1) − f(x− p1).

By (4.9) and (4.10), we have

(4.12) f(x− 2p1) − f(x− p1) ≥ f(x) − f(x− p1) > 0.

It follows from (4.11) and (4.12) that f(x∗) > f(x∗+p1), a contradiction to the choice
of p1.

Since q ∈ inc(x− p1, x∗) ⊆ inc(x, x∗), it follows from Proposition 4.11(i) that

(4.13) f(x∗) − f(x∗ − q) ≥ f(x + q) − f(x).

By Proposition 4.11(ii), (4.10), and Lemma 4.14, we have

(4.14) f(x + q) − f(x) ≥ f(x) − f(x− p1).

It follows from (4.9), (4.13), and (4.14) that

(4.15) f(x∗) − f(x∗ − q) ≥ f(x) − f(x− p1) > 0.

From this inequality we have x∗ − q /∈ J since x∗ is an optimal solution. Hence,
(J-EXC0) implies that there exists p2 ∈ inc(x∗ − q, x) such that x∗ − q + p2 ∈ J . We
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note that (x∗−q+p2)(u) ≥ x∗(u) since −s∗ /∈ {−q, p2} and that ‖(x∗−q+p2)−x‖1 <
‖x∗ − x‖1. Therefore, we have

(4.16) f(x∗ − q + p2) > f(x∗)

by the choice of x∗.
Lemma 4.15. p2 �= −q.
Proof. Assume, to the contrary, that p2 = −q. Since −q = p2 ∈ inc(x∗ − q, x),

Proposition 4.11(i) implies

(4.17) f(x) − f(x + q) ≥ f(x∗ − 2q) − f(x∗ − q) > 0,

where the last inequality is by (4.15) and (4.16). On the other hand, Proposition
4.11(ii), (4.10), and Lemma 4.14 imply

f(x + q) − f(x) ≥ f(x) − f(x− p1) > 0,

where the last inequality is by (4.9). This inequality, however, is a contradiction to
(4.17).

By Proposition 4.11(ii), (4.16), and Lemma 4.15, we have

(4.18) f(x∗ + p2) − f(x∗) > f(x∗) − f(x∗ − q).

Since p2 ∈ inc(x∗ − q, x) ⊆ inc(x∗, x), it follows from Proposition 4.11(i) that

f(x) − f(x− p2) ≥ f(x∗ + p2) − f(x∗),

which, together with (4.15) and (4.18), implies f(x∗ + p2) > f(x∗) and f(x − p2) <
f(x− p1), a contradiction to the choice of p1.

This concludes the proof of Theorem 4.2.

4.4.2. Nonemptiness of J◦. We prove Theorem 4.3(i), the nonemptiness of
the set J◦ = J ∩ [a◦J , b

◦
J ] defined by (4.2).

We first show that the intersection of the convex hull conv(J) of J and the box
[a◦J , b

◦
J ] is nonempty.

We define

3V = {(X,Y ) | X,Y ⊆ V, X ∩ Y = ∅}.

Given a function ρ : 3V → R, we define a polyhedron P∗(ρ) as

P∗(ρ) = {x ∈ R

V | x(X) − x(Y ) ≤ ρ(X,Y ) (∀(X,Y ) ∈ 3V )}.

A function ρ : 3V → R is called a bisubmodular function if it satisfies the following
inequality for all (X1, Y1), (X2, Y2) ∈ 3V :

ρ(X1, Y1) + ρ(X2, Y2)

≥ ρ(X1 ∩X2, Y1 ∩ Y2) + ρ((X1 ∪X2) \ (Y1 ∪ Y2), (Y1 ∪ Y2) \ (X1 ∪X2)).

Theorem 4.16 (see [7]). Let J ⊆ Z

V be a jump system. Then, there exists an
integer-valued bisubmodular function ρJ : 3V → Z∪{+∞} such that ρJ(∅, ∅) = 0 and
conv(J) = P∗(ρJ). Moreover, such ρJ is uniquely determined by

(4.19) ρJ(X,Y ) = sup{x(X) − x(Y ) | x ∈ J} ((X,Y ) ∈ 3V ).
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Theorem 4.17 (see [12]). Let ρ : 3V → R be a bisubmodular function with
ρ(∅, ∅) = 0 and a, b ∈ R

V be vectors with a ≤ b. Then, the set P∗(ρ) ∩ [a, b] is
nonempty if and only if

(4.20) a(X) − b(Y ) ≤ ρ(X,Y ) (∀(X,Y ) ∈ 3V ).

Lemma 4.18. For a finite jump system J ⊆ Z

V , it holds that conv(J)∩ [a◦J , b
◦
J ] �=

∅.
Proof. Let ρ = ρJ be a function defined by (4.19). It follows from Theorem 4.16

that ρ is an integer-valued bisubmodular function satisfying ρ(∅, ∅) = 0 and conv(J) =
P∗(ρJ). Moreover, we have

a◦J(v) =

⌊
−
(

1 − 1

n

)
ρ(∅, {v}) +

1

n
ρ({v}, ∅)

⌋
(v ∈ V ),(4.21)

b◦J(v) =

⌈
− 1

n
ρ(∅, {v}) +

(
1 − 1

n

)
ρ({v}, ∅)

⌉
(v ∈ V )(4.22)

since ρ(∅, {v}) = −aJ(v) and ρ({v}, ∅) = bJ(v) hold. To prove conv(J)∩ [a◦J , b
◦
J ] �= ∅,

it suffices to show that a◦J(X)−b◦J(Y ) ≤ ρ(X,Y ) for all (X,Y ) ∈ 3V by Theorem 4.17.

Let (X,Y ) ∈ 3V and put k = |X| + |Y |. We claim that

kρ(X,Y ) + k
∑
v∈Y

ρ({v}, ∅) + k
∑
v∈X

ρ(∅, {v})

≥
∑
v∈Y

{ρ({v}, ∅) + ρ(∅, {v})} +
∑
v∈X

{ρ({v}, ∅) + ρ(∅, {v})}.(4.23)

Indeed, the bisubmodularity of ρ implies

LHS of (4.23) =
∑
w∈Y

{
ρ(X,Y ) +

∑
v∈Y \{w}

ρ({v}, ∅) +
∑
v∈X

ρ(∅, {v})
}

+
∑
w∈X

{
ρ(X,Y ) +

∑
v∈Y

ρ({v}, ∅) +
∑

v∈X\{w}
ρ(∅, {v})

}

+
∑
v∈Y

ρ({v}, ∅) +
∑
v∈X

ρ(∅, {v})

≥
∑
w∈Y

{
ρ(X,Y ) + ρ(Y \ {w}, ∅) + ρ(∅, X)

}

+
∑
w∈X

{
ρ(X,Y ) + ρ(Y, ∅) + ρ(∅, X \ {w})

}

+
∑
v∈Y

ρ({v}, ∅) +
∑
v∈X

ρ(∅, {v})

≥ RHS of (4.23).

Since the LHS of (4.23) is nonnegative and k ≤ n, the integer k in (4.23) can be
replaced with n. Thus,
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ρ(X,Y ) ≥
∑
v∈X

{
−
(

1 − 1

n

)
ρ(∅, {v}) +

1

n
ρ({v}, ∅)

}

−
∑
v∈Y

{
− 1

n
ρ(∅, {v}) +

(
1 − 1

n

)
ρ({v}, ∅)

}

≥ a◦J(X) − b◦J(Y ),

where the last inequality follows from (4.21) and (4.22).
We prove the nonemptiness of J◦ by using the following theorem.
Theorem 4.19 (see [18, Theorem 5.1]). Let J be a finite jump system and

a, b ∈ Z

V be vectors with a(v) < b(v) for all v ∈ V . Then, there exists a vector
w ∈ {−1, 0,+1}V such that

min{‖x− y‖1 | x ∈ [a, b], y ∈ J} = min{wTx | x ∈ [a, b]} − max{wT y | y ∈ J}.

Lemma 4.20. For a finite jump system J , the set J◦ defined by (4.2) is nonempty.
Proof. Let V ′ = {v ∈ V | a◦J(v) < b◦J(v)}. We denote by J ′ ⊆ Z

V ′
the orthogonal

projection of J onto Z

V ′
, i.e.,

J ′ = {y ∈ Z

V ′ | ∃x ∈ J such that y(v) = x(v) (v ∈ V ′)}.

For v ∈ V \ V ′, we have a◦J(v) = b◦J(v) = aJ(v) = bJ(v), implying that y(v) =
a◦J(v) (= b◦J(v)) for all y ∈ J . Therefore, J ∩ [a◦J , b

◦
J ] �= ∅ if and only if

J ′ ∩ {x ∈ Z

V ′ | a◦J(v) ≤ x(v) ≤ b◦J(v) (v ∈ V ′)} �= ∅,

where it is noted that a◦J′(v) = a◦J(v) and b◦J′(v) = b◦J(v) for v ∈ V ′. Hence, it suffices
to consider the case where a◦J(v) < b◦J(v) for all v ∈ V .

By Theorem 4.19, there exists some w ∈ {−1, 0,+1}V such that
(4.24)
min{‖x− y‖1 | x ∈ [a◦J , b

◦
J ], y ∈ J} = min{wTx | x ∈ [a◦J , b

◦
J ]} − max{wT y | y ∈ J}.

Since conv(J) ∩ [a◦J , b
◦
J ] �= ∅ by Lemma 4.18, we have

min{wTx | x ∈ [a◦J , b
◦
J ]} − max{wT y | y ∈ J}

= min{wTx | x ∈ [a◦J , b
◦
J ]} − max{wT y | y ∈ conv(J)} ≤ 0.(4.25)

It follows from (4.24) and (4.25) that min{‖x−y‖1 | x ∈ [a◦J , b
◦
J ], y ∈ J} = 0, implying

that J◦ = J ∩ [a◦J , b
◦
J ] �= ∅.

This concludes the proof of Theorem 4.3(i).

4.4.3. Finding a vector in J◦. We prove Theorem 4.3(ii) by providing an
algorithm to find a vector in J◦. More generally, we consider how to find a vector in
the (nonempty) intersection of a jump system J and a box [a, b].

Our algorithm is based on the following simple observation.
Lemma 4.21. Let J be a jump system, u ∈ V , and α, β be integers such that

α ≤ β and J ∩ {y ∈ Z

V | α ≤ y(u) ≤ β} �= ∅. Then, we have

max{y(u) | y ∈ J, y(u) ≤ β} ≥ α, min{y(u) | y ∈ J, y(u) ≥ α} ≤ β.

Proof. Let x be any vector in J ∩ {y ∈ Z

V | α ≤ y(u) ≤ β}. Then, we have

max{y(u) | y ∈ J, y(u) ≤ β} ≥ x(u) ≥ α,

min{y(u) | y ∈ J, y(u) ≥ α} ≤ x(u) ≤ β.
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Given a jump system J and vectors a, b ∈ Z

V with a ≤ b and J ∩ [a, b] �= ∅, the
following algorithm finds a vector in J ∩ [a, b], provided a vector in J is given.

Algorithm Find Vector in J ∩ [a, b].
Step 0: Let x := x0 be an initial vector in J .
Step 1: While {v ∈ V | x(v) < a(v)} �= ∅, do the following steps:

Step 1-1: Choose an element u ∈ V with x(u) < a(u).
Step 1-2: Find a vector x∗ in J ′ maximizing the value x∗(u), where

J ′ = J ∩ {y ∈ Z

V | y(u) ≤ b(u),

min(x(v), a(v)) ≤ y(v) ≤ max(x(v), b(v)) (v ∈ V \ {u})}.

Step 1-3: Put x := x∗.
Step 2: While {v ∈ V | x(v) > b(v)} �= ∅, do the following steps:

Step 2-1: Choose an element u ∈ V with x(u) > b(u).
Step 2-2: Find a vector x∗ in J ′ minimizing the value x∗(u), where

J ′ = J ∩ {y ∈ Z

V | y(u) ≥ a(u),

min(x(v), a(v)) ≤ y(v) ≤ max(x(v), b(v)) (v ∈ V \ {u})}.

Step 2-3: Put x := x∗.
Step 3: Output x.
We observe that if the inequality a(v) ≤ x(v) ≤ b(v) for some v ∈ V is once

satisfied, then it is kept until termination of the algorithm. Note that the set J ′ defined
in Step 1-1 is a jump system by Proposition 2.2. This, together with Lemma 4.21,
implies that the vector x in Step 1-3 satisfies x ∈ J ′ and a(u) ≤ x(u) ≤ b(u). Similarly,
for each u ∈ V with x(u) > b(u), the inequality a(u) ≤ x(u) ≤ b(u) is satisfied in
Step 2-3. Thus, the vector x satisfies x ∈ J ∩ [a, b] at the end of the algorithm.

Each iteration of Steps 1 and 2 requires O(n log Φ(J ′)) time by Corollary 3.4, and
we have Φ(J ′) ≤ Φ(J) since J ′ ⊆ J . Hence, the algorithm runs in O(n2 log Φ(J))
time.

This concludes the proof of Theorem 4.3(ii).
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FURTHER RESULTS ON BAR k-VISIBILITY GRAPHS∗

STEPHEN G. HARTKE† , JENNIFER VANDENBUSSCHE† , AND PAUL WENGER†

Abstract. A bar visibility representation of a graph G is a collection of horizontal bars in
the plane corresponding to the vertices of G such that two vertices are adjacent if and only if the
corresponding bars can be joined by an unobstructed vertical line segment. In a bar k-visibility
graph, two vertices are adjacent if and only if the corresponding bars can be joined by a vertical
line segment that intersects at most k other bars. Bar k-visibility graphs were introduced by Dean
et al. [J. Graph Algorithms Appl., 11 (2007), pp. 45–59]. In this paper, we present sharp upper bounds
on the maximum number of edges in a bar k-visibility graph on n vertices and the largest order of a
complete bar k-visibility graph. We also discuss regular bar k-visibility graphs and forbidden induced
subgraphs of bar k-visibility graphs.

Key words. visibility graph, bar visibility graph, bar k-visibility graph, visibility representation
of a graph
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1. Introduction. The idea of representing a graph using a visibility relation
has received much attention due to its applications to circuit layout (see [10] and
additional references in [1]). Define a bar visibility representation of a graph G to
be a set of disjoint horizontal closed line segments (or bars) in the plane in one-to-
one correspondence with the vertices of G such that v and w are adjacent in G if
and only if a vertical line segment can be drawn joining their associated bars that
does not intersect any other bar. We say that G is a bar visibility graph if it has a
bar visibility representation. (In the literature, these graphs have also been referred
to as “visibility graphs” or “strong visibility graphs.”) This particular model was
first introduced by [7]. They observed that bar visibility graphs must be planar,
and later provided a characterization of bar visibility graphs with the restriction
that bars have distinct x coordinates as endpoints [8]. Later, [11] gave a somewhat
complicated characterization for the general case and obtained some results concerning
connectivity and bar visibility representations. [1] showed that determining whether
a given graph is a bar visibility graph is an NP-complete problem.

Recently, Dean et al. introduced in [3, 4] the following generalization of bar vis-
ibility graphs. A bar k-visibility representation of a graph G is a bar representation
in which v and w are adjacent in G if and only if a vertical line segment can be
drawn joining their associated bars and which intersects at most k other bars. We
denote the family of bar k-visibility graphs as Fk. Notice that F0 is the family of bar
visibility graphs defined above. Dean et al. obtain a bound on the number of edges
for any graph in Fk: If n(G) ≥ 2k + 2, then G has at most (k + 1)(3n− 7

2k − 5) − 1
edges. They give a construction showing that the complete graph on 4k + 4 vertices
K4k+4 is in Fk and conjecture an improved edge bound of (k+1)(3n− 4k− 6), which
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is attained by K4k+4. They prove this conjecture for k = 0, 1 and use their edge
bound to establish K5k+5 /∈ Fk. Other results include bounds on the thickness and
the chromatic number of bar k-visibility graphs.

In this paper, we prove that the upper bound on the number of edges conjectured
in [3] is correct, yielding K4k+4 as the largest complete bar k-visibility graph. We
also prove that for each k, Fk−1 and Fk are incomparable under set inclusion. We
restrict the graphs that are in Fk for some k by proving that triangle-free graphs which
are nonplanar are forbidden as induced subgraphs in bar k-visibility graphs. Finally,
inspired by the result that the only regular interval graphs are complete graphs, we
prove that if G is regular of degree d < 2k + 2 and G ∈ Fk, then G is a complete
graph. However, we have constructions of (2k + 2)-regular noncomplete graphs with
bar k-visibility representations for k ∈ {0, 1, 2, 3, 4}.

Bar k-visibility graphs can be seen as a generalization of interval graphs. In
particular, as k approaches infinity, it is easy to see that Fk approaches the family of
interval graphs; hence results on interval graphs inspired many of our investigations
into bar k-visibility graphs. A variation of interval graphs that has been studied is the
idea of t-interval graphs, where each vertex of G is allotted t distinct intervals in its
interval representation. This idea was extended to bar visibility graphs in [2], where
each vertex of G is permitted t bars in its representation, and vertices are adjacent
if there is a direct line of sight between any of their t bars. Another well-studied
variation of bar visibility graphs is ε-visibility graphs, introduced by Melnikov [9].
These graphs are defined just as bar k-visibility graphs, except bars are replaced with
arbitrary intervals which may not contain their endpoints. [12] and, independently,
[11] gave a very simple characterization of ε-visibility graphs.

Throughout this paper, all graphs are simple graphs with no loops. A bar refers
to a closed interval of the real line with an associated height. A bar k-representation
of a graph G, k ≥ 0, is a one-to-one correspondence between the vertices of G and a
set of bars such that vertices of G are adjacent if and only if there is a vertical line
segment joining their associated bars that intersects at most k other bars. (Note that
in contrast to some other visibility models, a sight line of zero width is sufficient in
this model.) When we are referring to a particular bar k-visibility representation of
a graph G, B(v) will refer to the bar associated with v, and I(v) will refer to the
projection of B(v) onto the x-axis. We also use u ↔ v to denote that u and v are
adjacent and u � v to denote that u and v are nonadjacent.

2. An upper bound on the number of edges. [3] gave an upper bound of
(k + 1)(3n− 7

2k− 5)− 1 on the number of edges in an n-vertex bar k-visibility graph
with n ≥ 2k+2. They also conjectured an upper bound of (k+1)(3n−4k−6), which
would be sharp by a construction given in [3]. We prove their conjectured upper
bound on the number of edges by refining their edge-counting technique.

Theorem 1. If G is a bar k-visibility graph with more than 2k + 2 vertices, G
has at most (k + 1)(3n− 4k − 6) edges.

Proof. Consider a bar k-visibility representation of G with vertices v1, v2, . . . , vn.
We may assume that no two bars are at the same height, and hence we index the bars
in order such that v1 is the topmost bar and vn is the bottommost bar. As noted
in [3], we may also assume that the left and right endpoints of the associated intervals
are distinct. If the endpoints are not distinct, then perturbing the endpoints slightly
cannot decrease the number of edges in the resulting graph.

We sweep a vertical line from left to right over the representation, counting the
number of edges that are created as we encounter sightlines. When the left endpoint
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of a bar B(v) is encountered, the number of visibility-blocking bars is only increased.
Hence the only new visibilities involve the new bar. If the left endpoint of B(v) is
the ith left endpoint encountered, then when i ≤ 2k + 2, B(v) can see at most i− 1
other bars. When i > 2k + 2, B(v) can possibly see k + 1 bars above and k + 1 bars
below, for a total of 2k + 2 new edges. Thus the maximum number of edges counted
by encountering left endpoints is

2k+2∑
i=1

(i− 1) +

n∑
i=2k+3

(2k + 2) =
(2k + 2)(2k + 1)

2
+ (n− 2k − 2)(2k + 2)

= (k + 1)(2n− 2k − 3).

When the right endpoint of a bar B(w) is encountered, the number of visibility-
blocking bars between other bars is decreased and new visibilities may be created.
If the right endpoint of B(w) is the ith right endpoint encountered, then when i ≤
n− 2k − 2, up to k + 1 bars above B(w) have the potential to each see one new bar
below B(w). Hence, at most k + 1 new visibilities may be created. Once there are
only 2k + 2 bars remaining, each time a bar ends the potential number of new edges
decreases by one. Hence when n−2k−2 < i < n−k−1, there are at most n−k−1−i
new visibilities created. When i ≥ n−k−1, no new sightlines are created since every
bar has already seen every other remaining bar. Thus the maximum number of edges
counted by encountering right endpoints is

n−2k−2∑
i=1

(k + 1) +

n−k−2∑
i=n−2k−1

(n− k − 1 − i) +

n∑
i=n−k−1

0 = (n− 2k − 2)(k + 1) +
k(k + 1)

2

= (k + 1)

(
n− 3

2
k − 2

)
.

Hence, as was shown in [3], we have an upper bound of (k + 1)(3n− (7/2)k − 5) for
the number of edges in G.

Notice, however, that this bound is attained only if the top k+1 and the bottom
k + 1 bars are among the first 2k + 2 left endpoints (as we must begin a bar with
at least k + 1 bars above and k + 1 bars below as soon as we are able to do so) and
the last 2k + 2 right endpoints (as we must also end bars with k + 1 bars above and
k + 1 bars below as long as we are able to do so). This implies, however, that we
have twice counted the (k + 1)2 edges between these two sets of vertices, once when
we encountered their left endpoints and once when bars between them ended. If, on
the other hand, a bar from the top k + 1 begins after at least 2k + 2 other bars have
arrived, then we do not gain 2k + 2 new edges when it begins; when B(vi) begins, we
gain at most k + 1 + i − 1 new edges, k + 1 from the bars below and i − 1 from the
bars above. Similarly, if a bar B(vi) for i ≤ k + 1 ends among the first n− (2k − 2),
then there are not k + 1 bars above it that can gain visibility. Instead, we gain at
most i− 1 new visibilities. The same holds for bars among the bottom k + 1. We use
these two facts to improve our edge bound.

Let � be the number of bars of the top k + 1 whose left endpoint is among the
first 2k + 2 left endpoints and whose right endpoint is among the last 2k + 2 right
endpoints, and m the similar number of bars in the bottom k + 1. We observe first
that each of the �m edges between these two sets of vertices is counted both when
these bars begin (as a left-endpoint edge) and when visibility increases between them
sufficiently as bars end (as a right-endpoint edge). For the remaining k + 1 − � bars
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of the top k + 1, they either begin among the last n − (2k + 2) or end among the
first n− (2k + 2), or perhaps both. Either the left endpoint of these bars or the right
endpoint of these bars, then, does not contribute the maximum possible number of
edges. When B(vi) begins late or ends early for i ≤ k + 1, we overcount by i − 1;
thus we have overcounted the fewest number of edges when these k + 1 − � bars are
B(vk+1), B(vk), . . . , B(vk+1−�). In this case, our edge bound has overcounted at least

1 + 2 + · · · + (k + 1 − �) =
1

2
(k + 2 − �)(k + 1 − �)

edges. Similarly, we obtained at least an extra 1
2 (k + 2 −m)(k + 1 −m) in our edge

count by assuming the k + 1 − m bars from the bottom k + 1 yielded 2k + 2 edges
when they began and k + 1 edges when they ended. Therefore our graph has at most(

3n− 7

2
k − 5

)
(k + 1)−

[
�m +

1

2
(k + 2 − �)(k + 1 − �) +

1

2
(k + 2 −m)(k + 1 −m)

]

edges; we seek to minimize the function

f(�,m) = �m +
1

2
(k + 2 − �)(k + 1 − �) +

1

2
(k + 2 −m)(k + 1 −m)

=
1

2
(� + m)2 − 2k + 3

2
(� + m) + (k + 1)(k + 2).

As this is a quadratic in (�+m), we find that local extrema occur when �+m =
2k+3

2 , yielding a minimum objective value of 8k2+24k+14
16 . Hence f(�,m) ≥ 1

2k
2+ 3

2k+ 7
8 ,

and therefore our graph has at most(
3n− 7

2
k − 5

)
(k + 1) −

(
1

2
k2 +

3

2
k +

7

8

)
= 3nk + 3n− 4k2 − 10k − 47

8

edges; since the number of edges must be integer-valued, we get an upper bound of

3nk + 3n− 4k2 − 10k − 6 = (k + 1)(3n− 4k − 6).

Corollary 2. If Kn is a bar k-visibility graph, then n ≤ 4k + 4.
Proof. If n = 4k + 4 + m, then Kn has

(4k + 4 + m)(4k + 4 + m− 1)
1

2
= 8k2 + 14k + 4mk + 6 +

7

2
m +

1

2
m2

edges. Theorem 1 gives an upper bound of

(k + 1)(3(4k + 4 + m) − 4k − 6) = 8k2 + 14k + 3mk + 6 + 3m

edges in a k-visibility graph with 4k + 4 + m vertices. Hence

8k2 + 14k + 4mk + 6 +
7

2
m +

1

2
m2 ≤ 8k2 + 14k + 3mk + 6 + 3m,

4mk +
7

2
m +

1

2
m2 ≤ 3mk + 3m,

mk +
1

2
(m + m2) ≤ 0,

and therefore m ≤ 0. Hence n ≤ 4k + 4.
[3] gave a construction achieving this edge bound for all n ≥ 4k+4 (see Figure 1).

Notice when n = 4k + 4, the construction is the complete graph K4k+4. When
n < 4k + 4, the k-visibility graph with the most edges is a complete graph on n
vertices, obtained by leaving any 4k + 4 − n bars out of the K4k+4 representation.
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...

...

...

...

...
k + 1

k + 1

k + 1

k + 1

n− (4k + 4)

Fig. 1. A bar k-visibility representation with (k + 1)(3n− 4k − 6) edges.

clique
k-

Fig. 2. Example: Wk
6 .

3. Comparing the families Fk−1 and Fk. Corollary 2 shows that K4k+4 ∈
Fk but not Fk−1. A natural question is whether Fk−1 is contained in Fk. In order
to answer this question, we will need the following lemma.

Lemma 3. Suppose in some bar k-visibility representation of a graph G that
I(v) ∩ I(w) �= ∅ but v � w. Then for any vertical line � intersecting I(v) ∩ I(w), if �
crosses B(x), x is contained in a (k + 2)-clique whose intervals also intersect �.

Proof. If v � w, then there must be at least k+1 bars blocking B(v) from B(w).
Any consecutive k + 2 bars along �, including B(x), can all see each other, and hence
their associated vertices must form a (k + 2)-clique.

Define a k-wheel W k
n to be the graph obtained by joining every vertex of a k-clique

with every vertex of an n-cycle (see Figure 2).

Proposition 4. For n ≥ 5, W k
n is not a bar k-visibility graph.

Proof. Since W k
n contains an induced long cycle Cn, it is not an interval graph.

Therefore there must be two vertices v and w such that I(v) ∩ I(w) �= ∅ but v � w.
Let I(v) ∩ I(w) = [a, b]. As the only (k + 2)-clique containing v or w contains the
middle k-clique, then by Lemma 3 any vertical line intersecting [a, b] must intersect
all k bars of the k-clique. The k-clique is not sufficient to obstruct B(v)’s view of
B(w); hence there must be another bar located between them. Let B(x) be the first
bar not associated with the middle k-clique that is intersected by a vertical line drawn
from v to w. Note that x is one of v’s two neighbors in Cn. Let I(x) = [a′, b′]. Let v′

be v’s other neighbor in Cn; note that v′ �= w and v′ � x. Now, n ≥ 5 implies that
v′ and x have no common neighbor on the cycle, so there can be no (k + 1)-clique
between B(x) and B(v′). Therefore we must have I(v′) ∩ I(x) = ∅. Since v and v′
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k-clique

	n/2
 intervals

�n/2� intervals

Fig. 3. A bar (k − 1)-visibility representation of Wk
n .

must be adjacent, I(v) ∩ I(v′) �= ∅; assume by symmetry that I(v) ∩ I(v′) = [c, d]
for some d < a′. Since deleting v, x, and the k-clique from W k

n leaves a connected
graph, there must be some interval I(z) that intersects [d, a′], where z is not v, x, or a
vertex of the k-clique. The bar B(z) closest to B(v) with I(z) intersecting [d, a′] must
be visible to B(v), since only the bars corresponding to the vertices of the k-clique
could be located between B(v) and B(z). Since v has no other neighbors, this is a
contradiction.

Note that an easy construction shows that W k
4 is a bar k-visibility graph, so the

result is sharp.

The results above combine to give the following.

Theorem 5. For all k, the families Fk and Fk−1 are incomparable under inclu-
sion.

Proof. Fk � Fk−1 follows from Corollary 2. For the reverse inclusion, we ob-
serve that W k

n ∈ Fk−1; Figure 3 gives a bar (k − 1)-visibility representation. By
Proposition 4, W k

n /∈ Fk, and hence Fk−1 � Fk.

4. Induced subgraphs. We have already observed that as k increases, Fk ap-
proaches the family of interval graphs. It is known that all interval graphs are chordal
graphs and interval graphs do not contain any induced subdivided complete bipartite
graph K1,3 [6]. We have shown already that W k

n is a (k − 1)-visibility graph and
hence k-visibility graphs may contain induced long cycles. One may wonder whether
an induced subdivision of K1,3 prevents a graph from being in Fk for any k. The
following proposition answers this question.

Proposition 6. For every tree T and every k ≥ 0, there exists a graph G such
that G contains T as an induced subgraph and G is a bar k-visibility graph.

Proof. Choose a vertex r of T to be the root, and fix some integer d. We define
the placement of V (T )’s bars in a k-visibility representation inductively. Assign the
root the bar B(r). Having assigned bars to all vertices at distance � from the root,
we place the bars for the vertices at distance � + 1 as follows: For a vertex v at level
�, find its children v1, . . . , vm. Divide B(v) into 2m−1 closed segments, and assign vi
the (2i− 1)st segment. Translate this segment down a distance of d to obtain B(vi).

Having assigned bars to all vertices of T in this way, if v and w are adjacent in
T , then I(v) ∩ I(w) �= ∅. By placing a k-clique between each level, we ensure that
only vertices at adjacent levels can see each other. The graph induced by this bar
k-visibility representation is the desired graph G.

Figure 4 gives an example of when T is an induced subdivided K1,3.

We prove instead that certain nonplanar subgraphs are forbidden as induced
subgraphs.

Proposition 7. Suppose that a graph G contains a triangle-free nonplanar in-
duced subgraph. Then G is not a bar k-visibility graph for any k.
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k-clique

k-clique

Fig. 4. A bar k-visibility representation of a graph with an induced subdivided K1,3.

Proof. Suppose that G is a bar k-visibility graph for some k and has a triangle-
free nonplanar induced subgraph H. Fix a bar k-visibility representation of G. Any
two adjacent vertices of H are also adjacent in G, and thus their associated intervals
intersect in the bar k-visibility representation of G. A pair of adjacent vertices u
and v must exist in H such that any vertical line segment joining B(u) and B(v)
intersects the bar of at least one other vertex w in H. Otherwise, if we restrict the
bar k-visibility representation of G to the vertices in H, we would obtain a planar
representation of H. However, by assumption, H is nonplanar. Thus, when B(u)
sees B(v) in the bar k-visibility representation of G, the line of sight intersects B(w).
Therefore u, v, and w form a triangle in G which will also be in H. This contradicts
the assumption that H is a triangle-free induced subgraph of G, and hence G cannot
be a bar k-visibility graph for any k.

5. Regular bar k-visibility graphs. It is easy to show that the only connected
regular interval graphs are complete graphs. For small degrees, this fact remains true
for bar k-visibility graphs.

Proposition 8. If G is a connected d-regular bar k-visibility graph with d ≤
2k + 1, then G is a complete graph.

Proof. Let v be a vertex whose bar begins last; that is, no vertex has a bar whose
left endpoint is farther right than v’s. Let I(v) = [a, b], and let v1, v2, . . . , vm be the
vertices whose intervals contain the point a, where the vertices are ordered from top
to bottom by the height of their corresponding bars. Note that v = vi for some i.

All of v’s neighbors are among v1, . . . , vm, so deg(v) ≤ m − 1. Since v�m/2�
can see k + 1 bars above it and k + 1 bars below it if enough bars are present,
deg(v�m/2�) ≥ m− 1. Hence, d = deg(v) = deg(v�m/2�) = m− 1.

If G is not a complete graph, there exists at least one vertex whose bar ends
before v’s bar begins. Among all such vertices, let c be the maximum value of a right
endpoint of the associated intervals. Note that c < a. Let z1, z2, . . . , zp be all the
vertices whose intervals’ right endpoints are c. As G is connected, some vi must be
adjacent to some zj . Among the bars B(v1), . . . , B(vm) seeing some B(zj) at the
point c, choose i to minimize |	m/2
 − i|.

We claim that deg(vi) ≥ m. We know that zj is adjacent to vi; suppose some v�
is not in vi’s neighborhood, i �= �. But then c ∈ I(v�), since any bar that begins after
c must see B(vi) in order to have degree m− 1. Consider the point c + ε, where ε is
chosen to be small enough such that no interval begins in [c, c + ε]. As vi was chosen
to be the “most central” bar extending left to the point c, there cannot be k intervals
containing the point c + ε blocking B(vi) from B(v�). Therefore vi ↔ vj , and hence
deg(vi) ≥ m, contradicting the assumption that G is regular.

When d = 2k + 2 and k ∈ {0, 1, 2, 3, 4}, there exist d-regular noncliques in Fk.
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Fig. 5. On the left is a bar 1-visibility representation of the 4-regular graph formed by removing
a perfect matching from K6. On the right is a bar 2-visibility representation of the 6-regular graph
formed by removing a perfect matching from K8.

︸ ︷︷ ︸
repeatable block

Fig. 6. A bar 3-visibility representation of an 8-regular graph. The 9 bars in the repeatable
block can be repeated horizontally as many times as desired, or omitted entirely. Consecutive blocks
may need to be perturbed vertically a small amount so that the top and bottom bars can see the top
and bottom bars from the next block, but are still disjoint from those bars.

︸ ︷︷ ︸
repeatable block

Fig. 7. A bar 4-visibility representation of a 10-regular graph. The 11 bars in the repeatable
block can be repeated horizontally as many times as desired, or omitted entirely.

For k = 0, every cycle Cn with n ≥ 4 is a 2-regular bar 0-visibility graph. Figure 5
shows noncliques that are 2k+2 regular when k = 1 and k = 2. Figures 6 and 7 show
constructions for an infinite number of regular graphs of degree 2k + 2 when k = 3
and k = 4, respectively.

The question remains open for larger values of d and k.

6. Conclusion. There are many open questions remaining about bar k-visibility
graphs, with the primary goal being a complete characterization of bar k-visibility
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graphs. There are also several other interesting questions that may serve as interme-
diate steps toward this goal.

1. Are there forbidden induced subgraphs for bar k-visibility graphs besides
triangle-free nonplanar graphs?

2. Does every graph that is not a bar k-visibility graph for any k contain an
induced triangle-free nonplanar subgraph?

3. Are there (2k + 2)-regular bar k-visibility graphs for k ≥ 5?
4. Are there d-regular bar k-visibility graphs with d ≥ 2k + 3?

Dean et al. [3] also present several open questions regarding the chromatic number,
genus, and thickness of bar k-visibility graphs. [5] further investigates the thickness
of bar 1-visibility graphs.

It is worth noting that while we now have a sharp edge bound, it does not improve
the upper bound of 6k + 6 in [3] for the chromatic number of bar k-visibility graphs.
We feel that this bound can be lowered, possibly through a deeper exploration of the
structural aspects of bar k-visibility graphs and their connection to minimum degree
and degeneracy.

Acknowledgments. The authors thank Douglas B. West for a helpful suggestion
that simplified the statement of Proposition 7, and Mareike Massow for comments that
improved the readability of the paper.
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OPTIMAL TREE STRUCTURES FOR GROUP KEY MANAGEMENT
WITH BATCH UPDATES∗

RONALD L. GRAHAM† , MINMING LI‡ , AND FRANCES F. YAO‡.

Abstract. We investigate the key management problem for broadcasting applications. Previous
work showed that batch rekeying can be more cost-effective than individual rekeying. Under the
assumption that every user has probability p of being replaced by a new user during a batch rekeying
period, we study the structure of the optimal key trees. Constant bounds on both the branching
degree and the subtree size at any internal node are established for the optimal tree. These limits
are then utilized to give an O(n) dynamic programming algorithm for constructing the optimal tree
for n users and any fixed value of p. In particular, we show that when p > 1 − 3−1/3

≈ 0.307, the
optimal tree is an n-star, and when p ≤ 1−3−1/3, each nonroot internal node has a branching degree
of at most 4. We also study the case when p tends to 0 and show that the optimal tree resembles a
balanced ternary tree to varying degrees depending on certain number-theoretical properties of n.

Key words. key trees, group keys, batch updates, optimality
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1. Introduction. In the group broadcast problem, we have n subscribers and a
group controller (GC) that periodically broadcasts messages (e.g., a video clip) to all
the subscribers over an insecure channel. To guarantee that only the authorized users
can decode the contents of the messages, the GC will dynamically update the group
key for the whole group. Whenever some user leaves or joins, the GC will generate
a new group key and in some way notify the remaining users in the group. A recent
survey of the key management problem for groups of low-state devices can be found
in [1]. Here, we consider the key tree model [4] for the key management problem.
We describe this model briefly as follows (precise formulation is given in section 2).
Every leaf node of the key tree represents a user and stores his individual key. Every
internal node stores a key shared by all leaf descendants of the internal node. Every
user possesses all the keys along the path from the leaf node (representing the user)
to the root node. To prevent revoked users from knowing future message contents
and also to prevent new users from knowing past message contents, the GC updates a
set of keys, whenever a new user joins or a current user leaves, as follows. So long as
there is a user change among the leaf descendants of an internal node v, the GC will:
(1) replace the old key stored at v with a new key, and (2) broadcast (to all users) the
new key encrypted with the key stored at each child node of v. Note that only users
represented by leaf descendants of v can get useful information from the broadcast.
Furthermore, this procedure must be done in a bottom-up fashion (i.e., starting with
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the lowest v whose key must be updated—see section 2 for details) to guarantee that
a revoked user will not know the new keys. The cost of the above procedure counts
the number of encryptions used in step 2 (or equivalently, the number of broadcasts
made by the GC).

When users change frequently, this method for updating the group keys whenever
a user leaves or joins may be too costly. Thus, a batch rekeying strategy was proposed
by Li et al. in [2] whereby rekeying was done only periodically instead of immediately
after each member change. They designed a marking algorithm for processing the
batch updates. It was shown by simulation that, using their algorithm, among the
totally balanced key trees (where internal nodes of the tree have branching degree
2i), a degree of 4 is the best when the number of requests (leave/join) within a batch
is not large. For a large number of requests, using a star (a tree of depth 1) to
organize the users outperforms all the balanced key trees mentioned above in their
simulation. Further analysis of the batch rekeying model was done by Zhu, Chan,
and Noubir in [5]. They introduced a new model to investigate the special case when
the number of joins always equals the number of leaves during a batch period. Thus,
they assumed that during a certain period, every user has a probability p of being
replaced by a new user. They then studied the optimal tree under two assumptions:
(A) the tree is totally balanced, and (B) every node on level i has 2ki children. Under
these assumptions, characterizations of the optimal key tree were given together with
an algorithm for computing it. In particular, it was shown that every node on an
intermediate level of the tree should have a degree of 4 (that is, i = 2).

In this paper, we carry out the first theoretical investigation for the optimal tree
as modelled by [5] but without assumptions (A) and (B). In the following discussion,
an “optimal tree” always refers to a true minimum-cost key tree without any a priori
restrictions on its structure; i.e., we allow the degree of each node in the tree to
be arbitrary and independent of each other. Denote such a tree by a (p, n)-optimal
tree where n is the number of users (i.e., number of leaves of the tree), and p is the
probability that a leaf gets updated. The main results of the paper are as follows.
We identify for p a range 1 ≥ p ≥ 1 − 3−1/3

≈ 0.307, where a star (a tree of depth 1)
is the (p, n)-optimal tree for all n. We also prove, for all (p, n)-optimal trees, a
constant upper bound 4 to the branching degree of any node v other than the root,
and an upper bound (as a function of p) to the size of the subtree rooted at v. These
characterizations enable us to design a dynamic programming algorithm to compute
the optimal tree in time O(n). We further study the case when p → 0 and show
that the optimal tree is as close to a balanced ternary tree with n leaves as possible,
subject to number-theoretical properties of n (see Theorem 4 for a precise statement).

The rest of the paper is organized as follows. In section 2, we describe the batch
update model in detail. In section 3, we find the range of p when the (p, n)-optimal
tree is a star. We derive properties of the general optimal trees in section 4 and give
a linear-time dynamic programming algorithm for constructing them in section 5.
Finally, we carry out the analysis for the case p → 0 in section 6 and show that, in
most cases, a branching degree of 3 is employed by the optimal tree.

2. Preliminaries. Before giving a precise formulation of the tree optimization
problem to be considered, we briefly discuss its motivation and review the basic key
tree model for group key management. This model is referred to in the literature
either as key tree [4] or LKH (logical key hierarchy) [3].

In the key tree model, there is a GC, represented by the root, and n subscribers
(or users) represented by the n leaves of the tree. The tree structure is used by the
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GC for key management purposes. Associated with every node of the tree (whether
internal node or leaf) is an encryption key. The key associated with the root is
called the traffic encryption key (TEK), which is used for accessing encrypted service
contents by the subscribers. The key kv associated with each nonroot node v is called
a key encryption key (KEK) which is used for updating the TEK when necessary.
Each subscriber possesses all the keys along the path from the leaf representing the
subscriber to the root.

In the batch update model to be considered, only simultaneous join/leave is al-
lowed, that is, whenever there is a revoked user, a new user will be assigned to that
vacant position. This assumption is justified since, in a steady state, the number of
joins and departures would be roughly equal during a batch processing period. To
guarantee forward and backward security, a new user assigned to a position (leaf)
will be given a new key by the GC and, furthermore, all the keys associated with the
ancestors of the leaf must be updated by the GC. The updates are performed from the
lowest ancestor upward for security reasons. We will explain the updating procedure
together with the updating cost in what follows.

The GC first communicates with each new subscriber separately to assign a new
key to the corresponding leaf. After that, the GC will broadcast certain encrypted
messages to all subscribers in such a way so that each valid subscriber will know
all the new keys associated with its leaf-to-root path while the revoked subscribers
will not know any of the new keys. The GC accomplishes this task by broadcasting
the new keys, in encrypted form, from the lowest level upward recursively as follows.
Let v be an internal node at the lowest level whose key needs to be (but has not
yet been) updated. For each child u of v, the GC broadcasts a message containing
Eknew

u
(knewv ), which means the encryption of knewv with the key knewu . Thus the GC

sends out dv broadcast messages for updating kv if v has dv children. Updating this
way ensures that the revoked subscribers will not know any information about the
new keys while current subscribers can use one of their KEKs to decrypt the useful
Eknew

u
(knewv ) sequentially until they get the new TEK.

We adopt the probabilistic model introduced in [5] that each of the n positions
has the same probability p to independently experience subscriber change during a
batch rekeying period. Under this model, an internal node v with Nv leaf descendants
will have a probability of 1 − qNv for which its associated key kv requires updating,
where q = 1 − p. The updating incurs dv · (1 − qNv ) expected broadcast messages
by the procedure described above. We thus define the expected updating cost C(T )
of a key tree T by C(T ) =

∑
v dv · (1 − qNv ), where the sum is taken over all the

internal nodes v of T . It is more convenient to remove the factor dv from the formula
by associating the cost 1 − qNv with each of v’s children. This way we express C(T )
as a node weight summation: for each nonroot tree node u, its node weight is defined
to be 1 − qNv , where v is u’s parent. The optimization problem we are interested in
can now be formulated as follows.

Optimal key tree for batch updates. We are given two parameters 0 ≤ p ≤ 1
and n > 0. Let q = 1−p. For a rooted tree T with n leaves and node set V (including
internal nodes and leaves), define a weight function c(u) on V as follows. Let c(r) = 0
for root r. For every nonroot node u, let c(u) = 1− qNv , where v is u’s parent. Define
the cost of T as C(T ) =

∑
u∈V c(u). Find a T for which C(T ) is minimized. We say

that such a tree is (p, n)-optimal and denote its cost by OPT (p, n).

We will first study the case when p is any fixed constant and later the case for
p → 0. Notice that C(T ) ≥

∑
v dv(1 − q) ≥ pn implies OPT (p, n) ≥ pn. On
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the other hand, we have OPT (p, n) ≤ (1 − qn)n by considering a tree where all
leaves are attached directly to the root (i.e., a star). Thus we know asymptotically
OPT (p, n) = Ω(n) when p is a constant. However, it is still interesting to identify the
exact optimal tree which can achieve significantly better cost than a star, especially
when p is a small constant.

3. The star optimal bound. We start with some basic definitions about rooted
trees. We say a tree is of depth k if the longest leaf-root path consists of k edges. A
tree of depth 2 is also referred to as a two-level tree. A tree of depth 1 is called a
k-star if it has k leaves. A tree edge (u, v), where u is a child of v, is said to be at
depth k if the path from u to the root consists of k edges. The branching degree of a
node v is the number of children of v; the subtree size of v, denoted by Nv, refers to
the number of leaf descendants of v.

Lemma 1. If the n-star can achieve OPT (p, n), then the (n − 1)-star can also
achieve OPT (p, n− 1).

Proof. We prove the lemma by contradiction. Suppose the (n − 1)-star cannot
achieve OPT (p, n − 1). Let the degree of the root in a (p, n − 1)-optimal tree be
k, where k < n − 1. Write the optimal cost as OPT (p, n − 1) = k(1 − qn−1) + C,
where C represents the contribution to the cost by edges at depth ≥ 2. Thus we have
(n− 1)(1− qn−1) > k(1− qn−1) +C, which implies n(1− qn) > (k + 1)(1− qn) +C.
This means we can reduce the cost of OPT (p, n) by adopting the same structure of
the (p, n− 1)-optimal tree but with root degree k + 1, a contradiction.

Lemma 2. When 0 ≤ q ≤ 3−1/3, the n-star is strictly better than any two-level
tree.

Proof. A two-level tree can be obtained from a star by successively grouping
certain nodes together to form a subtree of the root. To prove the lemma, we need
only show that the above operation always increases the cost of the tree; i.e., for any
grouping size k, where 1 < k < n, we will show that 1− qn < 1

k (1− qn)+1− qk. This
is trivially true when k = 1 or q = 0, so we assume that k ≥ 2 and q > 0.

With fixed q > 0, define f(k) for integer k by f(k) = k logk(1/q). We observe
that for any fixed q, where 0 < q < 1, the value of f(k) is minimized when k = 3.
Thus, when 0 < q ≤ 3−1/3, we have k logk(1/q) ≥ 1 which implies kqk ≤ 1. Hence,
for 0 < q ≤ 3−1/3, we have

1 − qn −
(

1

k
(1 − qn) + 1 − qk

)
=

1

k
(kqk − 1 − (k − 1)qn)

<
1

k
(kqk − 1)

≤ 0.

Lemma 3. Let p and n be given. If the n-star is strictly better than any two-level
tree, then the n-star is the (p, n)-optimal tree.

Proof. If the n-star is not a (p, n)-optimal tree, then we can transform the (p, n)-
optimal tree from the bottom up, every time combining two levels into a star. By
Lemma 1, the m-star is strictly better than any two-level tree for 1 < m < n and
p. Since one level is always better than two levels, we can eventually transform the
optimal tree into the n-star without increasing the cost.

Theorem 1. When 1 ≥ p ≥ 1 − 3−1/3, the n-star is the (p, n)-optimal tree for
any n. For 2 ≤ n ≤ 4, the n-star is the (p, n)-optimal tree for any p > 0.
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Fig. 1. Tree transformation 1.

Proof. The first part of the theorem follows from Lemmas 2 and 3. The cases of
2 ≤ n ≤ 4 can be verified easily.

4. Properties of an optimal tree. By Theorem 1, the structure of a (p, n)-
optimal tree is uniquely determined for 0 ≤ q ≤ 3−1/3

≈ 0.693 (or 1 ≥ p ≥ 1−3−1/3
≈

0.307). We now derive some properties of the optimal trees which will be used for
constructing a (p, n)-optimal tree in the remaining range 1 ≥ q > 3−1/3. Note that
Lemmas 4 and 5 as well as Theorem 2 are true for all (p, n)-optimal trees where
0 ≤ p ≤ 1 and n > 0.

For a tree T , we associate a value tv = qNv with every node v (thus tv = q if v is
a leaf). The subtree rooted at u is denoted by Tu. We say Tu is a subtree of v if u is
a child of v.

Lemma 4. For a nonroot internal node v with a branching degree of k in a
(p, n)-optimal tree, every child u of v satisfies tu ≥ k−1

k .

Proof. Assume tu < k−1
k , we can then move u up to become a sibling of v, as

shown in Figure 1. In this way, we increase the total cost of the tree by

ΔC = (1 − qNw) + (k − 1)(1 − qNv−Nu) − k(1 − qNv )

< 1 + (k − 1)(1 − qNv−Nu) − k(1 − qNv−Nutu)

= qNv−Nu(ktu − (k − 1))

< 0,

where w is the parent of v and Nv represents the value before the transformation.
This contradicts the cost optimality of the original tree.

Lemma 5. Every nonroot internal node in a (p, n)-optimal tree has a branching
degree of ≤ 5.

Proof. By Lemma 4, if a nonroot internal node v in the optimal tree has a
branching degree of k ≥ 6, then for any child u of v we have tu ≥ k−1

k . We can group
together two children of v, with the largest and the second largest tu values, to form
a single subtree of v as shown in Figure 2. By this transformation, we increase the
total cost by

ΔC = 2(1 − tu1tu2) − (1 − tv)

= tv − 2tu1tu2 + 1.

Note that tv is the product of tu over all children u of v. Thus, we have tv <
(tu1tu2)

k/2, which implies ΔC < zk − 2z2 + 1, where k−1
k ≤ z ≤ 1.

It is easy to verify that z6 − 2z2 + 1 < 0 for 5/6 ≤ z ≤ 1. Because the value
of zk − 2z2 + 1 decreases with k for fixed z, we see that ΔC < 0 for any k ≥ 6 and
k−1
k ≤ z ≤ 1, which proves the lemma.
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Fig. 2. Tree transformation 2.

Fig. 3. Tree transformation 3.

Theorem 2. In a (p, n)-optimal tree,
(1) any internal node other than the root must have a branching degree of ≤ 4;
(2) the size of any subtree Tv, where v is a child of the root, is upper bounded by

max{4(log q−1)−1, 1}.
Proof. By using Lemma 5, we can complete the proof of (1) by showing that the

optimal tree does not have any internal node with a branching degree of 5.
Assume there is a nonroot internal node v with five children u1, . . . , u5. For

simplicity, we write tui
as ti and assume t1 ≥ · · · ≥ t5. First, observe that z5−2z2+1 <

0 when z ≥ 0.86. According to Lemma 4 and the proof of Lemma 5, it must be the case
that both conditions t1t2 < (0.86)2 = 0.7396 and 0.8 ≤ ti < 0.86 for 2 ≤ i ≤ 5 hold.
We now prove that under these conditions, another tree transformation will reduce
the total cost which contradicts the tree’s optimality. We transform the optimal tree
into tree T ′ as shown in Figure 3. By doing so, we increase the total cost by

ΔC = 3(1 − t3t4t5) + 2(1 − t1t2) + (1 − tw) − 5(1 − tv)

< −2t1t2 − 3t3t4t5 + 5tv + 1

= (5t3t4t5 − 2)t1t2 − (3t3t4t5 − 1),

where tv represents the value before transformation. By using the fact that ti ≥ 0.8
for 1 ≤ i ≤ 5 and t1t2 < 0.7396, it can be verified that ΔC < 0. This completes the
proof of property (1).

For property (2), as we have shown in Lemma 4, any child u of v satisfies q(u) =
qNu > 1/2. Thus, Nu < (log q−1)−1. Since v has a branching degree of at most 4 by
property (1) and also Nv ≥ 1, we have Nv ≤ max{4(log q−1)−1, 1}. This completes
the proof of the theorem.

5. Algorithm for constructing the optimal tree. We will construct a (p, n)-
optimal tree by assembling a forest of suitable subtrees. We first generalize the cost
function from trees to forests as follows.
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Definition 1. For L ≤ n, we define a (p, n, L)-forest to be a forest of key trees
with L leaves in total. The cost of the tree edges in the forest are defined as before,
while the cost of the forest is the sum of individual tree costs plus k · (1 − qn), where
k is the number of trees in the forest. We refer to the (p, n, L)-forest with minimum
cost as the optimal (p, n, L)-forest and denote that minimum cost by F (p, n, L).

Theorem 3. For any fixed p, Algorithm 1 computes the (p, n)-optimal tree cost
in O(n) time.

Proof. Based on Theorem 2, in a (p, n)-optimal tree, any subtree Tv, where v
is a child of the root, satisfies (1) its size is at most max{4(log q−1)−1, 1} and (2)
the branching degree of any internal node in Tv is at most 4. For fixed q, we view
4(log q−1)−1 as a constant and denote it by K. For each i, where 2 ≤ i ≤ K, we
consider the minimum cost R(i) of any tree Tv with size i and subject to the degree
restriction stated in (2). The value of R(i) can be computed in constant time as
follows. First, define (k1, k2, k3, k4) to be an i-quadruple if k1 + k2 + k3 + k4 = i,
0 ≤ k1, k2, k3, k4 ≤ i, and k∗ ≥ 2, where k∗ is the number of positive elements in
(k1, k2, k3, k4). Then R(i) is the minimum value of R(k1) +R(k2) +R(k3) +R(k4) +
(1 − qi) · k∗ over all i-quadruples (k1, k2, k3, k4), and it can be computed in O(K3)
time using dynamic programming. Now, we can obtain the true (p, n)-optimal tree
also by dynamic programming, by computing optimal (p, n, L)-forests as subproblems
of size L for 1 ≤ L ≤ n as given in Algorithm 1. Thus, the total running time of
the algorithm is O(n · K + K4) which is O(n) for fixed p. Algorithm 1 focuses on
computing the optimal tree cost; the tree structure can be obtained by keeping track
of the optimal branching at every dynamic programming iteration.

Algorithm 1 Computing optimal key tree

Input: n and p (0 ≤ p ≤ 1)
Output: Optimal tree cost OPT (n, p)

q = 1 − p
K = min{4(log q−1)−1, n}
if q ≤ 3−1/3 or 2 ≤ n ≤ 4 then
OPT (p, n) ← n · (1 − qn)
Return OPT (p, n)

end if
R(1) = 0
for i = 2 to 4 do
R(i) = i ∗ (1 − qi)

end for
i = 5
while i < K do

Compute R(i), cost of the restricted (p, i)-optimal tree.
i = i + 1

end while
F (p, n, 0) ← 0
for L = 1 to n do
F (p, n, L) ← min(R(j) + 1 − qn + F (p, n, L− j)) over all j, 1 ≤ j ≤ min{K,L}.

end for
OPT (n, p) ← F (p, n, n)
Return OPT (n, p)
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Fig. 4. Optimal small trees.

6. Optimal trees as p → 0. Algorithm 1 has running time O(n · K + K4),
where K is upper bounded by 4(log q−1)−1 (and also by n). We can regard O(K4) as
a constant term for a fixed value of p, but its values get large as p → 0. Therefore, in
this final section we will study the structure of (p, n)-optimal trees as p → 0. It turns
out the structure of (p, n)-optimal trees depends rather critically on certain number-
theoretic properties of n. (Some of the detailed computations will be suppressed.)
Suppose T = T (n) denotes a rooted tree with n leaves and edge set E.

For convenience, we let L(e) = Nv if e = (u, v) and u is a child of v. We express
the cost of T as

PT (p) = C(T ) =
∑
e∈E

(1 − (1 − p)L(e)).

Of course, PT (0) = 0 and PT (1) = |E|. The optimal trees as p → 0 are those with
PT (p) having the smallest slope at p = 0. Any such optimal tree will remain optimal
for an interval [0, c] for some (small) c > 0. The slope of PT (p) at p = 0 is denoted
by λT and can be expressed as

λT =
∑
e∈E

L(e).

We let λ∗(n) denote the smallest possible value of λT over all trees T = T (n) having
n leaves. Our first task will be to determine the exact value of λ∗(n) for all values of
n.

To begin with, it is easy to check by hand that the trees shown in Figure 4 are
optimal for the values 1 ≤ n ≤ 9. This implies the corresponding values of λ∗(n)
shown below:

n 1 2 3 4 5 6 7 8 9
λ∗(n) 0 4 9 16 23 30 38 44 54

.

For integers t ≥ 0, define the sets It = {3t, 3t + 1, . . . , 2 · 3t} and Jt = {2 · 3t, 2 ·
3t + 1, . . . , 3t+1}. Notice that λ∗(n) is linear on I0, I1, J0, and J1. We will show that
this holds in general for all It and Jt.

First, let us extend λ∗(n) to a real function λ∗(x) for all x ≥ 1 by linear interpo-
lation (see Figure 5).

The basic recurrence that λ∗(n) satisfies is

(6.1) λ∗(n) = min
2≤r≤n

{
rn +

∑
λ∗(ik)

}
,

where the sum is taken over all ik ≥ 1 such that i1 + · · · + ir = n and r denotes the
degree of the root ρ.
What we will prove is in the following lemma.
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Fig. 5. Graph of λ∗(n).

Lemma 6.

(6.2) λ∗(x) =

{
(3t + 4)x− 4 · 3t if x ∈ It,
(3t + 5)x− 6 · 3t if x ∈ Jt.

Proof. It is easy to check that this holds for t = 0 and 1. Assume that this holds
for some value t ≥ 1. We also assume that λ∗(x) is linear on Is and Js, s ≤ t, and
strictly convex between intervals, (i.e., the slopes are strictly increasing on successive
intervals). Thus, for each fixed value of r, the sum

∑
λ∗(ik) is minimized by taking

all the ik to be as equal as possible. In fact, we can take all ik = n
r , by the assumption

of linearity of λ∗(x) on the Is and Js, s ≤ t. (Here we need the elementary fact that
if n

r ∈ [a, a + 1] for some integer a, then n can be expressed as the sum of u a’s and
r − u a + 1’s, for some u with 0 ≤ u ≤ r.) Thus, we can write

λ∗(n) = min
2≤r≤n

{
rn + rλ∗

(n
r

)}
.

Our next job is to eliminate values of r as candidates for achieving the minimum. For
example, let us show that

5n + 5λ∗
(n

5

)
> 4n + 4λ∗

(n
4

)
.

Take n ∈ It and consider n
4 and n

5 . Since their ratio is 5
4 , then there are only four

possibilities (for some s < t):
(i) n

5 ,
n
4 ∈ Īs;

(ii) n
5 ,

n
4 ∈ J̄s;

(iii) n
5 ∈ Īs,

n
4 ∈ J̄s;

(iv) n
5 ∈ J̄s,

n
4 ∈ Īs+1,

where we use Īs and J̄s to denote the intervals [3s, 2 ·3s] and [2 ·3s, 3s+1], respectively.
In case (i), we have

5λ∗
(n

5

)
= 5(3s + 4)

n

5
− 5 · 4 · 3s = (3s + 4)n− 20 · 3s
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and

4λ∗
(n

4

)
= 4(3s + 4)

n

4
− 4 · 4 · 3s = (3s + 4)n− 16 · 3s.

Thus,

5n + 5λ∗
(n

5

)
− 4n− 4λ∗

(n
4

)
= n− 4 · 3s ≥ (5 − 4)3s = 3s > 0

since n ≥ 5 · 3s (because n
5 ∈ Īs).

Similarly, for case (ii) we have

5λ∗
(n

5

)
= (3s + 5)n− 30 · 3s

and

4λ∗
(n

4

)
= (3s + 5)n− 24 · 3s.

Thus,

5n + 5λ∗
(n

5

)
− 4n− 4λ∗

(n
4

)
= n− 6 · 3s ≥ (10 − 6)3s = 4 · 3s > 0

since n ≥ 10 · 3s (because n
5 ∈ J̄s).

For case (iii), we have

5λ∗
(n

5

)
= (3s + 4)n− 20 · 3s

and

4λ∗
(n

4

)
= (3s + 5)n− 24 · 3s.

Thus,

5n + 5λ∗
(n

5

)
− 4n− 4λ∗

(n
4

)
= 4 · 3s > 0.

Finally, for case (iv) we have

5λ∗
(n

5

)
= (3s + 5)n− 30 · 3s

and

4λ∗
(n

4

)
= (3s + 7)n− 48 · 3s.

Thus,

5n + 5λ∗
(n

5

)
− 4n− 4λ∗

(n
4

)
= −n + 18 · 3s ≥ 3 · 3s > 0

since n
5 ∈ J̄s =⇒ n ≤ 15 · 3s.

Hence, in all cases it is better to use r = 4 than r = 5; i.e., the value of r which
determines λ∗(n) for n ∈ It cannot be 5. A similar argument rules out any value
of r ≥ 5 (we omit the calculations which are very similar to the case we have just
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done). Also, it is easy to see that the same arguments apply if we initially assumed
that n ∈ Jt+1, where now we can assume that the induction hypothesis holds for all
s ≤ t, and for It+1, as well.

Thus, we are left with the possibilities that r = 2, 3, or 4. Here, things become
a little more interesting! When we apply the preceding argument to compare 3n +
λ∗(n/3) and 4n+λ∗(n/4), we find that the difference is positive in cases (ii) and (iii),
but can be 0 in cases (i) and (iv) exactly when n = 4 · 3t−1.

For r = 2, the same arguments show that there is a whole interval of values for n
where the difference 2n+2λ∗(n2 )−3n−3λ∗(n3 ) can be 0, namely when 4·3t ≤ n ≤ 6·3t
(it can never be negative).

With this information, we can now compute the values of λ∗(n) for n ∈ It+1∪Jt+1.
When we do this and extend to the real function λ∗(x), we find that (6.2) holds for
t+1. With this, the induction step is completed, and we have shown that (6.2) holds
for all t.

In particular, we have

(6.3) λ∗(3t) = t · 3t+1, λ∗(2 · 3t) = (6t + 4) · 3t, λ∗(4 · 3t) = (12t + 16) · 3t.

Let T ∗(n) denote an optimal tree with n leaves as p → 0. Although we now know
the slope λ∗(n) of PT∗(n), we don’t yet know the degree of the root of PT∗(n) in the
case that n is in the “ambiguous” range 4 · 3t ≤ n ≤ 6 · 3t. This will depend on the
second derivative of PT (p) evaluated at p = 0. This is just

−
∑
e∈E

(
L(e)

2

)
.

Since this is negative, we want to make the sum
∑

e∈E

(
L(e)

2

)
as large as possible in

order to find the optimal tree T ∗(n). Let μ∗(n) denote the largest possible value of
this sum over all trees T (n) for which λT (n) = λ∗(n). We know, in general, that an
optimal tree T ∗(n) with root degree r has on each of its root edges an optimal subtree
T ∗(ik), where

r∑
k=1

ik = n

and all the ik must lie in the same interval It (or Jt), since otherwise the optimal
value λ∗(n) would not be achieved.

First, observe that we know the optimal tree T ∗(3t) since it must have a root
degree of 3, so by induction we can deduce that μ∗(3t) = 1

4 (32t+2 − (2t + 3)3t+1).
Now, for T ∗(2 · 3t), either the root has degree 2, in which case the two subtrees
must both be T ∗(3t)’s, or the root has degree 3, in which case the three subtrees
are all T ∗(2 · 3t−1)’s (since in both cases, the subtree sizes are endpoints of an I
or J interval). By induction, we can conclude that degree 3 wins here and that
μ∗(2 · 3t) = 32t+2 − (3t + 7)3t. Finally, for T ∗(4 · 3t) (where there are three possible
choices for the root degree), we find that degree 4 wins in this case, and we have
μ∗(4 · 3t) = 41 · 32t − (6t + 17)3t. These are the only values of n for which a root
degree of 4 is optimal.

The remaining problem is to eliminate the possibility of a root degree of 2 for the
values 4 · 3t < n ≤ 6 · 3t. It should be noted that to obtain the largest possible μ∗(n),
the subtree sizes will tend to be as far apart as possible (consistent with staying in
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Fig. 6. An optimal T ∗(39).

the same I or J interval), again because of the tendency for μ∗(n) to be convex. It
isn’t convex everywhere (or even monotone), however, because of the unusually large
values at 4 · 3t. After all, since

μ∗(n) = max
2≤r≤4

(
r

(
n

2

)
+

∑
i1...ir

μ∗(ik)

)
,

then when r = 4, we get an especially large contribution from the term r
(
n
2

)
.

First, let us deal with n ∈ Jt, i.e., 2 · 3t ≤ n ≤ 3t+1. In this case, T ∗(n) has a
root degree of 3 and so all three (optimal) subtrees have sizes ik ∈ Jt−1. We put the
proof of the following lemma in the appendix.

Lemma 7. Let n = 2 · 3t + r with 0 ≤ r ≤ 3t. max{μ∗(i1) + μ∗(i2) + μ∗(i3) :
i1 + i2 + i3 = n, all ik ∈ Jt−1} occurs when the ik are “maximally spread,” i.e., when
at least two of the ik are equal to the endpoint values 2 · 3t−1 and 3t of Jt−1.

We derive in the following lemma that the optimal tree as p → 0 cannot have a
root degree of 2. Its proof is also put in the appendix.

Lemma 8. T ∗(n) cannot have a root degree of 2 for any n > 2.

We summarize what we have shown in the following result.

Theorem 4. As p → 0, the (p, n)-optimal tree T ∗(n) always has a root degree of
3 except for n of the form 4 ·3t, in which case T ∗(4 ·3t) has a root degree of 4, and for
n = 2, when T ∗(2) has a root degree of 2. When 2 · 3t ≤ n ≤ 3t+1, then T ∗(n) is as
close to a balanced ternary tree with n leaves as possible. Namely, all subtrees (as well
as T ∗(n) itself) have root degrees of 3, except for the very bottom level, where subtrees
of size 2 can occur. However, when 3t ≤ n < 2 · 3t, T ∗(n) can deviate substantially
from a balanced ternary tree.

As an example for the situation 3t ≤ n ≤ 2·3t, note that T ∗(39) has three subtrees
of sizes 9, 12, and 18 (see Figure 6). In general, it seems to be difficult to predict the
sizes of the subtrees in the optimal tree T ∗(n) for certain values of n. For example, for
n = 1252, the sizes are 280, 486, and 486, while for n = 1253, the sizes are 324, 443,
and 486. This is an example of the effect of a number of the form 324 = 4 · 34 having
an especially large value of μ∗, thereby causing a preferential bias towards using it.
In this case, μ∗(324) = 265680 while μ∗(323) = 240997, μ∗(325) = 244014. In fact,
we already see this happening at n = 11, where the optimal tree T ∗(11) has subtree
sizes 3, 4, and 4, which are not maximally spread in I1.
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Appendix.

Proof of Lemma 7. This is true by inspection for t = 0, 1. Suppose it holds for
some value of t ≥ 1 and let n = 2 · 3t+1 + r ∈ Jt+1. Now, by (1),

(A.1) μ∗(n) = 3

(
n

2

)
+ max{μ∗(i1) + μ∗(i2) + μ∗(i3) : i1 + i2 + i3 = n, all ik ∈ Jt}.

By induction, the maximum is achieved when the ik are maximally spread. In par-
ticular, this means that, assuming i1 ≤ i2 ≤ i3:

(a) if 0 ≤ r ≤ 3t, then i1 = 2 · 3t, i2 = 2 · 3t, i3 = 2 · 3t + r′;
(b) if 3t ≤ r ≤ 2 · 3t, then i1 = 2 · 3t, i2 = 2 · 3t + r′, i3 = 3t+1;
(c) if 2 · 3t ≤ r ≤ 3t+1, then i1 = 2 · 3t + r′, i2 = 3t+1, i3 = 3t+1.

Let Δ(m) denote the difference μ∗(m+1)−μ∗(m). Then this implies, for 0 ≤ r < 3t+1,
the fundamental equation

(A.2) Δ(2 · 3t+1 + r) = Δ(2 · 3t + r′) + 3n,

where 0 ≤ r′ < 3t and r ≡ r′ (mod 3t). The term 3n comes from the difference
3
(
n+1

2

)
− 3

(
n
2

)
= 3n. From this it follows (by induction) that a sum of k consecutive

values

Δ(2 · 3t+1 + u) + Δ(2 · 3t+1 + (u + 1)) + · · · + Δ(2 · 3t+1 + (u + k − 1))

for 0 ≤ u ≤ 3t+1 − k + 1 is minimized by taking u = 0 since the sum is a monotone
function of u. From this, the claim now follows, since any choice of the ik which
isn’t maximally spread can be replaced by a maximally spread choice which can only
increase the value of μ∗(i1) + μ∗(i2) + μ∗(i3) (the difference in the two values being
equal to the difference of two interval sums of the Δ’s).

The next step is to obtain an explicit expression for the value Δ(n) for n = 2·3t+r
with 0 ≤ r < 3t. We do this by iterating (5). The result is

(A.3) Δ(2 · 3t + r) = 3t+2 − 2 + 3Rt(r),

where Rt(r) is defined as follows. Write r in its base 3 expansion as r = rt−1rt−2rt−3 . . .
r2r1r0, where each rk ∈ {0, 1, 2}. Then Rt(r) is the sum of the t numbers correspond-
ing to the t rows (read in base 3) of the array

rt−1 rt−2 rt−3 . . . r2 r1 r0
0 rt−2 rt−3 . . . r2 r1 r0
0 0 rt−3 . . . r2 r1 r0
0 0 0 . . . r2 r1 r0

...
0 0 0 . . . r2 r1 r0
0 0 0 . . . 0 r1 r0
0 0 0 . . . 0 0 r0.

Thus, Rt(0) = 0, Rt(1) = 3t, Rt(14) = 14t− 21, etc.
From this we can write down an “explicit” expression for μ∗(n) for n = 2 ·3t+r ∈

Jt, which is

μ∗(2 · 3t + r) = μ∗(2 · 3t) + Δ(2 · 3t) + Δ(2 · 3t + 1) + · · · + Δ(2 · 3t + r − 1)

= 32t+2 − (3t + 7)3t + r · (3t+2 − 2) + 3

r−1∑
k=0

Rt(k).(A.4)
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Proof of Lemma 8. As we have seen, this is only possible when 4 · 3t ≤ n ≤ 6 · 3t.
For such n, 2 · 3t ≤ n

2 ≤ 3t+1. This implies that if T ∗(n) has a root degree of 2, then
the two subtrees T ∗(i1) and T ∗(i2) with i1 + i2 = n must have i1 and i2 both in Jt
and be maximally spread (by the same inductive argument as before), which in this
case means that at least one of the ik must be one of the endpoint values 2 ·3t or 3t+1

of Jt. More precisely, if T (2)(n) denotes the best tree on n leaves with a root degree of
2 (and, of course, achieving the optimal value of λ∗(n)), and we assume that i1 ≤ i2,
then

(a) if 4 · 3t ≤ n = 4 · 3t + r1 ≤ 5 · 3t, then i1 = 2 · 3t, i2 = 2 · 3t + r1;
(b) if 5 · 3t ≤ n = 5 · 3t + r2 ≤ 6 · 3t, then i1 = 2 · 3t + r2, i2 = 3t+1.

In either case, we have

(A.5) μT (2)(n) = 2

(
n

2

)
+ μ∗(i1) + μ∗(i2),

where we know exactly the values of μ∗(i1) and μ∗(i2), since both arguments are in
Jt. What we would like to do is compare this with the best tree T ′(n) with a root
degree of 3 and show that μT ′(n) > μT (2)(n). Unfortunately, we don’t know the best
tree T ′(n) with a root degree of 3. However, we know a pretty good one. This is the
tree for which all of its subtrees also have root degrees of 3, recursively, until down to
the very last level, in which any subtree with only 2 leaves must have a root degree
of 2. For this family of trees T ′(n), we let μ′(n) denote the corresponding value of
the second derivative (with its sign changed), and we let Δ′(m) = μ′(m+ 1)−μ′(m).
Thus, Δ(n) and Δ′(n) agree for n = 2, 3, 4, 5, 7, 8, 9 while we have Δ(6) = 24 and
Δ′(6) = 20.

More important is that Δ′(n) satisfies the same recurrence (5) that Δ(n) does,
namely,

(A.6) Δ′(3t+1 + r) = Δ′(3t + r′) + 3n,

where n = 3t+1 +r, 0 ≤ r < 3t+1, 0 ≤ r′ < 3t, and r ≡ r′ (mod 3t). This follows from
the same arguments which established (5). Iterating this, we obtain the analogue
of (6):

(A.7) Δ′(3t + r) =
3t+2 − 5

2
+ Rt(r).

Finally, summing this over r and using the fact that μ(3t) = 1
4 (32t+2 − (6t+9)3t), we

obtain the following analogue of (7):

(A.8) μ′(3t + r) =
1

4

(
32t+2 − (6t + 9)3t

)
+

r(3t+2 − 5)

2
+ 3

r−1∑
k=0

Rt(k).

We are now in a position to complete the argument. Let n = 4 · 3t + r. There are
two cases.

Case 1. 0 ≤ r ≤ 3t. In this case

μ′(n) = μ∗(3t) + μ∗(2 · 3t) + μ′(3t + r) + 3

(
n

2

)

and

μT (2)(n) = μ∗(2 · 3t) + μ∗(2 · 3t + r) + 2

(
n

2

)
.
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Hence,

μ′(n) > μT (2)(n)

if and only if

μ∗(3t) + μ∗(2 · 3t) + μ′(3t + r) + 3

(
n

2

)
> μ∗(2 · 3t) + μ∗(2 · 3t + r) + 2

(
n

2

)

if and only if

32t+2 − (6t + 9)3t

2
+

r(3t+2 − 5)

2
+ 3

r−1∑
k=0

Rt(k) +

(
n

2

)

> 32t+2 − (3t + 7)3t + r(3t+2 − 2) + 3

r−1∑
k=0

Rt(k)

if and only if

2

(
4 · 3t + r

2

)
> 32t+2 + r3t+2 − 5 · 3t + r,

which is easily verified. This finishes Case 1.
Case 2. 3t ≤ r ≤ 2 · 3t. Let s = r − 3t. In this case

μ′(n) = μ′(3t + s) + μ∗(2 · 3t) + μ∗(2 · 3t) + 3

(
n

2

)

and

μT (2)(n) = μ∗(2 · 3t + s) + μ∗(3t+1) + 2

(
n

2

)
.

Hence,

μ′(n) > μT (2)(n)

if and only if

μ′(3t + s) + μ∗(2 · 3t) + μ∗(2 · 3t) +

(
n

2

)
> μ∗(2 · 3t + s) + μ∗(3t+1)

if and only if

32t+2 − (6t + 9)3t

4
+

s(3t+2 − 5)

2
+ 3

r−1∑
k=0

Rt(k) + 2(32t+2 − (3t + 7)3t) +

(
5 · 3t + s

2

)

> 32t+2 − (3t + 7)3t + s(3t+2 − 2) + 3

r−1∑
k=0

Rt(k) +
32t+4 − (6t + 15)3t+1

4

if and only if

2

(
5 · 3t + s

2

)
> 18 · 32t − 4 · 3t + s(3t+2 + 1).
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As before, it is easy to check that this inequality holds, and Case 2 is completed.
Thus, we have shown that in the ambiguous range 4 · 3t ≤ n < 6 · 3t, there is

always a (ternary) tree T ′(n) which dominates the best tree T (2)(n) with a degree 2
root (where all trees under consideration must achieve the optimal value of λ∗(n)).
Consequently, the optimal tree T ∗(n) also dominates this T (2)(n) as well.
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Abstract. This paper consists of an erratum to the previously published Enumerating Typical
Circulant Covering Projections onto a Circulant Graph.

DOI. 10.1137/060653020

In Lemma 4 of [1], the authors incorrectly rephrased the characterization theorem
of two isomorphic graph coverings given in [3] for a regular covering case. This should
be corrected as follows.

Lemma 4′. Let φ and ψ be typical voltage assignments in C1(G; Zp). Then, two
typical circulant p-fold coverings pφ : Gφ → G and pψ : Gψ → G are isomorphic if
and only if there exists a function g : V (G) → Sp such that ψ(uv) = g(v)φ(uv)g(u)−1

in Sp for each uv ∈ D(G), where Sp is the symmetric group on the elements of Zp

and Zp is considered as the left regular subgroup of Sp.
However, if the voltage assignments φ and ψ in C1(G; Zp) are assumed to be

trivial on a spanning tree of a graph G, two coverings pφ : Gφ → G and pψ : Gψ → G
are isomorphic if and only if there exists an automorphism σ ∈ Aut (Zp) such that
φ(uv)σ = ψ(uv) for every arc uv of G (see [2, 4]).

Because of the error in Lemma 4, Lemma 5 of [1] is also incorrect. Instead of
these two lemmas, we use a minor extension of Lemma 10 for our enumeration, which
can be stated as follows.

Lemma 10′. Let G = Cay(Zn, Y ) be a connected circulant graph. For any natural
number � (not necessarily prime), let f, g : Z�n → Zn be two group epimorphisms.
Then two connected typical coverings f∗ : Cay(Z�n, X1) → G and g∗ : Cay(Z�n, X2) →
G are isomorphic if and only if there exists an automorphism Φ ∈ Aut (Z�n) such that
g ◦ Φ = f and Φ(X1) = X2.

The necessity of Lemma 10′ is proved in [1] and the sufficiency is clear.
Based on Lemmas 2, 3, and 7 in [1] and Lemma 10′, Theorem 8 in [1], which

counts the connected typical circulant prime-fold coverings, should be corrected as
follows.

Theorem 8′. For any odd prime p, the number of isomorphism classes of con-
nected typical circulant p-fold coverings of G = Cay(Zn, Y ) is 1

p−1 (p�
d
2 �−1) if (p, n) =

1 and is p�
d
2 �−1 otherwise, where d is the valency of G.

Proof. Let Y = {±i1,±i2, . . . ,±ik} or {±i1,±i2, . . . ,±ik,
n
2 } according to whether

the valency d of G is even 2k or odd 2k + 1, where 0 < i1, i2, . . . , ik <
⌊
n+1

2

⌋
. Then,

by Lemma 3, any typical circulant p-fold covering of G can be derived from a typi-
cal voltage assignment, or from a k-tuple (δ1, δ2, . . . , δk) ∈ Z

k
p, with the assumption

that any typical covering projection sends 1 in Zpn to 1 in Zn by Lemma 2. Let Δ
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denote the set of k-tuples (δ1, δ2, . . . , δk) ∈ Z

k
p which induce connected p-fold cover-

ings of G. Then |Δ| = p�
d
2 � − 1 if (p, n) = 1 and |Δ| = p�

d
2 � if p|n by Lemma 7.

Furthermore, by Lemma 10′, any two k-tuples (δ1, δ2, . . . , δk) and (δ′1, δ
′
2, . . . , δ

′
k) in

Δ induce isomorphic coverings if and only if there exists a Φ ∈ Aut (Zpn) such that
Φ(ij + δjn) = ij + δ′jn for every j = 1, 2, . . . , k. In this case, Φ becomes a covering
isomorphism between induced coverings and Φ(1) = 1+an for some a = 0, 1, . . . , p−1.
Note that a map Φ defined by Φ(1) = 1 + an for some a = 0, 1, . . . , p− 1 is an auto-
morphism of Zpn if and only if (pn, 1 + an) = 1. Let S = {Φ ∈ Aut (Zpn) | Φ(1) ≡
1(mod n)}. Then, S is a subgroup of Aut (Zpn). Define an S-action on Δ by
Φ(δ1, δ2, . . . , δk) = (δ′1, δ

′
2, . . . , δ

′
k) for any Φ ∈ S and (δ1, δ2, . . . , δk) ∈ Δ, where δ′j is

uniquely determined by the relation Φ(ij + δjn) = ij + δ′jn for every j = 1, 2, . . . , k.
This action is well defined and the number of isomorphism classes of connected typ-
ical circulant p-fold coverings of G is the number of orbits under the S-action on Δ.
Let an arbitrary δ = (δ1, δ2, . . . , δk) ∈ Δ be given. Since no Φ ∈ S fixes the k-tuple
(i1+δ1n, i2+δ2n, . . . , ik+δkn) except the identity Φ, the orbit size of δ equals the car-
dinality |S|, that is, the number of automorphisms Φ of Zpn such that Φ(1) = 1 + an
for some a = 0, 1, . . . , p−1. As the first case, let (p, n) = 1. Then, gcd(pn, 1+an) = 1
except exactly one of a = 0, 1, . . . p−1. Hence, the orbit size of δ is p−1. Since δ ∈ Δ
is given arbitrarily, it gives the proof of the case (p, n) = 1. As the remaining case, let
p|n. Then, for each a = 0, 1, . . . p − 1, we get gcd(1 + an, pn) = 1. Hence, the orbit
size of δ is p. This completes the proof.

Comparing with the old enumeration in Theorem 8 in [1], the number of isomor-
phism classes of connected typical circulant p-fold coverings of G = Cay(Zn, Y ) is
corrected as the multiple of the old value by 1

p−1 when (p, n) = 1 in Theorem 8′. The
following corrections will be listed as the last part of this manuscript.

Since Lemma 7 in [1] counts the number of disconnected typical circulant p-
fold coverings of G = Cay(Zn, Y ), one can get the number of isomorphism classes of
(connected or not) typical circulant p-fold coverings of G with the help of Theorem 8′.
This provides a correct version of Theorem 6 in [1].

Now, Theorem 13 in [1], which counts the connected typical circulant �-fold cov-
erings for any composite number �, can be revised as follows.

Theorem 13′. Let � = pr11 pr22 · · · prss be the prime factorization of a positive
integer � and let G be a connected circulant graph of order n and valency d. Then the
number N of isomorphism classes of connected typical circulant �-fold coverings of G
is

N =

⎧⎪⎨
⎪⎩

0 if � is even and d is odd,
s∏

i=1

Ni otherwise,

where

Ni =

⎧⎨
⎩

p
ri(� d

2 �−1)
i if pi|n,

p
(ri−1)(� d

2 �−1)
i

(
p
� d

2 �
i − 1

)
/(pi − 1) if (pi, n) = 1.

Corollaries 14, 15, 16, and 18 and Table 1 should be revised as follows.
Corollary 14′. Let G be a connected circulant graph of order n and valency

d. For any prime p and any natural number r, the number of isomorphism classes
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Table 0.1

The number of isomorphism classes of connected typical circulant �-fold coverings of the com-
plete graph Kn for small � and small n

n 3 4 5 6 7 8 9 10 11 12 13 14 · · ·
� = 2 1 0 3 0 7 0 15 0 31 0 63 0 · · ·
� = 3 1 1 4 3 13 13 27 40 121 81 364 364
� = 4 1 0 6 0 28 0 120 0 496 0 2016 0
� = 5 1 1 5 6 31 31 131 125 321 321 3906 3906
� = 6 1 0 12 0 91 0 405 0 3751 0 22932 0 · · ·

...
...

...

of connected typical circulant pr-fold coverings of G is 0 when p = 2 and d is odd.
Otherwise, this number is pr(�

d
2 �−1) if p|n, and is p(r−1)(� d

2 �−1)(p�
d
2 � − 1)/(p − 1) if

(p, n) = 1.
Corollary 15′. Let G be a connected circulant graph of order n and valency

d. For any two distinct primes p and q, the number N of isomorphism classes of
connected typical circulant pq-fold coverings of G is 0 when d is odd and one of p and
q is 2. Otherwise, the number N is

N =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p�
d
2 �−1q�

d
2 �−1 if pq|n,

p�
d
2 �−1(q�

d
2 � − 1)/(q − 1) if p|n but (q, n) = 1,

(p�
d
2 � − 1)q�

d
2 �−1/(p− 1) if q|n but (p, n) = 1,

(p�
d
2 � − 1)(q�

d
2 � − 1)/((p− 1)(q − 1)) if (pq, n) = 1.

Corollary 16′. Let � = pr11 pr22 · · · prss be the prime factorization of a positive
integer �. Then no connected typical circulant �-fold covering of Kn exists when both
� and n are even. Otherwise the number of isomorphism classes of connected typical
circulant �-fold coverings of Kn is

∏s
i=1 Ni, where

Ni =

⎧⎨
⎩

p
ri(�n−1

2 �−1)
i if pi|n,

p
(ri−1)(�n−1

2 �−1)
i

(
p
�n−1

2 �
i − 1

)
/(pi − 1) if (pi, n) = 1.

Corollary 18′. Let G be a connected circulant trivalent graph of order n but
G �= K4 or K3,3. If � is even, then G has no connected circulant �-fold coverings. If
� is odd, then G has only one connected circulant �-fold covering up to isomorphism.

All statements in [1] that were not mentioned remain valid.
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Abstract. We study the integer knapsack cover polyhedron which is the convex hull of the set of
vectors x ∈ Z

n
+ that satisfy CT x ≥ b, with C ∈ Z

n
++ and b ∈ Z++. We present some general results

about the nontrivial facet-defining inequalities. Then we derive specific families of valid inequalities,
namely, rounding, residual capacity, and lifted rounding inequalities, and identify cases where they
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and improve them using sequence-independent lifting.
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1. Introduction. The purpose of this paper is to study the integer knapsack
cover polyhedron. Let N = {1, 2, . . . , n}. Item i ∈ N has capacity ci. We would like
to cover a demand of b using integer amounts of items in N . We assume that b and
ci for i ∈ N are positive integers.

We are interested in the integer knapsack cover set

X =

{
x ∈ Z

n
+ :

∑
i∈N

cixi ≥ b

}
(1)

and its convex hull PX = conv(X). The constraint
∑

i∈N cixi ≥ b is called the cover
constraint.

Set X is a relaxation of the feasible sets of many optimization problems in-
volving demands that may be covered with different types of items. Pochet and
Wolsey [15] study a special case to derive valid inequalities for a network design
problem. Mazur [11] uses the polyhedral results on PX to generate strong valid in-
equalities for the multifacility location problem. Yaman [18] uses the same relaxation
to strengthen formulations for the heterogeneous vehicle routing problem, which gen-
eralizes the well-known capacitated vehicle routing problem by introducing the choice
between different vehicle types. Yaman and Sen [19] arrive at the same relaxation in
the context of the manufacturer’s mixed pallet design problem, where each customer
can buy integer numbers of pallets with different configurations to satisfy its demand.
Knowledge about polyhedral properties of PX can be used in deriving strong formu-
lations for these problems. For recent work in understanding the structure of simple
mixed integer and integer sets, see, e.g., [3, 7, 12, 13, 15].

There has been a lot of work on the polytope of the 0/1 knapsack problem (e.g., [5,
8, 9, 16, 17, 20]). The situation is different for the integer knapsack cover polyhedron.
Despite the many application areas where set X may appear as a relaxation, the
literature on the polyhedral properties of its convex hull is quite limited.

Pochet and Wolsey [15] study the special case where ci+1 is an integer multiple
of ci for all i = 1, 2, . . . , n − 1. They derive the partition inequalities and show that
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these inequalities define the convex hull together with the nonnegativity constraints.
They derive conditions under which these inequalities are valid in the general case.

Mazur [11] and Mazur and Hall [12] study the general case. They show that
dim(PX) = n, xi ≥ 0 defines a facet of PX for i ∈ N , and if

∑
i∈N αixi ≥ α0 is

a nontrivial facet-defining inequality of PX, then αi > 0 for all i ∈ N and α0 > 0.
Let c

′

1, . . . , c
′

m be the distinct ci values that are less than b. An important result by
Mazur [11] is that, if one knows the description of conv({x ∈ Z

m
+ :

∑m
i=1 c

′

ixi ≥ b}),
it is trivial to obtain the description of PX. The inequality

∑
i∈N αixi ≥ α0 is a

nontrivial facet-defining inequality for PX if and only if αi = αj for all i, j ∈ N

with ci = cj , αi = α0 for all i ∈ N with ci ≥ b, and
∑m

i=1 α
′

ixi ≥ α0 is a nontrivial

facet-defining inequality for conv({x ∈ Z

m
+ :

∑m
i=1 c

′

ixi ≥ b}), where α
′

i = αj if c
′

i = cj
for i = 1, · · · ,m and j ∈ N . So interesting instances satisfy c1 < c2 < · · · < cn < b.

Mazur and Hall [12] also study the integer capacity cover polyhedron defined as
the convex hull of the set {(y, x) ∈ {0, 1}q × Z

n
+ :

∑
i∈N cixi ≥

∑q
i=1 yi}. They

use simultaneous lifting to derive facet-defining inequalities for this polyhedron using
those of the integer knapsack cover polyhedron. They remark that little is known
about the polyhedral properties of the latter polyhedron, and it is difficult to identify
its facets.

Atamturk [1] presents a family of facet-defining inequalities and lifting results for
the polytope conv(X ∩ {x ∈ Z

n : x ≤ u}) for u ∈ Z

n
++.

In this paper, we derive several families of valid inequalities and discuss when they
define facets of PX. We investigate the domination relations between these families of
valid inequalities. Most of our results on facet-defining inequalities are for the special
case where c1 = 1.

This work is motivated by the results of Mazur and Hall [12], where valid in-
equalities for the integer knapsack cover polyhedron are lifted to valid inequalities for
a more complicated polyhedron, the integer capacity cover polyhedron. We are also
motivated by the positive results in [18, 19], which demonstrate the use of simple valid
inequalities based on the integer knapsack cover relaxation in closing the duality gap
for complicated mixed integer programming problems studied in these papers.

The paper is organized as follows. In section 2, we give the general properties
of nontrivial facet-defining inequalities of PX. In sections 3–6, we introduce four
families of valid inequalities, namely, rounding, residual capacity, lifted rounding, and
lifted 2-partition inequalities. We compare their relative strengths and give conditions
under which they define facets of PX. In section 7, we investigate the use of lifted
rounding and lifted 2-partition inequalities in solving the manufacturer’s mixed pallet
design problem introduced by Yaman and Sen [19]. We conclude in section 8.

2. General results on facet-defining inequalities. In this section, we derive
general properties of nontrivial facet-defining inequalities of PX.

In the sequel, we assume that c1, . . . , cn and b are positive integers and that they
satisfy c1 < c2 < · · · < cn < b (this assumption is made without loss of generality due
to the result of Mazur [11] mentioned above). Let c be the greatest common divisor
of ci’s. We replace ci with ci

c for each i ∈ N and b with
⌈
b
c

⌉
. This does not change

the set X but strengthens the cover constraint. Let ei denote the n-dimensional unit
vector with 1 at the ith place and 0 elsewhere.

Proposition 1. Let
∑

i∈N αixi ≥ α0 be a nontrivial facet-defining inequality for
PX. Then

0 < α1 ≤ α2 ≤ · · · ≤ αn ≤ α0 ≤ min
i∈N

αi

⌈
b

ci

⌉
.
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Proof. Suppose that
∑

i∈N αixi ≥ α0 is a nontrivial facet-defining inequality for
PX. The fact that αi > 0 for i = 0, 1, . . . , n is proved in [11, 12].

Let j and l be such that j < l and x ∈ PX be such that
∑

i∈N αixi = α0, with

xj ≥ 1. Consider x
′

= x − ej + el. As cl > cj , x
′ ∈ PX. Then

∑
i∈N αix

′

i ≥ α0,
implying that αl ≥ αj . So α1 ≤ α2 ≤ · · · ≤ αn.

Let x ∈ PX be such that
∑

i∈N αixi = α0, with xn ≥ 1. Then αnxn ≤ α0 and,
as xn ≥ 1, αn ≤ α0.

For i ∈ N , x =
⌈

b
ci

⌉
ei is in PX, and so αi

⌈
b
ci

⌉
≥ α0. Thus α0 ≤ mini∈N

αi

⌈
b
ci

⌉
.

We have a necessary condition for a nontrivial inequality to be facet-defining.
Theorem 1. Let

∑
i∈N αixi ≥ α0 be a nontrivial facet-defining inequality for

PX. Let j ∈ arg maxi∈N
ci
αi

. Then (α0 − αi)
cj
αj

+ ci ≥ b for all i ∈ N \ {j}.
Proof. Assume that there exists l ∈ N \{j} such that (α0−αl)

cj
αj

+cl < b. Let x ∈
X be such that

∑
i∈N αixi = α0. Then xj =

α0−
∑

i∈N\{j} αixi

αj
. The left-hand side of

the cover constraint evaluated at x is
∑

i∈N cixi =
∑

i∈N\{j}(ci−
cj
αj

αi)xi+
cj
αj

α0. This

is less than or equal to (cl− cj
αj

αl)xl+
cj
αj

α0, since ci− cj
αj

αi ≤ 0 for all i ∈ N \{j}. Now

as (α0 −αl)
cj
αj

+ cl < b and cl − cj
αj

αl ≤ 0, whenever xl ≥ 1, (cl − cj
αj

αl)xl +
cj
αj

α0 < b.

This proves that, for any x ∈ X such that
∑

i∈N αixi = α0, we have xl = 0.
Next, we give necessary and sufficient conditions for some inequalities to be

facet-defining. Later, we use this result to identify specific families of facet-defining
inequalities.

Theorem 2. Let
∑

i∈N αixi ≥ α0 be a valid inequality for PX, with αi > 0 and
integer for all i ∈ N ∪ {0} and α1 = 1. Let j be the largest index, with αj = 1. If
αi ≥ ci

cj
for all i = j + 1, . . . , n, then the inequality

∑
i∈N αixi ≥ α0 is facet-defining

for PX if and only if (α0−αi)cj + ci ≥ b for i = j+1, . . . , n and (α0−1)cj + c1 ≥ b.
Proof. If the conditions of the theorem are satisfied, then α0ej , (α0 − 1)ej + ei

for i = 1, . . . , j − 1, and (α0 − αi)ej + ei for i = j + 1, . . . , n are in PX; they
satisfy

∑
i∈N αixi = α0 and are affinely independent. This proves that the inequality∑

i∈N αixi ≥ α0 is facet-defining for PX.
The necessity of the conditions are implied by Theorem 1.
To conclude this section, we investigate when the cover constraint is facet-defining

for PX. If cj divides b for all j ∈ N , then the nonnegativity constraints and the cover
constraint describe the polyhedron PX, i.e., PX = {x ∈ R

n
+ :

∑
j∈N cjxj ≥ b}.

Using Theorem 2, we identify another case where the cover constraint is facet-
defining.

Corollary 1. If c1 = 1, then the cover constraint is facet-defining for PX.
The conclusion of Theorem 1 is trivially satisfied for the cover constraint. But

the cover constraint is not necessarily facet-defining for PX. The following simple
example proves this statement.

Example 1. Let X1 = {x ∈ Z

2
+ : 3x1 + 4x2 ≥ 14}. The polyhedron conv(X1) =

{(x1, x2) ∈ R

2
+ : x1 + x2 ≥ 4, 2x1 + 3x2 ≥ 10}.

3. Rounding inequalities. In this section, we derive a family of valid inequal-
ities, called the rounding inequalities, and identify some cases where they are facet-
defining for PX.

For λ > 0, the rounding inequality∑
i∈N

⌈
ci
λ

⌉
xi ≥

⌈
b

λ

⌉
(2)
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is a valid inequality for PX. It is obtained using the well-known Chvatal–Gomory
procedure (see, e.g., Nemhauser and Wolsey [14]). These inequalities have been used
by Yaman [18]. Here we investigate under which conditions these inequalities are facet-
defining for PX. The inequality for λ = cn is

∑
i∈N xi ≥

⌈
b
cn

⌉
. Mazur [11] proves

that this inequality is facet-defining for PX if and only if b ≤
(⌈

b
cn

⌉
− 1

)
cn + c1.

Inequality (2) for any λ > cn is dominated by the corresponding inequality for cn. So
we are interested in λ < cn.

The result below is a corollary to Theorem 2.
Corollary 2. Let λ be such that cj ≤ λ < cj+1 for some j ∈ {1, . . . , n− 1}. If⌈

ci
λ

⌉
≥ ci

cj
for all i = j + 1, . . . , n, then inequality (2) is facet-defining if and only if(⌈

b
λ

⌉
− 1

)
cj + c1 ≥ b and

(⌈
b
λ

⌉
−
⌈
ci
λ

⌉)
cj + ci ≥ b for all i = j + 1, . . . , n.

Proof. As
⌈
ci
λ

⌉
for i ∈ N and

⌈
b
λ

⌉
are positive integers,

⌈
c1
λ

⌉
= 1, j is the largest

index with coefficient 1 in inequality (2), and
⌈
ci
λ

⌉
≥ ci

cj
for all i = j + 1, . . . , n,

Theorem 2 applies.
We have a necessary condition as a corollary to Theorem 1.
Corollary 3. Let λ > 0. If there exists j ∈ N such that cj is divisible by λ

and if inequality (2) is facet-defining for PX, then (
⌈
b
λ

⌉
−

⌈
ci
λ

⌉
)λ + ci ≥ b for all

i ∈ N \ {j}.
Proof. For i ∈ N , ci⌈

ci
λ

⌉ ≤ λ. So, if j ∈ N is such that λ divides cj , j ∈

arg maxi∈N
ci⌈
ci
λ

⌉ , and we can apply Theorem 1.

We consider the subset of inequalities (2) defined by λ equal to c1, . . . , cn. In the
following corollary, we generalize the result by Mazur [11].

Corollary 4. For j ∈ N , the inequality

∑
i∈N

⌈
ci
cj

⌉
xi ≥

⌈
b

cj

⌉
(3)

is facet-defining for PX if and only if
(⌈

b
cj

⌉
−1

)
cj+c1 ≥ b and

(⌈
b
cj

⌉
−
⌈
ci
cj

⌉)
cj+ci ≥ b

for all i = j + 1, . . . , n.
Proof. Take λ = cj . As

⌈
ci
cj

⌉
≥ ci

cj
for all i = j + 1, . . . , n, we apply Corollary 2 to

obtain the result.
Atamturk [1] studies the polytope conv(X ∩ {x ∈ Z

n : x ≤ u}) for u ∈ Z

n
++ and

proves that inequality (3) for j ∈ N such that ujcj ≥ b is facet-defining if and only if
the conditions of Corollary 4 are satisfied.

We go back to Example 1 and see if rounding inequalities are facet-defining.
Example 2. Consider set X1 defined in Example 1. The rounding inequality for

λ = c1 is not facet-defining since
(⌈

14
3

⌉
−

⌈
4
3

⌉)
3 + 4 = 13 < 14 = b. The inequality is

x1 +2x2 ≥ 5 and is dominated by 2x1 +3x2 ≥ 10. We can obtain the latter inequality
by lifting inequality x1 ≥ 5, which is a rounding inequality when x2 = 0 with variable
x2 (see section 5).

The rounding inequality for λ = c2 is facet-defining since
(⌈

14
4

⌉
− 1

)
4 + 3 = 15 ≥

14 = b. This is the inequality x1 + x2 ≥ 4.
The convex hull of X1 is described by the nonnegativity constraints, a rounding

inequality (x1 + x2 ≥ 4), and a lifted rounding inequality (2x1 + 3x2 ≥ 10).
In the next example, we see two sets that are defined by parameters which differ

only in the right-hand side of the cover constraint. The rounding inequalities for
λ = c2, c3, . . . , cn are facet-defining for the polyhedron when the right-hand side is b,
and none are facet-defining when the right-hand side is b + 1.
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Example 3. Consider the set X2 = {x ∈ Z

4
+ : x1 + 4x2 + 5x3 + 6x4 ≥ 61}.

The convex hull of X2 is described by the nonnegativity constraints and the following
inequalities (these results are obtained using PORTA [6]):

x1 + 4x2 + 5x3 + 6x4 ≥ 61,(4)

x1 + 2x2 + 3x3 + 3x4 ≥ 31,(5)

x1 + x2 + 2x3 + 2x4 ≥ 16,(6)

x1 + x2 + x3 + 2x4 ≥ 13,(7)

x1 + x2 + x3 + x4 ≥ 11.(8)

Inequality (4) is the cover constraint. By Corollary 1, as c1 = 1, we know that the
cover constraint is facet-defining. Inequalities (6)–(8) are rounding inequalities. It is
easy to verify that the conditions of Corollary 4 are satisfied. Note that inequality (5)
is the rounding inequality for λ = 2, and the conditions of Corollary 3 are satisfied.

Now consider the set X3 = {x ∈ Z

4
+ : x1 + 4x2 + 5x3 + 6x4 ≥ 62}. The following

inequalities together with the nonnegativity constraints describe the convex hull of
X3:

x1 + 4x2 + 5x3 + 6x4 ≥ 62,(9)

x1 + 2x2 + 3x3 + 4x4 ≥ 32,(10)

x1 + 2x2 + 2x3 + 3x4 ≥ 26,(11)

x1 + 2x2 + 2x3 + 2x4 ≥ 22.(12)

The cover constraint (9) is facet-defining, but the rounding inequalities for λ =
c2, c3, c4 do not define facets. Inequality (10) dominates the rounding inequality for
λ = c2, which is x1 + x2 + 2x3 + 2x4 ≥ 16, (11) dominates inequality x1 + x2 +
x3 + 2x4 ≥ 13, which is the rounding inequality for λ = c3, and (12) dominates
x1 + x2 + x3 + x4 ≥ 11, which is the rounding inequality for λ = c4. In the following
section, we will identify these inequalities (10)–(12).

4. Residual capacity inequalities. Residual capacity inequalities are intro-
duced by Magnanti, Mirchandani, and Vachani [10] for the single arc design problem.
Here we present inequalities that are based on a similar idea.

Assume that the demand b is covered using some item j ∈ N . Then at least � b
cj
�

units of item j need to be used. If � b
cj
� − 1 units are used to full capacity, then the

capacity of the last unit to be used is rj = b− (� b
cj
� − 1)cj . If only � b

cj
� − 1 units of

item j are used, then the remaining items should cover a demand equal to rj . This is
expressed in the following valid inequality.

For j ∈ N , define Nj = {1, 2, . . . , j} and N
′

j = {i ∈ Nj : ci ≥ rj}. For N0 ⊂ N

and N1 = N \N0, let Xh(N1) = {x ∈ Z

n
+ :

∑
i∈N cixi ≥ h, xi = 0 for all i ∈ N0}.

Theorem 3. For j ∈ N , the inequality

j∑
i=1

min{ci, rj}xi +

n∑
i=j+1

cixi ≥ rj

⌈
b

cj

⌉
(13)

is valid for PX.
Proof. If

∑
i∈N

′
j
xi = � b

cj
�, then the inequality is satisfied. If

∑
i∈N

′
j
xi = � b

cj
�−p

for some p ≥ 1, then the feasibility of x implies
∑

i∈Nj\N ′
j
cixi +

∑n
i=j+1 cixi ≥
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b−
∑

i∈N
′
j
cixi ≥ b− cj

∑
i∈N

′
j
xi = rj + (p− 1)cj . As rj + (p− 1)cj ≥ rjp, inequality

(13) is satisfied.
For j ∈ N , if rj = cj , then b is divisible by cj and inequality (13) is the same as

the cover constraint.
Theorem 4. If c1 = 1 for j ∈ N , the inequality

j∑
i=1

min{ci, rj}xi ≥ rj

⌈
b

cj

⌉
(14)

is facet-defining for conv(Xb(Nj)).

Proof. Let F = {x ∈ Xb(Nj) :
∑j

i=1 min{ci, rj}xi = rj
⌈

b
cj

⌉
}. Assume that all

x ∈ F satisfy
∑j

i=1 αixi = α0. As
⌈

b
cj

⌉
ej ∈ F , we need α0 =

⌈
b
cj

⌉
αj . For i ∈ N

′

j ,

(
⌈

b
cj

⌉
−1)ej+ei ∈ F , implying that αi = αj . As c1 = 1, we have (

⌈
b
cj

⌉
−1)ej+rje1 ∈ F .

So α1 =
αj

rj
. Finally, for i ∈ Nj \ (N

′

j ∪ {1}), (
⌈

b
cj

⌉
− 1)ej + ei + (rj − ci)e1 ∈ F .

Hence, αi =
αjci
rj

. Then
∑j

i=1 αixi = α0 is a
αj

rj
multiple of

∑j
i=1 min{ci, rj}xi =

rj
⌈

b
cj

⌉
.

For j ∈ N , if rj = 1, then inequality (14) is
∑j

i=1 xi ≥
⌈

b
cj

⌉
and is the same as the

rounding inequality for λ = cj for conv(Xb(Nj)). By Corollary 4, it is facet-defining
since

(⌈
b
cj

⌉
− 1

)
cj + c1 = b− rj + c1 ≥ b.

For j = n, conv(Xb(Nn)) = PX, and the following result can be deduced from
Theorem 4.

Corollary 5. If c1 = 1, inequality (13) for j = n is facet-defining for PX.
Example 4. Consider the set X3 given in Example 3. For item 2, r2 = 2 and⌈

b
c2

⌉
= 16. Inequality (13) for item 2 is x1 + 2x2 + 5x3 + 6x4 ≥ 32 and is dominated

by inequality (10). For item 3, r3 = 2 and
⌈

b
c3

⌉
= 13. The corresponding inequality

(13) is x1 + 2x2 + 2x3 + 6x4 ≥ 26 and is dominated by inequality (11). For item 4,
r4 = 2 and

⌈
b
c4

⌉
= 11. Inequality (13) is x1 + 2x2 + 2x3 + 2x4 ≥ 22 and is the same

as inequality (12). In the remaining of this section, we will try to identify inequalities
(10) and (11).

We can generalize inequality (13) as follows.

Theorem 5. For j ∈ N , let μ ≥ 0 be such that
⌈ rj(rj+μ)

cj
+μ

⌉
≥ rj and rj+μ ≤ cj.

The inequality

j∑
i=1

min{ci, rj}xi +

n∑
i=j+1

⌈
ci(rj + μ)

cj

⌉
xi ≥ rj

⌈
b

cj

⌉
(15)

is valid for PX.
Proof. If

∑
i∈N

′
j
xi = � b

cj
�, then the inequality is satisfied. If

∑
i∈N

′
j
xi = � b

cj
�−1,

then inequality (15) simplifies to
∑

i∈Nj\N ′
j
cixi +

∑n
i=j+1

⌈ ci(rj+μ)
cj

⌉
xi ≥ rj . By

feasibility, we need to have
∑

i∈Nj\N ′
j
cixi +

∑n
i=j+1 cixi ≥ rj . Using coefficient

reduction, we obtain
∑

i∈Nj\N ′
j
cixi +

∑n
i=j+1 rjxi ≥ rj . As

⌈ ci(rj+μ)
cj

⌉
≥ rj for all

i = j + 1, . . . , n, inequality (15) is satisfied.
If

∑
i∈N

′
j
xi = � b

cj
� − p for some p ≥ 2, then inequality (15) simplifies to∑

i∈Nj\N ′
j
cixi +

∑n
i=j+1

⌈ ci(rj+μ)
cj

⌉
xi ≥ rjp. The feasibility of x implies that∑

i∈Nj\N ′
j
cixi +

∑n
i=j+1 cixi ≥ rj + (p− 1)cj . We multiply this inequality with

rj+μ
cj
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and obtain
∑

i∈Nj\N ′
j
ci

rj+μ
cj

xi +
∑n

i=j+1 ci
rj+μ
cj

xi ≥ rj(rj+μ)
cj

+ (p− 1)(rj + μ). Now,

as rj + μ ≤ cj and so
∑

i∈Nj\N ′
j
cixi +

∑n
i=j+1

⌈ ci(rj+μ)
cj

⌉
xi ≥

∑
i∈Nj\N ′

j
ci

(rj+μ)
cj

xi +∑n
i=j+1 ci

(rj+μ)
cj

xi, we have
∑

i∈Nj\N ′
j
cixi +

∑n
i=j+1

⌈ ci(rj+μ)
cj

⌉
xi ≥ rj(rj+μ)

cj
+

(p− 1)(rj + μ). Since the left-hand side is always an integer, we round up the right-

hand side and get
⌈ rj(rj+μ)

cj
+ (p − 1)μ

⌉
+ (p − 1)rj . As

⌈ rj(rj+μ)
cj

+ μ
⌉
≥ rj , μ ≥ 0,

and p ≥ 2, we obtain
∑

i∈Nj\N ′
j
cixi +

∑n
i=j+1

⌈ ci(rj+μ)
cj

⌉
xi ≥ rjp. So x satisfies

inequality (15).
For μ = cj − rj , inequality (15) is the same as inequality (13).
As μ increases, inequality (15) gets weaker. So for given j ∈ N , we are interested

in inequality (15) defined by the smallest μ that satisfies the condition
⌈ rj(rj+μ)

cj
+μ

⌉
≥

rj . Let ε > 0 be very small. We take μj =
cj(rj−1)−r2

j

rj+cj
+ ε, if

⌈ r2
j

cj

⌉
< rj , and μj = 0,

otherwise.
Observe that nondominated residual capacity inequalities (15) are defined per

item, so there are O(n) of them.
Example 5. Consider again the set X3 of Example 3. For item 2, r2 = 2. As⌈ r2

2

c2

⌉
= 1 < 2 = r2, μ2 = 4(2−1)−4

2+4 + ε = ε. The corresponding inequality (15) is
x1 + 2x2 + 3x3 + 4x4 ≥ 32 and is the same as inequality (10). For item 3, r3 = 2. As⌈ r2

3

c3

⌉
= 1 < 2 = r3, μ3 = 5(2−1)−4

2+5 + ε = 1
7 + ε. The corresponding inequality (15) is

x1 + 2x2 + 2x3 + 3x4 ≥ 26 and is the same as inequality (11).
If rj = 1, then μj = 0 and inequality (15) is the same as the rounding inequality

(3) for λ = cj .
If rj = cj , then again μj = 0. This time inequality (15) is the same as the cover

constraint.
We have a necessary condition for inequality (15) to be facet-defining.
Corollary 6. For j ∈ N , if inequality (15) is facet-defining for PX and rj < cj,

then ci +
⌈

b
cj

⌉
cj − cj

rj

⌈ ci(rj+μj)
cj

⌉
≥ b for all i = j + 1, . . . , n.

Proof. As ci− cj
rj

min{ci, rj} ≤ 0 for all i = 1, . . . , j−1 and
(
ci− cj

rj

⌈ ci(rj+μj)
cj

⌉)
≤ 0

for all i = j+1, . . . , n, we apply Theorem 1. So, if inequality (15) is facet-defining for

PX, then
⌈

b
cj

⌉
cj−min{ci, rj} cj

rj
+ci ≥ b for i = 1, . . . , j−1 and

⌈
b
cj

⌉
cj− cj

rj

⌈ ci(rj+μj)
cj

⌉
+

ci ≥ b for all i = j + 1, . . . , n.
For i ∈ N

′

j , the condition is
⌈

b
cj

⌉
cj − cj + ci ≥ b. The left-hand side is equal to⌊

b
cj

⌋
cj + ci ≥

⌊
b
cj

⌋
cj + rj = b. For i ∈ Nj \N

′

j , the condition is
⌈

b
cj

⌉
cj − ci

cj
rj

+ ci ≥
b. The left-hand side is equal to b − rj + cj − ci

cj−rj
rj

= b + (cj − rj)
(rj−ci)

rj
≥ b

since cj ≥ rj and rj ≥ ci. So the conditions of Theorem 1 are always satisfied for
i ∈ Nj .

5. Lifted rounding inequalities. In this section, we derive valid inequalities
using lifting. For N0 ⊂ N and N1 = N \N0, let

∑
i∈N1 αixi ≥ α0 be a valid inequality

for Xb(N
1).

Suppose we lift inequality
∑

i∈N1 αixi ≥ α0, with xl with l ∈ N0. The optimal
lifting coefficient of xl is

αl = max
α0 −

∑
i∈N1 αixi

xl

s.t. xl ≥ 1

x ∈ Xb(N
1 ∪ {l}).
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Consider the case where αi = 1 for all i ∈ N1, j = arg maxi∈N1 ci, and α0 = � b
cj
�.

For l ∈ N0, the nonlinear lifting problem simplifies to

αl = max
xl∈Z++

� b
cj
� −

⌈ (b−clxl)
+

cj

⌉
xl

.

Clearly, a maximizing xl cannot be larger than
⌈

b
cl

⌉
. Hence, we obtain

αl = max
xl∈{1,2,...,� b

cl
�}

� b
cj
� −

⌈ (b−clxl)
+

cj

⌉
xl

,

and we can compute αl by enumeration.
Example 6. Consider the set X1 defined in Example 1. Inequality x1 ≥ 5 is facet-

defining for conv(X1∩{x ∈ Z

2
+ : x2 = 0}). We lift inequality x1 ≥ 5 with variable x2.

The optimal lifting coefficient α2 = maxx2∈{1,2,3,4}
5−

⌈
(14−4x2)+

3

⌉
x2

= max{1, 3
2 ,

4
3 ,

5
4} =

3
2 . The corresponding inequality is 2x1 +3x2 ≥ 10 and is facet-defining for conv(X1).

Computation of the optimal lifting coefficients of variables that are lifted in later
in the sequence may become harder. So we are interested in sequence-independent
lifting.

Atamturk [4] studies sequence-independent lifting for mixed integer programming.
The following can be derived from his results. Consider the lifting function Φ(a) =
α0 −minx∈Xb−a(N1)

∑
i∈N1 αixi. If this function is subadditive, i.e., if Φ(a) + Φ(d) ≥

Φ(a + d) for all a, d ∈ R, then the lifting is sequence-independent. In this case, the
inequality

∑
i∈N1 αixi +

∑
i∈N0 Φ(ci)xi ≥ α0 is a valid inequality for PX. In the

general case, let Θ be a subadditive function, with Θ ≥ Φ. Then the inequality∑
i∈N1 αixi +

∑
i∈N0 Θ(ci)xi ≥ α0 is a valid inequality for PX. If the inequality∑

i∈N1 αixi ≥ α0 is facet-defining for conv(Xb(N
1)) and Θ(ci) = Φ(ci) for all i ∈ N0,

then inequality
∑

i∈N1 αixi +
∑

i∈N0 Θ(ci)xi ≥ α0 is facet-defining for PX.
Theorem 6. Let N1 ⊂ N and

∑
i∈N1 αixi ≥ α0 be a valid inequality for Xb(N

1).
If there exists j ∈ N1 such that αi ≥ αj� ci

cj
� for all i ∈ N1 \ {j}, then the lifting

function is

Φ(a) = α0 − αj

⌈
(b− a)+

cj

⌉
.

Proof. Suppose there exists j ∈ N1 such that αi ≥ αj� ci
cj
� for all i ∈ N1 \

{j}. The lifting function is Φ(a) = α0 − minx∈Xb−a(N1)

∑
i∈N1 αixi. Let x be an

optimal solution to the minimization problem. Consider x = x −
∑

i∈N1\{j} xiei +⌈∑
i∈N1\{j} cixi

cj

⌉
ej . Clearly, x ∈ Xb−a(N

1). The objective function evaluated at x is

equal to

∑
i∈N1

αixi =
∑
i∈N1

αixi −
∑

i∈N1\{j}
αixi + αj

⌈∑
i∈N1\{j} cixi

cj

⌉

≤
∑
i∈N1

αixi −
∑

i∈N1\{j}
αixi + αj

∑
i∈N1\{j}

⌈
ci
cj

⌉
xi.

As αi ≥ αj� ci
cj
� for all i ∈ N1 \ {j},

∑
i∈N1 αixi ≤

∑
i∈N1 αixi, and so x is also

optimal. Hence
⌈ (b−a)+

cj

⌉
ej is also optimal and the optimal value is αj

⌈ (b−a)+

cj

⌉
.
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Fig. 1. Lifting function Φ and subadditive function Θ for b = 17 and cj = 5.

Suppose there exists j ∈ N1 such that αi ≥ αj� ci
cj
� for all i ∈ N1 \ {j}, αj =

1, and α0 = � b
cj
�. The lifting function for the inequality

∑
i∈N1 αixi ≥ � b

cj
� is

Φ(a) =
⌈

b
cj

⌉
−

⌈ (b−a)+

cj

⌉
. The function Φ is not subadditive. An example where

b = 17 and cj = 5 is depicted in Figure 1. Here for a = 11 and d = 6, we have
� b
cj
� − � b−a

cj
� + � b

cj
� − � b−d

cj
� = 4 − 2 + 4 − 3 = 3 < � b

cj
� − � b−a−d

cj
� = 4 − 0 = 4.

For j ∈ N and a ∈ R, define

ρj(a) = a−
⌊
a

cj

⌋
cj .

Lemma 1. For j ∈ N , if ρj(b) > 0, the function Θ(a) = 
 a
cj
�+min{ρj(a)

ρj(b)
, 1} (see

Figure 1) is subadditive.

Proof. Let a, d ∈ R. Then Θ(a) + Θ(d) = 
 a
cj
� + min{ρj(a)

ρj(b)
, 1} + 
 d

cj
� +

min{ρj(d)
ρj(b)

, 1}. There are two cases: (i) ρj(a) + ρj(d) = ρj(a + d) and (ii) ρj(a) +

ρj(d) = ρj(a + d) + cj . In case (i), since ρj(a) + ρj(d) = ρj(a + d), we have


 a
cj
� + 
 d

cj
� = 
a+d

cj
�. If min{ρj(a)

ρj(b)
, 1} = 1 or min{ρj(d)

ρj(b)
, 1} = 1, then Θ(a) + Θ(d) ≥


a+d
cj

� + 1 ≥ Θ(a + d). Otherwise, min{ρj(a)
ρj(b)

, 1} =
ρj(a)
ρj(b)

and min{ρj(a)
ρj(b)

, 1} =
ρj(a)
ρj(b)

.

Then Θ(a) + Θ(d) = 
a+d
cj

�+
ρj(a)
ρj(b)

+
ρj(d)
ρj(b)

= 
a+d
cj

�+
ρj(a+d)
ρj(b)

≥ Θ(a+ d). In case (ii),

as ρj(a) + ρj(d) = ρj(a + d) + cj , 
 a
cj
� + 
 d

cj
� = 
a+d

cj
� − 1. If min{ρj(a)

ρj(b)
, 1} = 1 and

min{ρj(d)
ρj(b)

, 1} = 1, then Θ(a) + Θ(d) = 
a+d
cj

�+ 1 ≥ Θ(a+ d). If min{ρj(a)
ρj(b)

, 1} =
ρj(a)
ρj(b)

and min{ρj(d)
ρj(b)

, 1} = 1, then Θ(a) + Θ(d) = 
a+d
cj

� +
ρj(a)
ρj(b)

. Since ρj(d) ≤ cj ,

ρj(a) ≥ ρj(a+d). So 
a+d
cj

�+
ρj(a)
ρj(b)

≥ Θ(a+d). The case where min{ρj(a)
ρj(b)

, 1} = 1 and

min{ρj(d)
ρj(b)

, 1} =
ρj(d)
ρj(b)

is similar. Finally, if min{ρj(a)
ρj(b)

, 1} =
ρj(a)
ρj(b)

and min{ρj(a)
ρj(b)

, 1} =
ρj(a)
ρj(b)

, Θ(a) + Θ(d) = 
a+d
cj

� − 1 +
ρj(a)
ρj(b)

+
ρj(d)
ρj(b)

= 
a+d
cj

� − 1 +
ρj(a+d)
ρj(b)

+
cj

ρj(b)
. Since

cj ≥ ρj(b), 
a+d
cj

� − 1 +
ρj(a+d)
ρj(b)

+
cj

ρj(b)
≥ 
a+d

cj
� +

ρj(a+d)
ρj(b)

≥ Θ(a + d). This proves

that Θ is subadditive.
Now we will lift the inequality

∑
i∈N1 αixi ≥ � b

cj
� using the function Θ.

Theorem 7. Let N0 ⊂ N , N1 = N \ N0, and
∑

i∈N1 αixi ≥ α0 be a valid
inequality for Xb(N

1). If there exists j ∈ N1 such that αj = 1, αi ≥ � ci
cj
� for all
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i ∈ N1 \ {j}, α0 = � b
cj
�, and ρj(b) > 0, then the inequality

∑
i∈N1

ρj(b)αixi +
∑
i∈N0

(
ρj(b)

⌊
ci
cj

⌋
+ min{ρj(ci), ρj(b)}

)
xi ≥ ρj(b)

⌈
b

cj

⌉
(16)

is a valid inequality for PX.
Proof. The inequality

∑
i∈N1 αixi ≥ � b

cj
� is valid for Xb(N1). Consider the

subadditive function Θ(a) = 
 a
cj
� + min{ρj(a)

ρj(b)
, 1} given in Lemma 1. We will show

that Θ ≥ Φ. If a < b and ρj(a) < ρj(b), then ρj(b − a) = ρj(b) − ρj(a) > 0. So

Φ(a) =
⌈

b
cj

⌉
−

⌈
b−a
cj

⌉
=

b−ρj(b)+cj
cj

− b−a−ρj(b)+ρj(a)+cj
cj

=
a−ρj(a)

cj
=

⌊
a
cj

⌋
≤ Θ(a).

If a < b and ρj(a) ≥ ρj(b), then Θ(a) =
⌈

a
cj

⌉
≥

⌈
b
cj

⌉
−

⌈
b−a
cj

⌉
= Φ(a). If a ≥ b,

then Φ(a) =
⌈

b
cj

⌉
. If

⌈
a
cj

⌉
=

⌈
b
cj

⌉
, then ρj(a) ≥ ρj(b). So Θ(a) =

⌈
a
cj

⌉
= Φ(a). If⌈

a
cj

⌉
≥

⌈
b
cj

⌉
+ 1, then Θ(a) ≥

⌊
a
cj

⌋
≥

⌈
b
cj

⌉
= Φ(a). So the inequality

∑
i∈N1 αixi +∑

i∈N0

(

 ci
cj
�+min{ρj(ci)

ρj(b)
, 1}

)
xi ≥ � b

cj
� is a valid inequality for PX. Multiplying both

sides with ρj(b), we obtain inequality (16).
Some of the inequalities (16) are dominated by others. Indeed, as given in the

following proposition, the number of nondominated inequalities (16) is polynomial.
Proposition 2. For j ∈ N with ρj(b) > 0, the inequality

j∑
i=1

min{ci, ρj(b)}xi +

n∑
i=j+1

(
ρj(b)

⌊
ci
cj

⌋
+ min{ρj(ci), ρj(b)}

)
xi ≥ ρj(b)

⌈
b

cj

⌉
(17)

is valid and dominates inequality (16) for N0 ⊂ N , N1 = N \N0 such that j ∈ N1,
αj = 1, αi ≥ � ci

cj
� for all i ∈ N1 \ {j} and α0 = � b

cj
�.

Proof. Inequality (17) is valid since it is the same as inequality (16) for N1 = {j}.
Let N0 ⊂ N , N1 = N\N0 such that j ∈ N1, αj = 1, αi ≥ � ci

cj
� for all i ∈ N1\{j},

and α0 = � b
cj
�. For i ∈ N1, ρj(b)

⌊
ci
cj

⌋
+ min{ρj(ci), ρj(b)} ≤ ρj(b)

⌈
ci
cj

⌉
≤ ρj(b)αi. So

the coefficient of xi in (17) is less than or equal to its coefficient in (16). The coefficients
of xi for i ∈ N0 and the right-hand sides are the same in both inequalities. Hence
inequality (17) dominates inequality (16).

We call inequalities (17) lifted rounding inequalities. The number of lifted round-
ing inequalities that are not dominated is O(n).

It is interesting to note that even though inequalities (16) are not, inequalities
(17) are special cases of the multifacility cut-set inequalities derived by Atamturk [2]
for the single commodity-multifacility network design problem.

For j ∈ N such that ρj(b) > 0, consider the inequality xj ≥ � b
cj
�, which is facet-

defining for conv(Xb({j})). If c1 ≥ ρj(b), then, for i < j, ci ≥ ρj(b). So Φ(ci) =
Θ(ci) = 1. For i > j, if ρj(ci) = 0 or ρj(ci) ≥ ρj(b), then Φ(ci) = Θ(ci) = � ci

cj
�. By

Theorem 5 in Atamturk [4], the resulting inequality

j∑
i=1

xi +

n∑
i=j+1

⌈
ci
cj

⌉
xi ≥

⌈
b

cj

⌉
(18)

is facet-defining for PX. Notice that this is the same inequality as the rounding
inequality (2) for λ = cj . The condition c1 ≥ ρj(b) implies that

(⌈
b
cj

⌉
− 1

)
cj + c1 ≥ b.

For i < j, if ρj(ci) = 0, then
(⌈

b
cj

⌉
−

⌈
ci
cj

⌉)
cj + ci =

⌈
b
cj

⌉
cj ≥ b. If ρj(ci) ≥ ρj(b),
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then
(⌈

b
cj

⌉
−
⌈
ci
cj

⌉)
cj + ci =

( b+cj−ρj(b)
cj

− ci+cj−ρj(ci)
cj

)
cj + ci = b− ρj(b) + ρj(ci) ≥ b.

As a result, the conditions stated above are the same as the conditions of Corollary
4. However, Corollary 4 is a stronger result, since it states that these conditions are
both necessary and sufficient.

Now we compare inequalities (17) and (3). The two following propositions are
easy to prove.

Proposition 3. For j ∈ N with ρj(b) = 1, inequalities (17) and (3) are the
same.

Proposition 4. For j ∈ N with ρj(b) ≥ 2, inequality (17) dominates inequality
(3).

If, for j ∈ N , ρj(b) > 0 (or, equivalently, rj < cj), then ρj(b) = rj . So residual
capacity inequalities (15) and inequalities (17) look very similar. Coefficients of vari-
ables xi, with i ∈ {1, . . . , j}, are the same in both inequalities. The right-hand sides
are also the same. Only coefficients of variables xi, with i ∈ {j + 1, . . . , n}, may be
different.

Proposition 5. For j ∈ N , if rj < cj and
⌈ r2

j

cj

⌉
≥ rj, then inequality (15) for

μ = 0 and inequality (17) are the same.

Proof. If
⌈ r2

j

cj

⌉
≥ rj , then the coefficient of xi, with i ∈ {j + 1, . . . , n}, is

⌈ cirj
cj

⌉
in

inequality (15) with μ = 0. This is equal to⌈ (
⌊
ci
cj

⌋
cj + ρj(ci))rj

cj

⌉
=

⌊
ci
cj

⌋
rj +

⌈
ρj(ci)rj

cj

⌉
.

Since ρj(ci) ≤ cj and rj ≤ cj ,
⌈ρj(ci)rj

cj

⌉
≤ min{ρj(ci), rj}. So the coefficient of xi in

(15) is less than or equal to its coefficient in (17).

If ρj(ci) ≥ rj , then
⌈ρj(ci)rj

cj

⌉
≥

⌈ r2
j

cj

⌉
≥ rj . Now assume that ρj(ci) < rj and⌈ρj(ci)rj

cj

⌉
< ρj(ci). Then ρj(ci)rj ≤ (ρj(ci) − 1)cj . This is equivalent to cj ≤ (cj −

rj)ρj(ci). Since
⌈ r2

j

cj

⌉
≥ rj , r

2
j > (rj − 1)cj . So cj > (cj − rj)rj > (cj − rj)ρj(ci). This

contradicts cj ≤ (cj − rj)ρj(ci). Hence if ρj(ci) < rj , then
⌈ρj(ci)rj

cj

⌉
≥ ρj(ci). So the

coefficients of variable xi in inequalities (15) and (17) are the same.

Proposition 6. For j ∈ N , if
⌈ r2

j

cj

⌉
< rj, then inequality (17) dominates in-

equality (15) for μ = μj.

Proof. If
⌈ r2

j

cj

⌉
< rj , then the coefficient of xi, with i > j, in (15) for μ = μj

is
⌈ ci(rj+μj)

cj

⌉
=

⌊
ci
cj

⌋
rj +

⌈⌊
ci
cj

⌋
μj +

ρj(ci)(rj+μj)
cj

⌉
. If ρj(ci) ≥ rj , then

⌈⌊
ci
cj

⌋
μj +

ρj(ci)(rj+μj)
cj

⌉
≥

⌈⌊
ci
cj

⌋
μj +

rj(rj+μj)
cj

⌉
. Since ci ≥ cj ,

⌈⌊
ci
cj

⌋
μj +

rj(rj+μj)
cj

⌉
≥

⌈
μj +

rj(rj+μj)
cj

⌉
≥ rj .

Assume that ρj(ci) < rj and
⌈⌊

ci
cj

⌋
μj +

ρj(ci)(rj+μj)
cj

⌉
< ρj(ci). Then ρj(ci)(rj +

μj) ≤ cj(ρj(ci) − 1 −
⌊
ci
cj

⌋
μj) or, equivalently, cj ≤ ρj(ci)(cj − rj) − μjci. Since

rj(rj+μj)
cj

+μj > rj − 1, we have that cj > rj(cj − rj −μj)−μjcj , and now, since rj >

ρj(ci), cj > ρj(ci)(cj−rj−μj)−μjcj . Putting together with cj ≤ ρj(ci)(cj−rj)−μjci,
we obtain ρj(ci)(cj − rj) − μjci > ρj(ci)(cj − rj − μj) − μjcj . This is equivalent
to ρj(ci) + cj > ci since μj > 0. But this is impossible. So if ρj(ci) < rj , then⌈⌊

ci
cj

⌋
μj +

ρj(ci)(rj+μj)
cj

⌉
≥ ρj(ci). This proves that the coefficient of xi in (15) is

greater than or equal to its coefficient in (17).
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These four propositions show that, for j ∈ N with ρj(b) > 0, the lifted rounding
inequality (17) dominates the rounding inequality (2) for λ = cj and the residual
capacity inequality (15) for μ = μj . For a special case, these inequalities (17) are
facet-defining for PX.

Theorem 8. For j ∈ N such that ρj(b) > 0, if c1 = 1, then inequality (17) is
facet-defining for PX.

Proof. Suppose that ρj(b) > 0 and c1 = 1. Assume that all points in X which
satisfy inequality (17) at equality also satisfy

∑n
i=1 αixi = α0. The point

⌈
b
cj

⌉
ej is in

X and satisfies inequality (17) at equality. So α0 = αj

⌈
b
cj

⌉
.

Notice that, if we remove one item j, the remaining demand to be covered is
ρj(b). For i < j, if ci > ρj(b), then consider the point ei + (

⌈
b
cj

⌉
− 1)ej . It is easy to

verify that this point is also in X and that inequality (17) is tight at this point. Then
we have αi = αj .

For i < j, if ci ≤ ρj(b), then the point ei+(
⌈

b
cj

⌉
−1)ej +(ρj(b)−ci)e1 is in X and

inequality (17) is tight at this point. So αi = αj−(ρj(b)−ci)α1. Since c1 = 1 ≤ ρj(b),
we obtain α1 =

αj

ρj(b)
. Then αi = ci

αj

ρj(b)
. Hence for i < j, αi = min{ci, ρj(b)} αj

ρj(b)
.

For i > j, if ρj(ci) = 0, consider point ei + (
⌈

b
cj

⌉
− ci

cj
)ej . The left-hand side

of inequality (17) at this point is equal to ρj(b)
ci
cj

+ (
⌈

b
cj

⌉
− ci

cj
)ρj(b) =

⌈
b
cj

⌉
ρj(b).

So inequality (17) is tight. The left-hand side of the cover constraint is equal to
ci + (

⌈
b
cj

⌉
− ci

cj
)cj = � b

cj

⌉
cj ≥ b. Thus this point is in X. Then we have αi = αj

ci
cj

.

Finally, for i > j, with ρj(ci) > 0, consider ei+(
⌈

b
cj

⌉
−
⌈
ci
cj

⌉
)ej+(ρj(b)−ρj(ci))

+e1.

The left-hand side of inequality (17) evaluated at this point is equal to ρj(b)
⌊
ci
cj

⌋
+

min{ρj(ci), ρj(b)}+(
⌈

b
cj

⌉
−
⌈
ci
cj

⌉
)ρj(b)+(ρj(b)−ρj(ci))

+ = ρj(b)
⌊
ci
cj

⌋
+ρj(b)+(

⌈
b
cj

⌉
−⌈

ci
cj

⌉
)ρj(b). Since ρj(ci) > 0, this is equal to ρj(b) + (

⌈
b
cj

⌉
− 1)ρj(b) =

⌈
b
cj

⌉
ρj(b),

showing that inequality (17) is tight at this point. The left-hand side of the cover
constraint is equal to

ci +

(⌈
b

cj

⌉
−
⌈
ci
cj

⌉)
cj + (ρj(b) − ρj(ci))

+.(19)

If ρj(ci) > ρj(b), then (19) is equal to ci +(
⌈

b
cj

⌉
−
⌈
ci
cj

⌉
)cj = ci +(

⌈
b
cj

⌉
−
⌊
ci
cj

⌋
−1)cj =

ρj(ci) + (
⌈

b
cj

⌉
− 1)cj > ρj(b) + (

⌈
b
cj

⌉
− 1)cj = b. If ρj(ci) ≤ ρj(b), then (19) is equal

to ci + (
⌈

b
cj

⌉
−

⌈
ci
cj

⌉
)cj + ρj(b) − ρj(ci) = ci + (

⌊
b
cj

⌋
−

⌊
ci
cj

⌋
)cj + ρj(b) − ρj(ci) =

b. So this point is in X. This proves that αi = αj

⌈
ci
cj

⌉
− (ρj(b) − ρj(ci))

+α1 =

αj

⌈
ci
cj

⌉
− (ρj(b) − ρj(ci))

+ αj

ρj(b)
. If ρj(b) ≤ ρj(ci), then αi = αj

⌈
ci
cj

⌉
= αj(

⌊
ci
cj

⌋
+ 1).

If ρj(b) > ρj(ci), then αi = αj

⌈
ci
cj

⌉
− (ρj(b) − ρj(ci))

αj

ρj(b)
= αj(

⌊
ci
cj

⌋
+ 1) − αj +

ρj(ci)
αj

ρj(b)
= αj(

⌊
ci
cj

⌋
+

ρj(ci)
ρj(b)

). So, for i < j, αi = αj(
⌊
ci
cj

⌋
+ min{ρj(ci)

ρj(b)
, 1}) =

αj

ρj(b)
(
⌊
ci
cj

⌋
ρj(b) + min{ρj(ci), ρj(b)}).

Hence
∑n

i=1 αixi = α0 has the form

j−1∑
i=1

min{ci, ρj(b)}
αj

ρj(b)
xi+αjxj+

n∑
j+1

αj

ρj(b)

(⌊
ci
cj

⌋
ρj(b)+min{ρj(ci), ρj(b)}

)
xi =αj

⌈
b

cj

⌉
.

This is
αj

ρj(b)
times

∑j
i=1 min{ci, ρj(b)}xi+

∑n
i=j+1

(
ρj(b)

⌊
ci
cj

⌋
+min{ρj(ci), ρj(b)}

)
xi =

ρj(b)
⌈

b
cj

⌉
.
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Example 7. Consider the set X4 = {x ∈ Z

7
+ : x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 +

7x7 ≥ 38}. The convex hull of X4 is described by the nonnegativity constraints and
the following inequalities (obtained using PORTA [6]):

x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 + 7x7 ≥ 38,(20)

2x1 + 2x2 + 4x3 + 4x4 + 5x5 + 6x6 + 6x7 ≥ 34,(21)

x1 + 2x2 + 3x3 + 3x4 + 4x5 + 5x6 + 5x7 ≥ 28,(22)

x1 + 2x2 + 2x3 + 3x4 + 4x5 + 4x6 + 5x7 ≥ 26,(23)

x1 + 2x2 + 3x3 + 3x4 + 3x5 + 4x6 + 5x7 ≥ 24,(24)

x1 + 2x2 + 2x3 + 2x4 + 3x5 + 4x6 + 4x7 ≥ 20,(25)

x1 + 2x2 + 3x3 + 3x4 + 3x5 + 3x6 + 3x7 ≥ 18,(26)

x1 + x2 + 2x3 + 2x4 + 2x5 + 3x6 + 3x7 ≥ 16,(27)

x1 + 2x2 + 2x3 + 2x4 + 2x5 + 2x6 + 3x7 ≥ 14,(28)

x1 + x2 + 2x3 + 2x4 + 2x5 + 2x6 + 2x7 ≥ 12.(29)

As c1 = 1, the cover constraint (20) is facet-defining for conv(X4). None of the
rounding inequalities for items λ = c2, . . . , c7 is facet-defining for conv(X4). For item
2, ρ2(38) = 0. For item 3, ρ3(38) = 2. Inequality (17) for 3, x1+2x2+2x3+3x4+4x5+
4x6 +5x7 ≥ 26, is a valid inequality and is facet-defining since c1 = 1 and ρ3(38) > 0.
Indeed, it is the same as inequality (23). For item 4, ρ4(38) = 2. Inequality (17) reads
x1 +2x2 +2x3 +2x4 +3x5 +4x6 +4x7 ≥ 20 and is a valid inequality. This is the same
as inequality (25) and is facet-defining. Note here that μ4 = ε and inequality (15) for
item 4, x1 + 2x2 + 2x3 + 3x4 + 3x5 + 4x6 + 4x7 ≥ 20, is dominated by inequality (25).
For item 5, ρ5(38) = 3. Inequality (17), x1 + 2x2 + 3x3 + 3x4 + 3x5 + 4x6 + 5x7 ≥ 24,
is the same as inequality (24). For item 6, ρ6(38) = 2. The corresponding inequality
(17) is x1 +2x2 +2x3 +2x4 +2x5 +2x6 +3x7 ≥ 14 and is the same as inequality (28).
For item 7, ρ7(38) = 3. The inequality x1 + 2x2 + 3x3 + 3x4 + 3x5 + 3x6 + 3x7 ≥ 18
is valid and facet-defining for conv(X4). This is the same as inequality (26).

6. Lifted 2-partition inequalities. Pochet and Wolsey [15] derive partition
inequalities for PX where ci divides ci+1 for all i = 1, . . . , n − 1. Then they prove
that these inequalities are valid for PX in general under some conditions. Let
(i1, . . . , j1), . . . , (ip, . . . , jp) be a partition of N such that i1 = 1, jp = n, and it =

jt−1 + 1 for all t = 2, . . . , p. Let βp = b. For t = p, . . . , 1, compute κt =
⌈

βt

cit

⌉
and

βt−1 = βt − (κt − 1)cit . The inequality

p∑
t=1

(
t−1∏
s=1

κs

)
jt∑

j=it

min

{⌈
cj
cit

⌉
, κt

}
xj ≥

p∏
s=1

κs(30)

is called the partition inequality. Pochet and Wolsey [15] prove that the partition
inequality is valid for PX if κt−1 ≤

⌊ cit
cit−1

⌋
for all t = 2, . . . , p. If ci divides ci+1 for

all i = 1, . . . , n − 1, then the partition inequalities are valid without any condition,
and they describe PX together with nonnegativity constraints.

Consider the case where i1 = 1 and j1 = n. Then inequality (30) reduces to the
inequality

∑n
j=1 min

{⌈ cj
c1

⌉
, κ1

}
xj ≥ κ1. This is the same as the rounding inequality

(2) for λ = c1 since κ1 =
⌈

b
c1

⌉
and cj < b for all j ∈ N .

The next special case is when i1 = 1, j1 = j − 1, i2 = j, and j2 = n. Then
κ2 =

⌈
b
cj

⌉
, β1 = b− (

⌈
b
cj

⌉
− 1)cj . Notice that β1 = rj . Finally, κ1 =

⌈ rj
c1

⌉
. Inequality
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(30) becomes

j−1∑
i=1

min

{⌈
ci
c1

⌉
,

⌈
rj
c1

⌉}
xi +

⌈
rj
c1

⌉ n∑
i=j

⌈
ci
cj

⌉
xi ≥

⌈
rj
c1

⌉⌈
b

cj

⌉
(31)

and is valid if
⌈ rj
c1

⌉
≤

⌊ cj
c1

⌋
. We refer to these inequalities as 2-partition inequalities.

Proposition 7. For j ∈ N , if c1 = 1, inequality (31) is dominated by the cover
constraint or inequality (17).

Proof. If c1 = 1, then the inequality simplifies to

j∑
i=1

min{ci, rj}xi + rj

n∑
i=j+1

⌈
ci
cj

⌉
xi ≥ rj

⌈
b

cj

⌉
(32)

and is always valid. If, moreover, rj = cj , then the inequality becomes
∑j

i=1 cixi +∑n
i=j+1 cj

⌈
ci
cj

⌉
xi ≥ b and is dominated by the cover constraint. If rj < cj , then rj =

ρj(b) and ρj(b) > 0. For i > j, if ci is divisible by cj , then rj
⌈
ci
cj

⌉
= ρj(b)

⌊
ci
cj

⌋
+ρj(ci)

since ρj(ci) = 0. If ci is not divisible by cj , then rj
⌈
ci
cj

⌉
= ρj(b)

⌊
ci
cj

⌋
+ ρj(b). So the

coefficient of xi in (32) is greater than or equal to its coefficient in inequality (17). For
i ≤ j, the variable xi has the same coefficient in (32) and (17). Also, the right-hand
sides of (32) and (17) are the same. Hence if c1 = 1 and rj < cj , inequality (17)
dominates inequality (32).

If
⌈
ci
c1

⌉
≥

⌈ rj
c1

⌉
for all i < j, then inequality (31) simplifies to

∑j
i=1 xi +∑n

i=j+1

⌈
ci
cj

⌉
xi ≥

⌈
b
cj

⌉
, which is the rounding inequality (2) for λ = cj .

Now we will improve the 2-partition inequalities (31) using lifting. Let N0 ⊂ N ,
N1 = N \ N0, jmin = arg mini∈N1 ci, and j ∈ N1, with jmin �= j. The 2-partition
inequality for the partition N− = {i ∈ N1 : i < j} and N+ = {i ∈ N1 : i ≥ j} is

∑
i∈N−

min

{⌈
ci

cjmin

⌉
,

⌈
rj

cjmin

⌉}
xi +

⌈
rj

cjmin

⌉ ∑
i∈N+

⌈
ci
cj

⌉
xi ≥

⌈
rj

cjmin

⌉⌈
b

cj

⌉
(33)

and is valid when xi = 0 for all i ∈ N0 if
⌈ rj
cjmin

⌉
≤

⌊ cj
cjmin

⌋
.

The lifting function for inequality (33) is

β(a) =

⌈
rj

cjmin

⌉⌈
b

cj

⌉

− min
x∈Xb−a(N1)

( ∑
i∈N−

min

{⌈
ci

cjmin

⌉
,

⌈
rj

cjmin

⌉}
xi +

⌈
rj

cjmin

⌉ ∑
i∈N+

⌈
ci
cj

⌉
xi

)
.

Lemma 2. If rj ≤ cj − 1 and
⌈ rj
cjmin

⌉
≤

⌊ cj
cjmin

⌋
, for a ∈ R,

β(a) =

⎧⎪⎪⎨
⎪⎪⎩

⌈ rj
cjmin

⌉⌈
a
cj

⌉
−
⌈ρj(b−a)

cjmin

⌉
if a < b and 0 < ρj(a) < rj,⌈ rj

cjmin

⌉⌈
a
cj

⌉
if a < b and ρj(a) ≥ rj or ρj(a) = 0,⌈ rj

cjmin

⌉⌈
b
cj

⌉
if a ≥ b.

Proof. For d ∈ R, let

z(d) = min
x∈Xd(N1)

( ∑
i∈N−

min

{⌈
ci

cjmin

⌉
,

⌈
rj

cjmin

⌉}
xi +

⌈
rj

cjmin

⌉ ∑
i∈N+

⌈
ci
cj

⌉
xi

)
.
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If d ≤ 0, then z(d) = 0. If d > 0, Pochet and Wolsey [15] prove that there exists
an optimal solution where xi = 0, for i �= jmin and i �= j, and xjmin ≤

⌈ rj
cjmin

⌉
− 1.

Consider such optimal solutions. If d < cj , then ej or
⌈

d
cjmin

⌉
ejmin

is optimal. Hence

z(d) = min{
⌈ rj
cjmin

⌉
,
⌈

d
cjmin

⌉
}. If d ≥ cj , then xj ≥

⌊
d
cj

⌋
since otherwise xjmin ≥⌈ cj

cjmin

⌉
. So

⌊
d
cj

⌋
ej +

⌈ ρj(d)
cjmin

⌉
ejmin or

⌈
d
cj

⌉
ej is optimal, and z(d) = min{

⌈ rj
cjmin

⌉⌊
d
cj

⌋
+⌈ ρj(d)

cjmin

⌉
,
⌈ rj
cjmin

⌉⌈
d
cj

⌉
}. So if a < b, then

β(a) =

⌈
rj

cjmin

⌉⌈
b

cj

⌉
−
⌈

rj
cjmin

⌉⌊
b− a

cj

⌋
− min

{⌈
rj

cjmin

⌉
,

⌈
ρj(b− a)

cjmin

⌉}
.

Consider a < b. If ρj(b− a) = ρj(b) − ρj(a) and ρj(a) > 0, then

β(a) =

⌈
rj

cjmin

⌉(⌈
b

cj

⌉
−
⌊
b− a

cj

⌋)
−
⌈
ρj(b− a)

cjmin

⌉

=

⌈
rj

cjmin

⌉(
b− ρj(b) + cj

cj
− b− a− ρj(b− a)

cj

)
−
⌈
ρj(b− a)

cjmin

⌉

=

⌈
rj

cjmin

⌉(
b− ρj(b) + cj

cj
− b− a− ρj(b) + ρj(a)

cj

)
−
⌈
ρj(b− a)

cjmin

⌉

=

⌈
rj

cjmin

⌉(
a− ρj(a) + cj

cj

)
−
⌈
ρj(b− a)

cjmin

⌉

=

⌈
rj

cjmin

⌉⌈
a

cj

⌉
−
⌈
ρj(b− a)

cjmin

⌉
.

If ρj(b− a) = ρj(b) − ρj(a) + cj , then

β(a) =

⌈
rj

cjmin

⌉(⌈
b

cj

⌉
−
⌊
b− a

cj

⌋)
−
⌈

rj
cjmin

⌉

=

⌈
rj

cjmin

⌉(
b− ρj(b) + cj

cj
− b− a− ρj(b− a)

cj
− 1

)

=

⌈
rj

cjmin

⌉(
b− ρj(b) + cj

cj
− b− a− ρj(b) + ρj(a) − cj

cj
− 1

)

=

⌈
rj

cjmin

⌉
a− ρj(a) + cj

cj

=

⌈
rj

cjmin

⌉⌈
a

cj

⌉
.

If ρj(a) = 0, then

β(a) =

⌈
rj

cjmin

⌉(⌈
b

cj

⌉
−
⌊
b− a

cj

⌋)
−
⌈

rj
cjmin

⌉

=

⌈
rj

cjmin

⌉(
b− ρj(b) + cj

cj
− b− a− ρj(b)

cj
− 1

)

=

⌈
rj

cjmin

⌉
a

cj
.

Function β is not subadditive in general. Consider b = 18, cj = 5, and cjmin = 2.
Let a = 2.5 and b = 5.5. Then β(2.5) = 1, β(5.5) = 2, and β(8) = 4. So, β(2.5) +
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β(5.5) < β(8). So, to do lifting, we need a subadditive function which is greater than
or equal to β. We first study the case where cjmin divides rj . Notice that, in this
case,

⌈ rj
cjmin

⌉
≤

⌊ cj
cjmin

⌋
is always satisfied.

Theorem 9. Let N0 ⊂ N , N1 = N \ N0, jmin = arg mini∈N1 ci, j ∈ N1,
with jmin < j, rj ≤ cj − 1, and ρjmin

(rj) = 0, N− = {i ∈ N1 : i < j}, and
N+ = {i ∈ N1 : i ≥ j}. The inequality

∑
i∈N−

min

{⌈
ci

cjmin

⌉
,

rj
cjmin

}
xi +

rj
cjmin

∑
i∈N+

⌈
ci
cj

⌉
xi

+
∑
i∈N0

(
rj

cjmin

⌊
ci
cj

⌋
+ min

{
ρj(ci)

cjmin

,
rj

cjmin

})
xi ≥

rj
cjmin

⌈
b

cj

⌉
(34)

is valid for PX.

Proof. Consider the function σ(a) =
rj

cjmin

⌊
a
cj

⌋
+ min{ ρj(a)

cjmin
,

rj
cjmin

}. Notice that

σ(a) =
rj

cjmin
Θ(a) for all a ∈ R. Since Θ is subadditive (see Lemma 1) and

rj
cjmin

> 0,

σ is subadditive. So, to prove the validity of (34), we need to show that σ(a) ≥ β(a)
for all a ∈ R.

If a ≥ b and
⌈

a
cj

⌉
=

⌈
b
cj

⌉
, then ρj(a) ≥ ρj(b). So σ(a) =

rj
cjmin

⌈
a
cj

⌉
= β(a). If

a > b and
⌈

a
cj

⌉
≥

⌈
b
cj

⌉
+1, then σ(a) ≥ rj

cjmin

⌊
a
cj

⌋
≥ β(a). If a < b and 0 < ρj(a) < rj ,

then σ(a) =
rj

cjmin

⌊
a
cj

⌋
+

ρj(a)
cjmin

and β(a) =
rj

cjmin

⌈
a
cj

⌉
−
⌈ρj(b−a)

cjmin

⌉
=

rj
cjmin

⌈
a
cj

⌉
− rj

cjmin
−⌈−ρj(a)

cjmin

⌉
=

rj
cjmin

⌊
a
cj

⌋
+

⌊ ρj(a)
cjmin

⌋
≤ σ(a). If a < b and ρj(a) ≥ rj or ρj(a) = 0, then

σ(a) = β(a). Hence σ(a) ≥ β(a) for all a ∈ R.
These inequalities are not useful as they are dominated by the lifted rounding

inequalities.
Proposition 8. For j ∈ N with rj ≤ cj−1, inequality (17) dominates inequality

(34) for all choices of N0 ⊂ N , N1 = N \ N0, with j ∈ N1, jmin = arg mini∈N1 ci,
jmin �= j, and ρjmin(rj) = 0.

Proof. Let N0 ⊂ N , N1 = N \N0, with j ∈ N1, jmin = arg mini∈N1 ci, jmin �= j,
and ρjmin(rj) = 0. If we divide inequality (17) by cjmin

, we obtain

j∑
i=1

min

{
ci

cjmin

,
rj

cjmin

}
xi +

n∑
i=j+1

(
rj

cjmin

⌊
ci
cj

⌋
+ min

{
ρj(ci)

cjmin

,
rj

cjmin

})
xi

≥ rj
cjmin

⌈
b

cj

⌉
.(35)

In inequality (34), variable xi has the coefficient min
{⌈

ci
cjmin

⌉
,

rj
cjmin

}
≥ min

{
ci

cjmin
,

rj
cjmin

}
if i ∈ N−. For i ∈ N+, the variable xi has the coefficient

rj
cjmin

⌈
ci
cj

⌉
≥ rj

cjmin

⌊
ci
cj

⌋
+

min
{ρj(ci)

cjmin
,

rj
cjmin

}
. The coefficient of xi for i ∈ N0 and the right-hand sides are equal

in inequalities (17) and (34).
Now we are interested in cases where cjmin does not divide rj .
Lemma 3. If rj ≤ cj−1,

⌈ rj
cjmin

⌉
≤

⌊ cj
cjmin

⌋
, and ρjmin(rj) > 0, then the function

γ(a) =

⌈
rj

cjmin

⌉⌊
a

cj

⌋
+ min

{
ρj(a)

ρjmin(rj)
,

⌈
rj

cjmin

⌉}

for a ∈ R is subadditive.
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Proof. For a, d ∈ R, if ρj(a) + ρj(d) = ρj(a + d), then
⌊

a
cj

⌋
+

⌊
d
cj

⌋
=

⌊
a+d
cj

⌋
. If

min
{ ρj(a)

ρjmin
(rj)

,
⌈ rj
cjmin

⌉}
=

⌈ rj
cjmin

⌉
or min

{ ρj(d)
ρjmin

(rj)
,
⌈ rj
cjmin

⌉}
=

⌈ rj
cjmin

⌉
, then γ(a)+

γ(d) ≥
⌈ rj
cjmin

⌉⌊
a+d
cj

⌋
+
⌈ rj
cjmin

⌉
≥ γ(a+ d). Otherwise, γ(a)+ γ(d) =

⌈ rj
cjmin

⌉⌊
a+d
cj

⌋
+

ρj(a+d)
ρjmin

(rj)
≥ γ(a+ d). If ρj(a) + ρj(d) = ρj(a+ d) + cj , then

⌊
a
cj

⌋
+
⌊

d
cj

⌋
=

⌊
a+d
cj

⌋
− 1.

If min
{ ρj(a)

ρjmin
(rj)

,
⌈ rj
cjmin

⌉}
=

⌈ rj
cjmin

⌉
and min

{ ρj(d)
ρjmin

(rj)
,
⌈ rj
cjmin

⌉}
=

⌈ rj
cjmin

⌉
, then

γ(a) + γ(d) =
⌈ rj
cjmin

⌉⌊
a+d
cj

⌋
+

⌈ rj
cjmin

⌉
≥ γ(a + d). If min

{ ρj(a)
ρjmin

(rj)
,
⌈ rj
cjmin

⌉}
=

ρj(a)
ρjmin

(rj)
and min

{ ρj(d)
ρjmin

(rj)
,
⌈ rj
cjmin

⌉}
=

⌈ rj
cjmin

⌉
, then γ(a) + γ(d) =

⌈ rj
cjmin

⌉⌊
a+d
cj

⌋
+

ρj(a)
ρjmin

(rj)
≥

⌈ rj
cjmin

⌉⌊
a+d
cj

⌋
+

ρj(a+d)
ρjmin

(rj)
≥ γ(a + d). The case where min

{ ρj(a)
ρjmin

(rj)
,⌈ rj

cjmin

⌉}
=

⌈ rj
cjmin

⌉
and min

{ ρj(d)
ρjmin

(rj)
,
⌈ rj
cjmin

⌉}
=

ρj(d)
ρjmin

(rj)
is similar. Finally, if we

have min
{ ρj(a)

ρjmin
(rj)

,
⌈ rj
cjmin

⌉}
=

ρj(a)
ρjmin

(rj)
and min

{ ρj(d)
ρjmin

(rj)
,
⌈ rj
cjmin

⌉}
=

ρj(d)
ρjmin

(rj)
,

then γ(a) + γ(d) =
⌈ rj
cjmin

⌉(⌊
a+d
cj

⌋
− 1

)
+

ρj(a+d)+cj
ρjmin

(rj)
. Since

⌈ rj
cjmin

⌉
≤

⌊ cj
cjmin

⌋
and

cj
ρjmin

(rj)
≥ cj

cjmin
≥

⌊ cj
cjmin

⌋
, γ(a) + γ(d) ≥

⌈ rj
cjmin

⌉⌊
a+d
cj

⌋
+

ρj(a+d)
ρjmin

(rj)
≥ γ(a + d). So

γ is subadditive.
Using function γ, we will lift inequality (33).
Theorem 10. Let N0 ⊂ N , N1 = N \N0, jmin = arg mini∈N1 ci, j ∈ N1, with

jmin < j, rj ≤ cj − 1, ρjmin(rj) > 0, and
⌈ rj
cjmin

⌉
≤

⌊ cj
cjmin

⌋
, N− = {i ∈ N1 : i < j},

and N+ = {i ∈ N1 : i ≥ j}. The lifted 2-partition inequality∑
i∈N−

min

{⌈
ci

cjmin

⌉
,

⌈
rj

cjmin

⌉}
xi +

⌈
rj

cjmin

⌉ ∑
i∈N+

⌈
ci
cj

⌉
xi

+
∑
i∈N0

(⌈
rj

cjmin

⌉⌊
ci
cj

⌋
+ min

{
ρj(ci)

ρjmin
(rj)

,

⌈
rj

cjmin

⌉})
xi ≥

⌈
rj

cjmin

⌉⌈
b

cj

⌉
(36)

is valid for PX.
Proof. To prove the validity of (36), we need to show that γ(a) ≥ β(a) for all

a ∈ R. For a < b, with 0 < ρj(a) < rj , if min
{ ρj(a)

ρjmin
(rj)

,
⌈ rj
cjmin

⌉}
=

ρj(a)
ρjmin

(rj)
, then

γ(a) − β(a) =
⌈ rj
cjmin

⌉⌊ a

cj

⌋
+

ρj(a)

ρjmin(rj)
−
⌈ rj
cjmin

⌉⌈ a

cj

⌉
+
⌈ρj(b− a)

cjmin

⌉
=

ρj(a)

ρjmin(rj)
−
⌈ rj
cjmin

⌉
+
⌈ρj(b− a)

cjmin

⌉
=

ρj(a)

ρjmin(rj)
−
⌈ rj
cjmin

⌉
+
⌈rj − ρj(a)

cjmin

⌉
=

ρj(a)

ρjmin
(rj)

−
⌈ rj
cjmin

⌉
+
⌈rj − ρjmin(rj) + cjmin − ρj(a) + ρjmin(rj) − cjmin

cjmin

⌉
=

ρj(a)

ρjmin(rj)
+
⌈−ρj(a) + ρjmin(rj) − cjmin

cjmin

⌉
.

If ρj(a) < ρjmin(rj), then
⌈−ρj(a)+ρjmin

(rj)−cjmin

cjmin

⌉
= 0 and γ(a)− β(a) =

ρj(a)
ρjmin

(rj)
≥

0. If ρj(a) ≥ ρjmin(rj), then γ(a) − β(a) =
ρj(a)

ρjmin
(rj)

− 1 +
⌈−ρj(a)+ρjmin

(rj)

cjmin

⌉
≥

ρj(a)−ρjmin
(rj)

cjmin
−
⌊ρj(a)−ρjmin

(rj)

cjmin

⌋
≥ 0.
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If min
{ ρj(a)

ρjmin
(rj)

,
⌈ rj
cjmin

⌉}
=

⌈ rj
cjmin

⌉
, γ(a) =

⌈ rj
cjmin

⌉⌈
a
cj

⌉
≥ β(a). For a < b,

with ρj(a) = 0, γ(a) =
⌈ rj
cjmin

⌉⌊
a
cj

⌋
= β(a). For a < b, with ρj(a) ≥ rj ,

ρj(a)

ρjmin(rj)
−
⌈ rj
cjmin

⌉
=

ρj(a)

ρjmin(rj)
− rj − ρjmin

(rj) + cjmin

cjmin

=
ρj(a)cjmin − ρjmin(rj)(rj − ρjmin(rj) + cjmin)

ρjmin
(rj)cjmin

≥ rjcjmin − ρjmin(rj)(rj − ρjmin(rj) + cjmin)

ρjmin(rj)cjmin

=
rj(cjmin − ρjmin

(rj)) − ρjmin(rj)(−ρjmin(rj) + cjmin)

ρjmin(rj)cjmin

=
(rj − ρjmin(rj))(cjmin − ρjmin(rj))

ρjmin(rj)cjmin

≥ 0.

So γ(a) =
⌈ rj
cjmin

⌉⌈
a
cj

⌉
= β(a). For a ≥ b, if

⌈
a
cj

⌉
=

⌈
b
cj

⌉
, then ρj(a) ≥ rj and

γ(a) =
⌈ rj
cjmin

⌉⌈
a
cj

⌉
= β(a). Otherwise,

⌈
a
cj

⌉
=

⌈
b
cj

⌉
+ 1, and so γ(a) ≥ β(a). Hence

γ(a) ≥ β(a) for all a ∈ R.
As in the case of lifted rounding inequalities, the lifted 2-partition inequalities are

also dominated by a subset of them which is polynomial in size.
Proposition 9. Let {jmin, j} ⊆ N , with jmin < j, rj ≤ cj − 1, ρjmin(rj) > 0,

and
⌈ rj
cjmin

⌉
≤

⌊ cj
cjmin

⌋
. The inequality

jmin−1∑
i=1

min

{
ci

ρjmin(rj)
,

⌈
rj

cjmin

⌉}
xi +

j−1∑
i=jmin

min

{⌈
ci

cjmin

⌉
,

ci
ρjmin

(rj)
,

⌈
rj

cjmin

⌉}
xi

+

n∑
i=j

(⌈
rj

cjmin

⌉⌊
ci
cj

⌋
+ min

{
ρj(ci)

ρjmin(rj)
,

⌈
rj

cjmin

⌉})
xi ≥

⌈
rj

cjmin

⌉⌈
b

cj

⌉
(37)

is valid and dominates inequality (36) for N0 ⊂ N , N1 = N \N0, with {jmin, j} ⊂ N1

and jmin = arg mini∈N1 ci.
Proof. Let {jmin, j} ⊆ N , with jmin < j, rj ≤ cj − 1, ρjmin(rj) > 0, and⌈ rj

cjmin

⌉
≤

⌊ cj
cjmin

⌋
. Consider N− = {jmin ≤ i < j :

⌈
ci

cjmin

⌉
≤ ci

ρjmin
(rj)

}, N+ = {j},
N1 = N− ∪N+, and N0 = N \N1. For this choice of subsets, inequality (36) is the
same as inequality (37).

Let N1 ⊂ N , with {jmin, j} ⊂ N1 and jmin = arg mini∈N1 ci. In inequality (36),
for i ∈ N1, if i < j, then xi has the coefficient min

{⌈
ci

cjmin

⌉
,
⌈ rj
cjmin

⌉}
, and if i ∈ N0,

then it has the coefficient min
{

ci
ρjmin

(rj)
,
⌈ rj
cjmin

⌉}
. In both cases, its coefficient in

inequality (36) is greater than or equal to its coefficient in inequality (37). If i > j
and i ∈ N1, then the coefficient of xi in inequality (36) is

⌈ rj
cjmin

⌉⌈
ci
cj

⌉
and is greater

than or equal to its coefficient in inequality (37). Other variables have the same
coefficients in both inequalities. As the right-hand sides are also the same, we can
conclude that inequality (37) dominates inequality (36).

The number of lifted 2-partition inequalities that are not dominated is O(n2).

7. Preliminary computational results. We mentioned in the introduction
that the inequalities presented in this paper could be used to solve some hard mixed
integer programming problems such as the heterogeneous vehicle routing problem (see
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[18]) and the manufacturer’s mixed pallet design problem (MPD) (see [19]). Some
preliminary results with the rounding inequalities and the lifted rounding inequalities
are presented in [18] and [19], respectively.

In this section, we investigate the effect of the lifted rounding inequalities and the
lifted 2-partition inequalities in solving the MPD instances. The rounding inequalities
for λ = cj for some j ∈ N and the residual capacity inequalities are not included in
this study as they are the same as or dominated by the lifted rounding inequalities.

We first give a brief definition of the MPD. For details, we refer the reader to [19].
Let C be the set of customers, N be the set of products, and T = {1, 2, . . . , τ} be the
set of periods. Each customer k ∈ C has a demand of dkit units for product i ∈ N
in period t ∈ T . Products are of identical dimensions and are sold in pallets. Each
pallet has Q1 rows, and, in each row, there are Q2 units of a product. A pallet which
contains more than one product type is called a mixed pallet. Let P denote the set
of potential mixed pallet designs and qij denote the number of rows of product i ∈ N
in pallet design j ∈ P . The manufacturer also offers full pallets for each product
i ∈ N , which consists of Q1Q2 units of product i. We denote by hkit and πkit the
unit inventory holding cost and the unit backlogging cost, respectively, for product
i ∈ N and customer k ∈ C at the end of period t ∈ T . No backlogging is permitted
at the end of period τ . The problem is to select at most m mixed pallet designs from
set P to minimize the sum of customers’ inventory holding and backlogging costs in
periods 1, 2, . . . , τ .

Let pj be 1, if mixed pallet design j ∈ P is offered, and 0, otherwise. Let Pk

denote the set of mixed pallets that customer k ∈ C can buy. Define ykjt to be the
number of pallets of type j ∈ Pk that customer k ∈ C buys in period t ∈ T and fkit to
be the number of full pallets of product type i ∈ N that customer k ∈ C buys in period
t ∈ T . In addition, define Ikit and Bkit to be the amount of product i ∈ N that remains
in inventory and that is backlogged at the end of period t ∈ T for customer k ∈ C,
respectively. Let M be a very large number. The MPD is formulated as follows in [19]:

min
∑
k∈C

∑
i∈N

∑
t∈T

(πkitBkit + hkitIkit)

(38)

s.t.
∑
j∈P

pj ≤ m,

(39)

Ikit−1 −Bkit−1 + Q1Q2fkit +
∑
j∈Pk

Q2qijykjt = dkit + Ikit −Bkit

∀k ∈ C, i ∈ N, t ∈ T,(40)

ykjt ≤ Mpj ∀k ∈ C, j ∈ Pk, t ∈ T,(41)

Iki0 = Bki0 = Bkiτ = 0 ∀k ∈ C, i ∈ N,(42)

Ikit, Bkit ≥ 0 ∀k ∈ C, i ∈ N, t ∈ T,(43)

fkit ≥ 0 and integer ∀k ∈ C, i ∈ N, t ∈ T,(44)

ykjt ≥ 0 and integer ∀k ∈ C, j ∈ Pk, t ∈ T,(45)

pj ∈ {0, 1} ∀j ∈ P.(46)

The objective function (38) is the sum of inventory holding and backlogging costs
over all periods. At most m mixed pallet designs can be offered due to constraint (39).
Constraints (40) are the balance equations. Constraints (41) ensure that customers do
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Table 1

Results with and without valid inequalities.

Model1 Model2 Model3

Problem Nodes CPU (17) % gap Nodes CPU (37) Nodes CPU
1 1040094 168.38 33 96.57 84039 15.06 4 49348 10.05
2 3158201 662.17 39 97.18 189635 40.64 53 67257 16.24
3 29531186 6774.68 43 97.53 621224 159.62 59 248578 68.50
4 25242255 5800.38 48 95.43 600664 152.93 65 266693 76.80
5 2008508 1535.85 54 97.96 42476 34.12 77 87575 75.31
6 7650540 6310.95 58 98.30 395894 329.14 83 175031 150.45
7 110344292 7751.75 63 96.65 148494 121.37 89 48285 45.20

not buy mixed pallets that are not offered. Constraints (42) are beginning and ending
conditions. Constraints (43)–(46) are nonnegativity and integrality constraints.

Yaman and Sen prove that the optimal value of the linear programming relaxation
of MPD is zero. As a result it is important to derive strong valid inequalities for this
problem to be able to improve the linear programming-based lower bounds.

For k ∈ C and i ∈ N , let Dki =
⌈∑

t∈T dkit/Q2

⌉
. The inequality

∑
t∈T

(
min{Q1, Dki}fkit +

∑
j∈Pk

min{qij , Dki}ykjt
)

≥ Dki(47)

is satisfied by all feasible solutions of MPD. Remark that the set of nonnegative integer
solutions satisfying inequality (47) is an integer knapsack cover set. Hence we can
generate valid lifted rounding and lifted 2-partition inequalities for the MPD based
on inequalities (47).

We test the use of these valid inequalities on seven problem instances. We start
with two base instances. In the first instance the number of products is two, and
in the second instance the number of products is three. In both base instances, the
number of periods is three, and the maximum number of mixed pallet designs to be
offered is one. Using the first base instance, we generated four problems where the
number of customers takes values 4, 5, 6, and 7. Using the second base instance, we
generated three problems with 5, 6, and 7 customers.

For each problem instance, we first solve the model without valid inequalities. We
call this Model1. We report the number of nodes in the branch and bound tree (in
column node) and the CPU time in seconds (in column CPU). Then we form Model2 by
adding the nondominated lifted rounding inequalities (17) to Model1. For Model2, we
report the number of inequalities (17) added (in column (17)), the percentage duality
gap (in column %gap, where %gap = opt−lp

opt ∗ 100, opt is the optimal value, and lp

is the lower bound obtained from the linear programming relaxation), the number of
nodes in the branch and bound tree, and the CPU time in seconds. Finally, we form
Model3 by adding the nondominated lifted 2-partition inequalities (37) to Model2.
We report here the number of inequalities (37) added (in column (37)), the number of
nodes in the branch and bound tree, and the CPU time in seconds. The percentage
duality gaps remained the same as the ones of Model2 and so are not reported. We
solve the models using the mixed integer programming (MIP) solver of CPLEX 8.1
on an AMD Opteron 252 processor (2.6 GHz) with 2 GB of RAM. The results are
given in Table 1.

The results show that both families of valid inequalities have been useful in de-
creasing the number of nodes in the branch and bound tree and the solution times
for these instances. The solution time for Model3 is larger than the one of Model2
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for instance five, but still it is about twenty times less than the one of Model1. The
averages of percentage improvements obtained in the number of nodes and CPU time
with the addition of inequalities (17) are 96.29% and 95.85%, respectively. The av-
erages of percentage improvements obtained in the number of nodes and CPU time
compared to Model2 with the addition of inequalities (37) are 34.07% and 28.07%,
respectively.

8. Conclusion. We studied the polyhedral properties of the convex hull of the
integer knapsack cover set which appears as a relaxation of many optimization prob-
lems that concern covering a given demand using integer numbers of different types
of items. We derived four families of valid inequalities, investigated when they domi-
nate each other, and gave some conditions under which some are facet-defining. We
used sequence-independent lifting to derive that last two families of valid inequali-
ties. These inequalities can be used to solve problems such as those investigated in
[11, 18, 19].

Except the rounding inequalities for arbitrary λ values, the valid inequalities
derived in this paper share some common features. There exists always an item
j ∈ N such that the right-hand side of the inequality is equal to the coefficient of
xj times

⌈
b
cj

⌉
. We know that this is an upper bound on the value of the right-hand

side (see Proposition 1). Clearly, there are facet-defining inequalities which do not
follow this rule. For instance, the cover constraint is facet-defining for conv({x ∈ Z

3
+ :

3x1 + 4x2 + 5x3 ≥ 13}).
Again excluding rounding inequalities, another common feature is that the num-

ber of inequalities that are nondominated within a family is polynomial even when the
family has an exponential number of inequalities. These inequalities can be further
lifted or modified to define larger families of valid inequalities for more complicated
problems in consideration. For instance, an exponential number of valid inequalities
can be derived for the integer capacity cover polyhedron using the inequalities of this
paper and the lifting results of Mazur and Hall [12].
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RECOGNIZING CHORDAL PROBE GRAPHS AND
CYCLE-BICOLORABLE GRAPHS∗

ANNE BERRY† , MARTIN CHARLES GOLUMBIC‡ , AND MARINA LIPSHTEYN‡

Abstract. A graph G = (V,E) is a chordal probe graph if its vertices can be partitioned
into two sets, P (probes) and N (non-probes), where N is a stable set and such that G can be
extended to a chordal graph by adding edges between non-probes. We give several characterizations
of chordal probe graphs, first, in the case of a fixed given partition of the vertices into probes
and non-probes, and second, in the more general case where no partition is given. In both of
these cases, our results are obtained by introducing new classes, namely, N -triangulatable graphs
and cycle-bicolorable graphs. We give polynomial time recognition algorithms for each class. N -
triangulatable graphs have properties similar to chordal graphs, and we characterize them using
graph separators and using a vertex elimination ordering. For cycle-bicolorable graphs, which are
shown to be perfect, we prove that any cycle-bicoloring of a graph renders it N -triangulatable. The
corresponding recognition complexity for chordal probe graphs, given a partition of the vertices
into probes and non-probes, is O(|P ||E|), thus also providing an interesting tractable subcase of
the chordal graph sandwich problem. If no partition is given in advance, the complexity of our
recognition algorithm is O(|E|2).

Key words. chordal graph, probe graph, triangulation, perfect graph, elimination scheme,
bicoloring
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1. Introduction.

1.1. Motivation: Interval probe graphs. The study of chordal probe graphs
[11, 12] was originally motivated as a generalization of the interval probe graphs which
occur in applications involving physical mapping of DNA. Interval probe graphs were
introduced by Zhang [20, 24] to model problems in physical mapping of DNA when
the intervals are either probes or non-probes, and the information on the overlaps
between non-probes is missing. As a result, Zhang defined a graph to be interval
probe if its vertex set can be partitioned into probes and non-probes in such a fashion
that it can be completed into an interval graph by adding only edges between non-
probes. This shows two different facets of the problem: either the partition is given
in advance, or a partition has to be proposed as part of the solution.

Recently, for partitioned interval probe graphs, an O(n2) time recognition algo-
rithm was first reported in [15] which uses PQtrees. Another method, given in [18],
uses modular decomposition and has complexity O(n + m log n) for a graph with n
vertices and m edges. In the case of trees, Sheng [22] gives characterizations by a
family of forbidden subgraphs for both the partitioned and non-partitioned case, thus
ensuring polynomial time recognition of trees which are interval probe graphs (see also
[13]). The polynomial time complexity of recognizing interval probe graphs (when no
partition is given) has been given in [5].
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1.2. Chordal probe graphs and their generalizations. Generalizing inter-
val probe graphs, Golumbic and Lipshteyn [11, 12] introduced chordal probe graphs as
a new class of perfect graphs: A graph G is chordal probe if its vertex set can be par-
titioned into a set P of probes and a stable set N of non-probes in such a fashion that
G can be completed into a chordal graph by adding only edges between non-probes.
They gave O(m2) algorithms to recognize chordal probe graphs which are also even-
chordal, which is exactly the subfamily of chordal probe graphs which have no even
hole; this class includes the interval probe graphs and is also weakly chordal [14].

Among the results in this paper, we solve the general problem for chordal probe
graphs, by giving polynomial time recognition algorithms for the partitioned as well
as the non-partitioned case. In doing so, we introduce two new graph superclasses, the
N -triangulatable graphs and cycle-bicolorable graphs, proving interesting properties
for both of them.

In Part I, we examine the partitioned case. In fact, we solve a broader prob-
lem in which the set N is not assumed to be a stable set, which defines the class of
N -triangulatable graphs. We investigate the structural properties of this class and
show that several properties of chordal graphs can be extended to this class, namely
we characterize them using graph separators and using a vertex elimination order-
ing. These results enable us to propose a recognition algorithm with a complexity of
O(|P |m). Section 3 deals with N -triangulatable graphs and section 4 discusses the
subcase of partitioned chordal probe graphs.

In Part II, we discuss the case where no partition is given in advance. Our
approach uses a lemma from [12], which remarks that in a partitioned chordal probe
graph, probes and non-probes must alternate on every chordless cycle. Thus, in section
6, we again solve a broader problem by introducing the class of cycle-bicolorable
graphs, a superclass of chordal probe graphs. In section 7, we characterize chordal
probe graphs as cycle-bicolorable graphs in which one color defines a stable set and
give a corresponding O(n2m) time recognition algorithm. These results are based on
a new graph decomposition, introduced in section 5, which groups together the cycles
of the graph into so-called C-components. The polynomial time complexity relies on
the theory of graph separators.

2. Background and previous results.

2.1. General definitions and properties of chordal graphs. The graphs in
this work are undirected and finite. A graph is denoted G = (V,E), with n = |V | and
m = |E|. We let GA denote the subgraph induced by a vertex set A ⊂ V ; similarly,
GA denotes the subgraph induced by A in the complement G of G. A clique in a
graph is a set of pairwise adjacent vertices, and a stable set in a graph is a set of
pairwise non-adjacent vertices. We say that we saturate a set of vertices if we add all
the edges necessary to make it a clique. In this paper, a connected component is a
vertex set which induces a maximal connected subgraph.

The (open) neighborhood of a vertex x in graph G is the set NG(x) = {y �= x |
xy ∈ E}; we will say that a vertex x sees another vertex y if xy ∈ E. The closed
neighborhood of x is NG[x] = NG(x)∪{x}. We extend the notion of neighborhood to
a set of vertices A by defining NG(A) = ∪x∈ANG(x)−A and NG[A] = NG(A)∪{A}.
When there is no ambiguity as to which graph is referred to, the subscript will be
omitted, i.e., NG(x) will be written simply N (x). The degree of vertex x will be
denoted by deg(x) = |N (x)|.

A chordless cycle of length k is denoted by Ck and we always assume k ≥ 4. A
hole is a chordless cycle of length at least five; a hole is called odd or even depending
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on the parity of its length. An antihole is the complement of a hole. A graph G is
called perfect if every induced subgraph GA satisfies the equality ω(GA) = χ(GA),
where ω denotes the size of the largest clique and χ is the chromatic number. The
Strong Perfect Graph Theorem [6], originally conjectured by Berge, states that a graph
is perfect if and only if it contains neither an odd hole nor an odd antihole.

Chordal graphs are a well known family of perfect graphs. A graph is defined to
be chordal if every cycle of length 4 or greater has a chord, that is, an edge joining two
non-consecutive vertices of the cycle. Chordal graphs have important application areas
including acyclic relational database schemes, facility location problems, statistical
analysis, and the problem of tracing genetic mutations over an evolutionary period
by constructing phylogenetic trees (see [9, 19]).

It is often the case in such applications, however, that an input graph G has edges
missing due to incomplete data. This gives rise to the problem of adding additional
edges F in order to complete it into a chordal supergraph G

′
= (V,E +F ) of G. The

edge set F is said to be minimal if no proper subset defines a chordal graph when
added; the resulting chordal graph is then called a minimal triangulation. When |F |
is required to be smallest possible, it is called a minimum triangulation.

The chordal graph sandwich problem (see [4, 10, 23]) is another variation where
a specified set of optional edges E0 is given with the input, and the triangulation F
(not necessarily minimum) must satisfy F ⊆ E0. Both the minimum triangulation
problem and the chordal graph sandwich problem are NP-complete.

An undirected graph G = (V,E) is a chordal probe graph if its vertex set can be
partitioned into two subsets, P (probes) and N (non-probes), where N is a stable set
and there exists a completion F ⊆ N×N such that H = (V,E+F ) is a chordal graph.
The class of chordal probe graphs was introduced in [12] as a generalization of interval
probe graphs. Interval probe graphs are defined similarly, where the completed graph
H must be an interval graph.

A vertex is simplicial if its neighborhood is a clique. The notion of simplicial
vertex was introduced independently by Dirac in 1961 [7] and by Lekkerkerker and
Boland in 1962 [17] as an extension of the notion of a leaf in a tree and is the basis
for the following theorem by Dirac.

Theorem 2.1 (see [7]). A non-clique chordal graph has at least two non-adjacent
simplicial vertices.

This led Fulkerson and Gross [8] to characterize chordal graphs in an algorithmic
manner as follows.

Characterization 2.2 (see [8]). A graph is chordal if and only if one can
repeatedly find a simplicial vertex and delete it from the graph until no vertex is left.

This defines an ordering on the vertices called a perfect elimination ordering (peo).
One of the earliest ways which was used to compute a triangulation was to force

the graph into respecting this characterization by using an ordering α on the vertices
and repeatedly choosing the next vertex in this ordering, forcing its neighborhood into
a clique by the addition of any missing edges and removing the vertex; we refer to this
process as the elimination game on (G,α). Each of the successive graphs obtained is
called a transitory elimination graph and is denoted by Gi. At the end of the process,
the set F of added edges define a triangulation G+

α = (V,E + F ) of the input graph
(V,E) (see [3]).

The following property is well known.
Property 2.3. If G′ is a triangulation of G and α is a peo of G′, then G′ = G+

α .

2.2. Minimal separators and minimal triangulations. Minimal separators
were introduced by Dirac [7]. A subset S of vertices of a connected graph G is called
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a separator if GV−S is not connected. A separator S is called an ab-separator if a
and b are in different connected components of GV−S , a separator S is a minimal
ab-separator if S is an ab-separator and no proper subset of S is an ab-separator;
finally, a separator S is a minimal separator if there is some pair {a, b} such that
S is a minimal ab-separator. Equivalently, a separator S is minimal if there exist
two distinct components C1 and C2 in GV−S such that N (C1) = N (C2) = S; such
components are called full components of S.

Minimal separators turn out to be a very useful tool for computing a minimal
triangulation.

Definition 2.4 (Kloks, Kratsch, and Spinrad [16]). Let S and T be two minimal
separators of G. Then S crosses T if there exist two components X1, X2 of G(V−T ),
X1 �= X2, such that S ∩X1 �= ∅ and S ∩X2 �= ∅.

It is shown in [21] that the crossing relation is symmetric, i.e., S crosses T if and
only if T crosses S.

Property 2.5. Let S and T be two minimal separators of G. Then S crosses T
if and only if T has a vertex in each full component of S.

Theorem 2.6 (see [21]). When a minimal separator S is saturated, creating
graph G′:

1. All the minimal separators which cross S disappear.
2. All the minimal separators which do not cross S remain.
3. No new minimal separator appears.
4. Any minimal triangulation of G′ is a minimal triangulation of G.

Thus, computing a minimal triangulation of a graph G is equivalent to saturating
a maximal set of pairwise non-crossing minimal separators of G (see [21]).

The following is a consequence of Theorem 2.6.
Property 2.7. S and T are two crossing minimal separators of a graph G if

and only if S contains two non-adjacent vertices x and y such that T is a minimal
xy-separator of G.

Lekkerkerker and Boland in [17] introduced the following notion which will be
fundamental to this paper.

Definition 2.8. A substar S of x is a subset of N (x) such that for some
connected component U of GV−N [x] , S = N (U), i.e., all the vertices of a substar
see some common connected component of GV−N [x] .

Note that the substars of x are exactly the minimal separators included in the
neighborhood of x.

Example 2.9. In Figure 1, the substars of j are {b, c} and {e, i, k}; j is on a
chordless cycle with e, i, and k, because substar {e, i, k} is an independent set, but j
is not on a cycle with b nor c, because substar {b, c} is a clique.
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Fig. 1. A graph. The substars of j are {b, c} and {e, i, k}.
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Additional properties which are useful are the following.
Property 2.10 (see [1]). For a vertex x, the substars of x are pairwise non-

crossing.
Property 2.11 (see [1]). Let x, y be two non-adjacent vertices of a graph G,

then no substar of x can cross a substar of y.
Property 2.12 (see [17]). A vertex x is on a chordless cycle if and only if at

least one of its substars is not a clique. More precisely, if X is a connected component
of GV−N [x] such that S = N(X) contains the non-edge yz, then x is on a chordless
cycle C on which it sees y and z, and all the other vertices of C are in X.

For example, in Figure 1, vertex j is on a chordless cycle with e, i and k, because
substar {e, i, k} is an independent set, but j is not on a cycle with b nor c, because
substar {b, c} is a clique.

This leads us to the following definition.
Definition 2.13. We say that a vertex x is LB-simplicial if all the substars of

x are cliques.
Finally, we recall the following characterization of chordal graphs which does not

appear to be well known.
Characterization 2.14 (see [17]). A graph is chordal if and only if every

vertex is LB-simplicial.

Part I. The partitioned case. The original motivation for this work has been
the recognition of chordal probe graphs, in the non-partitioned as well as in the
partitioned case. We will first address the partitioned case. In order to do this, we
solve a more general problem.

3. N-triangulatable partitioned graphs. We introduce a new problem,
namely, triangulating a graph whose vertex set is bipartitioned into “probes” and
“non-probes” by adding only edges between non-probes. The corresponding class,
which we call N -triangulatable graphs, is studied in this section.

One of the interesting developments is that N -triangulatable graphs turn out to
be very similar to chordal graphs: We will show that several properties and char-
acterizations of chordal graphs can be very profitably extended to N -triangulatable
graphs, and that they yield the tools we need to handle this class efficiently.

Definition 3.1. We will say that a graph G = (P + N,E) is N -triangulatable
(N -T) if a triangulation of G can be obtained by adding only edges whose endpoints
are non-probes. We will call such a triangulation an N -triangulation of G.

Remark 3.2.
1. If G is N -T, then GP is a chordal graph.
2. An induced subgraph of an N -T graph is an N -T graph.
3. In the case where P = ∅, the graph becomes an arbitrary graph, and it is

always N -T.
4. In the case where N is a stable set, G is N -T if and only if G is chordal probe

with respect to this partition.
5. Recognizing N -T graphs is a special case of the chordal graph sandwich prob-

lem, where the optional edges E0 consist of all non-edges between non-probes.
We will now see that both Lekkerkerker and Boland’s Characterization 2.14 and

Fulkerson and Gross’ Characterization 2.2 can be extended to recognize this class.
These will be studied, respectively, in sections 3.1 and 3.3.

3.1. Quasi LB-simpliciality of N-T graphs. In this section, we extend Char-
acterization 2.14 of chordal graphs due to Lekkerkerker and Boland to N -T graphs.
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Fig. 2. An N-T graph with white non-probes and black probes.

This will also enable us to give a recognition algorithm for N -T graphs using separa-
tors.

Definition 3.3. We will say that a vertex x is quasi-LB-simplicial if all the
non-edges of all the substars of x have both endpoints that are non-probes.

Example 3.4. In Figure 2, if black vertices are probes and white are non-probes,
c is quasi-LB-simplicial, as its substars are {b, d} and {j}.

We will see that examining the substars of the probes of the graph is sufficient to
characterize N -T graphs.

Definition 3.5. We will say that the substars of a probe are P -substars.
Theorem 3.6. The following conditions are equivalent for a graph G = (P +

N,E):
1. G is an N -T graph.
2. All probes of G are quasi-LB-simplicial.
3. G contains no chordless cycle with two adjacent probes.

Proof. (1) ⇒ (3): Let G = (P + N,E) be an N -T graph, let V = P + N , and
let G′ be an N -triangulation of G. Suppose by contradiction that in G there is a
chordless cycle (p1, p2, v3, . . . , vk, p1), where p1 and p2 are probes. In G′, p1 sees vk
and p2; v3, v4, . . . , vk−1 belong to the same connected component X of G′

V−N [p1]
.

N (X) is a substar of G′, but it fails to be a clique, as it contains vk and p2, which
are non-adjacent. This contradicts Characterization 2.14 for chordal graphs.

(3) ⇒ (2): Assume in G = (P + N,E) there is no chordless cycle with two
adjacent probes. Suppose by contradiction that there exists a probe x which fails to
be quasi-LB-simplicial: x has two non-adjacent neighbors, y and z, one of which is a
probe; w.l.o.g. y is a probe. According to Property 2.12, there exists a chordless cycle
which contains y, x, and z consecutively, a contradiction.

(2) ⇒ (1): Let G = (P + N,E) be a graph such that all probes are quasi-LB-
simplicial; we will prove that G is an N -T graph.

Let us use the minimal triangulation algorithm LB-TRIANG described in [1],
which repeatedly chooses a vertex x, saturates its substars, and removes x. Regardless
of the order in which the vertices are processed, LB-TRIANG computes a minimal
triangulation of the input graph; we will run it by first choosing all the probes.

We claim that no new P -substar can appear. Because of Theorem 2.6, the only
way a P -substar can be created is by adding edges which will cause a previous min-
imal separator S, which was not a P -substar, to be in the neighborhood of a probe.
However, no new edge can be added incident to a probe, so this cannot happen.

After all the P -substars have been processed and eliminated, only vertices from N
are left in the graph. When we finish the execution, we will have computed a minimal
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triangulation of G which has added only edges between two non-probes, which is thus
an N -triangulation of G. By definition, G is an N -T graph.

Complexity. The recognition algorithm based on Theorem 3.6 runs in O(|P |m)
time: The implementation of Algorithm LB-TRIANG proposed in [1], as in the proof
of Theorem 3.6, uses a data structure inspired from clique trees and requires only
O(m) time per processed vertex; a global O(m) time is then used to check that only
edges between pairs of non-probes have been added.

Computing a minimal triangulation of an N -T graph costs O(nm) time, which
is the same as computing a minimal triangulation of any graph. However, in order
to recognize N -T graphs, it is not necessary to actually compute an N -triangulation.
Therefore, unless P is of order n, it is cheaper to recognize the class than to exhibit
an N -triangulation for it.

3.2. Properties of N-T graphs.
Theorem 3.7. Let G = (P + N,E) be an N -T graph. The P -substars of G are

pairwise non-crossing.
Proof. Let G = (P +N,E) be an N -T graph, and let V = P +N . Let us assume

by contradiction that there are two crossing P -substars S1 and S2. By Property 2.11,
S1 and S2 must be substars of two adjacent vertices p1 and p2. By Property 2.7,
there must be two non-adjacent vertices x and y in S1, such that S2 is a minimal
xy-separator.

Let us first suppose that p2 belongs to S1. Since p1 is quasi-LB-simplicial, p2

must see x and y. Therefore, every minimal xy-separator must contain p2, which
contradicts the fact that S2 is a minimal xy-separator.

Let us now examine the case where p2 is not in S1. Let X be the connected
component of GV−N [p1] such that S1 = N (X). According to Property 2.12, x and y
belong to some chordless cycle C on which x, p1 and y are consecutive, with all other
vertices in X. Suppose p2 sees some of these intermediate vertices C ∩ (V − N [p1]).
Then p2 would belong to N (X) and thus to S1, which is impossible. Therefore, S2

has no vertex in X, which is a full component of S1; by Property 2.5, S1 and S2 are
non-crossing.

Corollary 3.8. The number of P-substars in an N -T graph is less than n.
Proof. This follows from the simple observation that, since the P-substars are non-

crossing minimal separators, they can all be chosen to be saturated and preserved in
some minimal triangulation of G, which, as all chordal graphs, has less than n minimal
separators.

Recall that in the proof of Theorem 3.6, we ran LB-TRIANG by using all the
probes in a first phase and then the non-probes in a second phase. Since the minimal
separators which are chosen as substars in the first phase are pairwise non-crossing,
the resulting set FP of edges which is added is the same, regardless of the order in
which the probes are processed; the edges of FP are mandatory, and we will use them
to define G∗ below. The set of edges computed by the second phase, however, depends
on the order in which the non-probes are processed.

Definition 3.9. We define the enhanced graph G∗ of G to be the graph obtained
from G by saturating all the P -substars of G.

Example 3.10. Figure 3 gives the enhanced graph of the graph of Figure 2.
Theorem 3.11. Any minimal triangulation of G∗ is a minimal triangulation of

G and an N -triangulation of G.
Proof. By Theorem 3.7, the P -substars of G are pairwise non-crossing. Therefore,

G∗ is obtained by saturating a set of pairwise non-crossing minimal separators of G.
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Fig. 3. The corresponding enhanced graph G∗, where the probe substars have been saturated.

By Theorem 2.6, any minimal triangulation of G∗ is a minimal triangulation of G. If
we run Algorithm LB-TRIANG as in the proof of Theorem 3.6 by first choosing the
probes, making these simplicial will only add edges between two non-probes. After
the probes are processed and eliminated, only non-probes are left in the graph, and
the chosen subsequent triangulation will also add only edges between two non-probes;
the minimal triangulation thus obtained is an N -triangulation.

3.3. Quasi-perfect elimination in N-T graphs. We will now go on to show
that Fulkerson and Gross’ Characterization 2.2 can also be extended to an N -T graph
and that, as is the case with chordal graphs with respect to perfect elimination or-
derings (peos), a greedy approach to playing the quasi-peo elimination game will
successfully recognize N -T graphs.

Definition 3.12. Let G = (P + N,E) be an N -T graph. We will say that a
vertex v of G is quasi-simplicial if every non-edge of N (v) has both endpoints which
are non-probes.

Definition 3.13. We will say that an ordering α on the vertices of G is a quasi-
perfect elimination ordering (qpeo) if at each step i of the elimination game on (G,α),
vertex α(i) is quasi-simplicial in the transitory elimination graph Gi.

Example 3.14. In Figure 2, if black vertices are probes and white are non-probes,
a is quasi-simplicial and d is not. However, if a is chosen first in a qpeo, saturating
N (a) and removing a will make d quasi-simplicial in the transitory graph; α =
(a, d, c, b, j, h, l, f, e, k, g, i) is a qpeo.

Lemma 3.15. Let G = (P+N,E) be an N -T graph, and let v be a quasi-simplicial
vertex of G. If G′ is the graph obtained by making v simplicial and removing it, then
G′ is also N -T.

Proof. Suppose by contradiction that G′ fails to be an N -T graph, we will prove
that G is not N -T. According to Theorem 3.6, there must be a chordless cycle C ′ in
G′ containing two consecutive probes. Let X ′ be the vertex set corresponding to C.

If GX′ is also a chordless cycle (in G), then G fails to be N -T, by Theorem 3.6.
Otherwise, in cycle G′

X′ there exists a unique edge xy which was added while
making v simplicial. (If several edges were added, C ′ would not be chordless). Let
X = X ′ ∪ {v}. Clearly, GX is a cycle, call it C; suppose it fails to be chordless: v
has a neighbor w on C, w �= x, y; but in that case, edges xw and yw would have
been added to G′, which contradicts the fact that C ′ is chordless in G. Thus C is a
chordless cycle with two consecutive probes, so by Theorem 3.6, G is not N -T.

Theorem 3.16. Let G = (P + N,E) be a graph. The following are equivalent:
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1. G is an N -T graph.
2. G has a quasi-perfect elimination ordering.
3. A greedy elimination game on quasi-simplicial vertices succeeds.

Proof. (2) ⇒ (1): Let G = (P + N,E) be a graph with a qpeo α. Running the
elimination game on (G,α) will add only edges between two non-probes, so it will
produce an N -triangulation of G.

(1) ⇒ (2) Let G = (P+N,E) be an N -T graph, let G′ be an N -triangulation of G,
and let β = (v1, . . . , vn) be a peo of G′. We claim that β is a qpeo of G. By Property
2.3, G′ = G+

β . Since vi is simplicial in G′
{vi,...,vn}, it is quasi-simplicial in G{vi,...,vn},

because the elimination game only adds edges whose endpoints are non-probes at each
step. Therefore, β is a qpeo of G.

(1) ⇒ (3): If the elimination game fails at some step, then the corresponding
transitory graph has no quasi-simplicial vertex, so by the equivalence (1) ⇐⇒ (2),
it fails to be N -T. Therefore, by Lemma 3.15, G is not N -T.

(3) ⇒ (2): Trivial.
Complexity. A recognition algorithm can be given based on condition (3) of

Theorem 3.16. This runs in O(n2m′) time, where m′ is the number of edges of the
N -triangulation computed by the elimination game run on a qpeo, since a brute force
approach will require O(nm′) time to find a quasi-simplicial vertex and process it. (A
referee has pointed out that the complexity of recognizing N -T graphs in this way
can be further reduced to O(|P |m′).)

In any case, this complexity is not as good as the O(|P |m) time we found in
section 3.1. However, there may be, as is the case for chordal graphs, a LEX M-type
algorithm which could compute a qpeo in O(|N |m) time—a question we leave open.

We now will use our results to extend Dirac’s Theorem 2.1 to N -T graphs.
Theorem 3.17. Let G = (P +N,E) be an N -T graph which is not a clique; then

in G there are at least two non-adjacent quasi-simplicial vertices.
Proof. By induction on the number of vertices. Clearly, any N -T graph on 4

vertices which is not a clique has two non-adjacent vertices which are quasi-simplicial.
Let us consider an N -T graph G with n vertices. By Theorem 3.16, G has a quasi-

simplicial vertex x. If x sees all the other vertices in G, let G′ be obtained by simply
removing x from G. By the induction hypothesis, G′ has two non-adjacent quasi-
simplicial vertices, which are trivially also quasi-simplicial and non-adjacent in G.

Otherwise, let G′ be obtained by saturating NG(x) and removing x. According
to Lemma 3.15, G′ is an N -T graph. By the induction hypothesis, G′ must have two
non-adjacent quasi-simplicial vertices, at least one of which, call it z, is not in NG(x),
since in G′, NG(x) is a clique. We claim that z is quasi-simplicial in G. Suppose this
is not the case: In G, z must see a non-edge {v, w}, with v a probe, which is not a
non-edge of G′, so edge vw must have been added to G′ when making x simplicial.
But since x is quasi-simplicial in G, there can be no such non-edge {v, w} in GN (x) .
Thus, in G, x and z are two non-adjacent quasi-simplicial vertices.

4. Recognizing partitioned chordal probe graphs. In this section, we apply
our results from section 3 on N -triangulatable graphs to characterizing and recogniz-
ing partitioned chordal probe graphs.

Theorem 4.1. Let G = (P+N,E), with N a stable set. The following conditions
are equivalent:

1. G is chordal probe.
2. All probes of G are quasi-LB-simplicial.
3. G contains no chordless cycle with two adjacent probes.
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Proof. This follows directly from Theorem 3.6 and Remark 3.2 (4).
Complexity. Provided we test that N is a stable set, the recognition algorithm

for N -T graphs given in section 3.1 also recognizes chordal probe graphs, with the
same O(|P |m) complexity.

Theorem 4.2. Let G = (P +N,E) be a graph, with N a stable set. The following
three are equivalent:

1. G is a chordal probe graph.
2. G has a quasi-perfect elimination ordering.
3. A greedy elimination game on quasi-simplicial vertices succeeds.

Proof. This follows immediately from Theorem 3.16.
Remark 4.3. Theorem 4.2 defines an elimination process on neighborhoods which

are split graphs, as the vertices in each neighborhood are partitioned into a clique
of probes and a stable set of non-probes; moreover, they form a special kind of split
graph, which can be qualified as “complete split graph,” meaning that all possible
edges between a probe and a non-probe belong to the graph. This extends the sim-
plicial elimination process on chordal graphs, where the elimination is on complete
neighborhoods.

Theorem 3.17 also trivially extends to chordal probe graphs:
Corollary 4.4. Let G = (P + N,E) be a chordal probe graph which is not a

clique; then in G there are at least two non-adjacent quasi-simplicial vertices.

Part II. The non-partitioned case. Having solved the partitioned case for
recognizing chordal probe graphs in Part I, we will now go on to the non-partitioned
case. Again, we do this by first solving a more general problem.

5. Decomposing an arbitrary graph into C-components. As stated in the
introduction, our approach to recognizing chordal probe graphs uses a lemma from [11]
which remarks that in any valid partition of a chordal probe graph, probes and non-
probes must alternate on every chordless cycle. In order to study this phenomenon,
we first propose a partition of the vertices of a graph into components which group
together cycles of the graph, thus introducing a new graph decomposition.

Definition 5.1. Let G be an arbitrary graph.
1. A C-edge is an edge which belongs to some chordless cycle.
2. A C-path is a path made out of C-edges.
3. A C-component is a set of vertices in which there is a C-path connecting each

pair of vertices in the component.
4. An external edge is an edge which has its endpoints in two different C-

components.
Example 5.2. Figure 4 shows the partition into C-components of a graph.
Property 5.3. Let G be an arbitrary graph; being connected by a C-path is an

equivalence relation on the vertices of G; we will denote this relation by ∼.
Proof. Trivially, if x and y are connected by a C-path, then y and x are also

connected by the same path, thus ensuring symmetry. Transitivity: Let μ1 be a C-
path from x to y and μ2 be a C-path from y to z; the concatenation of μ1 with μ2 is
a C-path from x to z.

Property 5.4. Every chordless cycle is entirely contained in some C-component.
Proof. Two vertices belonging to some chordless cycle are connected by a C-path,

so by definition they must belong to some common C-component.
Property 5.5. Every antihole is entirely contained in some C-component.
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Fig. 4. A graph and its partition into C-components.

Proof. Every vertex of an antihole belongs to a C4 along with every other vertex
of the antihole.

As a result of Properties 5.4 and 5.5, we have the following theorem.
Theorem 5.6. The decomposition into C-components is hole and antihole pre-

serving.
The partition induced by ∼ on the vertices of G very naturally defines a quotient

graph, which we will denote by G0.
Definition 5.7. Let G = (V,E) be an arbitrary graph. Let us define the quotient

graph G0 = (V ′, E′) of G, where V ′ is the set of C-components of G and there is an
edge between two C-components Xi and Xj if there is an edge in G with one endpoint
in Xi and the other in Xj.

Theorem 5.8. Let G = (V,E) be an arbitrary graph. The quotient graph G0 of
G is chordal.

Proof. Suppose graph G0 is not chordal.
There must be a chordless cycle C0 = (X1, . . . , Xk, X1) in G0. We will construct a

corresponding chordless cycle in G. Let us consider three consecutive components Xi,
Xi+1, and Xi+2 of C0, and let x be a vertex in Xi+1; x can see a vertex x′ of another
component of C0 only if x′ is either in Xi, or in Xi+2, else edge xx′ corresponds to a
chord of C0.

In each component Xi of G0, let us choose some vertex yi which sees a vertex
xi+1 of Xi+1. Thus our construction chooses in each component Xi two vertices,
xi and yi; xi is seen by yi−1. Let Pi be a chordless path in Xi which connects xi

with yi. Let us concatenate all of these paths: we obtain a cycle from which we can
extract a chordless cycle C of G, which has vertices in different C-components, thus
contradicting Property 5.4.

Let us now discuss the case where a vertex does not belong to any chordless cycle.
Recall that by Definition 2.13, a vertex is LB-simplicial if all its substars are cliques;
by Property 2.12, a vertex is LB-simplicial if and only if it belongs to no chordless
cycle. We will express this by the following property.

Property 5.9. Let X be a C-component of a graph. The following propositions
are equivalent:

1. X contains no chordless cycle.
2. |X| = 1.
3. X is an LB-simplicial vertex of the graph.

We will call a C-component trivial when it contains no chordless cycle.
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Complexity. Computing the C-components of a graph G can be done in O(m2)
time using Definition 5.1. For each edge xy of the graph, one can determine whether it
is part of a chordless cycle by removing the edge xy as well as the common neighbors
of x and y; if in the resulting graph there is a path from x to y, then in the original
graph xy belongs to a chordless cycle. This test requires O(m) time for each edge, and
thus all edges can be tested in O(m2) time. The C-components are then computed
as being the connected components of the graph, obtained from G by removing all
edges that do not belong to a chordless cycle.

6. Cycle-bicolorable graphs. In this section, we present a new class of perfect
graphs which generalizes chordal probe graphs in the case where no partition is given
in advance. We exploit the property that in any valid partition, probes and non-probes
must alternate on every chordless cycle.

In [11], the following lemma is shown for chordal probe graphs.
Lemma 6.1 (see [11]). If a graph G = (P +N,E) is chordal probe with respect to

the partition {P,N} of its vertex set, then probes and non-probes alternate on every
chordless cycle of G.

We will use this property to introduce a new graph class.
Definition 6.2. We will say that a graph G = (V,E) is cycle-bicolorable if and

only if each vertex can be labeled with one of two colors in such a fashion that the
colors alternate in every chordless cycle.

Note that on a C-path in a cycle-bicolorable graph, the colors must alternate.

6.1. Recognition of cycle-bicolorable graphs. The following proposition
will allow us to characterize cycle-bicolorable graphs by considering each C-component
separately.

Proposition 6.3. A graph is cycle-bicolorable if and only if each of its C-
components is cycle-bicolorable.

Proof. By Property 5.4, every chordless cycle of G is entirely contained in a unique
C-component of G. Thus, coloring the chordless cycles inside each C-component is
equivalent to coloring all chordless cycles.

Lemma 6.4. Each cycle-bicolorable C-component has exactly two opposite bicol-
orings.

Proof. Let us consider a C-component Xi, and let κ1 be a bicoloring of Xi. By
exchanging the colors of every vertex, another bicoloring κ2 is obtained. Suppose
there is a third possible coloring κ3. Let x be a vertex whose color is different in κ1

and κ3. We claim that every other vertex in Xi has a different coloring in κ1 and in
κ3. Suppose by contradiction that some vertex y of Xi has the same color in κ1 as in
κ3. There is a C-path connecting x and y; since the colors in κ3 must alternate on
this path, the color of x uniquely determines the color of y, a contradiction. Thus,
the color of every vertex of Xi is different in κ1 as in κ3, so κ3 is the same as κ2.

Lemma 6.4 justifies the following definition.
Definition 6.5. Let X be a cycle-bicolorable C-component of a graph G. The

bicoloring of GX induce a unique partition of the vertices into V1 + V2, which we will
call the color bipartition of X.

To recognize cycle-bicolorable graphs, we determine the C-components as de-
scribed in section 5, then check that each C-component is bicolorable. The correct-
ness follows from Proposition 6.3. Figure 5 gives an easy algorithm to recognize
cycle-bicolorable graphs.
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Algorithm cycle-bicolorable recognition.

input: A graph G = (V,E), the set X of C-components of G.
output: “Failure” if G is not bicolorable, otherwise a black/white coloring of the

vertices of G such that the colors alternate on every chordless cycle.

//At the beginning, all vertices are uncolored and Q is an empty queue;
while there remains some uncolored vertex do

//Q is empty.
Choose a not yet colored C-component {Xi} of X ;

Choose a vertex x of {Xi}, color it black and insert it into Q;
while Q is non-empty do
Remove a vertex y from Q;

foreach neighbor v of y in {Xi} do
if v has the same color as y then

return (failure);

if v is uncolored then
Color v with the color different from y’s, and insert v into Q ;

Fig. 5. Algorithm CYCLE-BICOLORABLE RECOGNITION.

Complexity. The complexity of recognizing cycle-bicolorable graphs is the same
as that of computing the C-components of a graph, namely O(m2).

6.2. Some properties of cycle-bicolorable graphs.
Theorem 6.6. The class of cycle-bicolorable graphs is perfect.
In order to prove Theorem 6.6, we will need the following lemmas.
Lemma 6.7. A cycle-bicolorable graph has no odd hole.
Proof. Clearly, an odd chordless cycle cannot be labeled with two colors in a

fashion that the colors alternate.
Lemma 6.8. A cycle-bicolorable graph has no antihole.
Proof. Let G = (V,E) be a cycle-bicolorable graph. By Lemma 6.7, G has no

induced C5, since C5 is isomorphic to C5. Suppose there exists k ≥ 6, such that Ck is a
chordless cycle of G, with Ck = (x1, . . . , xk, x1). Observe that C ′ = (x2, x4, x1, x5, x2)
is a cycle of length 4 in G. In any bicoloring of V into black and white, x1 and x2 have
the same color, w.l.o.g., black. Observe that x1 sees all the vertices in Ck, except for
x2 and xk. Therefore, all the vertices in Ck, except possibly x2 and xk, are white. But
C ′′ = (x3, x5, x2, x6, x3) is also a chordless cycle of length 4 in G. In any bicoloring
of V , either x2 and x3 are black or x5 and x6 are black, a contradiction.

Theorem 6.6 follows directly from the Strong Perfect Graph Theorem and from
Lemmas 6.7 and 6.8.

Remark 6.9. There are graphs with no odd antiholes and no odd holes which are
not cycle-bicolorable, as is the case for an even antihole. Figure 6 shows a graph, for
which we thank Frédéric Maffray, which has no antiholes and no odd holes, and which
is a Meyniel graph and is perfectly orderable, but which is not cycle-bicolorable.

Proposition 6.10. Let G be a cycle-bicolorable graph, where we arbitrarily call
P and N the classes induced by a color-bipartition of each C-component of G. Then
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Fig. 6. A graph with no antiholes and no odd holes, which is a Meyniel graph and is perfectly
orderable, but which is not cycle-bicolorable.
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Fig. 7. A cycle-bicolorable graph, its C-components, and a corresponding partition into white
and black vertices.

G = (P + N,E) is an N -T graph.
Note that there are 2t color-bipartitions where t is the number of C-components.
Proof of Proposition 6.10. By definition of a cycle-bicolorable graph, in the bi-

coloring of G, there can be no chordless cycle with two consecutive vertices which
have the same color; let us arbitrarily call the color classes in each C-component of G
probes and non-probes: there can be no chordless cycle with two consecutive probes,
so by Theorem 3.6, graph G is N -T with respect to any partition induced by the
bicolorings of its C-components.

Note that the converse of Proposition 6.10 does not hold, as N -T graphs are not
perfect and thus not always cycle-bicolorable, as is the case for the chordless cycle C5.

7. Recognizing non-partitioned chordal probe graphs. From Lemma 6.1,
we can easily deduce the following theorem.

Theorem 7.1. Chordal probe graphs are cycle-bicolorable graphs.
The converse fails to hold: the complement of a P6 is cycle-bicolorable but not

chordal probe.
In section 6, we saw that a cycle-bicolorable graph can easily be bipartitioned,

and we gave an O(m2) algorithm to do this. We will now apply our results to the
recognition of chordal probe graphs.

Lemma 7.2. Let Xi be a C-component of a cycle-bicolorable graph. Then GXi is
a chordal probe graph if and only if one of the colors of Xi forms a stable set.

Example 7.3. In Figure 7, the white vertices form a stable set and can be labeled
as non-probes; the graph is chordal probe.

Proof of Lemma 7.2. ⇒ Let GXi be a chordal probe graph, and let P + N be a
partition of Xi into probes and non-probes where N is a stable set. Since probes and
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non-probes alternate on every cycle, P + N is the unique color bipartition of Xi, by
Lemma 6.4. Thus, one of the colors, namely N , is the required stable set.

⇐ Let GXi be cycle-bicolorable such that one of the classes induced by the bicol-
oring, call it N , is a stable set. By Proposition 6.10, GXi is N -T with respect to this
partition, so by definition GXi is chordal probe.

In [11, 12], an algorithmic approach was presented to recognize chordal probe
graphs in the case where the graph is weakly chordal. We observed in [2] (without
proof) that their method (called Procedure “Propagate Constraint Graph”), can also
be applied to arbitrary chordal probe graphs, using the following additional lemma.
The recognition algorithm that we will present here is a further modification, and we
provide a detailed proof.

Lemma 7.4. Let G be a chordal probe graph, let Xi and Xj be two bipartite
C-components of the graph. Let x be a vertex of Xi which is an endpoint of at least
two external edges connecting x to Xj. Then for any chordal probe partition P + N
of V , x is a probe.

Proof. Let Y be the set of vertices of Xj which x sees. If GY has at least one
edge e, then one of the endpoints of e is a probe and the other a non-probe, since Xj

is bipartite; this forces x to be a probe. If GY has no edge, then let us choose a, b and
a chordless path P in Xj such that P is shortest possible over all such pairs {a, b}; P
together with edges ax and bx forms a chordless cycle, which is not fully contained in
a C-component, a contradiction.

Remark 7.5. In the case of N -triangulatable and cycle-bicolorable graphs, Propo-
sition 6.10 showed that it was sufficient to combine any local assignment of P + N
to the cycle-bicoloring of each C-component to obtain an N -T graph. This is not
the case for chordal probe graphs; we cannot simply apply Lemma 7.2 to each C-
component and combine the results, since globally we must maintain N as a stable
set. For this reason, we must insure that the external edges, which join one C-
component to another, obey the constraint that their endpoints may not both be
non-probes.

The considerations described in Remark 7.5 lead us to the algorithm NON-
PARTITIONED CHORDAL PROBE GRAPH RECOGNITION presented later which
decides whether an arbitrary graph G is chordal probe and if yes, computes a parti-
tion of the vertex set into probes and non-probes. Step 1 checks whether G is cycle-
bicolorable, and if so, produces a bicoloring. Step 2 verifies that each C-component
satisfies Lemma 7.2; if only one color is a stable set, then the labeling into probes and
non-probes for that C-component is fixed by the LABEL-COMPONENT routine; if
both colors are stable sets, then that component is a bipartite subgraph and no de-
cision is made (yet) for its labeling. Step 3 applies the condition in Lemma 7.4; for
every vertex x in a unlabeled (hence bipartite) C-component which sees two vertices
in another unlabeled C-component, the labeling into probes and non-probes for the C-
component containing x is fixed by the LABEL-COMPONENT routine. Notice that
LABEL-COMPONENT has the side effect of building a global queue Q of external
edges which will have to be checked for consistency later in the algorithm.

Step 4 uses the routine PROPAGATE to check the external edges uv for which
u has been labeled a non-probe, to verify that v is either a probe or unlabeled;
in the latter case, the labeling for the C-component containing v is fixed by the
LABEL-COMPONENT routine. It terminates when the queue of all such edges is
empty. Step 5 simply declares that the graph is now recognized as being chordal probe,
although some C-components may still be unlabeled. Step 6 completes the labeling
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in a greedy manner. Figures 8 and 9 give the subroutines LABEL-COMPONENT
and PROPAGATE which are used by the main algorithm.

Algorithm Non-partitioned chordal probe graph recognition.

input: A graph G = (V,E).
output: “NO” if G is not chordal probe, otherwise a chordal probe labeling of

V with P and N .

Q is an empty queue;
STEP 1: cycle-bicolorable recognition;
if “failure” is returned then

return (“NO”);

STEP 2: foreach C-component Xi do
if neither black nor white induces a stable set then

return (“NO”);

if only one class of the color-bipartition induces a stable set then
choose a vertex x of this color and label it N ;
label-component (x, N);

// At this point, the only components left unlabeled are bipartite graphs;
STEP 3: foreach external edge xixj, with xi in C-component Xi and xj in
C-component Xj, i �= j, where Xi and Xj are unlabeled and such that xi sees at
least two vertices in Xj do

label-component(xi, P );

STEP 4: propagate;
if “failure” is returned then

return (“NO”);

// At this point, any external edge uv with u labeled and v unlabeled
// will have u labeled as P ;
STEP 5: G is chordal probe;
//At this point, some of the C-components may remain unlabeled;
STEP 6: while there remain some unlabeled C-components do

Arbitrarily choose an unlabeled vertex x;
label-component (x, P );
propagate;

Complexity. In the algorithm NON-PARTITIONED CHORDAL PROBE
GRAPH RECOGNITION, the bottleneck is Step 1, which requires O(m2) time. All
other steps have lower complexity. An N -triangulation can be obtained using the
results for the partitioned case.

Correctness.
Theorem 7.6. The input graph G is chordal probe if and only if algorithm

NON-PARTITIONED CHORDAL PROBE GRAPH RECOGNITION does not re-
turn “NO.” Moreover, when G is a chordal probe graph, the algorithm produces a
valid chordal probe partition P + N .

Proof. ⇒ Suppose G is a chordal probe graph. We show that a “NO” answer
gives a contradiction.
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Algorithm label-component.

input: A vertex x and its label.
output: Labels the vertices which are in the same C-component Xi as x and adds

to global queue Q all external edges with one endpoint in Xi labeled N .

Label all the vertices of Xi with P or N according to the label of x;
foreach external edge uv with u in Xi and labeled N do

Add (u, v) to Q;

Fig. 8. Algorithm LABEL-COMPONENT.

Algorithm propagate.

output: Returns “failure” if there is a conflict, otherwise labels the vertices of
some unlabeled C-component and may add some to-be-processed edges
to the global queue Q.

while Q is non-empty do
(u, v) ← dequeue(Q); //u is labeled N ;

if v is labeled N then
return (“failure”);

if v has no label then
label-component(v, P );

Fig. 9. Algorithm PROPAGATE.

If the algorithm returns “NO” in Step 1, then, by Theorem 7.1, G could not be
a chordal probe graph. Therefore, Step 1 succeeds and produces a cycle-bicoloring
of G. If the Algorithm returns “NO” in Step 2, then, by Lemma 7.2, G could not
be a chordal probe graph. Therefore, Step 2 succeeds and assigns the probe/non-
probe labeling for all non-bipartite C-components. Step 3 applies the condition in
Lemma 7.4 and always succeeds.

Note that in Steps 2–3, a C-component is labeled with a probe/non-probe assign-
ment only when the opposite assignment has been found to be contradictory.

If the Algorithm returns “NO” in Step 4, then the routine PROPAGATE returns
“failure” for an external edge whose endpoints were both labeled non-probes, and by
Remark 7.5, G could not be a chordal probe graph. Therefore, Step 4 succeeds.

At this point of the algorithm, the following properties hold.
Claim 1. If Xi and Xj are unlabeled C-components, then there is at most one

edge joining them; we call it the exclusive edge.
Proof of Claim 1. If there were two such external edges uv and u′v′ with u, u′ ∈ Xi

and v, v′ ∈ Xj , by Lemma 7.4, having completed Steps 3–4 we have u �= u′ and v �= v′.
From this it follows that the subgraph induced by uv and u′v′ and chordless paths
in Xi and Xj connecting u with u′ and v with v′, respectively, contains a chordless
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cycle, contradicting Property 5.4.
Claim 2. If {X1, X2, . . . , Xk} are unlabeled C-components forming a cycle C in

the quotient graph G0, i.e., the exclusive edges uivi+1 exist joining Xi, Xi+1 for all i
(arithmetic mod k), then ui = vi for all i.

Proof of Claim 2 (by induction on k). If k = 3 and one of the equalities fails to
hold, then combining shortest paths in X1, X2, X3 connecting ui with vi, respectively,
will yield a chordless cycle in G of length > 4, contradicting Property 5.4. If k ≥ 4,
then C has a chord, since the quotient graph G0 is chordal (Property 5.8), thus
splitting C into two smaller cycles C1, C2. So by induction, applying Claim 2 to
C1, C2, we obtain all k equalities.

The remainder of the proof of Theorem 7.6 in this direction follows from the next
claim.

Claim 3. Step 6 never fails.
Proof of Claim 3. Suppose Step 6 fails at an iteration where x was chosen to be

labeled arbitrarily and where failure occurred for external edge uv, where vertex u is
in component Xu and v is in Xv, both labeled N . The propagation defines a search
tree in the subgraph of the quotient graph induced by the components labeled by that
iteration of the propagation. Let Xj be the smallest common ancestor of Xu and Xv.

Consider the cycle C in G0 formed by the exclusive edge uv and the two paths in
the search tree from Xj to Xu and from Xj to Xv. Note, however, that the exclusive
edges on these paths have the endpoint of the parent labeled N and the endpoint
of the child labeled P , by the routine PROPAGATE. This contradicts Claim 2 and
completes the proof of Claim 3.

⇐ If the algorithm succeeds, then the probe/non-probe partition P +N is a cycle-
bicoloring (Step 1), so by Proposition 6.10, G is an N -T graph with respect to P +N .
Furthermore, N is a stable set since, if u, v ∈ N and uv ∈ E, Step 2 implies uv is an
external edge and PROPAGATE would cause a “failure.” Therefore, by definition,
G is a chordal probe graph, and we have produced a valid chordal probe partition
P + N .

8. Conclusion and open questions. Though chordal probe graphs were orig-
inally defined as a generalization of interval probe graphs, they may have their own
computational biology application as a special case of the chordal graph sandwich
problem, which arises in reconstructing phylogenies, tree structures which model ge-
netic mutations, when part of the information is missing [4]. In fact, the polynomiality
of N -T graph recognition which we show in this paper also provides an interesting
tractable subcase of the chordal graph sandwich problem [10].

Regarding the structure of chordal probe graphs and N -T graphs, it appears
clearly from the results in this paper that they are similar to chordal graphs in many
respects, with similar characterizations. The evident difference is that chordal graphs
have no chordless cycles, but we have shown that such cycles can be structured
into C-components, which enables us to handle them efficiently. We believe that
C-components in a general graph may have many interesting properties, one example
of which is the chordality of the quotient graph.

We have solved partitioned and non-partitioned chordal probe graph recognition.
Our results also solve the problem of non-partitioned interval probe recognition in
some subcases, for example, when G is asteroidal triple free or when the number
of C-components is small. The general non-partitioned interval probe recognition
problem has been solved in [5].
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PREFIX REVERSALS ON BINARY AND TERNARY STRINGS∗
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STOUGIE†‡ , AND JOHN TROMP‡

Abstract. Given a permutation π, the application of prefix reversal f (i) to π reverses the
order of the first i elements of π. The problem of sorting by prefix reversals (also known as pancake
flipping), made famous by Gates and Papadimitriou (Discrete Math., 27 (1979), pp. 47–57), asks for
the minimum number of prefix reversals required to sort the elements of a given permutation. In this
paper we study a variant of this problem where the prefix reversals act not on permutations but on
strings over a fixed size alphabet. We determine the minimum number of prefix reversals required
to sort binary and ternary strings, with polynomial-time algorithms for these sorting problems as a
result; demonstrate that computing the minimum prefix reversal distance between two binary strings
is NP-hard; give an exact expression for the prefix reversal diameter of binary strings; and give bounds
on the prefix reversal diameter of ternary strings. We also consider a weaker form of sorting called
grouping (of identical symbols) and give polynomial-time algorithms for optimally grouping binary
and ternary strings. A number of intriguing open problems are also discussed.
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1. Introduction. For a permutation π = π(0)π(1) . . . π(n − 1) the application
of prefix reversal f (i), which we call flip for short, to π reverses the order of the first
i elements: f (i)(π) = π(i − 1) . . . π(0)π(i) . . . π(n − 1). The problem of sorting by
prefix reversals (MIN-SBPR), brought to popularity by Gates and Papadimitriou [7]
and often referred to as the pancake flipping problem, is defined as follows: given a
permutation π of {0, 1, . . . , n − 1}, determine its sorting distance, i.e., the smallest
number of flips required to transform π into the identity permutation 01 . . . (n− 1).1

MIN-SBPR has practical relevance in the area of efficient network design [9, 10],
and arises in the context of computational biology when seeking to explain the genetic
difference between two given species by the most parsimonious (i.e., shortest) sequence
of gene rearrangements. The computational complexity of MIN-SBPR remains open.
A recent 2-approximation algorithm [5] is currently the best-known approximation re-
sult.2 Indeed, most studies to date have focused not on the computational complexity
of MIN-SBPR but rather on determining the worst-case sorting distance wc(n) over
all length-n permutations, i.e., the “worst case scenario” for length-n permutations.
From [7] and [9] we know that (15/14)n ≤ wc(n) ≤ (5n + 5)/3.

A natural variant of MIN-SBPR is to consider the action of flips not on permuta-
tions but on strings over fixed size alphabets. The shift from permutations to strings
alters the problem universe somewhat. With permutations, for example, the distance
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problem—i.e., given two permutations π1 and π2, determine the smallest number of
flips required to transform π1 into π2—is equivalent to sorting, because the symbols
can simply be relabeled to make either permutation equal to the identity permutation.
For strings like 101, such a relabeling is not possible. Thus, the distance problem on
string pairs appears to be strictly more general than the sorting problem on strings,
naturally defined as putting all elements in nondescending order.

Indeed, papers by Christie and Irving [2] and Radcliffe, Scott, and Wilmer [11]
explore the consequences of switching from permutations to strings; they both consider
arbitrary (substring) reversals and transpositions (where two adjacent substrings are
swapped). It has been noted that, viewed as a whole, such rearrangement operations
on strings have bearing on the study of orthologous gene assignment [1], especially
where the level of symbol repetition in the strings is low. There is also a somewhat
surprising link with the relatively unexplored family of string partitioning problems
[8]. To put our work in context, we briefly describe the most relevant (for this paper)
results from [2] and [11].

The earlier paper [2] gives, in the case of both reversals and transpositions,
polynomial-time algorithms for computing the minimum number of operations to
sort a given binary string, as well as exact constructive diameter results on binary
strings. Additionally, their proof that computing the reversal distance between strings
is NP-hard supports the intuition that distance problems are harder than sorting prob-
lems on strings. They present upper and lower bounds for computing reversal and
transposition distance on binary strings.

The more recent paper [11] gives refined and generalized reversal diameter results
for non–fixed size alphabets. It also gives a polynomial-time algorithm for optimally
sorting a ternary (3-letter alphabet) string with reversals. The authors refer to the
prefix reversal counterparts of these (and other) results as interesting open problems.
They further provide an alternative proof of Christie and Irving’s NP-hardness result
for reversals, and sketch a proof that computing the transposition distance between
binary strings is NP-hard. As we later note, this proof can also be used to obtain
a specific reducibility result for prefix reversals. They also have some first results
on approximation (giving a PTAS—a polynomial-time approximation scheme—for
computing the distance between dense instances) and on the distance between random
strings, both of which apply to prefix reversals as well.

In this paper we supplement results of [2] and [11] by their counterparts on prefix
reversals. In section 3 (grouping) we introduce a weaker form of sorting where iden-
tical symbols need only be grouped together, while the groups can be in any order.
For grouping on binary and ternary strings we give a complete characterization of
the minimum number of flips required to group a string, and provide polynomial-
time algorithms for computing such an optimal sequence of flips. (The complexity of
grouping over larger fixed size alphabets remains open, but as an intermediate result
we describe how a PTAS can be constructed for each such problem.) Grouping aids
in developing a deeper understanding of sorting, which is why we tackle it first. It
was also mentioned as a problem of interest in its own right by Eriksson et al. [4].
Then, in section 4 (sorting), we give polynomial-time algorithms (again based on a
complete characterization) for optimally sorting binary and ternary strings with flips.
(The complexity of sorting also remains open for larger fixed size alphabets. As with
grouping we thus provide, as an intermediate result, a PTAS for each such problem.)
In section 5 we show that the flip diameter on binary strings is n− 1, and on ternary
strings (for n > 3) lies somewhere between n− 1 and (4/3)n, with empirical support
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for the former. In section 6 we show that the flip distance problem on binary strings is
NP-hard, and point out that a reduction in [11] also applies to prefix reversals, show-
ing that the flip distance problem on arbitrary strings is polynomial-time reducible (in
an approximation-preserving sense) to the binary problem. We conclude in section 7
with a discussion of some of the intriguing open problems that have emerged during
this work. Indeed, our initial exploration has identified many basic (yet surprisingly
difficult) combinatorial problems that deserve further analysis.

2. Preliminaries. Let [k] denote the first k nonnegative integers {0, 1, . . . , k −
1}. A k-ary string is a string over the alphabet [k], while a string s is said to be fully
k-ary, or to have arity k, if the set of symbols occurring in it is [k].

We index the symbols in a string s of length n from 1 through n: s = s1s2 . . . sn.
Two strings are compatible if they have the same symbol frequencies (and hence
the same length); e.g., 0012 and 1002 are compatible but 0012 and 0112 are not.
For a given string s, let I(s) be the string obtained by sorting the symbols of s in
nondescending order, e.g., I(1022011) = 0011122. The prefix reversal (flip for short)
f (i)(s) reverses the length i prefix of its argument, which should have length at least
i. Alternatively, we denote application of f (i)(s) by underlining the length i prefix.
Thus, f (2)(2012) = 2012 = 0212 and f (3)(2012) = 2012 = 1022. The flip distance
d(s, s′) between two strings s and s′ is defined as the smallest number of flips required
to transform s into s′ if they are compatible, and ∞ otherwise. Since a flip is its own
inverse, flip distance is symmetric.

The flip sorting distance ds(s) = d(s, I(s)) of a string s is defined as the number
of flips of an optimal sorting sequence needed to transform s into I(s). An algorithm
sorts s optimally if it computes an optimal sorting sequence for s.

In the next two sections we consider strings to be equivalent if one can be trans-
formed into the other by repeatedly duplicating symbols and eliminating one of two
adjacent identical symbols. As representatives of the equivalence classes we take the
shortest string in each class. These are exactly the strings in which adjacent symbols
always differ. We express all flip operations in terms of these normalized strings. For
example, we write f (3)(2012) = 2012 = 102. A flip that brings two identical symbols
together, thereby shortening the string by 1, is called a 1-flip, while all others, which
leave the string length invariant, are called 0-flips.

We follow the standard notation for regular expressions: superindex i on a sub-
string denotes the number of repetitions of the substring, with ∗ and + denoting
0-or-more and 1-or-more repetitions, respectively; ε denotes the empty string; brack-
ets of the form {} are used to denote that a symbol can be exactly one of the elements
within the brackets; and the product sign

∏
denotes concatenation of an indexed

series. For example,
∏3

i=1(10i2) = 102100210002, and {1, 01}∗{ε, 0} denotes the set
of binary strings with no 00 substring.

3. Grouping. The task of sorting a string can be broken down into two sub-
problems: grouping identical symbols together and putting the groups of identical
symbols in the right order. Notice that first grouping and then ordering may not be
the most efficient way to sort strings. Although grouping appears to be slightly easier
than the sorting problem, essentially the same questions remain open as in sorting.
Grouping binary strings is trivial, and in section 3.1 we give the grouping distances
of all ternary strings. As a result we give polynomial time algorithms for binary and
ternary grouping. For larger alphabets the grouping problem remains open; as an in-
termediate result we describe in section 3.2 a PTAS for each such problem. While the
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problems of grouping and sorting are closely related for strings on small alphabets, the
problems diverge when alphabet size approaches the string length, with permutations
being the limit.

Recall that we consider only normalized strings, as representatives of equivalence
classes. The flip grouping distance dg(s) of a fully k-ary string s is defined as the
minimum number of flips required to reduce the string to one of length k.

3.1. Grouping binary and ternary strings.
Lemma 1. dg(s) ≥ n− k for any fully k-ary string s of length n.
Proof. The proof follows from the observations that, after grouping, fully k-ary

string s has length k and that each flip can shorten s by at most 1.
Lemma 2. dg(s) ≤ n− 2 for any fully k-ary string s of length n.
Proof. Consider the following simple algorithm. If the leading symbol occurs

elsewhere, then a 1-flip bringing them together exists, so perform this 1-flip. If not,
then we use a 0-flip to put this symbol in front of a suffix in which we accumulate
uniquely appearing symbols. Repeat until the string is grouped.

Clearly no more than n − k 1-flips will be necessary. Also, no more than k − 2
0-flips will ever be necessary, because after k − 2 0-flips the prefix of the string will
consist of only two types of symbol, and the algorithm will never perform a 0-move
on such a string. Thus at most (n − k) + (k − 2) = n − 2 flips in total will be
needed.

As a corollary we obtain the grouping distance of binary strings.
Theorem 1. dg(s) = n− 2 for any fully binary string s of length n.
We will now define a class of bad ternary strings and prove that these are the

only ternary strings that need n− 2 rather than n− 3 flips to be grouped.
Definition 1. We define bad strings as all fully ternary strings of one of the

following types, up to relabeling:
I. strings of length greater than 3, in which the leading symbol appears only once:

0(12)≥2 and 02(12)+;
II. strings having identical symbols at every other position, starting from the last:

({0, 1}2)+ and (2{0, 1})+2;
III. odd length strings whose leading symbol appears exactly once more, at an even

position, and both occurrences are followed by the same symbol: 0(21)+02(12)∗;
IV. the following strings: X1 = 210212, X2 = 021012, X3 = 0120212, X4 =

1201212, X5 = 02101212, X6 = 20210212, X7 = 020210212, X8 = 120120212.
All other fully ternary strings are good. Strings of type I, II, and III, shortly I-, II-,
and III-strings, respectively, are called generically bad, or g-bad for short.

Lemma 3. dg(s) = n− 2 if ternary string s of length n is bad.
Proof. Because of Lemmas 1 and 2, it suffices to show that in each case a 0-flip

is necessary: I-strings admit only 0-flips. A 1-flip on a II-string leads to a II-string
and eventually to a I-string. Any III-string admits only one 1-flip leading to a II-
string. For IV-strings, Table 1 shows that each possible 1-flip leads either to a shorter
IV-string or to a I-,II-, or III-string.

Lemma 4. dg(s) = n− 3 if ternary string s of length n is good.
Proof. The proof is by induction on n. The induction basis for n = 3 is trivial.

We show the statement for strings of length n + 1 by showing that if a bad string s′

of length n can be obtained through a 1-flip from a good (parent) string s of length
n + 1, then s admits another 1-flip which leads to a good string. Note that a 1-flip
f (i)(s) = s′ brings symbols s1 and si+1 together; hence s1 = si+1 �= si = s′1, which
shows that the symbol deleted from parent s differs from the leading symbol of child
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Table 1

Type IV strings and all their 1-flips.

X1 X6

210212 = 01212 is of type I 20210212 = 0210212 is of type III
210212 = 12012 is of type III 20210212 = 0120212 = X3

X2 20210212 = 1201202 is of type III
021012 = 12012 is of type III X7

X3 020210212 = 20210212 = X6

0120212 = 210212 = X1 020210212 = 12020212 is of type II
X4 X8

1201212 = 021212 is of type I and II 120120212 = 02120212 is of type II
1201212 = 210212 = X1 120120212 = 20210212 = X6

X5

02101212 = 1201212 = X4

Table 2

Type IV strings, their parents, and for each good parent, a 1-flip to a good string.

X1 Parents X4 Parents X7 Parents
210212 1210212 1201212 21201212 020210212 2020210212

0120212 = X3 02101212 = X5 2020210212
1201212 = X4 21021212 1202010212

X2 Parents 21210212 2012020212
021012 2021012 X5 Parents 1201202012

1201012 02101212 202101212 2021021212
1012012 120101212 X8 Parents
2010212 101201212 120120212 2120120212

X3 Parents 210120212 0210120212
0120212 10120212 121012012 2102120212

21020212 202010212 0210210212
20210212 = X6 X6 Parents 2021021212
12021012 20210212 020210212 = X7 2120210212
20212012 120210212

012020212
120120212 = X8

s′. We enumerate all possible bad child strings s′ and distinguish cases based on the
leading symbol of good parent s.

For IV-strings, Table 2 lists all parents with, for each good parent, a 1-flip to a
good string. It remains to prove that for each g-bad string all parents are either bad
or have a g-1-flip, defined as a 1-flip resulting in a string that is not g-bad (i.e., either
good or of type IV).
Type I, odd: 0(12)≥2 has possible parents starting with:

1: 1(21)i012(12)j with i + j > 0.
If i > 0, there is a g-1-flip 121(21)i−1012(12)j = (21)i012(12)j ;
If i = 0 and j > 0, there is a g-1-flip 1012(12)j = 210(12)j ;

2: 21(21)i02(12)j with i + j > 0.
If i > 0, there is a g-1-flip 21(21)i02(12)j = 1(21)i02(12)j ;
If i = 0 and j > 1, there is a g-1-flip 210212(12)j−1 = 120(12)j ;
If i = 0 and j = 1, the parent is 210212 = X1.

Type I, even: these strings are also of type II; see below.
Type II, odd: (2{0, 1})+2 has only parents of type II.
Type II, even: 02({0, 1}2)∗ has possible parents starting with:

2: 2({0, 1}2)∗ is of type II;
1: 12({0, 1}2)∗012({0, 1}2)∗ with three cases for a possible third 1:
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None: parent is 12(02)∗012(02)∗, which is of type III;
Before 01: then there is a g-1-flip

12({0, 1}2)∗12({0, 1}2)∗012({0, 1}2)∗ = 2({0, 1}2)∗12({0, 1}2)∗

012({0, 1}2)∗;
After 01: then there is a g-1-flip

12({0, 1}2)∗012({0, 1}2)∗12({0, 1}2)∗ = 2({0, 1}2)∗102({0, 1}2)∗

12({0, 1}2)∗.
Type III: 0(21)+02(12)∗ has possible parents starting with:

1: (12)i01(21)j02(12)k with i > 0.
If i > 1, there is a g-1-flip

12(12)i−101(21)j02(12)k = 2(12)i−101(21)j02(12)k;
If i = 1, j > 0, there is a g-1-flip

120121(21)j−102(12)k = 21021(21)j−102(12)k;
If i = 1, j = 0, k > 0, there is a g-1-flip 120102(12)k = 20102(12)k;
If i = 1, j = k = 0, then the parent is 120102 = X2 (relabeled);

1: (12)+0(12)+0(12)+: there is a g-1-flip
(12)+0(12)+0(12)+ = 0(21′)+20(12)+;

2: 2(12)∗0(21)+02(12)∗: there is a g-1-flip
2(12)∗0(21)+02(12)∗ = 0(12)+0(21)∗2;

2: (21)i20(12)j02(12)k with j > 0.
If i = 0, j = 1, then the parent is 210212 = X1;
If i + j > 1, then (21)i2012(12)j−102(12)k = 102(12)i+j−102(12)k is a

g-1-flip.
The following theorem results directly from Lemmas 3 and 4.

Theorem 2. dg(s) = n− 2 if and only if fully ternary string s of length n is bad
and dg(s) = n− 3 otherwise. Moreover, there exists a polynomial-time algorithm for
grouping ternary strings with a minimum number of flips.

Proof. The first statement is direct from Lemmas 3 and 4. In case string s is bad,
which by Definition 1 can be decided in polynomial time, the algorithm implicit in
the proof of Lemma 2 shows how to group s optimally in polynomial time. Otherwise,
we repeatedly find a 1-flip to a good string, as guaranteed by Lemma 4. The time
complexity is O(n3), since grouping distance, number of choices for a 1-flip, and time
to perform a flip and test whether its result is good are all O(n).

3.2. Grouping strings over larger alphabets. Lemmas 1 and 2 say that
n−k ≤ dg(s) ≤ n−2 for any fully k-ary string s. For any k there are fully k-ary strings
that have flip grouping distance equal to n− 2. For example, the length n = 2(k− 1)
string 1020 . . . (k−1)0 requires that every 1-flip bring a 0 to the front first, and hence
we need as many 0-flips as 1-flips, and dg(1020 . . . (k−1)0) ≥ 2(k−2) = 2k−4 = n−2.
Computer calculations suggest that for k = 4 and k = 5, for n large enough, the
strings with grouping distance n − 2 are precisely those having identical symbols at
every other position, starting from the last (i.e., type II of Definition 1). Proving
(or disproving) this statement remains open, as well as finding a polynomial-time
algorithm for grouping k-ary strings for any fixed k > 3. We do, however, have the
following intermediate result.

Theorem 3. For every fixed k there is a PTAS for grouping k-ary strings.
Proof. We show that, for every fixed k and for every fixed ε > 0 there is a

polynomial-time algorithm that, given any k-ary string s of length n, computes a
sequence of flips which groups s in at most (1 + ε)dg(s) flips. We assume k ≥ 4
because for k = 2 and k = 3 the exact algorithms suffice. Let N = (k − 2)/ε+ k. We



598 HURKENS, VAN IERSEL, KEIJSPER, KELK, STOUGIE, TROMP

distinguish two cases.

Case 1. If n ≥ N , we use the simple “greedy” algorithm described in the proof of
Lemma 2. This will group s in dGg (s) flips with dGg ≤ n−2 steps. This together with the

lower bound of n−k on dg(s) from Lemma 1 gives dGg (s) ≤ dg(s)+(k−2) ≤ (1+ε)dg(s).

Case 2. If n < N , we compute dg(s) by a brute force algorithm which simply
chooses the best among all possible flip sequences of length n− 2: there are nn−2 of
these. This yields the optimal solution since dg(s) ≤ n− 2 (Lemma 2). The running
time in this case is bounded by a constant.

Clearly, there is a strong relationship between grouping and sorting. Under-
standing grouping may help us to understand sorting and lead to improved bounds
(especially as the length of strings becomes large relative to their arity), because for
a k-ary string s, we have dg(s) ≤ ds(s) ≤ dg(s) +wc(k), with wc(k) the flip diameter
on permutations with k elements, as defined before.

Also dg(s) = min{ds(t) : t a relabeling of s}, which gives (for fixed k) a polynomial-
time reduction from grouping to sorting. Thus every polynomial-time algorithm for
sorting by prefix reversals directly gives a polynomial-time algorithm for the grouping
problem (for fixed k).

4. Sorting. In this section we present results on sorting similar to those on
grouping in the previous section. Also flip sorting distance remains open for strings
over alphabets of size larger than 3. As an intermediate result we thus provide at the
end of this section a PTAS for each such problem.

Again a 1-flip brings identical symbols together and thus shortens the represen-
tative of the equivalence class under symbol duplication. But since symbol order
matters for sorting, relabeled strings are no longer equivalent. As in grouping, sorting
of binary strings is straightforward, as seen in the following.

Theorem 4. ds(s) = n−2 for every fully binary string s of length n with sn = 1,
and ds(s) = n− 1 otherwise.

Proof. Exactly n− 2 1-flips suffice and are necessary to arrive at length 2 string
01 or 10. If the last symbol is 0, an additional 0-flip is necessary, putting a 1 at the
end. All these flips can be f (2).

From Lemma 1 we know that dg(s) ≥ n − 3 and hence ds(s) ≥ n − 3 for every
ternary string s of length n. In the upper bound on ds(s) that we derive below we
focus on strings s ending in a 2 (sn = 2), since sorting distance is invariant under
appending a 2 to a string. It turns out that, when sorting a ternary string ending in
a 2, one needs at most one 0-flip, except for the string 0212.

Lemma 5. ds(s) ≤ n− 2 for every fully ternary string s of length n with sn = 2,
except 0212.

Proof. It is easy to check that 0212 requires three flips to be sorted. By induction
on n we prove the rest of the lemma. The basis case of n = 3 is trivial. For a string
s of length n > 3 we distinguish three cases:

• sn−1 = 0: If s = 20102, it is sorted in three flips: 20102 → 0102 → 102 → 012.
Otherwise, by induction and relabeling 0 ↔ 2, the string s1 . . . sn−1 can be
reduced to 210 in n− 3 flips (to 20 or 10 by Theorem 4 if s1 . . . sn−1 has only
two symbols), and one more flip sorts s to 012.

• sn−1 = 1, s1 = 0 and appears only once: Thus s = 0(12)≥2 or s = 02(12)≥2.
Then s can be sorted with only one 0-flip: 0(12)+12 → 1(21)+02 → . . . →
2102 → 012 or, respectively, 02(12)≥2 → 20(12)+12 → (12)+102 → . . . →
2102 → 012.
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Table 3

Type IX strings.

Y1 = 210212 Y21 = 10212012 Y41 = 021202012 Y61 = 0210212012
Y2 = 021012 Y22 = 02121012 Y42 = 021201012 Y62 = 1021202012
Y3 = 212012 Y23 = 02120102 Y43 = 020210212 Y63 = 1021201012
Y4 = 120102 Y24 = 10102102 Y44 = 101020212 Y64 = 1020210212
Y5 = 201202 Y25 = 02010212 Y45 = 020212012 Y65 = 1010210202
Y6 = 0210202 Y26 = 21202012 Y46 = 212010202 Y66 = 0202010212
Y7 = 1021202 Y27 = 21201012 Y47 = 212012012 Y67 = 2120202012
Y8 = 0212012 Y28 = 21201202 Y48 = 010210212 Y68 = 2120102012
Y9 = 2120102 Y29 = 20210212 Y49 = 010210202 Y69 = 2021021212
Y10 = 0102102 Y30 = 01021202 Y50 = 010212012 Y70 = 2010212012
Y11 = 1212012 Y31 = 01020212 Y51 = 202010212 Y71 = 1201021202
Y12 = 2010212 Y32 = 20212012 Y52 = 121202012 Y72 = 1201202012
Y13 = 0120212 Y33 = 12120102 Y53 = 121201202 Y73 = 10202010212
Y14 = 1201012 Y34 = 12010212 Y54 = 201021202 Y74 = 02120102012
Y15 = 1201212 Y35 = 12010202 Y55 = 120212012 Y75 = 02021021212
Y16 = 2012012 Y36 = 20120102 Y56 = 012021212 Y76 = 21201202012
Y17 = 10210212 Y37 = 12012012 Y57 = 120102012 Y77 = 12120202012
Y18 = 21021212 Y38 = 021021202 Y58 = 201202012
Y19 = 02102012 Y39 = 102120102 Y59 = 120120212
Y20 = 02101212 Y40 = 102010212 Y60 = 201201012

• sn−1 = 1, s1 not unique: If s = 12012, then three flips suffice: 12012 →
21012 → 1012 → 012. Otherwise, since the other two parents of 0212 can
flip to 1202, there is a 1-flip to a string �= 0212, to which we can apply the
induction hypothesis.

As in section 3, we characterize the strings ending in a 2 that need n − 2 rather
than n− 3 flips to sort.

Definition 2. We define bad strings as all fully ternary strings ending in a 2
of the following types:

I. 0(12)≥2,
II. ({0, 1}2)+ and 2({0, 1}2)+,

III. ({1, 2}0)+2 and 0({1, 2}0)+,
IV. ({1, 2}0)+12 and (0{1, 2})+012 with at least two 2’s,
V. (01)∗0212 and (10)+212,

VI. 1(20)+1(20)∗2 and 0(21)+0(21)∗2,
VII. 1(02)+1(02)+,

VIII. 1(02)+12,
IX. 77 strings of length at most 11, shown in Table 3.

All other fully ternary strings ending in a 2 are good strings. Strings of type I–VIII
(I-strings . . .VIII-strings, for short) are called generically bad, or g-bad for short.

This definition makes 0212 a bad string as well. From Lemma 5 we know that
0212 is the only ternary string ending in a 2 with sorting distance n− 1.

Theorem 5. String 0212 has sorting distance 3. Any other fully ternary string
s of length n with sn = 2 has prefix reversal sorting distance n − 2 if it is bad and
n − 3 if it is good. A fully ternary string s ending in a 0 or 1 has the same sorting
distance as s2.

Proof. The proof follows directly from Lemmas 6 and 7 below. Note that every
sorting sequence for s sorts s2 as well, while every sorting sequence for s2 can be
modified to avoid flipping the whole string and thus works for s as well.

Lemma 6. ds(s) = n− 2 for every bad ternary string s �= 0212 of length n.
Proof. Since ds(s) ≥ n− 3 and any 1-flip decreases the length of the string by 1,
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Lemma 5 says it suffices to show that for each type in Definition 2 a 0-flip is necessary:

• For I-strings only 0-flips are possible.
• A 1-flip on a II- or III-string leads to a string of the same type, so that

eventually no 1-flip is possible.
• A 1-flip on a IV-string leads either again to a IV-string or (when destroying

the 12 suffix) to a III-string.
• A 1-flip on a V-string leads either again to a V-string or (when destroying

the suffix with a . . . 0212 flip) to a IV-string. Flips . . . 0212 and . . . 0212 are
not possible for lack of more 2’s.

• For strings of VI-, VII- and VIII-strings only one 1-flip is possible, leading to
II-, III- and IV-strings respectively.

• For IX-strings, Table 4 lists all possible 1-flips, ultimately leading to a string
of type I–VIII.

Lemma 7. ds(s) = n− 3 for every good ternary string s of length n.

Proof. The proof is by induction on n and is similar to the proof of Lemma 4.
The induction basis for n = 3 is again trivial. We prove that for each g-bad string of
length n all parents (of length n + 1) either are bad or have a 1-flip to a string that
is not g-bad (i.e., either good or of type IX). Remember that such a flip is called a
g-1-f lip. That for each IX-string all parents either are bad or have a 1-flip to a good
string is proved by case checking in Table 4. Together this proves that every good
string of length n+1 has a 1-flip to a good string of length n, and therefore the lemma
is proved.

Type I: 0(12)+ has possible parents starting with:
1: 1(21)i0(12)j with j > 0.

If i > 0, there is a g-1-flip 121(21)i−10(12)j = (21)i0(12)j ;
If i = 0, j > 1, there is a g-1-flip 1012(12)j−1 = 210(12)j−1;
If i = 0, j = 1, there is a g-1-flip 1012 = 012;

2: (21)i02(12)j with i > 0.
If i > 1, there is a g-1-flip 2121(21)i−202(12)j = 1(21)i−102(12)j ;
If i = 1, j > 0, there is a g-1-flip 210212(12)j−1 = 120(12)j ;
If i = 1, j = 0, there is a g-1-flip 2102 = 012.

Type II, even: ({0, 1}2)+ has possible parents starting with:
0: 0(2{0, 1})∗2102({0, 1}2)∗, with three cases for a possible third 0:

None: the parent is of type VI;
Before 2102: there is a g-1-flip

0(2{0, 1})∗20(2{0, 1})∗2102({0, 1}2)∗ = 2({0, 1}2)∗0(2{0, 1})∗
2102({0, 1}2)∗;

After 2102: there is a g-1-flip
0(2{0, 1})∗2102({0, 1}2)∗02({0, 1}2)∗ = (2{0, 1})∗2012({0, 1}2)∗

02({0, 1}2)∗;
1: 1(2{0, 1})∗2012({0, 1}2)∗, with three cases for a possible third 1:

None: the parent is of type VI;
Before 2012: there is a g-1-flip

1(2{0, 1})∗21(2{0, 1})∗2012({0, 1}2)∗ = 2({0, 1}2)∗1(2{0, 1})∗
2012({0, 1}2)∗;

After 2012: there is a g-1-flip
1(2{0, 1})∗2012({0, 1}2)∗12({0, 1}2)∗ = (2{0, 1})∗2102({0, 1}2)∗

12({0, 1}2)∗;
2: 2{0, 1}(2{0, 1})∗2({0, 1}2)∗ is of type II.



PREFIX REVERSALS ON BINARY AND TERNARY ALPHABETS 601

Table 4

All strings of type IX (first column). For each string all parents and all 1-flips are listed. Either
each parent is bad, or a 1-flip to a good string is given. For each string of type IX is also shown
that each 1-flip leads to a bad string. Here Pi denotes the parent you get by doubling the ith symbol
and applying p(i), and Ci denotes the string you get by applying the 1-flip p(i− 1). Note that if the
ith symbol is not equal to the first symbol, there is a parent Pi, and if the ith symbol is equal to the
first symbol, there is a 1-flip possible, leading to Ci.

Y1 = 210212 P2 : 1210212 P3 = Y13 C4 is of type I P5 = Y15 C6 is of type VI

Y2 = 021012 P2 : 2021012 P3 = Y14 C4 is of type VI P5 : 1012012 P6 : 2101202

Y3 = 212012 P2 = Y11 C3 is of type VI P4 = Y8 P5 : 1021212 C6 is of type V

Y4 = 120102 P2 = Y9 P3 : 0210102 C4 is of type VI P5 = Y10 P6 = Y12
Y5 = 201202 P2 : 0201202 P3 = Y7 C4 is of type III P5 = Y6 C6 is of type VI

Y6 = 0210202 P2 : 20210202 P3 = Y35 C4 is of type II P5 : 20120202 C6 = Y5
P7 : 20201202

Y7 = 1021202 P2 = Y30 P3 : 20121202 C4 = Y5 P5 = Y28 P6 = Y23
P7 = Y32

Y8 = 0212012 P2 = Y32 P3 = Y37 P4 = Y26 C5 = Y3 P6 = Y21
P7 : 21021202

Y9 = 2120102 P2 = Y33 C3 = Y4 P4 = Y23 P5 : 10212102 P6 = Y30
C7 is of type V

Y10 = 0102102 P2 = Y24 C3 is of type VII P4 : 20102102 P5 : 12010102 C6 = Y4
P7 = Y36

Y11 = 1212012 P2 : 21212012 C3 = Y3 P4 : 21212012 P5 = Y22 C6 is of type I
P7 = Y18

Y12 = 2010212 P2 = Y25 P3 = Y17 P4 = Y31 C5 is of type V P6 = Y34
C7 = Y4

Y13 = 0120212 P2 : 10120212 P3 : 21020212 C4 = Y1 P5 = Y29 P6 : 12021012
P7 : 21202102

Y14 = 1201012 P2 = Y27 P3 : 02101012 C4 = Y2 P5 : 01021012 C6 is of type V
P7 : 21010212

Y15 = 1201212 P2 : 21201212 P3 = Y20 C4 is of type I P5 = Y18 C6 = Y1
P7 : 21210212

Y16 = 2012012 P2 : 02012012 P3 = Y21 C4 is of type IV P5 = Y19 P6 = Y17
C7 is of type VII

Y17 = 10210212 P2 = Y48 P3 : 201210212 C4 = Y12 P5 : 012010212 P6 : 201201212
C7 = Y16 P8 = Y47

Y18 = 21021212 P2 : 121021212 P3 = Y56 C4 is of type I P5 : 120121212 C6 = Y15
P7 : 121201212 C8 = Y11

Y19 = 02102012 P2 : 202102012 P3 = Y57 C4 is of type VI P5 = Y58 C6 = Y16
P7 : 102012012 P8 : 210201202

Y20 = 02101212 P2 : 202101212 P3 : 120101212 C4 = Y15 P5 : 101201212 P6 : 210120212
P7 : 121012012 P8 : 212101202

Y21 = 10212012 P2 = Y50 P3 : 201212012 C4 = Y16 P5 = Y47 P6 = Y42
C7 = Y8 P8 : 210212012

Y22 = 02121012 P2 : 202121012 P3 : 120121012 P4 : 212021012 P5 : 121201012 C6 = Y11
P7 : 101212012 P8 : 210121202

Y23 = 02120102 P2 : 202120102 P3 : 120120102 P4 : 212020102 C5 = Y9 P6 = Y39
C7 = Y7 P8 = Y54

Y24 = 10102102 P2 : 010102102 C3 = Y10 P4 : 010102102 P5 : 201012102 C6 is of type III
P7 : 012010102 P8 = Y60

Y25 = 02010212 P2 = Y51 C3 = Y12 P4 = Y40 C5 is of type VIII P6 : 201020212
P7 = Y57 P8 = Y46

Y26 = 21202012 P2 = Y52 C3 is of type VI P4 = Y41 C5 = Y8 P6 = Y45
P7 : 102021212 C8 is of type VIII

Y27 = 21201012 P2 : 121201012 C3 = Y14 P4 = Y42 P5 : 102121012 P6 = Y50
P7 : 101021212 C8 is of type V

Y28 = 21201202 P2 = Y53 C3 is of type VI P4 : 021201202 P5 : 102121202 C6 = Y7
P7 = Y38 C8 is of type VI

Y29 = 20210212 P2 = Y43 C3 is of type VI P4 : 120210212 P5 : 012020212 C6 = Y13
P7 = Y59 C8 is of type VI

Y30 = 01021202 P2 : 101021202 C3 = Y7 P4 = Y54 P5 : 120101202 P6 = Y46
C7 = Y9 P8 : 202120102

Y31 = 01020212 P2 = Y44 C3 is of type VIII P4 : 201020212 C5 = Y12 P6 = Y51
P7 : 120201012 P8 : 212020102

Y32 = 20212012 P2 = Y45 C3 = Y8 P4 = Y55 C5 is of type VI P6 = Y41
P7 : 102120212 C8 = Y7

Type II, odd: 2({0, 1}2)+ has possible parents starting with:
0: 0(2{0, 1})∗202({0, 1}2)∗ is of type II;
1: 1(2{0, 1})∗212({0, 1}2)∗ is of type II.

Type III, even: 0({1, 2}0)+2 has possible parents starting with:
1: 1(0{1, 2})+010({1, 2}0)∗2 is of type III;
2: 2(0{1, 2})+020({1, 2}0)∗2 is of type III;
2: 2(0{1, 2})+02 is of type III.

Type III, odd: ({1, 2}0)+2 has possible parents starting with:
0: 0{1, 2}(0{1, 2})∗0({1, 2}0)∗2 is of type III;
1: 1(0{1, 2})∗0210({1, 2}0)∗2, there are three cases for a possible third 1:

None: the parent is of type VII;
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Table 4

Continued.

Y33 = 12120102 P2 : 212120102 C3 = Y9 P4 : 212120102 P5 : 021210102 C6 is of type VI
P7 : 010212102 P8 : 201021212

Y34 = 12010212 P2 : 212010212 P3 : 021010212 C4 is of type VI P5 = Y48 P6 : 201021212
C7 = Y12 P8 : 212010212

Y35 = 12010202 P2 = Y46 P3 : 021010202 C4 = Y6 P5 = Y49 P6 = Y54
P7 : 020102102 P8 = Y51

Y36 = 20120102 P2 : 020120102 P3 = Y39 C4 is of type III P5 : 021020102 P6 : 102102102
P7 = Y49 C8 = Y10

Y37 = 12012012 P2 = Y47 P3 : 021012012 C4 = Y8 P5 : 210212012 P6 : 021021012
C7 is of type VI P8 : 210210212

Y38 = 021021202 P2 : 2021021202 P3 = Y71 C4 is of type II P5 : 2012021202 P6 : 1201201202
P7 : 2120120202 C8 = Y28 P9 : 2021201202

Y39 = 102120102 P2 : 0102120102 P3 : 2012120102 C4 = Y36 P5 : 2120120102 P6 : 0212010102
C7 = Y23 P8 : 0102120102 P9 = Y70

Y40 = 102010212 P2 : 0102010212 P3 : 2012010212 P4 : 0201010212 C5 = Y25 P6 : 0102010212
P7 : 2010201212 C8 is of type IV P9 = Y68

Y41 = 021202012 P2 : 2021202012 P3 = Y72 P4 = Y67 C5 = Y26 P6 : 2021202012
C7 = Y32 P8 : 1020212012 P9 : 2102021202

Y42 = 021201012 P2 : 2021201012 P3 : 1201201012 P4 : 2120201012 C5 = Y27 P6 = Y63
C7 = Y21 P8 : 1010212012 P9 : 2101021202

Y43 = 020210212 P2 : 2020210212 C3 = Y29 P4 : 2020210212 P5 : 1202010212 C6 is of type II
P7 : 2012020212 P8 = Y72 P9 : 2120120202

Y44 = 101020212 P2 : 0101020212 C3 = Y31 P4 : 0101020212 P5 : 2010120212 P6 : 0201010212
P7 : 2020101212 C8 is of type IV P9 : 2120201012

Y45 = 020212012 P2 : 2020212012 C3 = Y32 P4 : 2020212012 P5 : 1202012012 P6 = Y67
C7 = Y26 P8 = Y62 P9 : 2102120202

Y46 = 212010202 P2 : 1212010202 C3 = Y35 P4 : 0212010202 P5 : 1021210202 P6 : 0102120202
C7 = Y30 P8 : 0201021202 C9 = Y25

Y47 = 212012012 P2 : 1212012012 C3 = Y37 P4 : 0212012012 P5 : 1021212012 C6 = Y21
P7 = Y61 P8 : 1021021212 C9 = Y17

Y48 = 010210212 P2 : 1010210212 C3 = Y17 P4 : 2010210212 P5 : 1201010212 C6 = Y34
P7 : 2012010212 P8 : 1201201012 P9 : 2120120102

Y49 = 010210202 P2 = Y65 C3 is of type VII P4 : 2010210202 P5 : 1201010202 C6 = Y35
P7 : 2012010202 C8 = Y36 P9 : 2020120102

Y50 = 010212012 P2 : 1010212012 C3 = Y21 P4 = Y70 P5 : 1201012012 P6 = Y68
C7 = Y27 P8 = Y63 P9 : 2102120102

Y51 = 202010212 P2 = Y66 C3 = Y25 P4 = Y66 P5 = Y64 P6 : 0102020212
C7 = Y31 P8 : 1201020212 C9 = Y35

Y52 = 121202012 P2 : 2121202012 C3 = Y26 P4 : 2121202012 P5 : 0212102012 P6 : 2021212012
P7 : 0202121012 C8 is of type II P9 : 2102021212

Y53 = 121201202 P2 : 2121201202 C3 = Y28 P4 : 2121201202 P5 : 0212101202 C6 is of type II
P7 : 2102121202 P8 : 0210212102 P9 = Y69

Y54 = 201021202 P2 : 0201021202 P3 : 1021021202 P4 : 0102021202 C5 = Y30 P6 = Y71
C7 = Y35 P8 : 0212010202 C9 = Y23

Y55 = 120212012 P2 : 2120212012 P3 = Y61 P4 : 2021212012 C5 = Y32 P6 : 2120212012
P7 : 0212021012 C8 is of type II P9 : 2102120212

Y56 = 012021212 P2 : 1012021212 P3 : 2102021212 C4 = Y18 P5 = Y69 P6 : 1202101212
P7 : 2120210212 P8 : 1212021012 P9 : 2121202102

Y57 = 120102012 P2 = Y68 P3 : 0210102012 C4 = Y19 P5 : 0102102012 P6 = Y70
P7 : 0201021012 C8 = Y25 P9 : 2102010212

Y58 = 201202012 P2 : 0201202012 P3 = Y62 C4 is of type IV P5 : 0210202012 C6 = Y19
P7 : 0202102012 P8 = Y64 C9 is of type VII

Y59 = 120120212 P2 : 2120120212 P3 : 0210120212 C4 is of type II P5 : 2102120212 P6 : 0210210212
P7 = Y69 C8 = Y29 P9 : 2120210212

Y60 = 201201012 P2 : 0201201012 P3 = Y63 C4 is of type IV P5 : 0210201012 P6 : 1021021012
P7 : 0102102012 P8 : 1010210212 C9 = Y24

Y61 = 210212012 P2 : 20210212012 P3 : 12010212012 C4 = Y55 P5 : 20120212012 P6 : 12012012012
P7 = Y76 C8 = Y47 P9 : 10212012012 P10 : 21021201202

Before 0210: there is a g-1-flip
1(0{1, 2})∗01(0{1, 2})∗0210({1, 2}0)∗2 = 0({1, 2}0)∗1(0{1, 2})∗
0210({1, 2}0)∗2;

After 0210: there is a g-1-flip
1(0{1, 2})∗0210({1, 2}0)∗10({1, 2}0)∗2 = (0{1, 2})∗0120({1, 2}0)∗

10({1, 2}0)∗2;
2: 2(0{1, 2})∗0120({1, 2}0)∗2 = (0{1, 2})∗0210({1, 2}0)∗2 is a g-1-flip

unless this last string is 02102 (type VI), but then the parent is
201202 = Y5;

2: 2(0{1, 2})∗012 is of type IV.
Type IV, even: ({1, 2}0)+12 with a second 2 has possible parents starting with:

0: 0(1, 20)+12, with a second 2, is of type IV;
1: 1(0{1, 2})∗0210({1, 2}0)∗12 = (0{1, 2})∗0120({1, 2}0)∗12 is a g-1-flip;
1: 1(0{1, 2})∗0212, with three cases:

No third 2: the parent is of type V;
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No third 1: the parent is of type VIII;
Otherwise: 1(0{1, 2})∗01(0{1, 2})∗0212 = 0({1, 2}0)∗1(0{1, 2})∗0212

(with a third 2) is a g-1-flip;
2: 2(0{1, 2})∗0120({1, 2}0)∗12, with four cases:

A fourth 2 before 0120: there is a g-1-flip 2(0{1, 2})∗02(0{1, 2})∗
0120({1, 2}0)∗12 = 0({1, 2}0)+120({1, 2}0)∗12;

A fourth 2 after 0120: there is a g-1-flip
2(0{1, 2})∗0120({1, 2}0)∗20({1, 2}0)∗12 = (0{1, 2})∗
0210({1, 2}0)+12;

A third 1: 2(0{1, 2})∗0120({1, 2}0)∗12 = 1(0{1, 2})∗
0210({1, 2}0)∗2 is a g-1-flip;

Otherwise: 2012012 = Y16;
2: 21(0{1, 2})∗02(0{1, 2})∗012 = 0({1, 2}0)∗12(0{1, 2})∗012 is a g-1-flip.

Type IV, odd: 0({1, 2}0)+12 with a second 2, has possible parents starting with:
1: 1(0{1, 2})+012, with a second 2, is of type IV;
2: 2(0{1, 2})+012 is of type IV;
2: 21(0{1, 2})∗02(0{1, 2})∗02 = 0({1, 2}0)∗12(0{1, 2})∗02 is a g-1-flip.

Type V, even: 0(10)+212 (0212 is also of type I), has possible parents starting with:
1: (10)+212 is of type V;
1: 1201(01)∗012 = 021(01)∗012 is a g-1-flip;
2: 2(01)+0212 = 120(10)+2 is a g-1-flip;

2: 212(01)+02 = 12(01)+02 is a g-1-flip.
Type V, odd: (10)+212, has possible parents starting with:

0: (01)+0212 is of type V;
2: 2(01)+212 = 12(10)+2 is a g-1-flip;

2: 212(01)i2 = 12(01)i2 is a g-1-flip unless i = 1, but then the parent is
212012 = Y3.

Type VI, 1(20)+1(20)∗2: has possible parents starting with:
0: (02)i10(20)j1(20)k2 with i > 0.

If i > 1, 0202(02)i−210(20)j1(20)k2 = 2(02)i−110(20)j1(20)k2 is a
g-1-flip;

If i = 1, j > 0, 021020(20)j−11(20)k2 = 201(20)j1(20)k2 is a g-1-flip;
If i = 1, j = 0, k > 0, 0210120(20)k−12 = 2101(20)k2 is a g-1-flip;
If i = 1, j = k = 0, 021012 = Y2;

0: (02)+1(02)+1(02)+ = 1(20)+21(02)+ is a g-1-flip;

2: 2(02)∗1(20)+1(20)∗2 = (02)∗1(02)+1(20)∗2 is a g-1-flip unless this last
string is 10212 (type V) or 0210212 (type VI), but then the parent is
212012 = Y3 or 21201202 = Y28 respectively;

2: 2(02)∗1(02)+1(20)+2 = (02)+1(20)+1(20)∗2 is a g-1-flip;
2: 2(02)∗102(02)∗12 = 01(20)∗212 is a g-1-flip unless there is no second 0,

but then the parent is 210212 = Y1.
Type VI, 0(21)+0(21)∗2: has possible parents starting with:

1: (12)i01(21)j0(21)k2 with i > 0.
If i > 1, 1212(12)i−201(21)j0(21)k2 = 2(12)i−101(21)j0(21)k2 is a

g-1-flip;
If i = 1, j > 0, 120121(21)j−10(21)k2 = 210(21)j0(21)k2 is a g-1-flip;
If i = 1, j = 0, k > 0, 1201021(21)k−12 = 2010(21)k2 is a g-1-flip;
If i = 1, j = k = 0, 120102 = Y4;
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1: (12)+0(12)+0(12)+ = 0(21)+20(12)+ is a g-1-flip;

2: 2(12)∗0(21)+0(21)∗2 = (12)∗0(12)+0(21)∗2 is a g-1-flip unless this last
string is 1201202 (type VI), but then the parent is 20210212 = Y29;

2: 2(12)∗0(12)+0(21)+2 = (12)+0(21)+0(21)∗2 is a g-1-flip;
2: 2(12)∗012(12)∗02 = 10(21)∗202 is a g-1-flip unless this last string is

10202 (type III), but then the parent is 201202 = Y5.
Type VII: 1(02)+1(02)+ has possible parents starting with:

0: 0(20)∗1(02)+1(02)+ = 1(20)+1(02)+ is a g-1-flip;

0: 0(20)∗120(20)∗1(02)+ = 210(20)∗1(02)+ is a g-1-flip;

2: (20)+12(02)∗102(02)∗ = 01(20)∗21(02)+ is a g-1-flip;

2: (20)+1(20)+12(02)∗ = 1(02)+012(02)∗ is a g-1-flip.

Type VIII: 1(02)+12 has possible parents starting with:
0: 0(20)i1(02)j12 with j > 0.

If i > 0, 020(20)i−11(02)j12 = (20)i1(02)j12 is a g-1-flip;
If i = 0, j > 1, 0102(02)j−112 = 201(02)j−112 is a g-1-flip;
If i = 0, j = 1, 010212 is of type V;

2: (20)+12(02)∗12 = 1(20)∗21(02)+ is a g-1-flip;

2: 21(20)i12 with i > 0.
If i = 1, 212012 = Y3;
If i > 1, 2120(20)i−112 = 021(20)i−112 is a g-1-flip.

Theorem 6. There exists a polynomial-time algorithm for optimally sorting
ternary strings.

Proof. This follows rather easily from Theorem 5.

Finally, in light of the fact that the complexity of the sorting problem on qua-
ternary (and higher) strings remains open, the following serves as an intermediate
result.

Theorem 7. For every fixed k there is a PTAS for sorting k-ary strings.

Proof. The proof is very similar to the proof of Theorem 3. We assume that
k ≥ 4. Let N = (3k− 2)/ε+ k. Let s, the string that we wish to sort, be of length n.
We distinguish two cases. (In both cases it is useful to note that ds(s) ≤ 2n because
we can always bring the greatest symbol not yet in its final position to the front and
then to its correct position.)

Case 1. If n ≥ N , we first group the string using the “greedy” algorithm from the
proof of Lemma 2, which yields a permutation on k symbols. This permutation can
then be easily sorted with at most 2k flips. Thus the total number of flips, denoted
by dGs (s), is at most (n − 2) + 2k. This, together with the grouping lower bound of
Lemma 1 of n− k on ds(s), yields dGs (s) ≤ ds(s) + (3k − 2) ≤ (1 + ε)ds(s).

Case 2. If n < N , we apply brute force by selecting the shortest sorting sequence
from among all length-2n sequences of flips; there are at most n2n such sequences.
Given that ds(s) ≤ 2n, this is guaranteed to give an optimal solution. The running
time in this case is bounded by a constant.

5. Prefix reversal diameter. Let S(n, k) be the set of fully k-ary strings of
length n. We define δ(n, k) as the largest value of d(s, t) ranging over all compatible
s, t ∈ S(n, k).

Theorem 8. For all n ≥ 2, δ(n, 2) = n− 1.

Proof. To prove δ(n, 2) ≥ n−1, consider compatible s, t ∈ S(n, 2) with s = (10)n/2

in case n even and s = 0(10)(n−1)/2 in case n odd and in both cases t = I(s); i.e., t is
the sorted version of s. By Theorem 4, d(s, t) ≥ n− 1.
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The proof that δ(n, 2) ≤ n − 1 for all n ≥ 2 is by induction on n. The lemma
is trivially true for n = 2. Consider two compatible binary strings of length n:
s = s1s2 . . . sn and t = t1t2 . . . tn. If sn = tn, then by induction d(s, t) ≤ n− 2. Thus,
suppose (without loss of generality) sn = 0 and tn = 1. If t1 = 0, then f (n)t and
s both end with a 0, and using induction and symmetry d(s, t) ≤ 1 + d(f (n)t, s) ≤
n− 2 + 1 = n− 1. An analogous argument holds if s1 = 1.

There remains the case s1 = sn = 0 and t1 = tn = 1. First, suppose tn−1 = 0.
Since s and t are compatible, there must exist an index i such that si = 0 and
si+1 = 1. Hence, f (n)(f (i+1)(s)) ends with 01 like t, and by induction d(s, t) ≤
2 + d(f (n)(f (i+1)(s)), t) = 2 + n− 3. Analogously, we resolve the case sn−1 = 1.

Finally, suppose s = 0 . . . 00 and t = 1 . . . 11. If s contains 11 as a substring, then
flipping that 11 (in the same manner as above) to the end of s using two flips gives
two strings that both end in 11. Alternatively, if s does not contain 11 as a substring,
then s has at least two more 0’s than 1’s, which implies that t must contain 00 as a
substring. In that case two prefix reversals on t suffice to create two strings that both
end with 00. In both cases, the induction hypothesis gives the required bound.

Note that, trivially, d(s, t) ≤ 2n for all compatible s, t ∈ S(n, k), for all k, because
two prefix reversals always suffice to increase the maximal common suffix between s
and t by at least 1. The following tighter bound gives the best bound known on the
diameter of ternary strings.

Lemma 8. For any two compatible s, t ∈ S(n, k), for any k, let a be the most
frequent symbol in s and α its multiplicity. Then d(s, t) ≤ 2(n− α).

Proof. We prove the lemma by induction on n. The lemma is trivially true for
n = 2. Consider s, t ∈ S(n, k). If sn = tn = a, then s1s2 . . . sn−1 and t1t2 . . . tn−1

are compatible length-(n− 1) strings where the most frequent symbol occurs at least
α − 1 times. Thus, by induction d(s, t) ≤ 2((n − 1) − (α − 1)) = 2(n − α). In case
sn = tn �= a induction even gives d(s, t) ≤ 2((n − 1) − (α)) = 2(n − α) − 2. Thus,
suppose sn �= tn implying without loss of generality that tn = b �= a. Suppose si = b;
after two flips s′ = f (n)(f (i)(s)) has b at the end; s′n = tn. Moreover, the length n− 1
suffixes of s′ and t still contain α a’s. Hence by induction, d(s, t) ≤ 2 + d(s′, t) ≤
2 + 2((n− 1) − α) = 2(n− α).

Lemma 9. For all n > 3, n− 1 ≤ δ(n, 3) ≤ (4/3)n.

Proof. Since in any ternary case α ≥ 	n/3
, Lemma 8 implies δ(n, 3) ≤ (4/3)n.
To prove δ(n, 3) ≥ n−1 we distinguish between n odd and n even. For odd n = 2h+1,
let s be 2(01)h, and for even n = 2h let s = 01(21)h−1. In both cases we let t = I(s).
We observe that, in the even and in the odd case, s2 is a bad I-string and a bad
IV-string, respectively, in the sense of Definition 2. Thus, by Theorem 5 we have that
d(s, t) = d(s2, t2) = (n + 1) − 2 = n − 1. (Here s2 (respectively, t2) refers to the
concatenation of s (respectively, t) with an extra 2 symbol.)

Brute force enumeration has shown that, for 4 ≤ n ≤ 13, δ(n, 3) = n − 1. (Note
that δ(3, 3) = 3 because d(021, 012) = 3.) Proving or disproving the conjecture that
δ(n, 3) = n− 1 for n > 3 remains an intriguing open problem.3

6. Prefix reversal distance. We show that computing flip distance is NP-
hard on binary strings. We also point out, using a result from [11], that computing
flip distance on arbitrary strings is polynomial-time reducible (in an approximation-
preserving sense) to computing it on binary strings.

3Interestingly, initial experiments with brute force enumeration have also shown that, for 4 ≤
n ≤ 10, δ(n, 4) = n, and for 5 ≤ n ≤ 9, δ(n, 5) = n.
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Theorem 9. The problem of computing the prefix reversal distance of binary
strings is NP-hard.

We prove NP-completeness of the corresponding decision problem:
Name: binary-PD (abbreviated 2PD).
Input: Two compatible strings s, t ∈ S(n, 2), and a bound B ∈ Z

+.
Question: Is d(s, t) ≤ B?

2PD ∈ NP, since a certificate for a positive answer consists of at most B flips.4

To show completeness we use a reduction from 3-Partition [6] (cf. [2] and [11]).
Name: 3-Partition (abbreviated 3P).
Input: A set A = {a1, a2, . . . , a3k} and a number N ∈ Z

+. Element ai has size

r(ai) ∈ Z

+ satisfying N/4 < r(ai) < N/2, i = 1, . . . , 3k, and
∑3k

i=1 r(ai) = kN .
Question: Can A be partitioned into k disjoint triplet sets A1, A2, . . . , Ak such that∑

a∈Aj
r(a) = N , j = 1, . . . , k?

Given instance I = (A,N, r) of 3P, we create an instance of 2PD by setting
B = 6k and building two compatible binary strings s and t:

s =

( ∏
1≤i≤3k

0001r(ai)

)
000, t = 03(3k+1)−k(01N )k.

This construction is clearly polynomial in a unary encoding of the 3P instance; we use
the strong NP-hardness of 3P [6]. We claim that I = (A,N, r) is a positive instance
of 3P ⇔ d(s, t) ≤ 6k.

⇒) Let aij denote the jth element from triples Ai (in arbitrary order), j = 1, 2, 3,
i = 1, . . . , k, and let us abuse its name also to denote the corresponding 1-block of
length r(aij) in s.

That s can be transformed to t in 6k flips follows directly from the correctness of
the following claim for h = k.

Claim. For 0 < h ≤ k, s can be transformed into a string ψh = αhωh in h phases,
each consisting of six flips, where ψh has the following specific properties:

(a) The suffix (i.e., ωh) is equal to (01N )h and contains all 3h 1-blocks corre-
sponding to the elements in ∪h

j=1Aj .
(b) The prefix (i.e., αh) contains the remaining 3(k − h) 1-blocks, each of them

flanked by 0-blocks of length at least 3, except possibly a 0-block of length 2 at its right
end. (Given that ψh = αhωh, it follows that, in ψh, all these remaining 1-blocks are
flanked by 0-blocks of length at least 3.)

Proof. The proof is by induction. First we transform s into ψ1 in six flips: flips 1
and 2 bring a11 to the back, flips 3 and 4 bring a12 to the back (just in front of a11),
and flips 5 and 6 bring a13 to the back (just in front of a12). No 0-blocks are cut in
this process, and only 1-blocks a11, a12, and a13 are affected (i.e., concatenated into
a single length-N 1-block).

Now, suppose by induction that after 6(h − 1) flips we have created ψh−1. The
next six flips (which form phase h) work exclusively on αh−1. Flips 1 and 2 bring ah1

to the front and then to the back of αh−1; flips 3 and 4 bring ah2 to the front and then
to the back just in front of ah1; flips 5 and 6 bring ah3 to the front and then to the
back just in front of ah2. These six flips (which do not cut any 0-blocks within αh−1)

5

thus transform αh−1 into a string with 01N at the suffix, which, appended to ωh−1,

4Recall that, for all compatible strings s, t ∈ S(n, 2), trivially d(s, t) ≤ 2n.
5Observe that, in terms of its action on the overall string, flip 2 of phase h does cut a 0-block,

cutting αh−1 from ωh−1, creating the singleton 0-block in between two length-N 1-blocks.
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gives a suffix equal to ωh. The only question is whether the resulting overall string
satisfies condition (b). The only obstacle to this is the possible length-2 0-block at
the end of αh−1. However, this block is not flipped in flip 1 of phase h; it is brought
to the front in flip 2 and concatenated to another 0-block in flip 3, leaving the prefix
string without a length-2 0-block. This completes the proof of the claim.

⇐) Suppose that I is a negative instance of 3P. We show that d(s, t) > 6k. Notice
that if I is not a positive instance, then in any sequence of flips taking s to t some
flip must split a 1-block, i.e., . . . 11 . . . . Below we add this to a list of tasks that any
sequence of flips taking s to t must complete:

(0) split at least one 1-block;
(1) reduce the number of 1-blocks by 2k;
(2) bring a 1 symbol to the end of the string (because t ends with a 1, but s does

not);
(3) increase the number of singleton 0-blocks by k − 1;
(4) reduce the number of big (i.e., of length at least 3) 0-blocks by 3k.

To prove that at least 6k+ 1 flips are needed to complete tasks (0)–(4), we show that
flips which make progress towards completing one of the tasks cannot effectively be
used to make progress on another task. From this (and other intermediate observa-
tions shown below) it will follow that at least 1 + 2k + 1 + (k− 1) + 3k = 6k + 1 flips
will be needed.

It is immediately clear that task (2), requiring a flip of a whole string, cannot be
combined with any of the other tasks in one flip. Notice that any task(0)-flip (which
is of the form 1 . . . 11 . . . or of the form 0 . . . 11 . . . ) does not decrease the number of
1-blocks, while 0-blocks remain unaffected. So such flips do not contribute to tasks
(1)–(4). Nor can any task(1)-flip (which is always of the form 1 . . . 01 . . . ) contribute
to any of the other tasks from the list. It is also not too difficult to verify that it is not
possible to reduce the number of big blocks by 2 or more in one flip. However, some
types of task(3)-flip can at the same time also contribute to task (4), and some other
types of task(3)-flip can increase the number of singleton 0-blocks by two, effectively
contributing twice to task (3). Such flips we call (34)- and (33)-flips, respectively. We
will show that all (34)- and (33)-flips necessarily have to be succeeded by at least one
flip that does not, in an overall sense, help us with the completion of the tasks.

Any (33)-flip is of the type
(33.1) 1 . . . 00 . . . (where the 0s form a complete block).

Any (34)-flip is of the type
(34.1) 1 . . . 000 . . . (where the 0s form a complete block),
(34.2) 1 . . . 000 . . . (where the 0s form a complete block),
(34.3) 000 . . . 1000 . . . .
We emphasize here that 00 is not considered to be a big 0-block.

After a flip of type (33.1), (34.1), or (34.3) we have a single 0 at the front. In such
a situation a task(1)- or task(2)-flip is not possible. We cannot perform a task(3)-flip
because flips of the form 01 . . .0 . . . will destroy the initial singleton 0, and flips of
the form 01 . . .1 . . . cannot create new singleton 0’s. The only task(4)-flip possible is
01 . . . 000 . . . (where the second group of 0’s forms a complete block), but this also
reduces the number of singleton 0-blocks by 1, meaning that an extra task(3)-flip
would then be needed. Termination is not an option (because t does not begin with
01). A task(0)-flip of the form 01 . . . 11 . . . is potentially possible, but, as noted, this
increases the number of required task(1)-flips.

After a flip of type (34.2) we are left with 001 at the front. Again, a task(1)- or
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task(2)-flip is not possible in this situation, and neither is termination. A task(3)-flip
is potentially possible, but this brings a single 0 to the front, which (by the earlier
argument) cannot be followed by any useful flip. A task(4)-flip is not possible because,
when the string begins with 001, a task(4)-flip must necessarily split a 00-adjacency
in some big 0-block, but this simply creates a different big 0-block.

For studying problems on arbitrary strings, let X and Y be two compatible,
length-n strings, where we assume (without loss of generality) that each of the sym-
bols from X and Y are drawn from the set {0, 1, . . . , n − 1}. We define D(X,Y ) as
the smallest number of flips required to transform X to Y . The arity of the strings
X and Y does not need to be fixed, and symbols may be repeated. Hence, sorting
a permutation by flips (MIN-SBPR) and the flip distance problem over fixed arity
strings are both special cases of computing D. Given that computing D is a gener-
alization of computing distance d of binary strings, this immediately implies that it
is NP-hard. However, an approximation-preserving reduction in the other direction
is possible, meaning that inapproximability results for one of the problems will be
automatically inherited by the other.

Theorem 10. Given two compatible strings X and Y of length n with each symbol
from X and Y drawn from {0, 1, . . . , n−1}, it is possible to compute in time polynomial
in n two binary strings x and y of length polynomial in n such that D(X,Y ) = d(x, y).

As demonstrated shortly, the above result follows directly from work by Rad-
cliffe, Scott, and Wilmer. A little background is necessary to understand the context.
In Theorem 8 of [11] it is shown that sorting permutations by reversals is directly
reducible to the reversal distance problem on binary strings. It is later argued (in
Theorem 11 of [11]) that the same reduction technique can be used to reduce the trans-
position distance problem on a 4-ary alphabet to the transposition distance problem
on a binary alphabet. The proof of Theorem 11 lacks detail, but personal communi-
cation with the authors [12] has since clarified that the result is correct. Furthermore,
the reduction technique underpinning Theorems 8 and 11 from [11] can be directly
applied to prove the present theorem. We show this by reproducing the reduction
technique (complete with clarification) in the context of prefix reversals. We also use
this opportunity to clarify the correctness of Theorem 11 from [11]. The following
should thus be considered attributed to Radcliffe, Scott, and Wilmer.

Proof. The strings x and y are constructed as follows:

x = (10X1+11)2n+1 . . . (10Xn+11)2n+1,

y = (10Y1+11)2n+1 . . . (10Yn+11)2n+1.

In the above encoding, each symbol Xi is thus encoded as the fragment (10Xi+11)2n+1,
each fragment consisting of 2n+ 1 subfragments. (This also holds for each symbol in
Y .) Note that a fragment is reversal-invariant. To see that d(x, y) ≤ D(X,Y ), observe
that—by mapping to prefix reversals that cut at the boundaries between fragments—
any sequence of m prefix reversals taking X to Y can be trivially mapped to m prefix
reversals which take x to y.

The proof that D(X,Y ) ≤ d(x, y) is more involved. Combining d(x, y) ≤ D(X,Y )
with the trivial fact that D(X,Y ) ≤ 2n yields d(x, y) ≤ 2n. Now, consider any
shortest sequence of prefix reversals taking x to y. This sequence of prefix reversals
will cut the string x in at most 2n places. A subfragment within x is said to survive
if and only if it is not cut by any of these prefix reversals. Now, construct a bipartite
graph with vertex set {e1, e2, . . . , en}∪{f1, f2, . . . , fn} and add an edge (ei, fj) if and
only if some subfragment of the fragment corresponding to Xi survives and ends up in
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the fragment corresponding to Yj . Observe that within any set of m fragments from
x, strictly more than (m− 1)(2n+1) subfragments will survive, and hence at least m
fragments from y will be required to absorb these surviving subfragments. Thus, by
Hall’s theorem, the graph has a perfect matching. For each edge (ei, fj) of the perfect
matching, pick a subfragment from the fragment corresponding to Xi that survives
and ends up in the fragment corresponding to Yj . Considering the action of the flips
only on these n subfragments, we see that there exists a sequence of d(x, y) prefix
reversals transforming the sequence of symbols in X into the sequence of symbols in
Y , and thus D(X,Y ) ≤ d(x, y).

The correctness of Theorem 11 from [11] follows by using the same reduction
but encoding each fragment as 3n subfragments rather than 2n + 1 subfragments.
(The transposition distance between two compatible length-n strings is strictly less
than n, and a transposition cuts a string in at most 3 places.) Indeed, it is easy to
see that the reduction works for a whole family of string rearrangement operators,
by ensuring that the number of subfragments per fragment is sufficiently large. For
example, consider a rearrangement operator op, and let u be some upper bound on
the number of places an op-operation can cut a string. Let v be any upper bound on
the maximum value of dop(X,Y ) ranging over all compatible length-n strings X,Y .
Encoding each fragment with uv+1 subfragments is sufficient to generalize the above
reduction.

7. Open problems. In this study we have unearthed many rich (and surpris-
ingly difficult) combinatorial questions which deserve further analysis. We discuss
some of them here. The main unifying “umbrella” suggestion is that, to go beyond ad
hoc (and case-based) proof techniques, it will be necessary to develop deeper, more
structural insights into the action of flips on strings over fixed-size alphabets.

Grouping and sorting on higher arity alphabets. We have shown how to group and
sort optimally binary and ternary strings, but characterizations and algorithms for
quaternary (and higher) alphabets have so far eluded us. As observed in section 3.2,
it seems that for k = 4, 5 and for sufficiently long strings, the strings with grouping
distance n − 2 settle into some kind of pattern, but this has not yet offered enough
insights to allow the development either of a characterization or of an algorithm.
Related problems include: for all fixed k, are there polynomial algorithms to optimally
sort (optimally group) k-ary strings? Is grouping strictly easier than sorting, in a
complexity sense? How does grouping function under other operators, e.g., reversals,
transpositions? An upper bound on the grouping transposition distance has been
presented in [4].

Diameter questions. Proving or disproving that δ(n, 3) = n− 1 for n > 3 remains
the obvious open diameter question. Beyond that, diameter results for quaternary and
higher arity alphabets are needed. How does the diameter δ(n, k) grow for increasing
k? (At this point we conjecture that, for sufficiently long strings, the diameter of
3-ary, 4-ary, and 5-ary strings is n− 1, n, and n, respectively.)

The suspicion also exists that, for all k and for all sufficiently long n, there exists
a length-n fully k-ary string s such that d(s, I(s)) = δ(n, k). In other words, the set
of all pairs of strings that are δ(n, k) flips apart includes some instances of the sorting
problem. It should be noted, however, that, following empirical testing, it is apparent
that there are also very many pairs of strings s, t with s �= I(t) and t �= I(s) that are
δ(n, k) flips apart.

It also seems important to develop diameter results for subclasses of strings,
perhaps (as in [11]) characterized by the frequency of their most frequent symbol. It
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may be that such refined diameter results for k-ary alphabets provide information
that is important in determining δ(n, k + 1).

Note finally that the diameter of strings over fixed size alphabets, i.e., δ(n, k), is
always bounded from above by the diameter of permutations, wc(n). This is because
the distance problem on two length-n fixed size alphabet strings s, t can easily be
rewritten as a sorting problem on a length-n permutation π such that a sequence of
prefix reversals sorting the permutation also suffices to transform s into t. Indeed,
because of this relabeling property, the flip distance between two fixed size alphabet
strings can be viewed as being equal to the minimum permutation sorting distance,
ranging over all such relabelings into a permutation π. Can this relationship between
the fixed size alphabet and permutation world be further specified and exploited?

Signed strings. The problem of sorting signed permutations by flips (the burnt
pancake flipping problem) is well known [3, 7, 9], but in this paper we have not yet at-
tempted to analyze the action of flips on signed fixed size alphabet strings. Obviously,
analogues of all the problems described in this paper exist for signed strings.

Complexity/approximation. In the presence of hardness results (e.g., Theorem 9)
it is interesting to explore the complexity of restricted instances and to develop algo-
rithms with guaranteed approximation bounds. For example, [11] gives a PTAS for
dense instances. The development of approximation algorithms is also a useful inter-
mediate strategy where the complexity of a problem remains elusive. In particular,
this requires the development of improved lower bounds.
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writing of this paper.
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Abstract. We study undirected networks with edge costs that satisfy the triangle inequality. Let
n denote the number of nodes. We present an O(1)-approximation algorithm for a generalization of
the metric-cost subset k-node-connectivity problem. Our approximation guarantee is proved via lower
bounds that apply to the simple edge-connectivity version of the problem, where the requirements are
for edge-disjoint paths rather than for openly node-disjoint paths. A corollary is that, for metric costs
and for each k = 1, 2, . . . , n− 1, there exists a k-node connected graph whose cost is within a factor
of 22 of the cost of any simple k-edge connected graph. Based on our O(1)-approximation algorithm,
we present an O(log rmax)-approximation algorithm for the metric-cost node-connectivity survivable
network design problem, where rmax denotes the maximum requirement over all pairs of nodes.
Our results contrast with the case of edge costs of 0 or 1, where Kortsarz, Krauthgamer, and Lee.
[SIAM J. Comput., 33 (2004), pp. 704–720] recently proved, assuming NP� DTIME(npolylog(n)),

a hardness-of-approximation lower bound of 2log1−ε n for the subset k-node-connectivity problem,
where ε denotes a small positive number.
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connectivity, edge-connectivity
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1. Introduction. A basic problem in network design is to find a minimum-
cost subnetwork H of a given network G such that H satisfies some prespecified
connectivity requirements. Fundamental examples include the minimum spanning
tree (MST) problem and the traveling salesman problem (TSP). By a network we
mean an undirected graph together with nonnegative costs for the edges; we use V
to denote the set of nodes, and n to denote |V |. Our focus is on networks where the
edge costs are metric; that is, the input graph is a complete graph and the edge costs
satisfy the triangle inequality. This special case is significant from both theoretical
and practical viewpoints; metric costs arise in many applications of network design,
and perhaps in most of the obvious ones, such as the design of telecommunication
networks. Our goal is to design and analyze approximation algorithms for some key
problems in network design. Moreover, we resolve a conjecture from the folklore on
metric graphs, where by a metric graph we mean a complete graph Kn together with
edge costs that satisfy the triangle inequality.

We attack the metric-cost node-connectivity survivable network design problem
(NC-SNDP). In this problem, we are given a metric graph, as well as a connectivity
requirement ri,j between every pair of nodes i and j. Let rmax denote maxi,j∈V ri,j .
The goal is to find a minimum-cost subgraph H that satisfies these requirements;
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that is, H should have ri,j openly node-disjoint paths between every pair of nodes i
and j. There are two well-known special cases of NC-SNDP. The first is the subset
k-node-connectivity problem, where we are given a set of terminal nodes T ⊆ V and
ri,j = k precisely if both i and j are in T ; otherwise ri,j = 0. The second is the
classical k-node connected spanning subgraph problem (k-NCSS), where ri,j = k for
every pair of nodes; this is the special case of the subset k-node-connectivity problem
with T = V . We also study a new special case of NC-SNDP that we call the subset
[k, 1.5k]-node-connectivity problem: given a set of terminal nodes T ⊆ V and an
(integer) requirement ri for each node i ∈ T , where 1 ≤ k ≤ ri ≤ 1.5k, the goal is
to find a minimum-cost subgraph that has min(ri, rj) openly node-disjoint i, j-paths
for every pair of nodes i, j ∈ T . (Thus the subset k-node-connectivity problem is the
special case where ri = k ∀i ∈ T .) See section 4 for more discussion.

Most network design problems stay NP-hard and APX-hard even assuming metric
costs. This remains true even for small connectivity requirements; for example, Bern
and Plassmann [3] showed that the Steiner tree problem (the classical special case
of the subset k-node-connectivity problem with k = 1) is APX-hard even with edge
costs of 1 and 2. Over the past decade, there has been significant research on approx-
imation algorithms for network design, and there have been some notable successes
in the design of networks that satisfy various types of “edge-connectivity” require-
ments; see, e.g., Goemans and Williamson [17] and Jain [18]. In particular, Jain [18]
gives a 2-approximation algorithm for EC-SNDP, a problem similar to NC-SNDP ex-
cept that the requirements are for edge-disjoint paths instead of openly node-disjoint
paths. Nevertheless, from the perspective of approximation algorithms, the design of
networks subject to “node-connectivity” requirements is a murky area. For example,
Kortsarz, Krauthgamer, and Lee [21] recently proved a hardness-of-approximation

lower bound of 2log1−ε n for the subset k-node connectivity problem in graphs with
zero-one edge costs, provided that NP� DTIME(npolylog(n)), where ε denotes a small
positive real number. (We give a detailed discussion on previous work in the area
after stating our results.)

We present a 22-approximation algorithm for the metric-cost subset k-node-
connectivity problem, and then we generalize this to get an O(1)-approximation
algorithm for the metric-cost subset [k, 1.5k]-node-connectivity problem. These al-
gorithms are deterministic and combinatorial; they do not use linear programming
(LP) relaxations. Based on this, we present an O(log rmax)-approximation algorithm
for the metric-cost NC-SNDP. The algorithm for NC-SNDP is based on an LP relax-
ation. Also, it uses a 2-approximation algorithm of Goemans and Williamson [17] (see
also Agrawal, Klein, and Ravi [1]) for the generalized Steiner tree problem. More-
over, we resolve the following folklore conjecture: In a metric graph and for each
k = 1, 2, . . . , n − 1, the minimum cost of a k-node connected spanning subgraph is
within a constant factor of the minimum cost of a simple k-edge connected span-
ning subgraph. Thus, for metric graphs, the requirements of k-node-connectivity and
simple k-edge-connectivity are equivalent for the objective function, up to constant
factors. A similar result holds for requirements of subset [k, 1.5k]-node-connectivity
versus subset simple [k, 1.5k]-edge-connectivity.

We apply two lower bounds on the optimal value of the subset [k, 1.5k]-connectivity
problem. We may assume (without loss of generality) that there exist at least two
terminals with the maximum requirement. Hence, every solution subgraph has at
least ri edges incident to each terminal i, because there is another terminal j with
rj ≥ ri, so the solution subgraph must have ri openly node-disjoint i, j-paths. Our
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first lower bound comes from the the minimum cost of a subgraph that has degree
≥ ri for every terminal i. Our second lower bound comes from the cost of a MST of
the subgraph induced by the terminals. For any node i, we use σi or σ(i) to denote
the sum of the costs of the ri cheapest edges incident to i in the complete graph, and
for any set of nodes S, we use σ(S) to denote

∑
i∈S σi. We use the abbreviations MST

and TSP as already defined. Let mst(T ) denote the cost of an MST of the subgraph
induced by T . Our lower bounds are

(i) 1
2 σ(T ) and

(ii) k
2 mst(T ).

Note that these lower bounds apply also to the simple edge-connectivity version of
the subset [k, 1.5k]-connectivity problem, where the requirements are for min(ri, rj)
edge-disjoint paths between every pair of nodes i, j ∈ T ; note that multiedges are not
allowed in the solution subgraph. See section 2 for more details. Throughout, we
use opt to denote the cost of an optimal solution. Next, we state our main results
formally.

Theorem 1. There is a polynomial-time algorithm for computing a solution to
the metric-cost subset k-node-connectivity problem of cost ≤ 9σ(T ) + 4(k2 ) mst(T ) ≤
22opt.

Consider k-NCSS, the special case of the subset k-node connectivity problem in
which the terminal set T is V . Let k-ECSS be the problem of finding a minimum-cost
simple k-edge connected spanning subgraph. Then our two lower bounds apply for
both k-NCSS and k-ECSS. This gives the next result.

Corollary 2. In a network with metric costs, there is a k-node connected
spanning subgraph whose cost is at most 22 times the minimum cost of a simple k-
edge connected spanning subgraph.

Remarks. For metric graphs, it is well known that there exists a 2-node connected
graph of cost ≤ the cost of any 2-edge connected graph on the same node set (see
Appendix A), but this does not hold for k ≥ 3 (see [4, Figure 1] and Appendix A for
examples). Also, note that the 1

2 σ(V ) lower bound for k-ECSS does not apply for the
version where multiedges are allowed. In more detail, if multiedges are allowed, then
there exist k-edge connected graphs H such that any k-node connected graph on the
same node set has cost ≥ Θ(k) c(H). See Appendix A for more detail.

Theorem 3. There is a polynomial-time algorithm for computing a solution to
the metric-cost subset [k, 1.5k]-node-connectivity problem of cost ≤ O(1) · (σ(T ) +
k
2 mst(T )) ≤ O(1) · opt.

Remark. A loose analysis gives a constant factor between 500 and 1000 in the
above theorem. Possibly, an approximation guarantee of ≤ 100 can be obtained by
some changes to the algorithm. We have not attempted to optimize the constants in
the approximation guarantees.

Theorem 4. There is a polynomial-time algorithm for computing a solution to
the metric-cost NC-SNDP of cost ≤ O(ln rmax) · opt.

Previous work. Over the past few decades, there has been significant research
on approximation algorithms for network design. For early work in network design,
see, for example, Dantzig, Ford, and Fulkerson [12]. A celebrated and still unsur-
passed result was Christofides’ 3

2 -approximation algorithm for the metric-cost TSP
[8]. Partly motivated by Christofides’ result, there followed a stream of research on
related problems in the design of metric-cost networks. Most of this research focused
on small connectivity requirements, such as 2-edge connectivity and 2-node connec-
tivity; see Frederickson and Ja’Ja’ [14], Monma and Shallcross [27], Monma, Munson,
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and Pulleyblank [26], and Bienstock, Brickell, and Monma [4]. For constant k, this
last paper gives a constant-factor approximation algorithm for k-NCSS. Moreover,
the proof also shows that for metric graphs and any constant k, there exists a k-node
connected spanning subgraph of Kn whose cost is within a constant factor of the cost
of any k-edge connected spanning subgraph; see [4, section 4]. They left open the
question of extending these results to all k. This was followed by another burst of
research, partly initiated by the work of Goemans and Bertsimas [15] who presented a
logarithmic approximation algorithm for a general model called the edge-connectivity
survivable network design problem (EC-SNDP), assuming metric costs. Soon after
this, the research focus changed from metric costs to the more general setting of
nonnegative costs. Agrawal, Klein, and Ravi [1] and Goemans and Williamson [17]
built on the primal-dual method to obtain O(1)-approximation algorithms for some
special cases of EC-SNDP with small (i.e., 0 and 1) connectivity requirements. Later,
these methods were generalized to EC-SNDP, albeit with a logarithmic approximation
guarantee, by Goemans et al. [16], based on work by Williamson et al. [31]. This line
of research culminated with a 2-approximation algorithm for EC-SNDP by Jain [18].
Jain’s approximation guarantee of 2 is tight in the sense that his algorithm and anal-
ysis are based on an LP relaxation, and this has an integrality ratio of 2. But there
are no tight lower bounds from the hardness of approximation; i.e., an approximation
guarantee less than 2 for EC-SNDP has not been ruled out.

Although there was considerable interest in extending these methods to the set-
ting of node-connectivity, there was limited success even for rather special cases of
NC-SNDP. We mention a few results and refer the interested reader to [6] for more
references. For the case of nonnegative edge costs, the authors jointly with Vempala
[7] and Kortsarz and Nutov [22] gave logarithmic (or worse) approximation guarantees
for the k-NCSS problem. For metric costs, there is an O(1)-approximation algorithm
due to Khuller and Raghavachari [20], and there are other related results in [5, 23].
Some explanation for this lack of good approximation algorithms for NC-SNDP comes
from the recent hardness-of-approximation results of Kortsarz, Krauthgamer, and Lee
[21]. Also, see the surveys by Frank [13], Khuller [19], and Stoer [28], and the book
by Vazirani [30].

We briefly mention the relationship between our work and the stream of exciting
recent results on PTAS (polynomial-time approximation schemes) for related prob-
lems. Beginning with the results of Arora [2] on the Euclidean TSP, many PTAS have
been obtained for problems in “geometric network design” where the edge costs come
from special metrics such as the Euclidean metric; see [9, 10, 11, 25] and the refer-
ences in those papers. But, modulo P �= NP, such PTAS do not exist in the setting of
interest to us, namely, (general) metric costs; this follows from APX-hardness results
in [3, 21, 29].

The rest of the paper is structured as follows. In section 2, we discuss some
preliminaries and give an overview of our method for the metric-cost subset k-node-
connectivity problem. We present a constant-factor approximation algorithm for the
problem in section 3. Section 4 gives a constant-factor approximation algorithm for a
generalization. This leads to an O(log rmax)-approximation algorithm for the metric-
cost NC-SNDP in section 5.

2. Preliminaries and an overview of the algorithm for subset k-connec-
tivity. Apart from section 1, we omit the word “node” from terms such as “node-
connectivity” when there is no danger of ambiguity.

Let the input graph be G = (V,E). We denote the nodes by numbers i =
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1, 2, . . . , n, and for nodes i, j the edge between them is denoted ij. The cost of an edge
ij ∈ E is denoted cij or c(i, j). Throughout, we assume cij > 0 ∀ij ∈ E. The costs are
said to be metric if the triangle inequality holds: c(v, w) ≤ c(v, u)+ c(u,w) ∀u, v, w ∈
V . Whenever we assume metric costs, we also assume that G is the complete graph.
Let k be an integer such that n > k ≥ 1 (k may be a function of n). For a graph H and
a pair of nodes i, j, let κH(i, j) denote the maximum number of openly node-disjoint
i, j-paths in H. Recall that T denotes the set of terminal nodes. We use n′ to denote
|T |, and we assume T = {1, . . . , n′}.

Let us formalize the lower bounds (i) and (ii) for the subset [k, 1.5k]-connectivity
problem stated in section 1. For each terminal node i, let Γi denote the set of ri nearest
neighbors of i; by convention, i �∈ Γi. (Thus |Γi| = ri and ∀x ∈ Γi, y �∈ Γi∪{i}, ciy ≥
cix.) Then note that σi denotes

∑
x∈Γi

cix. Also, for each terminal node i, let μi

denote σi/ri, namely, the average cost of an edge from i to one of its ri nearest
neighbors. Note that each terminal node i has at least ri neighbors in an optimal
subgraph; thus opt ≥ 1

2σ(T ). This gives the first lower bound. Next, we claim

that opt ≥ k
2mst(T ). In more detail, we have opt ≥ 1

2ecopt(T, 2k) ≥ k
2mst(T ),

where ecopt(T, λ) denotes the minimum cost of a λ-edge connected subgraph of
G[T ] (allowing multiedges). To see this, start with a graph corresponding to opt, and
take two copies per edge to get an Eulerian multigraph H ′ that is 2k-edge connected
on T , then apply the Lovász–Mader splitting-off theorem [24, Example 6.51], [13] to
eliminate all nodes of V − T from H ′ to get a 2k-edge connected multigraph on the
node set T that has cost ≥ ecopt(T, 2k). Then we apply the well-known fact that
ecopt(T, λ) ≥ λ

2 mst(T ). For metric costs, splitting off edges does not increase the

cost. This gives the second lower bound: opt ≥ k
2mst(T ).

We first give an overview of our method for subset k-connectivity by describing
a key special case where k is even, say k = 2�, and the sets {i} ∪ Γi of the terminals
i are pairwise disjoint (that is, ({i} ∪ Γi) ∩ ({j} ∪ Γj) = ∅ ∀i �= j ∈ T ). Arbitrarily
name the nodes in Γi as i1, i2, . . . , ik ∀i ∈ T . Construct a cheap cycle Q on the
terminals using the well-known MST-doubling heuristic for the TSP. (Start with an
MST of the subgraph induced by T , replace each edge by two copies, and shortcut
the resulting connected Eulerian graph to get a cycle Q with V (Q) = T and c(Q) ≤
2mst(T ).) Let the sequence of terminals on Q be 1, 2, . . . , n′, 1 (renumber the nodes
if needed). For each τ = 1, . . . , �, construct a cycle Qτ “parallel” to Q, where Qτ =
1τ , 1�+τ , 2τ , 2�+τ , 3τ , . . . , (n

′ − 1)�+τ , n
′
τ , n

′
�+τ , 1τ . (See Figure 1; informally, start

with the cycle 1τ , 2τ , . . . , n
′
τ , 1τ , and then for each i = 1, . . . , n′ insert the node i�+τ

between nodes iτ and (i + 1)τ ; see the next paragraph for some discussion on our
notation.) Let us refer to these cycles as tracks. It can be seen that a track Qτ has
cost c(Qτ ) ≤ c(Q) +

∑t
i=1 2(c(i, iτ ) + c(i, i�+τ )) (see the second subroutine below),

and the total cost of the tracks is
∑�

τ=1 c(Qτ ) ≤ � · c(Q) + 2σ(T ). Finally, for each
terminal i ∈ T , we add the k edges ii1, ii2, . . . , iik. The resulting subgraph is our
solution graph H; it has cost c(H) ≤ 2� · mst(T ) + 3σ(T ) ≤ 2opt + 6opt = 8opt.
Note that each terminal has precisely two neighbors in each track. Thus H satisfies
the connectivity requirements, because for every pair of terminals i, j(i �= j), each of
the k/2 tracks contributes two openly disjoint i, j paths.

Our algorithms in sections 3 and 4 rely on the notion of tracks. As above, we start
with a cycle Q on a subset of the terminals such that c(Q) ≤ 2mst(T ); Q is computed
by the MST-doubling heuristic for the TSP. We index the terminals according to
their ordering in Q as 1, 2, . . . , n∗, where n∗ = |V (Q)|, and the terminals not in Q
get indices higher than n∗. We have tracks Q1, Q2, . . . , Q�, where each is a cycle
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Fig. 1. A key special case of the algorithm. Here, k = 6, T = {1, 2, 3, 4}, and the sets {i} ∪ Γi

(indicated by dotted blobs) for i ∈ T are pairwise disjoint. The tracks Q1, Q2, Q3 are indicated by
circles.

“parallel” to Q. In more detail, track Qτ (for τ = 1, . . . , �) has one or more nodes
from Γi for each terminal i = 1, 2, . . . , n∗; informally speaking, each terminal i in Q
“places” one or two nodes from Γi into Qτ , and it turns out that the name (or index)
of the “first” of these two nodes is essential information (global information). We
index the nodes in Γi as i1, i2, . . . , i�, . . . , ik such that node iτ (for τ = 1, . . . , �) is the
“first” node from Γi placed in the track Qτ ; the index of the second node (if any)
from Γi placed in Qτ is implicit in the algorithm but is not relevant here. Thus the
track Qτ (for τ = 1, . . . , �) has the form 1τ , ., 2τ , ., 3τ , ., . . . , n

∗
τ , ., 1τ , where the “.”

denotes that there may or may not be a node iq (q > �) between the nodes iτ and
(i + 1)τ . (Although each terminal i in Q places ≤ 2 nodes from Γi into a track Qτ ,
the track may have > 2 nodes from Γi since some other terminal j may place a node
from Γj ∩ Γi as its second node in Qτ ; as stated already, we will explicitly reference
only the “first” node placed into Qτ by a terminal.)

The algorithm uses the following two subroutines. Note that the solution graph
H is simple, so when we add edges to H we do so without creating multiedges.

• The first subroutine copies a specified set of neighbors of a terminal i to
another terminal v (possibly, v is adjacent to i). More precisely, given a
terminal i and a specified set of neighbors of i, call it Ni, and another terminal
v, the subroutine adds an edge vx to H for each node x ∈ Ni (without creating
multiedges or loops in H). After this step, κH(i, v) ≥ |Ni|. The cost of the
new edges is ≤ |Ni| c(i, v) +

∑
x∈Ni

c(i, x).
• The other subroutine starts with a cycle containing a terminal i and inserts

new node(s) into the cycle. Given a cycle Q′, a terminal i in Q′, and a node
x �∈ V (Q′), we first add two copies of the edge ix to Q′ to get a connected Eu-
lerian graph. Then we shortcut this Eulerian graph (as in the MST-doubling
heuristic for the TSP) to obtain a new cycle Q with node set V (Q′) ∪ {x}.
The increase in cost is ≤ 2c(i, x).

It is important for our analysis to get good upper bounds on the costs of the
tracks. Note that the tracks are pairwise node-disjoint; thus each terminal is in
at most one track. But, for upper-bounding the track costs, we use the following
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accounting trick. Consider any track Qτ . We assume that the track initially consists
of all the terminals, thus V (Qτ ) = T , and using the MST-doubling heuristic we have
c(Qτ ) ≤ 2mst(T ). Subsequently, the algorithm may insert new nodes into the track—
such insertions occur while we are processing some terminal—thus for inserting node
x while processing terminal i the cost c(Qτ ) increases by ≤ 2c(i, x). Possibly, x may
be another terminal—in that case, we implicitly remove x from Qτ and then insert
x via the double-edge ix. At the end of the execution, we keep only those terminals
that were explicitly inserted into Qτ and remove all the other terminals from Qτ ;
clearly, this does not increase the cost c(Qτ ). Note that this “historical view” of Qτ
is needed only for upper-bounding the cost. Other than this, it may be easier to view
the tracks as being pairwise node-disjoint all through the execution, and this is the
viewpoint we use in presenting the detailed algorithm.

3. The algorithm for subset k-connectivity. This section is devoted to an
algorithm and proof for Theorem 1. The detailed algorithm follows. An analysis of
the cost of the edges added to H (the solution graph) is given after the algorithm.
A terminal may be in two states, active or inactive. Initially, all the terminals are
active. Let � denote �k/2�. Initially, H is the graph consisting of all the terminal
nodes and no edges; thus H = (T, ∅).

(1) [deactivate terminals and construct disjoint balls for active

terminals]
Renumber the terminals as 1, 2, . . . , n′ by increasing value of μ; thus μ1 ≤
μ2 ≤ · · · ≤ μn′ .
Note: μh ≤ μj iff σh ≤ σj .
Scan the terminals in the order 1, 2, . . . , n′, and skip the current terminal if
it is inactive. Let α = 2 and β = 2. For an active terminal i, let Bi be the
subset of Γi consisting of the � nearest neighbors of i (excluding i), and name
the nodes in Bi as i1, i2, . . . , i�. Note that |Bi| = �, i /∈ Bi, and ∀x ∈ Bi, y /∈
Bi ∪ {i} we have cix ≤ ciy. A key fact is that cix ≤ αμi = 2μi ∀x ∈ Bi.
(Otherwise, we have ≥ k/α = k/2 nodes x in Γi with c(i, x) > αμi = ασi/k,
so the sum of c(i, x) over these nodes is > σi, and hence

∑
x∈Γi

c(i, x) > σi, a
contradiction.) Thus Bi may be viewed as a “ball” with center i and radius
≤ αμi that has the � nearest neighbors of i (excluding i).
For each active terminal v > i, if civ ≤ (αμi + βαμv), then make v inactive
and record i as the parent of v by assigning p(v) = i. (The aim is to ensure
that the sets Bi of active terminals i are pairwise disjoint.) Also note that
μp(v) ≤ μv for each inactive terminal v.

(2) [construct � tracks on the disjoint balls]
After step (1), let T ∗ denote the set of active terminals, and let n∗ = |T ∗|.
If n∗ < 3, then apply step (2′) and stop. Otherwise, construct a cheap
cycle Q on the active terminals by applying the MST-doubling heuristic for
the TSP to the subgraph induced by T ∗. Renumber the terminals such that
Q = 1, 2, . . . , n∗, 1; that is, the active terminals get the numbers in {1, . . . , n∗}
according to their ordering in Q. Construct � tracks Q1, Q2, . . . , Q�, where
track Qτ = 1τ , 2τ , . . . , n

∗
τ , 1τ (τ = 1, . . . , �). Add all the tracks (but not the

cycle Q) to H. The cost of the tracks constructed in this step is analyzed in
Proposition 6 below.

(2′) [special handling for one or two active terminals]
Skip this step if n∗ ≥ 3. Suppose n∗ = 1. Let the active terminal be i. Add
all the edges iv, v ∈ Γi, and then for each inactive terminal j, copy the set
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Γi of neighbors of i to j. The resulting graph H satisfies the connectivity
requirements.
Suppose n∗ = 2. Let the active terminals be h, i, with σh ≤ σi. Add all
the edges hq, q ∈ Γh, and iv, v ∈ Γi. Then add a matching M of maximum
size between the nodes in Γi − (Γh ∪ {h}) and in Γh − (Γi ∪ {i}); now, each
matching edge qv (say, q ∈ Γh − {i} and v ∈ Γi − {h}) gives an h, i path,
namely, h, q, v, i. Finally, for each inactive terminal j, copy the set Γp(j)

of neighbors of p(j) to j. The resulting graph H satisfies the connectivity
requirements.

(3) [augment disjoint balls and assign token arcs]
In summary, this step scans the active terminals i and augments each “ball”
Bi to get an “augmented ball” B′

i (that ideally has |B′
i| = ri = k) such that

these augmented balls are pairwise disjoint. The obvious construction for
B′

i is to start with Bi and then add the nodes from Γi − Bi, but then the
augmented balls may intersect. We “deintersect” two intersecting sets B′

h

and B′
i, while preserving the balls Bh and Bi, by assigning so-called token

arcs to the active terminals such that for each active terminal i, |B′
i| plus the

number of token arcs assigned to i is equal to ri = k; for each node q ∈ Γi,
we either keep q in B′

i or not, and if we do not keep q, then we assign to i
a token arc of cost ≤ 3ciq. Later, in step (4), we handle the token arcs, by
examining each token arc (i, j) and adding an edge iv to H such that the
cost of the new edge is no more than the cost of the token arc; the end nodes
of the new edge are partly specified by the end nodes of the token arc. The
details follow.
Scan the active terminals i = 1, 2, . . . , n∗ in order of increasing μi values; we
resolve any “ties” by using the index; i.e., if h < j and μh = μj , then h

precedes j in our ordering. Start the scan of i ∈ T ∗ by defining B′
i := Γi.

If B′
i is disjoint from B′

h for all active terminals h that precede i in the
ordering, then continue with the next active terminal; otherwise, for each
active terminal h that precedes i in the ordering and has B′

h ∩ B′
i �= ∅,

examine the nodes in B′
h ∩B′

i in any order.
Note that h, i are active terminals, and μh ≤ μi; hence, chi ≥ αμh + βαμi.
Let q be any node in B′

h ∩ B′
i. We have two cases: either ciq ≥ chq or not.

Suppose ciq ≥ chq; then we have

ciq ≥ 1

2
(ciq + chq) ≥

1

2
chi ≥

1

2
(αμh + βαμi) > αμi ≥ αμh,

where the last two inequalities hold because β = 2 and μi ≥ μh > 0. Note that
q /∈ Bi, since Bi has radius ≤ αμi. We remove q from B′

i and give to i a token
arc (i, h) with cost 3ciq. (Later, this token arc will be replaced by an edge ix,
where x ∈ Bh; note that the cost of ix is ≤ ciq+chq+chx ≤ 2ciq+αμh ≤ 3ciq.)
See Figure 2 for an illustration.
In the other case, we have chq ≥ ciq, and moreover, chq ≥ 1

2 (αμh + βαμi) >
αμi ≥ αμh. Note that q /∈ Bh, since Bh has radius ≤ αμh. We remove q
from B′

h and give to h a token arc (h, i) with cost 3chq. (Later, this token
arc will be replaced by an edge hx, where x ∈ Bi; note that the cost of hx is
≤ chq + ciq + cix ≤ 2chq + αμi ≤ 3chq.)
After step (3), note that the sets B′

i of the active terminals i are pairwise
disjoint; for each active terminal i, the number of token arcs given to i plus
|B′

i| is ri = k, and the cost of each token arc (i, j) given to i depends on the
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Fig. 2. An illustration of step (3) in section 3: the “dashed edge” iq is replaced by a token arc
ih that is later (in step (4)) replaced by an edge ix, x ∈ Bh.

cost of the associated edge iq, where q ∈ Γi, and is 3ciq.
(4) [attach active terminals to tracks]

In summary, this step scans each active terminal i and adds edges from i to
the tracks such that each track Qτ , τ = 1, . . . , k/2�, gets two neighbors of i,
and the last track Q� gets ≥ 1 neighbor of i.
First add edges from i to each of i1, i2, . . . , i�; also, mark the nodes i1, i2, . . . , i�
as used.
Then for each τ = 1, 2, . . . , k/2� do the following. If an unused token arc
(i, h) is available, then choose it, mark it as used, and add the edge ihτ ; note
that hτ is in Bh and is the “first neighbor” of h in track Qτ . By the discussion
in step (3), c(i, hτ ) is ≤ the cost of the token arc (i, h). If no unused token
arcs are available, then choose an unused node q ∈ B′

i, mark it as used, insert
q into track Qτ , and add the edge iq. (Note that the number of token arcs
given to i plus |B′

i| is k; hence, this step will find k/2� token arcs or unused
nodes, excluding the nodes i1, i2, . . . , i�.)
For each active terminal i, let Ni denote the set of neighbors of i in the tracks,
just after step (4) is applied to i.

(5) [attach inactive terminals to tracks]
Finally, “attach” the inactive terminals to the tracks. Note that an inactive
terminal may already be in one of the tracks. For each inactive terminal j,
copy the set of neighbors Np(j) of the parent p(j) to j.

Proposition 5. The cost of the graph constructed in step (2′) is ≤ 16opt.
Proof. Suppose n∗ = 1, and let i be the (unique) active terminal. Then c(H) ≤

σi+
∑

j∈T−T∗(kcij +σi) ≤ σi+
∑

j∈T−T∗(k(αμi+βαμj)+σi) ≤ σi+
∑

j∈T−T∗(α(1+
β)σj + σj) ≤ 7σ(T ) ≤ 14opt (we have α = 2, β = 2, and we used σi ≤ σj for an
inactive terminal j).

Suppose n∗ = 2, and let i, h be the two active terminals. Then recall that M
denotes a matching of maximum size between the nodes in Γi − (Γh ∪ {h}) and in
Γh−(Γi∪{i}); note that an edge qv ∈ M (say, q ∈ Γh, v ∈ Γi) has cost ≤ chq+chi+civ;
hence, c(M) ≤ σh + σi + k · mst(T ). The other edges in H contribute a cost of
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≤ σh + σi +
∑

j∈T−T∗(α(1 + β)σj + σj) (as in the analysis for n∗ = 1), and hence,
c(H) ≤ 7σ(T ) + k · mst(T ) ≤ 16opt.

Proposition 6. (i) The total cost of the edges added by step (4) and incident to
an active terminal i is ≤ 3σi. (ii) At the end of step (4), the total cost of the � tracks
is ≤ 2� · mst(T ) + 2σ(T ∗).

Proof. For an active terminal i and a node x ∈ Γi, we either (a) add the edge
ix to H or (b) find that x has been removed from B′

i (in step (3)), instead a token
arc of cost ≤ 3cix being given to i, and we add an edge incident to i of cost ≤ 3cix
(in step (4), when we handle the token arc). Thus the total cost of the added edges
incident to i is ≤ 3σi.

The total cost of the � tracks (that were constructed in step (2) and modified in
step (4)) is ≤ 2� · mst(T ) + 2σ(T ∗). To see this, first consider the term 2� · mst(T ).
Recall (from section 2) the accounting trick we use for upper-bounding the cost of a
track; due to this, we take the upper bound on the cost of Q (the cheap cycle on T ∗

in step (2)) to be 2mst(T ) rather than 2mst(T ∗). Summed over � tracks, this gives
2� ·mst(T ). For the second term, note that i ∈ T ∗ contributes ≤

∑
q∈B′

i
2c(i, q), and

this is ≤ 2σi (since B′
i ⊆ Γi).

Proposition 7. The total cost of the edges added by step (5) and incident to the
inactive terminals is ≤ 9σ(T − T ∗).

Proof. Suppose that the cost of the added edges incident to an active terminal
i is ≤ γσi. (From Proposition 6, we have γ = 3.) Then the cost of the edges added
for an inactive terminal j with parent i is ≤ k · cij + γσi ≤ k(αμi + βαμj) + γσi ≤
(α(β + 1) + γ)σj , using the fact that σp(j) ≤ σj . Thus the total cost of the edges
added in this step is ≤ 9σ(T − T ∗), using α = 2, β = 2, γ = 3.

Proof of Theorem 1. If step (2′) is executed, then Proposition 5 shows that the
total cost of H is ≤ 16opt. Otherwise, by the above propositions, the total cost of H
is ≤ 2�·mst(T )+2σ(T ∗)+γσ(T ∗)+9σ(T−T ∗) ≤ (k+1)mst(T )+5σ(T ∗)+9σ(T−T ∗) ≤
(k + 1)mst(T ) + 9σ(T ) ≤ (2 + 2

k )opt + 18opt ≤ 22opt.
We claim that the graph H has the required connectivity property, namely,

κH(i, j) ≥ k ∀i �= j ∈ T . To see this, consider any pair of terminals i, j, and
consider any one track Qτ . Suppose that either i is in Qτ , or i is not in Qτ but has
two neighbors in Qτ . Suppose that the same statement holds for j (that is, j is in
Qτ , or j is not in Qτ but has two neighbors in Qτ ). Then, Qτ (together with the
edges from i and j to Qτ ) contributes two openly disjoint i, j-paths. Similarly, Qτ

contributes one i, j-path if both i and j either are in Qτ or have a neighbor in Qτ .
By construction, each active terminal has two neighbors in each of the tracks Qτ for
τ = 1, . . . , k/2�, and has a neighbor in Q�; similarly, each inactive terminal is either
in Qτ or has two neighbors in Qτ for τ = 1, . . . , k/2�, and is in Q� or has a neighbor
in Q�. Then, for any two terminals i and j, H has k openly disjoint i, j-paths, since
each of the tracks Qτ for τ = 1, . . . , k/2� contributes two openly disjoint i, j-paths,
Q� contributes an i, j-path, and these k paths together are openly disjoint.

4. The algorithm for subset [k, 1.5k]-connectivity. In this section, we ex-
tend the methods of the previous section to obtain an O(1)-approximation algorithm
for the the subset [k, 1.5k]-connectivity problem. It seems likely that these methods
will give similar results for the subset [k, ρ k]-connectivity problem, for any constant
ρ, 1 ≤ ρ < 2, but they do not extend to ρ = 2 for the following reason: As in section 3,
we choose some terminals to be active, and we construct pairwise-disjoint sets Bi of
radius O(1)μi for the active terminals i, where Bi has at least a fraction φ of the
nodes in Γi (φ = 1

2 in section 3); our method assumes φ ≥ ρ
2 , i.e., that the size of
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every set Bi is at least half the maximum requirement. Then, for ρ = 2 and an active
terminal i with ri = k we need |Bi| ≥ k = |Γi|, and this is not possible for sets of
radius O(1)μi. Our main application is to the NC-SNDP, and for this any constant
ρ > 1 suffices; we choose ρ = 1.5 for convenience.

The main difficulty in extending the methods of section 3 comes from the fact
that an active terminal i may have an inactive terminal v with rv > ri as a child.
Then we cannot satisfy the connectivity requirement of v by copying the neighbors of
i to v. Roughly speaking, We handle this as follows: We pick a child v∗ of i with the
maximum requirement and copy all the neighbors of i to v∗; then, if needed, we add
new neighbors for v∗ in the tracks by examining the nodes x ∈ Γv∗ . If x ∈ B′

h for some
active terminal h, then we proceed similarly to step (3) of section 3 (though there are
new complications); otherwise, either we insert x as a new node into a track or we
“transform” to the case of x ∈ B′

h. For any other inactive child v of i, we attempt to
copy the “first” rv neighbors of v∗ to v. This is an informal (and inaccurate) overview;
the details are given below. The main contribution of this section is an algorithm and
proof for the following restricted case of Theorem 3.

Theorem 8. Let k be an integer multiple of 4, thus k = 0 (mod 4). There is
polynomial-time algorithm for computing a solution to the metric-cost subset [k, 1.5k]-
connectivity problem of cost ≤ O(1) · opt.

Remark. A loose analysis gives a constant factor between 500 and 600 in the
above theorem.

Theorem 3 follows by combining this theorem with Theorem 1. To see this,
suppose that k �= 0 (mod 4) (otherwise, we are done). Let k̂ ≥ k denote the next

integer multiple of 4; clearly, k̂ − k ≤ 3. Then for each ρ = k, k + 1, . . . , k̂ − 1,
we apply the algorithm in Theorem 1 to the following instance Π(ρ) of the subset
ρ-connectivity problem to obtain a solution subgraph H(ρ): we take the requirement
of a terminal i in Π(ρ) to be r′i = 0 if ri < ρ, and we take r′i = ρ if ri ≥ ρ;
the rest of the instance stays the same. Finally, we apply the algorithm of this
section to the instance of subset [k̂, 1.5k̂]-connectivity, where we take the requirement

of a terminal i to be r′i = 0 if ri < k̂, and we take r′i = ri if ri ≥ k̂; the rest
of the instance stays the same. Let H ′ be the solution subgraph. Then, for the
original instance (of subset [k, 1.5k]-connectivity), we output the solution subgraph

H∗ = H(k)∪H(k+1)∪· · ·∪H(k̂−1)∪H ′, whose cost is at most O(1)opt. To see that
H∗ satisfies the connectivity requirements, note that for every pair of terminals i, j,
one of the subgraphs forming H∗ (namely, one of H(k), H(k + 1), . . . , H(k̂ − 1), H ′)
has min(ri, rj) openly disjoint i, j-paths.

Assume that k is an integer multiple of 4. Let � denote 3k/4. For any terminal i
and any edge ix of the complete graph, let c̃ix = c̃(i, x) denote the normalized edge
cost max(cix, μi).

The detailed algorithm follows. A terminal may be in two states, active or inac-
tive. Initially, all the terminals are active, and H is the graph consisting of all the
terminal nodes and no edges; thus H = (T, ∅). See Appendix B for a summary of the
notation.

(1) [deactivate terminals and construct disjoint balls for active

terminals]
Renumber the terminals as 1, 2, . . . , n′ by increasing value of μ; thus μ1 ≤
μ2 ≤ · · · ≤ μn′ .
Note: μh ≤ μj does not imply σh ≤ σj since the requirements may differ, but
we do have σh ≤ 1.5σj since k ≤ rh, rj ≤ 1.5k.



NETWORK DESIGN WITH METRIC COSTS 623

Scan the terminals in the order 1, 2, . . . , n′, and skip the current terminal
if it is inactive. Let α = 4 and β = 2. For an active terminal i, let Bi

be the subset of Γi consisting of the � nearest neighbors of i (excluding i),
and name the nodes in Bi as i1, i2, . . . , i�. Note that |Bi| = �, i /∈ Bi, and
∀x ∈ Bi, y /∈ Bi∪{i} we have cix ≤ ciy. A key fact is that cix ≤ αμi ∀x ∈ Bi.
(Otherwise, we have ≥ ri − � ≥ ri − 3

4ri = ri/4 ≥ k/α nodes x in Γi with
c(i, x) > αμi = ασi/k, so these nodes contribute > σi to

∑
x∈Γi

c(i, x).) Thus
Bi may be viewed as a “ball” with center i and radius ≤ αμi that has the �
nearest neighbors of i (excluding i).
For each active terminal v > i, if civ ≤ (αμi + βαμv), then make v inactive
and record i as the parent of v by assigning p(v) = i. (The aim is to ensure
that the sets Bi of active terminals i are pairwise disjoint.) Also note that
μp(v) ≤ μv for each inactive terminal v.

(2) [construct � tracks on the disjoint balls]
After step (1), let T ∗ denote the set of active terminals, and let n∗ = |T ∗|.
If n∗ < 3, then apply step (5′) and stop. Otherwise, construct a cheap cy-
cle Q on the active terminals by applying the MST-doubling heuristic for
the TSP to the subgraph induced by T ∗. Renumber the terminals such that
Q = 1, 2, . . . , n∗, 1; that is, the active terminals get the numbers in {1, . . . , n∗}
according to their ordering in Q. Construct � tracks Q1, Q2, . . . , Q�, where
track Qτ = 1τ , 2τ , . . . , n

∗
τ , 1τ (τ = 1, . . . , �). Moreover, we have a special

track Q0 = Q; this track is used to satisfy the requirements of inactive termi-
nals, but not the requirements between active terminals. Add all the tracks to
H. Note that an inactive terminal may be in one of the tracks Q1, Q2, . . . , Q�,
although none of the active terminals are in those tracks. (Although the tracks
are similar to each other, our construction distinguishes between the tracks
and relies on the ordering of the tracks given by the track indices 0, 1, 2, 3, . . . .)

(3) [augment disjoint balls and assign token arcs]
This step is the same as step (3) in the algorithm for subset k-connectivity
in section 3, except that some parameters are different: Here, we have α = 4,
β = 2, � = 3k

4 .
After step (3), note that the sets B′

i of the active terminals i are pairwise
disjoint; each such set has size ≥ (3k/α) = (3k/4) (since B′

i ⊇ Bi and
|Bi| = 3k/α); moreover, for each active terminal i, the number of token arcs
given to i plus |B′

i| is equal to ri, and the cost of each token arc (i, j) given
to i depends on the cost of the associated edge iq, where q ∈ Γi, and is 3ciq.

(4) [attach active terminals to tracks]
In summary, this step scans each active terminal i and adds edges from i to
the tracks such that i has a neighbor iτ in each of the tracks Qτ , τ = 1, . . . , �,
and moreover, i has a second neighbor in each of the ri − � tracks Qτ , τ =
1, . . . , ri − �. We call iτ the inner neighbor of i in Qτ , and if i has another
neighbor x in Qτ , then we call x the outer neighbor of i in Qτ .
Note that the sets B′

j of the active terminals j are pairwise disjoint. In

step (4), every node added to a track is in B′
j for some active terminal j (this

can be seen from the description below). We call a node x free if x is in none
of the tracks of the current graph H. While processing a terminal v we may
find a free node x ∈ Γv, and we may insert x as the outer neighbor of v in
a track. Throughout the execution, x stays in the same track and stays as
the outer neighbor of v, but other terminals too may add x as their outer
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neighbor on that track.
We examine the active terminals in any order. Let i be the current active
terminal. First, we add edges from i to each of i1, i2, . . . , i�; also, we mark
the nodes i1, i2, . . . , i� as used (with respect to i). We start with the variable
τ = 1; this variable denotes the number of the track where the next outer
neighbor of i is placed.
If an unused token arc (i, h) is available, then we choose it, mark it as used,
add the edge ihτ , and increase τ by one; note that hτ is in Bh and is the
inner neighbor of h in track Qτ ; also, note that c(i, hτ ) is ≤ the cost of the
token arc (i, h). We repeat this step until there are no unused token arcs.
We choose an unused node x ∈ B′

i − Bi with minimum c(i, x), and mark it
as used w.r.t. i (note that x is a free node). Then we insert x into track
Qτ and add the edge ix, provided there exists no suitable “target terminal”
h �= i (the details are given below; note that the target terminal is defined
with respect to the cost cix). If a suitable h exists, then we discard x and add
the edge ihτ ; that is, we take the inner neighbor of h in Qτ to be the outer
neighbor of i in Qτ . (The reason for using an edge ihτ rather than ix is that
x is a free node now, but later we may find that x is essential for attaching
some inactive terminal v to the tracks, and at that step, we will be forced to
“replace” the edge ix by some other edge iy; to avoid such “replacements”
we look ahead, and we use the edge ix only if there are no “future conflicts”
for x.)
The details are as follows. We check whether there exists an active terminal
h �= i such that

hop-rule c(i, h) ≤
(

2 +
α(β + 1)

2

)
c(i, x) ≤ 8c(i, x) and μh ≤ c(i, x).

If such an h exists, then we add the edge ihτ . Note that c(i, hτ ) ≤ c(i, h) +
αμh ≤ (8 + α)c(i, x) ≤ 12c(i, x). If no such h exists, then (as mentioned
before) we insert x into track Qτ and add the edge ix. (This causes an
increase of 2cix in the cost of the tracks and an increase of cix in the cost of
the edges from i to the tracks; we use these facts in the proof of Proposition 9
below.) In either case, we increase τ by one.
Note that the number of token arcs given to i plus |B′

i| is ri; hence, this step
will find ri token arcs or unused nodes (including the nodes i1, . . . , i�).
After all active terminals have been examined by step (4), it can be seen that
H satisfies the connectivity requirements of all active terminals.
For each active terminal i, let Ni denote the (ordered) set of neighbors of i in
the graph H−V (Q0) at the end of step (4). (Thus, Ni is the set of neighbors
attaching i to the other tracks—excluding the track Q0 containing i.) Note
that |Ni| = ri ∀i ∈ T ∗. Moreover, we order the nodes in each set Ni such
that the inner neighbors of i come first in the order i1, i2, . . . , i�, followed by
the outer neighbors in the order of their track numbers (the outer neighbor
in Q1, followed by the outer neighbor in Q2, . . . ).
Remark. The ordered sets Ni for i ∈ T ∗ are used in step (5), and there it is
critical that the total cost of the edges from i to the nodes in Ni is ≤ γσi for
a constant γ; in particular, none of these edge costs should be “charged” to
the mst lower bound.

(5) [attach inactive terminals to tracks]
Finally, “attach” each inactive terminal to the tracks.
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By a sibling of an inactive terminal v we mean either the parent p(v) or
another child of p(v). In summary, we first copy to v the neighbors of a
sibling, and then, if needed, we add additional neighbors via Γv—note that
v’s requirement rv may be much greater than that of any of its siblings, and
hence copying the neighbors of a sibling may not suffice. We also use the
special track Q0 to satisfy the requirements of inactive terminals. To see the
need for Q0 consider a child v of an active terminal i with rv = ri + 1 and
Γv = {i} ∪ Γi; we handle the requirement of v by adding the edge vi, thus
attaching v to Q0, and then copying the neighbors of i to v.
Focus on an active terminal i and its children, and let v∗ have the maximum
requirement among these terminals; assume that v∗ �= i (the other case is
easy). Step (5) attaches v∗ to the tracks via a neighbor in each of the � + 1
tracks Q0, Q1, . . . , Q� and two neighbors in each of the rv∗ − (� + 1) tracks
Q1, Q2, . . . , Qrv∗−(�+1). These neighbors of v∗ constitute the ordered set Nv∗ ;
we use our standard ordering; i.e., the neighbor i = p(v∗) in Q0 comes first,
followed by the inner neighbors in the tracks Q1, . . . , Q�, followed by the
outer neighbors, and further, the neighbors are ordered by their track number.
Similarly, we have an ordered set of neighbors Nv for each inactive terminal v,
where Nv is the (ordered) set of nodes x such that step (5)—while processing
v—adds an edge from v to x. (Possibly, v occurs in a track, but then neither
of the two neighbors of v in the track occurs in Nv unless step (5)—while
processing v—adds the edge from v to that node.) A key property of our
construction is that for each sibling v of v∗, Nv is a prefix of Nv∗ ; in particular,
for each τ ∈ {1, 2, . . . , rv − (�+1)}, the outer neighbor of v in track Qτ is the
same as the outer neighbor of v∗ in that track. (Thus, for siblings v1, v2, . . . ,
our construction makes the sets Nv1

, Nv2
, . . . “consistent” even though the

sets Γv1 ,Γv2
, . . . may have arbitrary intersections.)

We examine the active terminals i in order of increasing μi values, and we
examine the children v (of i) in order of increasing μv values. By a prior
sibling of v we mean either the parent p(v) or another child of p(v) that
precedes v in this ordering. For each child v of i, define the source terminal
of v, denoted p̂(v), to be a prior sibling with the maximum requirement;
furthermore, define the ordered set N0

v to be {p(v)} ∪ Np(v) if p̂(v) = p(v)
(i.e., the source terminal is the parent), and let N0

v = Np̂(v) otherwise.
If the requirement of v is ≤ |N0

v |, then we “copy” the first rv nodes of N0
v to

v; i.e., for each of the first rv nodes in the ordered set N0
v , we add an edge

from v to that node. Step (5) for v is finished after this.
If the requirement of v is > |N0

v |, then we “copy” all the nodes of N0
v to v;

i.e., for each of the nodes in N0
v , we add an edge from v to that node. We

mark all these new neighbors of v as used w.r.t. v.
Let τ ∈ {1, . . . , �} be the next available track for v; i.e., v has two neighbors
in each of the tracks Q1, . . . , Qτ−1 but has only one neighbor in each of the
tracks Qτ , . . . , Q�.
We repeat the following until step (5) has added a total of rv neighbors of
v. We pick an unused node x ∈ Γv with minimum cvx, and mark x as used
w.r.t. v. First, suppose that x is free. If the following version of the hop-rule
does not apply to cvx (i.e., there exists no h satisfying the rule), then we
insert x into track Qτ and add the edge vx. Also, we increase τ by one. This
causes an increase of 2cvx in the cost of the tracks, and an increase of cvx in
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the cost of the edges from v to the tracks; we use these facts in the proof of
Proposition 10 below.
To apply the modified hop-rule, we check whether there exists an active ter-
minal h �= i = p(v) such that

c(v, h) ≤ (2 + (β + 1)α)c̃(v, x) ≤ 14c̃(v, x) and μh ≤ c̃(v, x);

recall that c̃(j, y) denotes max(cjy, μj) for any terminal j and any y ∈ V . If
such an h exists, then we add the edge vhτ and we have c(v, hτ ) ≤ c(v, h) +
αμh ≤ (2 + (β + 2)α)c̃(v, x) ≤ 18c̃(v, x). Also, we increase τ by 1.
Now, suppose that x is not free. Then one of the following mutually exclusive
cases applies:
(a) x ∈ {h} ∪Nh for some active terminal h.
(b) x is in one of the tracks, and (a) does not apply.

Consider case (a). Note that h �= p(v) = i, because we added edges from v
to all nodes in N0

v ⊇ Ni ∪ {i} (and marked all those nodes as used w.r.t. v)
before picking x; hence, x �∈ Ni ∪ {i}. First, suppose that 2c̃(v, x) ≥ c̃(h, x).
(Remark. Parts of the following analysis remain valid if we replace 2 by 9

7 ,
but the approximation guarantee does not seem to improve substantially, so
we use 2 for convenience.) Then we discard x as a neighbor of v, and we
add the edge (v, hτ ) to H; i.e., the inner neighbor of h in Qτ is made the
outer neighbor of v in Qτ . Also, we increase τ by one. The new edge has cost
c(v, hτ ) ≤ c(v, x)+c(h, x)+αμh ≤ (1+2)c̃(v, x)+αμh ≤ (1+2+2α)c̃(v, x) ≤
11c̃(v, x).
Now, suppose that 2c̃(v, x) < c̃(h, x). Then we have a contradiction. To see
this, consider two mutually exclusive cases: (I) chx < μh, or (II) chx ≥ μh. In
case (I), we have c(h, i) ≤ c(h, x) + c(v, x) + c(v, i) < μh + c(v, x) + (βαμv +
αμi) ≤ μh + (1 + βα)c̃(v, x) + αμi = μh + 9c̃(v, x) + αμi (by α = 4, β = 2) <
αμi + (1 + 5)μh (by 9c̃(v, x) < 4.5c̃(h, x) = 4.5μh) < αμi + βαμh, and more-
over, μi ≤ μv ≤ c̃(v, x) < μh. To verify the contradiction, recall from step (1)
that for active terminals i, h with μi ≤ μh, we have c(h, i) ≥ αμi + βαμh.
See Figure 3 for an illustration. In case (II), we have a contradiction by the
hop-rule of step (4), because c(h, i) ≤ c(h, x) + c(v, x) + c(v, i) < 3

2c(h, x) +

(β + 1)αμv < (3+(β+1)α)
2 c(h, x) (by c̃(v, x) < 1

2 c̃(h, x) = 1
2chx) < 8c(h, x) and

μi ≤ μv ≤ c̃(v, x) < c(h, x). Thus the hop-rule of step (4) applies to h and
hx, so the active terminal h cannot use the edge hx. Hence, we cannot have
2c̃(v, x) < c̃(h, x).
Now, consider case (b). Let w be the first inactive terminal whose processing
by step (5) results in the addition of the edge wx (i.e., x changes from a free
node to a nonfree node when step (5) processes w). Let p(w) = h. Note
that h �= i (i.e., p(w) �= p(v)), otherwise, w is a prior sibling of v (since
the edge wx was added during the processing of w by step (5)), and for
every prior sibling u of v, each node in Nu is already used w.r.t. v (since
we added edges from v to all nodes in N0

v ⊇ Np̂(v)). First, suppose that
c̃(v, x) ≥ c̃(w, x). Then we discard x as a neighbor of v, and we add the
edge (v, hτ ) to H. Also, we increase τ by one. The new edge has cost
c(v, hτ ) ≤ c(v, x)+c(w, x)+c(h,w)+αμh ≤ 2c̃(v, x)+α(β+2)μw ≤ 2c̃(v, x)+
α(β + 2)c̃(v, x) ≤ (2 + α(β + 2))c̃(v, x) ≤ 18c̃(v, x). Now, suppose that
c̃(v, x) < c̃(w, x). Then we have a contradiction by the modified hop-rule of
step (5), because c(w, i) ≤ c(w, x)+c(v, x)+c(v, i) < 2c̃(w, x)+(β+1)αμv <
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Fig. 3. An illustration of step (5) case (a) in section 4, showing v, p(v) = i, the prior sibling
p̂(v) of v, Ni, and Np̂(v); the “dashed edge” vx is replaced by the edge vhτ since the active terminal
h has x ∈ Bh.

(2 + (β + 1)α)c̃(w, x) ≤ 14c̃(w, x) and μi ≤ μv ≤ c̃(v, x) < c̃(w, x). Thus the
modified hop-rule of step (5) applies to w and wx, so the inactive terminal w
cannot use the edge wx. Hence, we cannot have c̃(v, x) < c̃(w, x).
This completes the description of step (5).

(5′) [special handling for one or two active terminals]
Suppose that n∗ = 1 and T ∗ = {i}. Then we ignore the tracks altogether,
but we compute the ordered set Ni via step (4) applied to i, and the ordered
set Nv for each inactive terminal v by applying step (5) to v. We add the
edges from each terminal v (where v = i or v is a child of i) to all the nodes
in Nv.
Now, suppose that n∗ = 2 and T ∗ = {h, i}. We proceed as in steps (2)–(5),
except that we temporarily allow tracks that consist of exactly two nodes
and two copies of the edge between them. In particular, the special track Q0

consists of nodes h, i and two copies of the edge hi. At the end, for each track
consisting of exactly two nodes, we keep only one copy of the edge between
them; thus the solution graph H is simple.

Proposition 9. (i) The total cost of the edges added by step (4) and incident to
an active terminal i is ≤ 12σi. (ii) At the end of step (4), the total cost of the � + 1
tracks is ≤ (2� + 2)mst(T ) + 2σ(T ∗).

Proof. Recall the proof of Proposition 6. Similarly to that, for an active terminal
i and a node x ∈ Γi, we either add the edge ix to H, or we add an edge incident to
i of cost ≤ 3cix (via a token arc), or we add an edge incident to i of cost ≤ 12cix
(via the hop-rule of step (4)). Thus the total cost of the added edges incident to i is
≤ 12σi. This proves part (i).

For part (ii), observe that the total cost of the �+1 tracks (that were constructed
in step (2) and modified in step (4)) is ≤ (2�+2)mst(T )+2σ(T ∗); for the second term,
note that the contribution of i ∈ T ∗ is ≤ 2σi. (In steps (4) and (5), while processing
a terminal v, we may insert a node x ∈ Γv into a track; this increases the cost of the
track by ≤ 2cvx.)

Proposition 10. (i) The total cost of the edges added by step (5) or (5′) and
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incident to an inactive terminal v is ≤ 294σv. (ii) The total increase in the cost of
the tracks in step (5) or (5′) is at most 2σ(T − T ∗).

Proof. We claim that the cost of the added edges for an inactive terminal v with
parent i is ≤ 294σv. Let γ be a constant such that the cost of the added edges
incident to an active terminal i is ≤ γσi. (From step (4) and Proposition 9, we have
γ = 12.) First, note that if rv ≤ rp(v), then the cost of the added edges incident to
v is given by the cost of copying rv neighbors from the parent p(v), and this cost is
≤ γσp(v) + rv · c(v, p(v)) ≤ 1.5γσv + rv · (β + 1)αμv ≤ (1.5γ + (β + 1)α)σv ≤ 30σv.
Now, assume that rv ≥ rp(v), and hence σv ≥ σp(v).

First, consider the cost incurred in copying the neighbors of the source terminal
p̂(v). This cost consists of two components, (i) the cost of copying rp(v) ≤ rv neighbors
from the parent p(v), and (ii) the cost of copying the remaining (at most rp̂(v)−rp(v) ≤
k/2) nodes from Np̂(v). The component (i) is ≤ γσp(v) + rv · c(v, p(v)) ≤ γσv + rv ·
(β + 1)αμv ≤ (γ + (β + 1)α)σv ≤ 24σv.

Now, consider component (ii). We claim that component (ii) is ≤ 246σv. Consider
any node y ∈ Np̂(v) − Np(v). Let w be the first (earliest processed) sibling of v that
has an edge wy (i.e., step (5) added the edge wy while processing w, and no prior
sibling u of w has y ∈ Nu); possibly, w �= p̂(v). Call w the sponsor of y. By
examining the details of step (5), it can be seen that for each node y ∈ Nw −Np̂(w),
there exists a distinct node y′ ∈ Γw such that c(w, y) ≤ 18c̃(w, y′). Thus for each
node y ∈ Np̂(v) − Np(v), the sponsor w of y has a distinct node y′ ∈ Γw such that
c(w, y) ≤ 18c̃(w, y′). Moreover, there is a distinct node x′ ∈ Γv such that c(w, y′) ≤
24μv + c(v, x′). To see this, recall that μw ≤ μv, and first note that c(v, w) ≤
c(v, p(v)) + c(p(v), w) ≤ 2(β + 1)αμv ≤ 24μv; next, focus on the nodes xj in Γv

ordered by increasing cost of the edge vxj , say x1, x2, . . . , xrv ; suppose that y′ is the
sth closest neighbor of w. Then note that c(w, y′) ≤ 24μv + c(v, xs) because each of
the nodes xj in Γv has c(w, xj) ≤ c(v, w) + c(v, xj); hence, for each of the s nodes xj ,
j = 1, . . . , s, we have c(w, xj) ≤ 24μv+c(v, xj). Moreover, c(v, y) ≤ c(v, w)+c(w, y) ≤
24μv + c(w, y). Hence, for each node y ∈ Np̂(v) −Np(v), there is distinct node x′ ∈ Γv

such that c(v, y) ≤ 24μv + 18(24μv + c(v, x′)) ≤ 456μv + 18c(v, x′) (since μw ≤ μv

and c(w, y) ≤ 18c̃(w, y′) ≤ 18(24μv + c(v, x′)), where w and y′ are as above). Then,
summing over all nodes y ∈ Np̂(v) −Np(v), we see that the total cost of these edges vy
is ≤ (|Np̂(v) −Np(v)|)(456μv)+18σv ≤ (k/2)(456μv)+18σv ≤ 228σv +18σv ≤ 246σv.

Finally, consider the total cost of the edges from v to the nodes in Nv − Np̂(v).
As mentioned above, for each node y ∈ Nv − Np̂(v), there exists a distinct node
y′ ∈ Γv such that c(v, y) ≤ 18c̃(v, y′). Also, |Nv −Np̂(v)| ≤ rv − k, and for each node
y′ ∈ Γv we have c̃(v, y′) ≤ μv + c(v, y′). Hence,

∑
{c(v, y) : y ∈ Nv − Np̂(v)} ≤

(rv − k) · 18μv + 18σv ≤ 36σv − 18kμv ≤ 36σv − 18( 2rv
3 )μv = 24σv.

Summing the three contributions (from components (i), (ii), and the previous
paragraph), we see that the total cost of the edges added (by step (5) or (5′)) incident
to an inactive terminal v is ≤ (24 + 246 + 24)σv ≤ 294σv.

The total increase in the cost of the tracks in step (5) or (5′) is at most 2σ(T−T ∗),
because during the processing of an inactive terminal v, the step may insert each node
x ∈ Γv into the tracks at an incremental cost of 2c(v, x). This completes the proof of
the proposition.

Remarks. The constant factor in the above proposition is not optimal. We did
not optimize the analysis, to avoid further complications.

Proof of Theorem 8. We claim that the cost of the solution subgraph H is c(H) ≤
600opt = O(1)opt. By Propositions 9 and 10 and using k ≥ 4, we have c(H) ≤
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(2σ(T ∗) + 2σ(T − T ∗) + (2� + 2)mst(T )) + (12σ(T ∗) + 294σ(T − T ∗)) ≤ 296σ(T ) +
(4)(k2 )mst(T ) ≤ 600opt.

We claim that the solution subgraph H satisfies the connectivity requirements.
Consider any pair of inactive terminals s, t. (The proof is similar but simpler for a
pair of active terminals, or for one active and one inactive terminal.) First assume
that there are at least three active terminals (that is, |T ∗| ≥ 3). Without loss of
generality let rs = min(rs, rt). We claim that H has rs openly disjoint s, t-paths.
Recall that each inactive terminal v has inner neighbors on all � + 1 tracks, and has
outer neighbors on the first rv − (�+1) tracks among Q1, . . . , Q�. (An active terminal
v has at least rv − � tracks that have outer neighbors.) It follows that we have have
� + 1 + rs − (� + 1) = rs openly disjoint s, t-paths using these tracks. (One of these
s, t-paths consists of a path of the special track Q0 = Q and the edges sp(s) and
tp(t).)

Clearly, the connectivity requirements hold for the case of |T ∗| = 1. Now, suppose
that |T ∗| = 2. The above arguments still apply unless both s and t have inner and
outer neighbors on a track that consists of exactly two nodes, call them x and y. In
this case, our track consists of a single edge xy (since we discarded the second copy of
xy in step (5′)). Still, this track gives two openly disjoint s, t-paths, namely, s, x, t and
s, y, t. Thus it can be seen that the connectivity requirements hold. This completes
the proof of Theorem 8.

5. The algorithm for NC-SNDP. This section presents a proof of Theorem 4,
based on (the algorithms in) Theorems 1 and 3. For the sake of motivation, let us
obtain an O(ln rmax)-approximation algorithm for a restricted version of NC-SNDP,
where every terminal has a requirement ri and every pair of terminals i, j has the
requirement ri,j = min(ri, rj). The method is similar to the method for proving
Theorem 3 from Theorems 1 and 8.

Let opt denote the optimal value of the instance (of restricted NC-SNDP). First,
for each ρ = 1, 2, . . . , 7, we apply the algorithm in Theorem 1 to the following instance
Π(ρ) of the subset ρ-connectivity problem to obtain a solution subgraph H(ρ): We
take the requirement of a terminal i in Π(ρ) to be r′i = 0 if ri < ρ, and we take r′i = ρ
if ri ≥ ρ; the rest of the instance stays the same. By Theorem 1, the cost of H(ρ)
is O(1) · opt. After this, we repeatedly apply the algorithm in Theorem 8 to solve
an instance (specified below) of subset [ρ, 1.5ρ]-connectivity, where ρ is an integer
multiple of 4 (ρ = 8, 12, 16, 24, . . . ; details later), to obtain a solution subgraph H ′(ρ).
The instances of subset [ρ, 1.5ρ]-connectivity are as follows: We take the requirement
of a terminal i to be r′i = 0 if ri < ρ, we take r′i = ri if ρ ≤ ri ≤ 1.5ρ, and we
take r′i = 1.5ρ if ri > 1.5ρ. By Theorem 8, the cost of H ′(ρ) is O(1) · opt. We
start with ρ = 8, and we iterate until rmax ≤ 1.5ρ; after each iteration, we update ρ
to the largest integer multiple of 4 that is ≤ 1.5 times the previous ρ. Clearly, the
number of iterations is O(ln rmax). Finally, we output the solution subgraph H∗ for
the instance (of restricted NC-SNDP); H∗ is the union of all the solution subgraphs
H(ρ), ρ = 1, . . . , 7, and H ′(ρ), ρ = 8, 12, . . . . Thus H∗ is the union of O(ln rmax)
subgraphs such that each of these subgraphs has cost O(1) · opt, and so H∗ has
cost O(ln rmax) · opt. To see that H∗ satisfies the connectivity requirements, note
that for every pair of terminals i, j, one of the subgraphs forming H∗ has min(ri, rj)
openly disjoint i, j-paths, namely, the subgraph H(min(ri, rj)) if min(ri, rj) ≤ 7, and
otherwise, any subgraph H ′(ρ), where ρ satisfies ρ ≤ min(ri, rj) ≤ 1.5ρ.

Our algorithm for metric-cost NC-SNDP is similar to the algorithm described
above for the restricted version of NC-SNDP. Let Π∗ be an instance of NC-SNDP,
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and let opt denote its optimal value. We use kf to denote an integer multiple of 4 such
that rmax ≤ 1.5kf . We repeatedly apply the algorithm of Theorem 1 (for subset k-
connectivity) for k = 1, . . . , 7, and derived instances Π(1), . . . ,Π(7) to obtain solution
subgraphs H(1), . . . , H(7). Then we repeatedly apply the algorithm of Theorem 8
(for subset [k, 1.5k]-connectivity) for k = 8, 12, 16, 24, . . . , kf and derived instances
Π′(8),Π′(12), . . . ,Π′(kf ) to obtain solution subgraphs H ′(8), . . . , H ′(kf ). We start
these iterations with k = 8, and we iterate until k = kf ; after each iteration, we
update k to the largest integer multiple of 4 that is ≤ 1.5 times the previous k. The
construction of the derived instances Π(ρ) and Π′(k) is described below.

Finally, we output the solution subgraph H∗ for Π∗; H∗ is the union of all the
solution subgraphs H(k), k = 1, . . . , 7, and H ′(k), k = 8, 12, . . . , kf ; we call these
solution subgraphs the constituent subgraphs of H∗. Below, we prove that the cost
of each of the constituent subgraphs is at most O(1) · opt. Clearly, the number of
iterations is O(ln rmax). Thus H∗ is the union of O(ln rmax) subgraphs such that
each of these subgraphs has cost O(1) · opt, and so H∗ has cost O(ln rmax) · opt.
Below, we prove that H∗ satisfies the connectivity requirements, because for every
pair of terminals i, j one of the constituent subgraphs of H∗ has ≥ ri,j openly disjoint
i, j-paths.

We define the derived instances via a well-studied problem in network design,
namely, the generalized Steiner tree problem, which is as follows: We are given a
graph G = (V,E), edge costs c, and q̂ sets of terminal nodes D̂1, D̂2, . . . , D̂q̂; the goal
is to compute an (approximately) minimum-cost forest F of G such that each termi-
nal set D̂m,m = 1, . . . , q̂, is contained in a (connected) component of F . Goemans
and Williamson [17], based on earlier work by Agrawal, Klein, and Ravi [1], gave
2-approximation algorithms for this problem based on the primal-dual method.

Here is the construction for one of the derived instances Π′(k); recall that this is
an instance of the subset [k, 1.5k]-connectivity problem, where k is a fixed parameter.
We start from Π∗ and construct a requirements graph R with node set T and edge set
E(R) as follows. For each terminal pair i, j with k ≤ ri,j ≤ 1.5k (i.e., the requirement
for the pair is within the valid range for our derived instance), we add the edge ij to R.
Denote the node sets of the (connected) components of R by D̂1, D̂2, . . . , D̂q̂. Next, we
define an instance Π(gst) of the generalized Steiner tree problem on the graph G with
edge costs c (here, G, c are as in Π∗), and with terminal sets D̂1, D̂2, . . . , D̂q̂. We solve
this auxiliary problem Π(gst) by applying the primal-dual algorithm of Goemans and
Williamson [17]. Let F ⊆ E(G) be the forest computed by the Goemans–Williamson
algorithm, and let F1, F2, . . . , Fq denote the partition of F into connected components.
Let the set of terminals in the component of Fm be denoted by Dm, m = 1, . . . , q;
thus each set Dm is the union of one or more of the terminal sets D̂1, D̂2, . . . , D̂q̂. For
each m = 1, . . . , q, we define an instance Π′

m(k) of the subset [k, 1.5k]-connectivity
problem as follows: The graph G and the edge costs c are as in Π∗, the set of terminal
nodes is Dm, and the requirement r′i of a terminal i ∈ Dm is defined to be max(ri,j :
{i, j} ∈ E(R)); clearly, k ≤ r′i ≤ 1.5k ∀i ∈ Dm. We take the derived instance Π′(k)
to be the disjoint union of these instances Π′

m(k), m = 1, . . . , q; i.e., we assume that
each instance Π′

m(k) has its own copy of G and c. To solve Π′(k), we take each
m = 1, . . . , q and apply the algorithm in Theorem 8 separately to Π′

m(k) to obtain a
solution subgraph, call it H ′

m(k). (These instances Π′
m(k) are pairwise disjoint, and

we solve them separately, one by one.) Then we take the union of the subgraphs
H ′

1(k), . . . , H ′
m(k) and call it H ′(k); this is the solution subgraph of Π′(k). The cost

of the subgraphs H ′
m(k), m = 1, . . . , q, is analyzed below.

Our reasons for using the auxiliary problem Π(gst) for defining the instance Π′(k)
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may be seen from the following example. Suppose that k is large (say, k =
√
n) and the

edges in E(R) form a matching, say {{s1, t1}, {s2, t2}, . . . , {sq̂, tq̂}}, where q̂ = Θ(n).
Moreover, suppose that G has a cut δ(S) such that each edge in this cut is expensive,
some of the edges in E(R) have both ends in S, and the remaining edges in E(R)
have both ends in V − S. Say that the optimal solution consists of two disjoint
subgraphs, one contained in the subgraph induced by S, and the other contained in
the subgraph induced by V − S. Then we cannot take Π′(k) to be a single instance
with terminal set {s1, . . . , sq̂, t1, . . . , tq̂}, because then every solution subgraph will
have ≥ k edges from the expensive cut δ(S). Also, we cannot take Π′(k) to consist
of q̂ separate subinstances with one subinstance for each connected component of
R = (T,E(R)), because the optimal values of these subinstances may sum to q̂ ·opt,
and the solution subgraph computed by our algorithm may have cost as high as this
(assuming that the algorithm returns the union of the solution subgraphs of these
q̂ subinstances). We get around this difficulty by using the Goemans–Williamson
algorithm to merge the connected components of R = (T,E(R)) into appropriate
“clusters,” and then we construct a separate subinstance for each of these “clusters”
(these are the subinstances that we called Π′

1(k), . . . ,Π′
q(k)). The key point is that

(i) these subinstances have pairwise-disjoint terminal sets D1, . . . , Dq, and hence the
sum of the σ() lower bounds (used in Theorem 8), namely,

∑q
m=1 σ(Dm), is ≤ the σ()

lower bound of Π∗; and (ii) the following proof (which is based on the 2-approximation
guarantee of Goemans and Williamson) shows that the sum of the mst() lower bounds
for these subinstances, namely,

∑q
m=1 mst(Dm), is ≤ O(1) times the mst() lower

bound of Π∗. Also, for each subinstance, the solution subgraph has cost within an
O(1) factor of the sum of its σ() and mst() lower bounds. Hence, the union of the
solution subgraphs of these subinstances has cost within an O(1) factor of the optimal
value of Π∗.

The construction of the instances Π(ρ), ρ = 1, . . . , 7, is similar to that of the
instances Π′(k). We start with R = (T,E(R)), where E(R) consists of terminal
pairs {i, j} with ri,j = ρ. Then we obtain a family of pairwise disjoint subinstances
Π1(ρ),Π2(ρ), . . . and these subinstances together form Π(ρ).

Proof of Theorem 4. Recall that Π∗ denotes the instance of NC-SNDP, opt

denotes the optimal value of Π∗, and H∗ denotes the solution subgraph of Π∗ found
by our algorithm. The goal is to analyze the cost of the constituent subgraphs of
H∗ and show that each has cost ≤ O(1) · opt, and then to show that H∗ satisfies
the connectivity requirements. The proof is based on the following LP relaxation P ∗

of Π∗, which interprets each requirement ri,j as a requirement for ri,j edge-disjoint
i, j paths. Thus the optimal value of P ∗ gives a lower bound on opt. The linear
program has a variable xe, 0 ≤ xe ≤ 1, for each edge e ∈ E; the intention is that each
feasible solution H of Π∗ gives a zero-one vector x ∈ �E that satisfies two conditions:
xe = 1 iff e ∈ H, and x satisfies the constraints of the LP relaxation (though feasible
zero-one solutions of the linear program may not give feasible solutions of Π∗).

P ∗ : z∗ = min
∑
e∈E

cexe

subject to

x(δ(S)) ≥ max{ri,j : i ∈ S, j �∈ S} ∀S ⊆ V,

xe ≥ 0 ∀e ∈ E.

Focus on one of the derived instances Π′(k) and its associated generalized Steiner
tree instance Π(gst). We use the notation from the construction of Π′(k) given above.
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Goemans and Williamson [17] proved that the cost of the forest computed by their
algorithm is ≤ 2 times the optimal value z(gst) of the following LP relaxation P (gst)
of Π(gst). The linear program has a variable xe, 0 ≤ xe ≤ 1, for each edge e ∈ E; the
intention is that each feasible solution F of Π(gst) corresponds to a zero-one vector
x ∈ �E that satisfies two conditions: xe = 1 iff e ∈ F , and x satisfies the constraints
of the linear program.

P (gst) : z(gst) = min
∑
e∈E

cexe

subject to

x(δ(S)) ≥ 1 ∀S ⊆ V : ∃m = 1, . . . , q̂ : ∅ �= S ∩ D̂m �= D̂m,
xe ≥ 0 ∀e ∈ E.

A key observation is that k · z(gst) ≤ opt. To see this, note that multiplying the
right-hand side of any constraint of the linear program P (gst) by k gives a constraint
that is valid for the LP P ∗. (This follows because whenever we have a constraint
x(δ(S)) ≥ 1 in the LP P (gst), then the node set S separates two terminals v, w such
that the requirements graph R has an v, w-path consisting of terminal-pairs {i, j}
such that ri,j ≥ k; since the v, w-path of R “crosses” S, one of the terminal-pairs
{i, j} in the v, w-path “crosses” S; therefore, max{ri,j : i ∈ S, j �∈ S} ≥ k, and hence
the constraint “x(δ(S)) ≥ k” is a valid constraint for the LP P ∗.) Consequently,
for every feasible solution x∗ of the LP P ∗, we see that 1

kx
∗ is a feasible solution of

the LP P (gst). Moreover, if x∗ is an optimal solution of the LP P ∗, then we have
z(gst) ≤ 1

k c(x
∗) = 1

kz
∗ ≤ 1

kopt, or equivalently, k · z(gst) ≤ opt.
Focus on the cost of the solution subgraph H ′(k) = H ′

1(k) ∪H ′
2(k) ∪ · · · ∪H ′

q(k),
and note that for each m = 1, . . . , q the cost of H ′

m(k) is O(k)·mst(Dm)+O(1)·σ(Dm)
(by Theorem 8), where Dm denotes the terminal set of H ′

m(k). Then the cost of H ′(k)
is

O(k) ·
q∑

m=1

mst(Dm) + O(1) ·
q∑

m=1

σ(Dm)

≤ O(k) ·
q∑

m=1

c(Fm) + O(1) · σ(T )

(since mst(Dm) ≤ 2c(Fm) ∀m = 1, . . . , q)
≤ O(k) · c(F ) + O(1) · σ(T )
≤ O(1) · opt + O(1) · σ(T )

(since c(F ) ≤ 2z(gst) and z(gst) ≤ opt/k)
≤ O(1) · opt.

A similar analysis for the solution subgraphs H(1), . . . , H(7) shows that each has
cost ≤ O(1) · opt.

Thus our claim for the cost of the solution subgraph H∗ follows: c(H∗) =
O(ln rmax) · opt.

Finally, let us verify that H∗ satisfies the connectivity requirements. Consider any
pair of terminals i, j and their requirement ri,j . Assume that ri,j ≥ 8 (otherwise, we
are done by a similar but simpler analysis). Focus on an iteration of the algorithm that
fixes the parameter k such that k ≤ ri,j ≤ 1.5k. In that iteration, the requirements
graph R has the edge {i, j}, and hence both i and j must be contained in one of
the terminal sets D1, . . . , Dq, say, D1. Now, consider the subinstance Π′

1(k) and its
solution subgraph H ′

1(k), and note that H ′
1(k) must have ≥ ri,j openly disjoint i, j-

paths because both r′i and r′j are ≥ ri,j (here, r′i and r′j denote the requirements of i
and j in Π′

1(k)). Thus, H∗ has ≥ ri,j openly disjoint i, j-paths.
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b3

b2

a 1 b1

a 3

a 2

v

H

Fig. 4. A metric-cost 3-edge connected graph that is strictly cheaper than any 3-node connected
(spanning) graph. The edges in H have cost 1, and the edges in E(Kn) − E(H) have cost 2.

This completes the proof of Theorem 4.

Appendix A. Examples illustrating claims in section 1. This appendix
has details pertaining to Corollary 2 and the remarks following it (in section 1). In
particular, we include a proof of the claim on 2-connected graphs with metric costs,
and give examples to show that this claim does not apply to k-connected graphs for
k ≥ 3. Also, we give examples showing that for metric costs a k-connected graph may
be a factor of Θ(k) times more expensive than a k-edge-connected multi-graph. The
next result is well known, but we include a proof for the reader’s convenience.

Proposition 11. In a metric graph, a minimum-cost 2-edge connected spanning
subgraph has the same cost as a minimum-cost 2-node connected spanning subgraph.

Proof. Take a counterexample such that the minimum-cost 2-edge connected
spanning subgraph H contains as few cut nodes as possible. Clearly H contains at
least one cut node v. Let W1 and W2 be connected components in H−{v}. Clearly, v
lies on a cycle C1 in W1∪{v} and a cycle C2 in W2∪{v}. Let w1 and w2 be neighbors
of v on C1 and C2, respectively. Now, split off the edge-pair vw1, vw2; that is, add
the edge w1w2 and remove the edges vw1 and vw2. This creates a cycle C on the
node set V (C1)∪V (C2). Thus the resulting graph stays 2-edge connected. Note that
the number of components in H − {v} decreases by one. We repeat this step until
H − {v} is connected. By the triangle inequality, the cost of the subgraph does not
increase. This contradicts our original choice of H.

For k ≥ 3, however, there exist k-edge connected spanning subgraphs of Kn that
have lower cost than that of a minimum-cost k-node connected spanning subgraph.
To see this let H be the union of two k+1 cliques that share exactly one node v. Let
the nodes of these cliques be labeled a1, a2, . . . , ak, v and b1, b2, . . . , bk, v, respectively.
Next consider the complete graph Kn on 2k + 1 nodes whose edges costs are given
by the shortest-path distances induced by H. That is, every edge in H has cost
1, and every edge in E(Kn) − E(H) has cost exactly 2. Since H itself is k-edge
connected we see that Kn contains a k-edge connected spanning subgraph of cost
2
(
k+1
2

)
= k2 + k. Now, any k-node connected spanning subgraph of Kn contains at

least 1
2 (2k + 1)k = k2 + 1

2k edges. Moreover, there must be at least k − 1 edges of
cost 2 between nodes in a1, a2, . . . , ak and nodes in b1, b2, . . . , bk; otherwise we obtain
a node-cut containing less than k nodes. So any k-node connected spanning subgraph
of Kn has cost at least k2 + 1

2k + (k− 1). This is strictly greater than the cost of the
k-edge connected graph H if k ≥ 3. The case of k = 3 is shown in Figure 4.

Clearly, if the edge costs do not satisfy the triangle inequality, then the minimum
cost of a k-node connected spanning subgraph of Kn cannot be bounded in terms
of the cost of a k-edge connected spanning subgraph. To see this take any k-edge
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Fig. 5. A metric-cost k-edge connected multigraph that is a factor of Θ(k) cheaper than any
k-node connected spanning subgraph. The edge costs are given by the shortest-path distances in the
cycle.

connected graph H that is not also k-node connected (e.g., see Figure 4 for k = 3).
Let every edge in H have cost 1 and every edge in E(Kn)−E(H) have cost L. Since
any k-node connected spanning subgraph of Kn has cost ≥ L, the claim follows by
the choice of L.

Corollary 2 and the other results do not extend to multigraphs. To see this, let
k be an even number, n− 1 ≥ k ≥ 2, and let H be obtained from a cycle on n nodes
by taking 1

2k copies of each edge. See Figure 5. If each edge in H has cost 1, then a
minimum-cost k-edge connected multigraph has cost 1

2nk. Let the cost of the other
edges of Kn be given by the shortest-path distances in H. Each node has at least k
different neighbors in a k-node connected spanning subgraph, and so the cost of the

edges incident to any node is ≥ 2
∑ k

2
i=1 i = k(k2 + 1). Hence, the minimum cost of a

k-node connected spanning subgraph is ≥ 1
4nk

2. This is a factor of Θ(k) times the
cost of the k-edge connected graph H.

Appendix B. Table of notation and symbols for section 4.
Node set V (|V | = n)
Set of terminal nodes T (|T | = n′)
Set of active terminal nodes T ∗ (|T ∗| = n∗)
Terminal nodes (usually active) h, i, j
Inactive terminal nodes u, v, w
Arbitrary nodes (terminals/nonterminals) x, y
Requirement of terminal i ri
Requirement of terminal pair i, j ri,j
Connectivity parameter k (k = 0 (mod 4) in section 4)
Edge incident to nodes x, y xy
Cost of edge xy cxy or c(x, y)
Set of ri nearest neighbors of i Γi

Total cost of edges from i to nodes in Γi σi

Average cost of an edge from i to nodes in Γi μi
Normalized cost of edge ix c̃(i, x) := max(cix, μi) (or c̃ix)
Parameters of algorithm in section 4 α, β, γ (α = 4, β = 2)
Number of tracks � (� = 3k/4 in section 4)
Set of � nearest neighbors of i (excluding i) Bi

Tracks Q0, Q1, Q2, . . . , Q�

Index of current track τ
Inner neighbors of active terminal i i1, i2, . . . , i�
Parent of inactive terminal v p(v)
Ordered set of nodes attaching terminal i to tracks Ni

Cost of MST of subgraph induced by node set X mst(X)
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Williamson, Improved approximation algorithms for network design problems, in Pro-
ceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, Arlington,
VA, SIAM, Philadelphia, 1994, pp. 223–232.

[17] M. X. Goemans and D. P. Williamson, A general approximation technique for constrained
forest problems, SIAM J. Comput., 24 (1995), pp. 296–317.

[18] K. Jain, A factor 2 approximation algorithm for the generalized Steiner network problem,
Combinatorica, 21 (2001), pp. 39–60.

[19] S. Khuller, Approximation algorithms for finding highly connected subgraphs, in Approxima-
tion Algorithms for NP-Hard Problems, D. S. Hochbaum, ed., PWS Publishing, Boston,
1996, pp. 236–265.

[20] S. Khuller and B. Raghavachari, Improved approximation algorithms for uniform connec-
tivity problems, J. Algorithms, 21 (1996), pp. 434–450.

[21] G. Kortsarz, R. Krauthgamer, and J. R. Lee, Hardness of approximation for vertex-
connectivity network design problems, SIAM J. Comput., 33 (2004), pp. 704–720.

[22] G. Kortsarz and Z. Nutov, Approximating k-node connected subgraphs via critical graphs,
SIAM J. Comput., 35 (2005), pp. 247–257.



636 JOSEPH CHERIYAN AND ADRIAN VETTA

[23] G. Kortsarz and Z. Nutov, Approximating node connectivity problems via set covers, Algo-
rithmica, 37 (2003), pp. 75–92.

[24] L. Lovász, Combinatorial Problems and Exercises, North–Holland, Amsterdam, and
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LOCATING SERVERS FOR RELIABILITY AND
AFFINE EMBEDDINGS∗

KENNETH A. BERMAN†

Abstract. Consider the problem of locating servers in a network for the purpose of storing
data, performing an application, etc., so that at least one server will be available to clients even
if up to k component failures occur throughout the network. Letting G = (V,E) be the graph
with vertex set V and edge set E representing the topology of the network, and letting L ⊆ V
be a set of potential locations for the servers, a fundamental problem is to determine a minimum-
size set S ⊆ L such that the network remains connected to S even if up to k component failures
occur throughout the network. We say that such a set S is k-fault-tolerant. In this paper we
present an algebraic characterization of k-fault-tolerant sets in terms of affine embeddings of G in k-
dimensional Euclidean space. Employing this characterization, we present a polynomial-time Monte
Carlo algorithm for computing a minimum-size k-fault-tolerant subset S of L. In fact, we solve the
following more general problem for directed networks: given a digraph G = (V,E) (an undirected
graph is equivalent to a symmetric digraph) and a subset L ⊆ V , we find a k-fault-tolerant subset
S of L having minimum cost, where a unary integer cost c(v) is associated with locating a server at
vertex v ∈ V .

Key words. graph algorithms, server location, fault-tolerance, convex embeddings, affine em-
beddings, randomized algorithms, parallel algorithms
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1. Introduction. One method used to increase reliability of access to informa-
tion, data base objects, applications, and so forth, in a network such as the Internet is
to replicate them on multiple servers at different locations in the network. A funda-
mental problem is to locate servers in the network so that every client is guaranteed
to have access to at least one such server even if up to k component failures occur
in the network. In this paper we consider the problem of finding a minimum-size set
with this property.

Let G = (V,E) be the digraph with vertex set V and edge set E representing
the topology of the network. Note that an undirected network is represented by a
symmetric digraph; i.e., each undirected edge {u, v} is replaced by two directed edges
uv and vu. Let L ⊆ V be a set of potential server locations. We say that a set
of vertices S ⊆ L is k-fault-tolerant if the network remains connected to at least
one vertex s ∈ S; i.e., there is a directed path from each vertex v ∈ V − S to s,
even after the deletion of any k vertices and their incident edges (where we allow the
deletion of vertices from S). If the network is undirected, i.e., if G is a symmetric
digraph, then connectivity is two-way; i.e., there exists a directed from v to s if and
only if there exists a directed path from s to v. Applications of k-fault-tolerant sets
in nonsymmetric digraphs occur in networks such as wireless sensor networks, where
data from sensors needs to reach at least one sink or egress vertex in the network. A
k-fault-tolerant set has the property that data from every sensor that has not failed
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can reach, via a multihop path, at least one sink vertex, even if up to k sensors fail
throughout the network.

The following proposition is easily proved using Menger’s theorem (see [4]).
Proposition 1. Let G = (V,E) be a digraph and S a subset of vertices (of size

at least k + 1). Then the following statements are equivalent:
(i) S is a k-fault-tolerant set.
(ii) There exist k+1 directed paths from every vertex v ∈ V −S to k+1 (distinct)

vertices in S such that any two paths have only the vertex v in common.
(iii) For any set T ⊆ V of size k + 1 there exists a set P of k + 1 pairwise vertex-

disjoint directed paths from T to S, i.e., having initial vertex in T and terminal vertex
in S.

In statement (iii) of Proposition 1 we do not make the assumption that S and T
are disjoint. However, we do allow paths in P to be trivial, i.e., consist of a single
vertex.

In this paper we consider the problem of finding a minimum-size k-fault-tolerant
subset of L. In fact, we consider the following somewhat more general problem, where
we associate an integer cost c(v) with locating a server at vertex v ∈ V .

k-fault-tolerant server location problem. Let G = (V,E) be a digraph
with vertex set V and edge set E. Given a positive integer cost c(v) associated with
locating a server at each vertex v ∈ V , a set L ⊆ V of potential locations for the
servers, and a specified positive integer k, find a k-fault-tolerant subset S of L such
that the cost of S, given by c(S) =

∑
s∈S c(s), is minimized (or determine that no

such set S exists).
Note that the k-fault-tolerant set problem is no less general if it is stated with

no restriction on the server placement, i.e., with L = V . To ensure that the server
placement is restricted to a given set L, we can simply add a sufficiently large cost
to each vertex not in L. The latter observation is true even for unary costs. Also,
note that when L = V a minimum-cost k-fault-tolerant set always exists, since V is
k-fault-tolerant.

Given two sets of vertices L and M , Bar-Ilan and Peleg [1] introduced the concept
of a k-tolerant L-set for M in an undirected graph, i.e., a set S ⊆ L such that there
exist k vertex-disjoint paths from every vertex v in M − S to (k distinct vertices
in) S. They showed that this problem is NP -hard and presented an approximation
algorithm with ratio k(log n + 1) (also see [2]). Note that a k-fault-tolerant subset
of L is equivalent to a (k + 1)-tolerant L-set for V . As far as the author knows, no
deterministic polynomial-time algorithm has been given for finding a minimum-size
(k+1)-tolerant L-set for V , or equivalently a minimum-size k-fault-tolerant subset of
L, even for undirected graphs.

In this paper we present a polynomial-time Monte-Carlo algorithm for solving the
k-fault-tolerant server location problem when the costs are all unary integers. Further,
we show that a parallelized version of the algorithm is in RNC2 . The problem of
finding a minimum-size k-fault-tolerant set corresponds to the special case where all
vertices have unit cost. Our algorithm is based on the following characterization
of k-fault-tolerant sets. This characterization involves an “affine” embedding of the
digraph G in k-dimensional Euclidean space.

The out-neighborhood Nv of a vertex v ∈ V is the set of all the vertices x ∈ V
such that vx ∈ E. Let dv denote the out-degree of v, i.e., the cardinality of Nv. An
embedding of G in Euclidean k-dimensional space Rk is a mapping f from V to Rk;
i.e, f maps each v ∈ V onto the point (f1(v), . . . , fk(v)). Such an embedding is said
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to be in general position if no k + 1 points are on a hyperplane. Throughout this
paper we will assume that the embedding f is in general position. For U ⊆ V , let
f(U) = {f(u)|u ∈ U}. The affine hull of a set of points P = {P1, . . . , Pp} in Rk is the
set of all points

∑p
i=1 λiPi, where λ1, . . . , λp are real numbers such that

∑p
i=1 λi = 1.

Given a set S ⊆ V , we say that f is an affine S-embedding of G if every vertex
u not belonging to S lies in the affine hull of its neighbors, i.e., for each u ∈ V − S,
there exists a weighting α of E over the real numbers such that

∑
v∈Nu

α(uv) = 1
and f(u) =

∑
v∈Nu

α(uv)f(v). We will refer to such a weighting α of the edges as
a k-dimensional affine weighting. Note that if f is in general position and the out-
degree of each vertex u ∈ V − S is at least k + 1, then the affine hull of f(Nu) is the
entire space Rk, so that f is necessarily an affine S-embedding.

A branching rooted at S is a acyclic subdigraph B having out-degree one at every
vertex not in S and out-degree zero at every vertex in S. Equivalently, letting S =
{s0, s1, . . . , sp−1}, B is a spanning forest consisting of p trees, where the ith tree is
directed into root vertex si, i = 0, . . . , p− 1. Let BS denote the set of all branchings
B rooted at S. The weight α(B) of a branching with respect to an edge weighting α
is the product of the weights on the edges of B. We define the α-weighted branching
number βS(α) for S to be the sum of the weights over the set BS of all branchings B
rooted at S, i.e.,

βS(α) =
∑

B∈BS

α(B).(1)

In the next section we show that S is a k-fault-tolerant set if and only if βS(α) is
nonzero for some k-dimensional affine weighting α.

Given a set of vertices S = {s0, . . . , sk}, a convex S-embedding is an embedding
f such that, for each u ∈ V −S, f(u) is in the convex hull of f(Nu), f(s0) is the zero
vector, and f(si) is the vector with a “1” in position i and zeros in all other positions
(see [10, 7]). Clearly, a convex S-embedding f in general position is also an affine
S-embedding in general position. Further, it has an associated affine weighting α such
that α(e) ≥ 0 for every edge e with tail in V − S. Clearly all branchings rooted at S
have nonnegative weight with respect to α. Further, there exists a branching B having
strictly positive weight, i.e., all of whose edges have strictly positive weight. To show
that such a branching exists, remove all edges having zero weight. Clearly, f is also a
convex embedding of the resulting digraph G′. Further, a branching in G′ rooted at
S determines a branching of G rooted at S having strictly positive weight. To show
that G′ contains such a branching, it is sufficient to show that there exists a path P
in G′ from any vertex v ∈ V − S to some vertex s ∈ S. Letting P = u1 . . . uj , where
u1 = v and uj = s, we inductively choose ui+1 to be a vertex in the out-neighborhood
of ui that is on the boundary of the convex hull and has the largest first component of
all the points on the boundary. Since the embedding is in general position it follows
that f1(ui) < f1(ui+1). Thus, since the graph is finite, we must eventually choose
a vertex in S. We have just shown that G contains a branching rooted at S having
strictly positive weight with respect to α. Hence, βS(α) > 0. By the theorem we
prove in the next section, this implies that S is a k-fault-tolerant set of G, a result
given by Linial, Lovász, and Widgerson in [10] for undirected graphs and generalized
by Cheriyan and Rief in [7] to directed graphs.

In the third section we employ the characterization result of section 2 to obtain a
parallel Monte Carlo algorithm for solving the k-tolerant server problem (with B = V )
for unary integer weights.
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2. Characterization theorem.
Theorem 1. Let G be a digraph and S be a subset of vertices of G. Then,

S is a k-fault-tolerant set if and only if there exists an affine S-embedding of G in
general position in Rk with an associated affine weighting α of the edges such that the
α-weighted branching number for S is nonzero, i.e., βS(α) �= 0.

We prove the theorem with the aid of a lemma. Before stating the lemma, we
establish some definitions. The volume of a set of k + 1 points P = {P0, P1, . . . , Pk},
denoted by vol(P ), is the determinant of the k×k matrix whose ith row is Pi−P0, i =
1, . . . , k. Note that, up to a change in sign, vol(P ) is invariant under permutations of
the elements of P and equals the volume of the parallelepiped containing the edges
P0Pi, i = 1, . . . , k.

We extend the definition of the α-weighted branching number βS for S to the
α-weighted branching number βS,T for pairs of vertex sets S and T , where S and T
have the same cardinality, as follows. Let S = {s0, . . . , sp−1} and T = {t0, . . . , tp−1}
be two subsets of V of size p (not necessarily disjoint), where s0 < s1 < · · · < sp−1

and t0 < t1 < · · · < tp−1. A branching B with root set S has coroot set T if for each
vertex ti ∈ T the unique path from ti to S in B does not intersect the path from any
other vertex of T to S, i.e., each of the p trees of B contains exactly one vertex of
T . Equivalently, for some permutation π of {0, . . . , p − 1}, there exists a path in B
from ti to sπ(i), i = 0, . . . , p− 1. We define the sign of B, denoted sign(B), to be the
sign of the permutation π, and define βS,T (α) to be the signed sum of the weight of a
branching over the set BS,T of all branchings having root set S and coroot set T , i.e.,

βS,T (α) =
∑

B∈BS,T

sign(B)α(B).(2)

Note that βS(α) = βS,S(α).
Lemma 1. Let f be an affine embedding of a digraph G in general position in

Rk, and let α be an associated affine weighting of the edge set E. Let S and T be
any vertex sets of size k + 1, and let βS(α) and βS,T (α) be defined by (1) and (2),
respectively. If βS(α) is nonzero, then

βS,T (α)

βS(α)
=

±vol(f(T ))

vol(f(S))
.(3)

Proof. We utilize the following result known as the all-minors matrix-tree theorem
(see [6]). Given a matrix M whose rows and columns are indexed by V and given
X,Y ⊆ V , let M [X : Y ] denote the submatrix with rows indexed by X and columns
indexed by Y . Given u, v ∈ V , let M(u, v) denote the entry in row u and column v;
i.e., M(u, v) = M [{u} : {v}]. Given a weighting w of the edges with real numbers,
the (generalized) Kirchhoff matrix is the n × n matrix Kw whose rows and columns
are both indexed by V such that

Kw(u, v) =

⎧⎨
⎩

−w(u, v) if u �= v,

∑
x∈V w(u, x) otherwise,

(4)

where w(u, v) = w(uv) if uv ∈ E, and w(u, v) = 0 otherwise.
All-minors matrix-tree theorem. Given two vertex sets S and T of the same

cardinality,

βS,T (w) = ±detKw[V − S : V − T ].(5)
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A formula for the actual sign on the right-hand side of the above equality is given
in [6], but we omit it here since it does not affect our arguments. As a special case of
the all-minors matrix-tree theorem we have that

βS(w) = detKw[V − S : V − S].(6)

Now let K = Kα, and let KS be the matrix obtained from K by replacing each
diagonal entry indexed by S with a 1 and every other entry in a row indexed by
S with a 0; i.e., for all s ∈ S, u ∈ V − S, v ∈ V , KS(s, s) = 1,KS(s, u) = 0, and
KS(u, v) = K(u, v). Then we have that

detKS = detK[V − S, V − S] = βS(α).(7)

Since by hypothesis βS(α) �= 0, it follows that KS is invertible. Let h be the
embedding of G in Rk+1 defined by

h(v) =

⎛
⎝f1(v), . . . , fk(v), 1 −

k∑
j=1

fj(v)

⎞
⎠ ,

v ∈ V . Let H be the n× (k+1) matrix with rows indexed by V and columns indexed
by {1, . . . , k + 1} such that the row vector indexed by v ∈ V is h(v). Then it follows
directly from the definitions of K and H that

K[V − S : V ]H = 0.(8)

Let HS and HT denote the submatrices of H consisting of all the rows indexed
by vertices in S and T , respectively. It is easily verified that

vol(f(S)) = ±det(HS), vol(f(T )) = ±det(HT ).(9)

Let Z = (zij) denote the n × (k + 1) matrix whose rows corresponding to S
determine the identity matrix and whose remaining n−k−1 rows are all zeros. Then
it follows immediately from the definitions of the matrices involved and from (8) that

KSH = ZHS .(10)

Letting J denote the adjoint of KS , i.e., J = adjKS , and using the fact that
K−1

S = adjKS/detKS , we have

H = K−1
S ZHS = JZHS/detKS = J [V : S]HS/detKS .(11)

Thus, by deleting all rows of on both sides of (11) not belonging to T , we have

HT = J [T : S]HS/detKS .(12)

Taking the determinant of both sides yields

detHT = detJ [T : S]detHS/(detKS)k+1.(13)

But by Jacobi’s theorem (see [12]), we have

detJ [T : S] = detKS [V − S : V − T ](detKS)k.(14)
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Substituting (14) into (13), we obtain

detHT = detKS [V − S : V − T ]detHS/detKS .(15)

Observing that KS [V −S : V − T ] = K[V −S : V − T ] and applying (5) and (7),
we have that

detHT = ±βS,T (α)detHS/βS(α).(16)

Equation (3) of Lemma 1 is obtained by substituting (9) into (16).
We are now ready to prove Theorem 1. Consider any set of vertices S = {s0, . . . ,

sp−1} such that βS(α) �= 0. First suppose p = k + 1. Now let T be any set of k + 1
vertices (possibly having intersection with S). Since f is an embedding in general
position, vol(S) and vol(T ) are both nonzero. Therefore, by Lemma 1, βS,T (α) is
nonzero. However, this implies that there exists at least one branching with root set
S and coroot set T . Thus, there exists a set of k+ 1 vertex-disjoint paths with initial
vertex set T and terminal vertex set S (we allow some of the paths to consist of a
single vertex). Since T was chosen to be an arbitrary set of k + 1 vertices it follows
from Proposition 1 that S is a k-fault-tolerant set.

Now suppose that S is a set of cardinality p > k + 1. Construct the graph
G′ = (V ′, E′) from G by removing all edges having both tail and head in S, adding k+1
new vertices s′0, . . . , s

′
k, and for every pair of vertices si and s′j , i ∈ {0, . . . , p− 1}, j ∈

{0, . . . , k}, adding an edge directed from si to s′j . Let f ′ be an embedding of G′ in

Rk such that f ′(v) = f(v), v ∈ V , and f ′(s′0), . . . , f
′(s′k) do not lie on a hyperplane,

and let α′ be an associated affine weighting of G′ such that α′(e) = α(e), e ∈ E. Since
each vertex of S has out-degree k + 1 in G′, such a weighting α′ exists. It follows
easily from the definition of the branching function that

βS′(α′) =

⎛
⎝ p∏

i=0

k∑
j=0

α′(sis
′
j)

⎞
⎠βS(α) =

(
p∏

i=0

1

)
βS(α) = βS(α).

By hypothesis, βS(α) �= 0. Thus, βS′(α′) �= 0. Since |S′| = k + 1, which is the
case p = k + 1, it follows from the above argument that S′ is k-fault-tolerant. This
implies that S is k-fault-tolerant.

Conversely, suppose S is a k-fault-tolerant set. Then S′ is a k-fault-tolerant set
in G′. Thus, by a result in [7], there exists a convex S-embedding f ′ of G′ in k-
dimensional space in general position; i.e., there exists a weighting α′ of the edges of
G′ such that, for each vertex u ∈ V ′, f ′(u) =

∑
uv∈E′ α′(uv)f ′(v), where α′(uv) > 0

for each uv ∈ E′. Let α be the affine weighting of G such that α(uv) = α′(uv), for
every edge uv ∈ E, not directed out of a vertex in S. Since S is k-fault-tolerant there
exists at least one branching B rooted at S. Further, since α(uv) is nonnegative for
each edge uv not directed out of S, it follows that α(B) > 0 for every branching
rooted at S. Hence, βS(α) > 0.

3. Monte Carlo algorithm. For convenience let V = {1, . . . , n}, and let i1, . . . ,
idi

denote the vertices in the out-neighborhood Ni of i ∈ V . Associate the indeter-
minant fij with the jth component of f(i), i.e., fj(i) = fij , i ∈ V, j = 1, . . . , k,
and associate the variable aij with the affine weight on each edge iij ∈ E, i.e.,
α(iij) = aij , i ∈ V, j = 1, . . . , di. Note that if the out-degree di of vertex i is less
than k + 1, then i must necessarily be contained in every k-fault-tolerant set S. Also
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note that setting α(ij) = aij = 0 will not affect the value of βS(α) for S a set con-
taining i, and will result in βS(α) = 0 for every set S that does not contain i. Now
assume that di ≥ k + 1. It follows from the definition of α that

k+1∑
j=1

aijfij l = fil −
di∑

j=k+2

aijfij l, l = 1, . . . , k,

k+1∑
j=1

aij = 1 −
di∑

j=k+2

aij .

We express these equations using matrices. Letting Mi be the (k + 1) × (k + 1)
matrix whose ljth entry is fij l, j = 1, . . . , k + 1, l = 1, . . . , k, and whose last row
consists entirely of 1’s; a be the column vector whose jth entry is aij , j = 1, . . . , k+1;

and b be the column vector whose lth entry is fil −
∑di

j=k+2 aijfij l, l = 1, . . . , k, and

whose last entry is 1 −
∑di

j=k+2 aij , we have

Mia = b.(17)

Letting M
(j)
i be the matrix obtained from Mi by replacing the jth column of Mi

with b, j = 1, . . . , k + 1, and employing Cramer’s rule, we obtain

aij = detM
(j)
i /detMi, j = 1, . . . , k + 1.(18)

Note that detMi is a polynomial of degree k in the indeterminates fii1 , . . . , fiik ,

and detM
(j)
i is a polynomial of degree k + 1 in the indeterminates aiik+2

, . . . , aiidi ,
fii1 , . . . , fiik .

Let A denote the set of indeterminates aij , i = 0, . . . , n− 1, j = k+ 2, . . . , di, and
let F denote the set of indeterminates fij , i = 0, . . . , n− 1, j = 1, . . . , k. Based on the
above discussion, we define the indeterminate affine weighting αF,A of E as follows:
for each edge vivij ∈ E,

αF,A(vivij ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if di ≤ k,

aij if j ∈ {k + 2, . . . , di},

detM
(j)
i /detMi otherwise.

(19)

Theorem 2. Let G be a digraph with vertex set V , and let α = αF,A be the
indeterminate affine weighting. Then S is a k-fault-tolerant set if and only if βS(α)
is not identically equal to zero.

Proof. βS(αF,A) is not identically equal to zero if and only if βS(αF0,A0) is nonzero
for some choice of F0 and A0. However, we have just shown that there exists such a
weighting if and only if S is k-fault-tolerant.

We define the scaled indeterminate affine weighting σF,A of E as follows: for each
vivj ∈ E,

σF,A(vivij ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if di ≤ k,

aijdetMi if j ∈ {k + 2, . . . , di},

detM
(j)
i otherwise.

(20)

It is easily verified that
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βS(σF,A) =

( ∏
vi∈V−S

detMi

)
βS(αF,A).

With this observation the following result is an immediate corollary of Theorem 2.
Corollary 1. Let G be a digraph with vertex set V , and let σ = σF,A be the

scaled indeterminate affine weighting. Then, S is a k-fault-tolerant set if and only if
βS(σ) is not identically equal to zero.

Now take a random embedding f of G; i.e., fij is assigned a random value f
(0)
ij

chosen independently and uniformly from [1, . . . , p], i = 0, . . . , n − 1, j = 1, . . . , k.

Further, assign aij a random value a
(0)
ij chosen independently and uniformly from

[1, . . . , p], vivj ∈ E, j = k + 2, . . . , di. Letting F0 = (f
(0)
ij ) and A0 = (a

(0)
ij ), we will

refer to the resultant edge weighting σ = σF0,A0
as a random scaled k-dimensional

affine weighting.
Theorem 3. Let σ be a random scaled k-dimensional affine weighting as defined

above. If S ∈ S is not a k-fault-tolerant set, then βS(σ) equals 0. Otherwise, βS(σ)
is nonzero with probability at least 1 − n(k + 1)/p.

Proof. If S is not a k-fault-tolerant set, then it follows immediately from Corol-
lary 1 that βS(c) = 0. Now suppose that S is a k-fault-tolerant set. Then, by Corol-
lary 1, βS(σF,A) is not identically equal to zero. Note that βS(σF,A) is a polynomial
of degree at most (n − |S|)(k + 1) ≤ n(k + 1) in indeterminates fij , i = 1, . . . , n, j =
1, . . . , k, and aij , i = 1, . . . , n, j = k + 2, . . . , di, where n = |V |. It follows from the
Swartz–Zippel theorem (see [11]) that the probability that βS(σF0,A0

) is zero is less
than n(k + 1)/p.

We now design a Monte Carlo algorithm for finding a minimum-cost k-fault-
tolerant set S. Let X be the n × n diagonal matrix whose ith diagonal entry is
xi, i = 1, . . . , n. Then, applying (6), we have

det(X + Kσ) =
∑
S⊆V

detKσ[V − S : V − S]
∏
vi∈S

xi =
∑
S⊆V

βS(σ)
∏
vi∈S

xi.(21)

Given a cost weighting c of the vertex set, i.e., vertex vi is assigned the positive
integer weight ci = c(vi), let Xc be the diagonal matrix obtained from X by setting
xi = xci , i = 0, . . . , n− 1. Then,

det(Xc + Kσ) =
∑
S⊆V

βS(σ)xc(S).(22)

The determinant det(Xc+Kσ) can be computed in time O(nM(n)|c|log|c|), where
M(n) denotes the time needed to multiply two n×n matrices, i.e., M(n) ∈ O(n2.376)

(see [8]) and |c| =
∑n−1

i=0 ci. In parallel on an EREW PRAM (see [4, 9]), det(Xc+Kσ)
can be computed in time O(log |c| log2 n) using O(|c|nM(n)) processors. For references
on parallel computation of determinants over rings such as the ring of polynomials,
see [3, 5].

By (22), the minimum power μ of x having nonzero coefficient in the polynomial
det(Xc+Kσ) is the minimum cost of a set S ⊆ V such that βS(σ) is nonzero. However,
by Theorem 3 such a set S is k-fault-tolerant with probability at least 1−n(k+2)/p.
Thus, to find, with high probability, a k-fault-tolerant set of minimum cost we need
to find a set S corresponding to a minimum power μ of x in det(Xc+Kσ). To do this,
we use a technique introduced by Mulmuley, Vazirani, and Vazirani in [13] (also see
[14]), which is based on applying the following result, known as the isolating lemma.
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Lemma 2 (isolating lemma). Let S be a family of subsets of a set V = {v0, . . . ,
vn−1}. Choose integers r0, r1, . . . , rn−1 randomly and independently from [1, . . . , q],
where q > n. Then, with high probability, i.e., probability at least 1 − n/q, there is a
unique minimum-weight set S ∈ S.

Using the isolating lemma, we can ensure that there exists with high probability
a unique minimum-cost k-fault-tolerant set S by replacing the cost ci of placing a
server at vertex vi with the cost c′i, given by c′i = rci + ri, i = 1, . . . , n, where r =
1 + r0 + · · ·+ rn−1. Note that a k-fault-tolerant set S has minimum cost with respect
to c′ if and only if it has minimum cost with respect to c.

Based on the above discussion, we have the following polynomial-time Monte
Carlo algorithm for the k-fault-tolerant server location problem for unary integer
weights. In the algorithm we assume that the set L of potential server locations equals
the entire vertex set V . As pointed out earlier, the k-fault-tolerant set problem is no
less general if it is stated with the restriction that L = V , since we can ensure that
the server placement is restricted to a given set L by simply adding a sufficiently large
cost to each vertex not in L. The probability of correctness of the algorithm is at
least (1− (k + 1)n/p)(1− n/q); e.g., for p ≥ 3(k + 1)n and q ≥ 4n, the probability of
correctness is at least 1/2.

Monte Carlo algorithm for the k-tolerant server location prob-

lem.

Input: a digraph G = (V,E), n = |V |,
a unary cost weighting c of V ,
a positive integer k.

Output: a minimum-cost k-fault-tolerant set S.
The probability of correctness is at least (1 − (k + 1)n/p)(1 − n/q).

Step 1. Compute a random scaled k-dimensional affine weighting σ = σF0,A0
,

where the values in F0 = (f
(0)
ij ) and A0 = (a

(0)
ij ) are chosen independently and uni-

formly from [1, . . . , p].
Step 2. Compute the random vertex weighing r, where ri is chosen randomly

and independently from [1, . . . , q], i = 1, . . . , n, and the vertex weighting c′ given by
c′i = rci + ri, i = 1, . . . , n, where r = 1 + r0 + · · · + rn−1.

Step 3. Compute det(Xc′ + Kσ) and let μ be the smallest power of x having
nonzero coefficient.

Step 4. For each j, compute the weighting c(j) obtained from c′ by decreasing
the weight of vertex vj by 1; i.e., c(j)(vi) = c′i for i �= j, and c(j)(vj) = c′j − 1.
Then, compute det(Xc(j) +Kσ) and let μj be the smallest power of x having nonzero
coefficient. OUTPUT the set S consisting of all vertices vj such that μj < μ.

It follows from the previous discussion that the complexity of the algorithm is
O(n2M(n)|c′| log |c′|) = O(n3M(n)q|c| log(nq|c|)). Further, a parallel implementation
of the algorithm on the EREW PRAM using O(|c′|n2M(n)) = O(|c|n3q) processors
has parallel complexity O(|c′| log2 n) = O(log |c| log2 n).

Acknowledgments. I would like to thank Fred Annexstein, Chad Yoshikawa,
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DISCRETE LINES AND WANDERING PATHS∗

A. VINCE †

Abstract. The problem of finding an approximation to a geometric line by a discrete line using
pixels is ubiquitous in computer graphics applications. We show that this discrete line problem in
R
n+1, for grids of any shape, is equivalent to a geometry problem in R

n concerning the minimization
of the distance that a certain type of closed polygonal path wanders from the origin. This geometry
problem is solved completely in dimension 1 (corresponding to 2-dimensional grids), and two simple
and efficient algorithms provide near optimum solutions in higher dimensions.
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Key words. discrete line, polygonal path
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1. Introduction. This paper concerns a geometry problem in n-dimensional Eu-
clidean space motivated by the drawing of a discrete line with pixels. The generation
of such line segment raster images is ubiquitous in computer graphics applications,
the first such algorithm due to Bresenham [1, 5]. In 2001, Bresenham wrote:

I was working in the computation lab at IBM’s San Jose development lab.
A Calcomp plotter had been attached to an IBM 1401 via the 1407 type-
writer console. [The algorithm] was in production use by summer 1962,
possibly a month or so earlier. Programs in those days were freely ex-
changed among corporations so Calcomp (Jim Newland and Calvin Hefte)
had copies. When I returned to Stanford in Fall 1962, I put a copy in the
Stanford comp center library. A description of the line drawing routine
was accepted for presentation at the 1963 ACM national convention in
Denver, Colorado. It was a year in which no proceedings were published,
only the agenda of speakers and topics in an issue of Communications of
the ACM. A person from the IBM Systems Journal asked me after I made
my presentation if they could publish the paper. I happily agreed, and
they printed it in 1965.

The Bresenham algorithm was designed for rectangular grids in the plane. More recent
applications in visualization of 3-dimensional medical image data and in global image
processing have led to an interest in nonrectangular grids, for example the hexagonal
grid, and in higher-dimensional grids. That is the motivation for this paper. There
has also been an interest in issues not directly addressed in this paper, for example
efficient implementation of algorithms [2, 3], discrete approximation of curves [6], and
alternate approaches to constructing discrete lines [7].

The discrete line problem. Given two points a and b in R

n+1, the discrete line
problem is to find a discrete line, in terms of cells (pixels), that is in some sense the
best approximation to the Euclidean line ab. To precisely formulate the problem, let
the points of a lattice L represent the “centers” of the cells in our (n+1)-dimensional
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grid. By a lattice in R

n+1 we mean the set of all integer linear combinations of n + 1
linear independent vectors. The cells are the Voronoi cells of the lattice, the Voronoi
cell at lattice point x being the set of points at least as close to x as to any other
lattice point in L. Each Voronoi cell is a polytope P , and the grid is obtained by
translation of P by the lattice L.

Two lattice points will be considered neighbors if their respective Voronoi cells
share a common facet. Given lattice points a and b, define a discrete line joining a
and b as a sequence a = u1, . . . ,uN = b of lattice points (cells) such that ui and
ui+1 are neighbors for i = 1, . . . , N − 1. This is a reasonable definition, especially in
situations in which the cells can be viewed at variable resolutions—multiscale. This is
the point of view taken in [4]. For a discrete line to be a “good approximation” to the
geometric line ab, the discrete line should be as “short” as possible and as “close” as
possible to the geometric line. More precisely, we impose the following requirements:

A. the length N should be minimum, and
B. of all such discrete lines a = u1, . . . ,uN = b of minimum length, the points

uk should be chosen so as to minimize

max
1≤k≤N

d(uk,ab),

where d(uk,ab) is the orthogonal distance from uk to ab.
The above optimization problem will be referred to as the discrete line problem.

In section 2 a geometry problem is posed concerning minimization of the distance
that a certain type of closed polygonal path wanders from the origin. This geometry
problem in R

n is shown to be equivalent to the discrete line problem in R

n+1. The
remainder of the paper concerns this “wandering path problem.” After definitions
and preliminary results in section 3, sections 4 and 6 contain two simple and effi-
cient algorithms whose output is close to an optimum solution of the wandering path
problem. An optimum solution is found for the dimension 1 case in section 5, which
implies a complete solution to the discrete line problem for any grid in dimension 2.
Theorems 10, 11, and 12 provide upper bounds on the output of Algorithms 1, 1.1,
and 2, respectively.

2. The wandering path problem. A geometry problem in R

n will be posed
which is equivalent to the discrete line problem in R

n+1. Consider any set V of vectors
in R

n. A V -multiset is a finite ordered multiset W = (w1,w2, . . . ,wN ) of elements
from V . If we set

uk := w1 + w2 + · · · + wk,

1 ≤ k ≤ N , then joining points 0 = u0,u1,u2, . . . ,uN successively by line segments
results in a polygonal path P = (0 = u0,u1,u2, . . . ,uN ) in R

n called a V -path of
length N . If uN = 0, then the V -path is called a closed V -path. Define

w(P ) := max
1≤k≤N

|uk| .

Then w(P ) is the furthest that path P wanders from the origin.
The case of interest for our application is where V is a set of exactly n+1 vectors

in R

n satisfying the following two properties:
1. each subset of n vectors in V is linearly independent, and
2. there exists a closed V -path.
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Fig. 1. An optimum wandering path.

Note that condition 2 is equivalent to the existence of a set {mv | v ∈ V } of positive
integers such that ∑

v∈V

mvv = 0.

A set V satisfying properties 1 and 2 will be called a basic set. This paper concerns
minimizing w(P ) over all closed V -paths P . In other words, we seek a closed V -path
that stays as close as possible to the origin. Define

w(V ) := min {w(P ) | P is a closed V -path}.

Call w(V ) the optimum wandering distance for V . A closed path that realizes this
distance will be called an optimum wandering path. The problem of finding the op-
timum wandering distance and optimum wandering path will be referred to as the
wandering path problem.

A 1-dimensional example. Let V = {−4, 6}. For the closed V -path P =
(0, −4, +2, −2, 4, 0), we have w(P ) = 4. In fact this is an optimum wandering
path for V , so w(V ) = 4. A complete solution to the wandering path problem for
the 1-dimensional case appears in section 5. As will be shown below, this implies a
complete solution to the discrete line problem in two dimensions.

A 2-dimensional example. Let V = {v0,v1,v2}, where

v0 = (1, 0),

v1 = (−1,
√

3),

v2 = (− 3
2 , −

3
2

√
3).

The optimum wandering path (0 = u0,u1,u2, . . . ,u11 = 0) is shown in Figure 1,
where the labels indicate the indices. The vectors of V are successively added in
the order (v0,v1,v2,v0,v0,v1,v0,v0,v2,v1,v0). The optimum wandering distance
is w(V ) =

√
3.

Relation between the discrete line and the optimum wandering path
problems. Recall that the discrete line problem is to find a sequence a = u′

1, . . . ,u
′
N
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Fig. 2. A discrete line that approximates ab.

= b of points (cells) in an (n + 1)-dimensional lattice L such that u′
i and u′

i+1 are
neighbors for i = 1, . . . , N − 1 and that satisfies conditions (A) and (B) from the
Introduction. Because the cells are the Voronoi cells of L, there exists a set Y of
vectors that generates L such that Y = −Y := {−y | y ∈ Y } and such that two
lattice points x1,x2 are neighbors if and only if x2 = x1 + y for some y ∈ Y . It also
follows that there is a subset V ′ of Y consisting of n + 1 direction vectors such that
b − a lies in the (n + 1)-dimensional polyhedral cone C spanned by V ′. In Figure 2
the lattice is the hexagonal lattice, the (Voronoi) cells regular hexagons. The figure
shows a line ab in R

2 and its set V ′ = {v0,v1} of direction vectors.
We will assume that b − a lies in no cone spanned by a proper subset of V ′;

otherwise the problem reduces to the same problem in a lower dimension. So

b − a =
∑

v′∈V ′

mv′ v′,

where the mv′ are uniquely determined positive integers. Let W ′ = (w′
1,w

′
2, . . . ,w

′
N )

be any ordered multiset of elements from V ′ such that the vector v′ appears exactly
mv′ times in W ′. Let

u′
k = a + w′

1 + w′
2 + · · · + w′

k.

Then the lattice points a, u′
1, u′

2, . . . ,u
′
N = b form a discrete line joining a and b.

Moreover, the number N =
∑

v′∈V ′ mv′ is the length of a shortest discrete line joining
a and b.

To solve the discrete line problem it remains to satisfy condition (B). To find
the orthogonal distance d(u′

k, ab) from each of the points u′
k to the line ab, let H

be the n-dimensional hyperplane orthogonal to vector b − a, and let projH denote
the orthogonal projection onto H. Further let V = {projH(v′) | v′ ∈ V ′}. By
the assumption that b − a lies in no cone spanned by a proper subset of V ′, every
set of n vectors from V is linearly independent. Moreover, defining mv := mv′ if
v = projH(v′), note that∑

v∈V

mv = N and
∑
v∈V

mvv = 0,(1)

the latter because
∑

v′∈V ′ mv′v′ = b − a and H is orthogonal to b − a. Hence V is
a basic set. Let wi = projH(w′

i) for each i and let

uk := w1 + w2 + · · · + wk.
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Note that P := (0 = u0,u1,u2, . . . ,uN = 0) is a closed V -path and that d(u′
k, ab) =

uk. Hence the problem of satisfying condition (B) is exactly the problem of minimizing

max
1≤k≤N

|uk|

over all closed V -paths P = (0 = u0,u1,u2, . . . ,uN = 0) of length N . In other
words, solving the discrete line problem in R

n+1 reduces to solving the wandering
path problem in R

n. The requirement that the closed V -path P have the same length
N as the discrete line is not a serious restriction, as explained in Remark 3 of section 4.

In the example of Figure 2 the basic set is V = {3c,−2c}, where c =
√

57/38. The
solution to the wandering path problem for basic set V is P = (0,−2c, c,−c, 2c, 0),
obtained by successive additions (−2c,+3c,−2c, 3c,−2c). The corresponding discrete
line is

a
a + v0

a + v0 + v1

a + v0 + v1 + v0

a + v0 + v1 + v0 + v1

a + v0 + v1 + v0 + v1 + v0 = b,

indicated by the shaded hexagons in Figure 2.

3. The lattices L and Λ, multiplicity, and modulus. For a real number
α, vector y, and set X of vectors we use the notation αX = {αx | x ∈ X} and
y + X = {y + x | x ∈ X}. In the first lemma, the V -multiset (w1,w2, . . . ,wN ) is
used as an alternate way to denote the V -path (0 = u0,u1,u2, . . . ,uN = 0), where
uk = w1 + w2 + · · · + wk. The proof of Lemma 1 is clear.

Lemma 1. If V is a basic set and α is a positive real number, then w(αV ) =
αw(V ). Moreover, if V -multiset (w1,w2, . . . ,wm) is an optimum wandering path for
V , then (αw1, αw2, . . . , αwm) is an optimum wandering path for αV .

Lemma 2. Let V be a basic set such that
∑

v∈V mv v = 0, with the mv relatively
prime integers. Then

∑
v∈V m′

v v = 0 if and only if there exists an integer c such
that m′

v = cmv for all v ∈ V .
Proof. Letting V = {v0,v1, . . . ,vn}, we have

n∑
i=1

mi

m0
vi = −v0 =

n∑
i=1

m′
i

m′
0

vi,

which implies by the linear independence of {v1, . . . ,vn} that mi/m0 = m′
i/m

′
0 or

m′
i = (m′

0/m0)mi for all i. Since the mi have no nontrivial common divisor, c :=
m′

0/m0 is an integer.
If V is a basic set, then, by definition, there exist positive integers mv such that∑

v∈V mvv = 0. In light of Lemma 2, call mv := mv(V ) the multiplicity of v in V if
the mv are relatively prime. Further denote

m := m(V ) =
∑
v∈V

mv,

where mv is the multiplicity of v in V . Call m := m(V ) the modulus of V .
Corollary 3. The length of any closed wandering V -path is divisible by the

modulus m(V ).
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Proof. If P is a closed V -path of length N and mv(P ) is the number of occurrences
of v in P , then

∑
v∈V mv(P )v = 0. By Lemma 2 there is a constant c such that

mv(P ) = cmv(V ). Therefore N =
∑

v∈V mv(P ) = c
∑

v∈V mv(V ) = cm(V ).
Conjecture 4. The length of an optimum wandering path for a basic set V is

equal to m(V ).
Comments relevant to Conjecture 4 appear in Remark 3.
Lemma 5. If V is a basic set in R

n, then the set of all integer linear combinations
of elements from V is an n-dimensional lattice.

Proof. Let L be the set of all integer linear combinations of elements from V =
{v0,v1, . . . ,vn}, and let {m0,m1, . . . ,mn} be a set of integers such that

∑n
i=0 mi vi =

0. Then by eliminating v0,

n∑
i=0

ai vi =

n∑
i=1

m0ai −mia0

m0
vi

for any integers ai. Therefore x ∈ L if and only if x =
∑n

i=1 βivi, where βi = bi/m0

and (b1, . . . , bn) is a multiple of (m1,m2, . . . ,mn) modulo m0. It readily follows that
L is a sublattice of the lattice generated by the vectors 1

m0
vi, 1 ≤ i ≤ n.

The following is a converse of Lemma 5.
Lemma 6. Let V be any set of n + 1 points of an n-dimensional lattice, every

n of which are linearly independent. Then V is a basic set if and only if V is not
contained in any closed half-space determined by a hyperplane through the origin.

Proof. Clearly, if V is contained in some half-space, then
∑n

i=0 mi vi = 0 is
impossible for positive integers mi. Conversely, assume that V is not a basic set.
Since V is a dependent set of lattice points,

∑n
i=0 ai vi = 0 for some integers ai.

It is not possible that all the ai are positive, since there exists no closed V -path.
Thus v0 =

∑n
i=1 bi vi, where at least one of the bi, say bn without loss of generality,

is positive. Let x be a vector orthogonal to v1, . . . ,vn−1. Then 〈x,vi〉 = 0 for
i = 1, 2, . . . , n − 1 and 〈x,v0〉 =

∑n
i=1 bi 〈x,vi〉 = bn 〈x,vn〉. This shows that V is

contained in the closed positive half-space determined by x.
In light of Lemma 5, let L := L(V ) denote the lattice of all integer linear combi-

nations of elements from V :

L(V ) :=

{∑
v∈V

avv | av ∈ Z

}
.

The sublattice Λ := Λ(V ) ⊂ L(V ) defined by

Λ(V ) :=

{∑
v∈V

avv | av ∈ Z,
∑
v∈V

av = 0

}

also plays an important role in the wandering path problem. For any v0 ∈ V the
lattice Λ(V ) is generated by the set {v− v0, | v ∈ V \ {v0}} of vectors. For x,y ∈ L
define

x ≡ y (mod Λ) if x − y ∈ Λ.

Lemma 7. If V is a basic set with modulus m, then∑
v∈V

avv ≡ 0 (mod Λ) if and only if
∑
v∈V

av ≡ 0 (mod m).
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Proof. By definition,
∑

v∈V avv ≡ 0 if and only if
∑

v∈V avv ∈ Λ if and only if
there exist integers bv such that

∑
v∈V avv =

∑
v∈V bvv, where

∑
v∈V bv = 0. This

occurs if and only if
∑

v∈V (avv − bvv) = 0, which, by Lemma 2, occurs if and only
if there is an integer c such that av − bv = cmv for all v ∈ V . In one direction this
implies that

∑
v∈V av =

∑
v∈V bv + c

∑
v∈V mv = cm. So

∑
v∈V av ≡ 0 (mod m).

In the other direction, if
∑

v∈V av ≡ 0 (mod m), then take bv = av − cmv, in which
case

∑
v∈V bv =

∑
v∈V av − c

∑
v∈V mv = 0.

Corollary 8. If V is a basic set with modulus m(V ), then the order of the
quotient group L/Λ is m(V ).

4. First algorithm. The first result in this section is a lower bound on the
optimum wandering distance. The first of two algorithms for the wandering path
problem is then presented. The input is a basic set V , the output a closed V -path
that is near optimum.

Proposition 9. If V is a basic set, then

w(V ) ≥ 1

2
max
v∈V

|v| .

Proof. Let v ∈ V be an element that realizes the maximum in maxv∈V |v|, and
let u and u′ be two consecutive points in an optimum wandering path such that
v = u − u′. By the triangle inequality 2w(V ) ≥ |u| + |u′| ≥ |v|.

Although this lower bound is somewhat trivial, it is, in a sense, best possible. For
the following family in R

2, for example, the bound is achieved: V = {v0,v1,v2},

v0 = (1, β),
v1 = (1,−β),
v2 = (−4k, 0),

where k ≥ 2 is an integer and 0 < β ≤
√

3. In this case the optimum wandering path
is

(v0,v1,v0,v1, . . .v0,v1,v2,v0,v1,v0,v1, . . .v0,v1),

where v0,v1 is repeated k time on each side of v2. Then

w(V ) = w(P ) = 2k =
1

2
|v2| =

1

2
max
v∈V

|v|.

In Algorithm 1 below, the notation C ′
v stands for the polyhedral cone spanned

by the vectors in V \ {v}:

C ′
v :=

⎧⎨
⎩

∑
u∈V \{v}

αu u
∣∣ αu ≥ 0

⎫⎬
⎭ .

Let

x0 =
1

2

∑
v∈V

v and Cv = −x0 + C ′
v.

Then Cv is a copy of C ′
v translated by −x0. It follows from Lemma 6 that

⋃
v∈V C ′

v =
R

n, and therefore ⋃
v∈V

Cv = R

n.(2)
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Algorithm 1.

Input: A basic set V in R

n.
Output: A closed V -path P in R

n.
initialize: i = 0, u0 = 0
until i = m(V ) do

find a v ∈ V such that ui ∈ Cv

ui+1 ← ui + v
i ← i + 1

end

return: path P = (0,u1, . . . ,um(V ) = 0).

Theorem 10. If V is a basic set with modulus m(V ), then Algorithm 1 finds a
closed V -path P of length m(V ) with

w(P ) ≤ 1

2
max

∣∣∣∣∣
∑
v∈V

±v

∣∣∣∣∣ ,
where the maximum is taken over all choices of signs ±.

Proof. Note that (2) insures that the main step in the algorithm (find a v ∈ V
such that ui ∈ Cv) is always possible.

Let D′ be the zonotope generated by V ; in other words,

D′ =

{∑
v∈V

αvv | 0 ≤ αv ≤ 1

}
,

and let D = −x0 + D′ be the translate of D′ by −x0. We first show by induction
that, at each iteration of Algorithm 1, the point ui ∈ D. The point 0 ∈ D; in fact,
it is the barycenter of D because x0 is the barycenter of D′. If ui ∈ D ∩ Cv, then
x0 + ui ∈ D′ ∩ C ′

v, which, by the definition of D′, implies that x0 + ui + v ∈ D′.
Therefore ui+1 = ui + v ∈ D.

Let G be the group consisting of translations of R

n by the vectors in Λ(V ). The
quotient space R

n/G is often referred to as a fundamental domain. Such a fundamental
domain contains exactly one representative from each coset of L/Λ. Note that D′,
and therefore D, is such a fundamental domain.

The points in the path constructed by Algorithm 1 are of the form
ui =

∑
v∈V ai,vv, where the ai,v are positive integers such that

∑
v∈V ai,v = i.

Letting m be the modulus,
∑

v∈V am,v ≡ 0 (mod m), which by Lemma 7 implies
that um ∈ Λ. By the facts proved above, 0 ∈ D and um ∈ D. But D can contain
only one representative from each coset of L/Λ. Therefore um = 0. Thus Algorithm 1
returns to 0 in m(V ) steps; it cannot, by Lemma 2, return sooner.

Also w(P ) is bounded above by

max
x∈D

|x| = max
x∈D′

| − x0 + x| =

∣∣∣∣∣∣−
1

2

∑
v∈V

v + max
Y �V

∑
y∈Y

y

∣∣∣∣∣∣ =
1

2
max

∣∣∣∣∣
∑
v∈V

±v

∣∣∣∣∣ .
Remark 1. In dimension n, the difference between the upper bound in Theorem 10

and the lower bound in Proposition 9 is

1

2
max

∣∣∣∣∣
∑
v∈V

±v

∣∣∣∣∣− 1

2
max
v∈V

|v| ≤ n

2
max
v∈V

|v| .
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Fig. 3. A closed V -path using Algorithm 1.

Remark 2. In section 5 it will be shown that Algorithm 1 always finds an op-
timum wandering path in the 1-dimensional case. This is not necessarily true in
higher dimensions, although finding examples is not completely trivial. In dimension
2 consider the basic set consisting of the following three vectors:

v0 = (4, 0),
v1 = (0, 3),
v2 = (−7,−8).

Algorithm 1 produces a closed wandering path P of length m = 65 with w(P ) =
5
√

2 ≈ 7.07, where the point of P furthest from the origin is (5, 5). However, the
optimum wandering path Q (of the same length 65) has w(Q) =

√
41 ≈ 6.40, where

the point furthest from the origin is (5, 4). Another example is the 2-dimensional
example

v0 = (1, 0),

v1 = (−1,
√

3),

v2 = (− 3
2 , −

3
2

√
3),

mentioned in section 2. The closed V -path P = (0 = u0,u1,u2, . . . ,u11 = 0) found
by Algorithm 1 is shown in Figure 3, where the labels indicate the indices. The vectors
of V are successively added in the order (v0,v1,v0,v2,v0,v1,v0,v0,v2,v1,v0). The
optimum wandering path for V is shown in Figure 1. Note that w(P ) = 2 >

√
3 =

w(V ).
Remark 3. Algorithm 1 for the wandering path problem implies a corresponding

algorithm for the discrete line problem. To obtain a solution to the discrete line
problem from the wandering path problem, what is required is a closed V -path P
of the same length N as the discrete line. By (1), the length N of the discrete line
is also the length of some closed wandering V -path. Corollary 3 then implies that
N is a multiple of m(V ). According to Theorem 10, the output of Algorithm 1 is
a closed V -path P0 of length m(V ). Therefore it suffices to take for P the path P0

concatenated with itself N/m(V ) times, in which case w(P ) = w(P0).
A discussion of the upper bound on w(V ) given in Theorem 10 is postponed

until Algorithm 2 is introduced in section 6. In that section the bounds for the two
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algorithms are compared. The output of Algorithm 1 is a closed V -path P0 of length
m(V ). If Conjecture 4 is true, then the same can be said of the optimum wandering
path.

5. The wandering path problem in dimension 1. In one dimension a basic
set is just a pair {α, β} of real numbers for which there exist integers mα and mβ

such that mαα + mββ = 0. If α, β is such a basic set, then it is easy to find a
relatively prime pair of integers a, b and a real number λ such that α = λa and
β = λ b. Therefore, by Lemma 1, there is no loss of generality in assuming, in the
1-dimensional case, that the basic set is V = {a, b}, where a and b are a relatively
prime pair of integers.

Theorem 11. Let V = {a, b} be a basic set in R with a and b relatively prime.
Then w(V ) = (|a| + |b|)/2�. Moreover, Algorithm 1.1 below finds an optimum wan-
dering path of length |a| + |b|.

Algorithm 1.1.

Input: A basic set V = {a, b}
(without loss of generality, a, b are relatively prime and a > 0, b < 0).

Output: An optimum wandering path for V.
initialize: i = 0, u0 = 0
until i = |a| + |b| do

if ui ≥ −(a + b)/2 then

ui+1 ← ui + b
else

ui+1 ← ui + a
i ← i + 1

end

return: Path P = (0, u1, u1, . . . , u|a|+|b| = 0).
Proof. Algorithm 1.1 is exactly the 1-dimensional case of Algorithm 1 in the

previous section. In this case the modulus m(V ) = |a|+ |b|. Theorem 10 then implies
that Algorithm 1.1 finds a closed V -path P of length |a|+ |b| with w(P ) ≤ 1

2 (|a|+ |b|).
Therefore

w(V ) ≤
⌊
|a| + |b|

2

⌋
.

However, in the closed interval between − |a|+|b|
2 � and + |a|+|b|

2 � there are at most
|a|+ |b|+1 integers. By Corollary 3, any closed V -path P has at least m(V ) = |a|+ |b|
distinct points. Hence one of these points must be either − |a|+|b|

2 �, + |a|+|b|
2 �, or a

point even further from the origin . Thus

w(V ) ≥
⌊
|a| + |b|

2

⌋
.

6. Second algorithm. Our second algorithm for the wandering path problem
is a “greedy” algorithm, choosing at each step the vector that brings the path closest
to the origin.

Algorithm 2.

Input: A basic set V in R

n.
Output: A closed V -path P in R

n.
initialize: i = 0, u0 = 0
until ui = ui0 for some i0 < i do
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Fig. 4. Closed V -path found using Algorithm 2.

choose v ∈ V such that |ui + v| ≤ |ui + v′| for all v′ ∈ V
ui+1 ← ui + v
i ← i + 1

end

return: path P = (0,ui0+1 − ui0 ,ui0+2 − ui0 , . . . ,0).

Remark 4. The translation by −ui0 in Algorithm 2 is sometimes necessary.
An example in dimension 2 is V = {(1, 3), (2, 1), (−1,−2)}. The V -path (0 =
u0,u1,u2, . . . ,u10 = u1) found by Algorithm 2 is shown in Figure 4. The labels
indicate the order in which the points of the path are found by Algorithm 2. In this
case i0 = 1. The output from Algorithm 2 is the closed V -path that starts and ends
at u1 (labeled 1 in the figure). This V -path is translated so that u1 sits at the origin.

If V is a basic set, then by Lemma 6 the convex hull of V is an n-simplex Δ :=
Δ(V ) containing the origin. For v ∈ V let Δv denote the n-simplex with vertex set
V ∪ {0} \ {v}. For any n-simplex Δ, let R(Δ) denote its circumradius.

Theorem 12. If V is a basic set, then Algorithm 2 finds a closed V -path that
is contained in a ball of radius

r(V ) ≤ max{R(Δ), R(Δv) |v ∈ V }.

Before proving Theorem 12 several more remarks are in order.
Remark 5. Unlike Theorem 10, Theorem 12 does not state the length of the

constructed path. We conjecture that the length is the modulus m(V ).
Remark 6. It is possible to find an explicit formula for the upper bound in

Theorem 12. Let V = {v0,v1, . . . ,vn}. The circumcenter (x1, . . . , xn) of Δk := Δvk

can be found by solving a system of linear equations as follows. Because each vertex
of Δk is equidistant from the circumcenter of Δk,∑

j

x2
j =

∑
j

(xj − vij)
2
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Fig. 5. Proof of Theorem 13.

for i = 0, 1, 2, . . . , k − 1, k + 1, . . . , n, where vi = (vi1, . . . , vin). This simplifies to the
n× n linear system

∑
j

vij xj =
1

2

∑
j

v2
ij .

Cramer’s rule provides a determinantal formula for the circumradius R(Δk). Let
Mk = (vij), and let Mkjt denote the result of replacing the jth column of Mk by the
coordinatewise square of the tth column of Mk. Then

xj = (
∑n

t=1 detMkjt)/(2 detMk),

R(Δk) = (
∑n

j=1 x
2
j )

1
2 .

A similar formula is easily obtained for R(Δ) by translating one vertex to the origin.
Remark 7. The following theorem allows the upper bound max{R(Δ), R(Δv) |

v ∈ V } in Theorem 12 to be simplified to max{R(Δv) |v ∈ V } in the 2-dimensional
case. We conjecture that the statement is true for a simplex Δ of arbitrary dimension
n ≥ 2, but the proof given below for a triangle does not seem to extend to higher
dimensions.

Theorem 13. Let V denote the set of vertices of a 2-simplex Δ. If v ∈ V and x
is any point in Δ, let Δx

v denote the n-simplex with vertex set V ∪ {x} \ {v}. Then

R(Δ) ≤ max
v∈V

R(Δx
v).

Proof. Denote the vertices of triangle Δ by A,B,C and its circumradius by R.
We will prove the theorem in the case that Δ is an acute triangle, leaving the easy
case of Δ obtuse to the reader. Let A′, B′, C ′ be the midpoints of sides BC,CA,AB,
respectively. (See Figure 5.) Then triangle Δ′ = �(A′B′C ′) is similar to triangle Δ
with ratio 1/2, and with the same circumcenter O as triangle Δ. Since Δ is acute,
O lies within triangle Δ. Let A′′ be a point on the line OA′ such that the distance
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Fig. 6. An optimum wandering path.

OA′′ is twice the distance OA′ and such that A′ lies between O and A′′, similarly for
B′′ and C ′′. Note that d(C ′′, A) = d(O,A) = R and d(C ′′, B) = d(O,B) = R, where
d denotes Euclidean distance. Triangles Δ′ and Δ′′ = �(A′′, B′′C ′′) are similar with
ratio 2 implying that triangles Δ and Δ′′ are congruent. Let O′′ be the circumcenter
of Δ′′. Since Δ′′ ∼= Δ we have d(O′′, C ′′) = R. (Although not necessary for this proof,
it is not hard to show that O′′ is, in fact, the orthocenter of Δ, the intersection of
the three altitudes.) Let S be the circumscribed circle of �(AO′′B), which we have
proved has center C ′′.

Let Q be an arbitrary point inside Δ. The three line segments AO′′, BO′′, CO′′

subdivide Δ into three (some perhaps degenerate) triangles. Without loss of general-
ity, assume that Q lies in triangle AO′′B. Let RQ be the circumradius of �(AQB),
and let Q′ be the point of intersection (inside Δ) of S with the line L through Q
perpendicular to AB. The intersection of the perpendicular bisectors of the three line
segments AB,AQ′, Q′B is C ′′, the center of the circle S. The circumcenter D of AQB
lies on the ray OC ′′ because D is the intersection of the perpendicular bisectors of the
three sides of �(AQB), and OC ′′ is the perpendicular bisector of side AB. On line L,
the point Q is closer to line AB than is Q′. It easily follows that d(O,D) ≥ d(O,C ′′),
which in turn implies that RQ = d(D,A) ≥ d(C ′′, A) = R. This completes the
proof.

Remark 8. There is the question of which of the two algorithms, Algorithm 1
or 2, gives the better result. Often they both find the optimum wandering path.
Consider the following examples in R

2, where the basic set is V = {v0,v1,v2}:

v0 = (5, 0),
v1 = (−2, 4),
v2 = (−1, −3),

v0 = (5, 0),
v1 = (−2, 4),
v2 = (−2,−3).

For the first example both algorithms find the same optimum wandering path,

P = (0, 0), (−1,−3), (−3, 1), (2, 1), (1,−2), (−1, 2), (−2,−1), (3,−1), (1, 3), (0, 0),

of length 9 with w(V ) =
√

10 ≈ 3.16. This optimum wandering path, is shown in
Figure 6.

For the second example both algorithms find the same optimum wandering path
of length 49 with w(V ) =

√
17 ≈ 4.12. For this example the upper bound provided



660 A. VINCE

for Algorithm 1 in Theorem 10 is
√

82/2 ≈ 4.53, while the upper bound provided for
Algorithm 2 in Theorem 12 is

√
389/4 ≈ 4.93. In all the examples we have tried,

the upper bound from Theorem 10 is less than or equal to the upper bound from
Theorem 12.

It is not always the case that both algorithms find an optimum wandering path.
It was noted in Remark 2 of section 4 that in neither of the following two examples
does Algorithm 1 find an optimum wandering path. However, Algorithm 2 does find
an optimum wandering path in both cases:

v0 = (1, 0),

v1 = (−1,
√

3),

v2 = (− 3
2 , −

3
2

√
3),

v0 = (4, 0),
v1 = (0, 3),
v2 = (−7,−8).

For the first example, the optimum wandering path found using Algorithm 2 is shown
in Figure 1, while the nonoptimum path found by Algorithm 1 is shown in Figure 3.
For the second example, Algorithm 2 finds an optimum wandering path P2 of length
65 with w(P2) = w(V ) =

√
41 ≈ 6.40, less than w(P1) = 5

√
2 ≈ 7.07 for the closed

V -path P1 of the same length found by Algorithm 1.
On the other hand, there are examples for which Algorithm 1 finds an optimum

wandering path while Algorithm 2 does not. For example, let V = {v0,v1,v2}, where

v0 = (3, 1),
v1 = (4, 1),
v2 = (−14, −4).

Algorithm 2 finds the closed V -path

P2 = (0, 0), (3, 1), (6, 2), (−8,−2), (−4,−1), (0, 0),

with w(P2) = 2
√

17 ≈ 8.25, while Algorithm 1 finds an optimum wandering path

P1 = (0, 0), (4, 1), (7, 2), (−7, 2), (−3,−1), (0, 0),

with w(P1) = w(V ) =
√

53 ≈ 7.28.
Proof of Theorem 12. The strategy is to find a ball B of radius max{R(Δ), R(Δv) |

v ∈ V } such that, for all x ∈ B, there is a v ∈ V such that x + v ∈ B. For distinct
u,v ∈ V let Huv denote the hyperplane that is the perpendicular bisector of the
segment joining −u and −v. The intersection of all the Huv is the circumcenter O
of the simplex −Δ, which is the convex hull of −V . Let H+

uv be the closed half-space
that contains −v determined by Huv, and let

Pv =
⋂

u∈V \{v}
H+

uv.

Note that

Pv = {x : |x + v| ≤ |x + u| for all u ∈ V \ {v}}.

The Pv, v ∈ V , partition R

n into n + 1 polyhedral cones with vertex at O.
For v ∈ V , let Hv denote the hyperplane that is the perpendicular bisector of the

segment joining −v and 0. Then

Ov =
⋂

u∈V \{v}
Hu
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is the circumcenter of −Δv. Therefore Ov also lies on each hyperplane Huu′ with
u,u′ ∈ V \ {v}. Let H+

v denote the closed half-space that contains O determined by
the hyperplane Hv, and let H−

v denote the complementary closed half-space. Further
partition each Pv as follows. Let

P+
v = Pv ∩H+

v , P−
v = Pv ∩H−

v .

Note that P+
v is a simplex with vertex set {O} ∪

⋃
u∈V \{v} Ou. Any point x in P−

v

satisfies the properties
a. |x + v ≤ |x + u| for all u ∈ V \ {v}, and
b. |x + v| ≤ |x|.

Moreover, any point x in P+
v satisfies the properties

c. |x + v| ≤ |x + u| for all u ∈ V \ {v}, and
d. |x + v| ≤ maxu∈V \{v}{|O + v|, |Ou + v|},

inequality (d) following from the fact that x lies within the simplex P+
v with vertex

set {O}∪
⋃

u∈V \{v} Ou. But for u ∈ V \{v} we have |Ou +v| = |Ou|, because Ou lies
on the hyperplane Hv, which is the perpendicular bisector of the line segment joining
0 and −v. Also |Ou| is the circumradius of −Δu, and |O + v| is the circumradius of
−Δ. From property (d) it follows that for any x ∈ P+

v we have
e. |x + v| ≤ max{R(−Δ), R(−Δv) |v ∈ V } = max{R(Δ), R(Δv) |v ∈ V }.

Properties (a) and (c) are the greedy property, and (b) and (e) insure that at each
iteration i of Algorithm 2,

|ui| ≤ max{R(Δ), R(Δv) |v ∈ V }.

Because {0 = u0,u1,u2, . . .} is a bounded set and is a set of lattice points in L (by
Lemma 5), it follows that there is a point of the constructed V -path that appears
at least twice in this sequence. If ui0 is the first such point, then the closed V -path
P = (ui0 ,ui0+1,ui0+2, . . . ,ui0) is contained in a ball or radius maxv∈V R(Δv).
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THE MAXIMUM INDUCED BIPARTITE SUBGRAPH PROBLEM
WITH EDGE WEIGHTS∗

DENIS CORNAZ† AND A. RIDHA MAHJOUB‡

Abstract. Given a graph G = (V,E) with nonnegative weights on the edges, the maximum
induced bipartite subgraph problem (MIBSP) is to find a maximum weight bipartite subgraph
(W,E[W ]) of G. Here E[W ] is the edge set induced by W . An edge subset F ⊆ E is called in-
dependent if there is an induced bipartite subgraph of G whose edge set contains F . Otherwise, it
is called dependent. In this paper we characterize the minimal dependent sets, that is, the depen-
dent sets that are not contained in any other dependent set. Using this, we give an integer linear
programming formulation for MIBSP in the natural variable space, based on an associated class of
valid inequalities called dependent set inequalities. Moreover, we show that the minimum dependent
set problem with nonnegative weights can be reduced to the minimum circuit problem in a directed
graph, and can then be solved in polynomial time. This yields a polynomial-time separation algo-
rithm for the dependent set inequalities as well as a polynomial-time cutting plane algorithm for
solving the linear relaxation of the problem. We also discuss some polyhedral consequences.

Key words. induced bipartite subgraph, edge weight, minimal dependent set, separation algo-
rithm, polytope
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1. Introduction. A graph is called bipartite if its node set can be partitioned
into two nonempty sets V1 and V2 such that no two nodes in Vi are linked by an
edge, for i = 1, 2. Let G = (V,E) be a graph. A subgraph (W,F ) of G is said to be
induced if F is the set of edges having both endnodes in W . Given w, a function that
associates with each edge e ∈ E a nonnegative weight w(e), the maximum induced
bipartite subgraph problem (MIBSP) is to find an induced bipartite subgraph with
maximum weight.

An edge subset F ⊆ E is called independent if there is an induced bipartite
subgraph of G with edge set B ⊆ E such that F ⊆ B. Otherwise, it is called
dependent. In this paper we characterize the minimal dependent sets of a graph
G = (V,E). Using this, we give a 0-1 linear programming formulation for MIBSP
in the natural variable space, based on an associated class of valid inequalities called
dependent set inequalities. We also show that the minimum dependent set problem
with nonnegative weights can be reduced to the minimum circuit problem in a directed
graph and can then be solved in polynomial time. This yields a polynomial-time
separation algorithm for the dependent set inequalities as well as a polynomial-time
cutting plane algorithm for solving the linear relaxation of the problem.

To the best of our knowledge, MIBSP has not been considered before in the
literature. However, the maximum bipartite subgraph problem has been extensively
investigated. Here, given a graph G = (V,E) and weights on the edges of G, the
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‡Laboratoire LIMOS, CNRS UMR 6158, Université Blaise Pascal, Clermont II, 63177 Aubière
Cedex, France (Ridha.Mahjoub@math.univ-bpclermont.fr).

662



THE MAXIMUM INDUCED BIPARTITE SUBGRAPH PROBLEM 663

problem is to find a bipartite subgraph (not necessarily induced) with maximum
weight. In [3] Barahona, Grötschel, and Mahjoub describe several classes of facet
defining inequalities of the associated bipartite subgraph polytope. They also present
some methods with which new facet defining inequalities of that polytope can be
constructed from known ones.

A graph is said to be weakly bipartite if the bipartite subgraph polytope coincides
with the polytope given by the trivial inequalities and the so-called odd cycle inequal-
ities. Grötschel and Pulleyblank [18] showed that the bipartite subgraph problem can
be solved in polynomial time in that class of graphs. Barahona showed that planar
graphs [1] and graphs G that contain two nodes which cover all the odd-cycles of
G [2] belong to that class of graphs. In [10] Fonlupt, Mahjoub, and Uhry generalize
these results by showing that the graphs noncontractible to K5 are weakly bipartite.
Recently Guenin [19] gave a characterization for that class of graphs.

The closely related MIBSP with node weights has also been studied. Here we
suppose that the weights are associated with the nodes of the graph, and the problem is
to determine an induced bipartite subgraph with maximum weight. This problem has
applications to the via-minimization problem which arises in the design of integrated
circuits and printed circuit boards [6], [11]. In [4] Barahona and Mahjoub study the
polytope BP(G) associated with this problem. They exhibit some basic classes of facet
defining inequalities for BP(G) and describe several lifting methods. In [5] they study
a composition technique for BP(G) in the graphs which are decomposable by one-
and two-node cutsets. Fouilhoux and Mahjoub [12] (see also Fouilhoux [11]) study the
polytope BP(G). They describe new classes of facet defining inequalities and discuss
separation procedures. Using this, they develop a branch-and-cut algorithm for the
problem and present some computational results. In [13] Fouilhoux and Mahjoub
consider the via-mimization problem and show that this can be reduced to the MIBSP
with appropriate node weights. Further applications of the MIBSP with node weights
to the via-minimization problem and DNA sequencing are also discussed in [11].

A related work has been done by Cornaz and Fonlupt [7] on the maximum biclique
problem. (A biclique is the edge set of a complete bipartite (not necessarily induced)
subgraph). Although the MIBSP and the maximum biclique problem are different,
this paper gives rise to some structural relations between the minimal dependent sets
associated to both problems.

The paper is organized as follows. In the following section we give some notation,
definitions, and preliminary results. In section 3 we study the dependent sets and give
a characterization for these sets. In section 4 we show that the minimum dependent
set problem with nonnegative weights can be reduced to the minimum odd circuit
problem and can then be solved in polynomial time. In section 5 we discuss some
polyhedral consequences and give some concluding remarks.

2. Definitions, notation, and preliminary results.

2.1. Definitions and notation. Throughout the paper we consider only simple
graphs and digraphs. We will denote a graph by G = (V,E), where V is the node set
and E is the edge set. An edge with endnodes u and v will be denoted by uv. For
W ⊆ V , we let E[W ] denote the set of edges having both nodes in W . The graph
G[W ] = (W,E[W ]) is the subgraph of G induced by W . If F ⊆ E, we let V (F )
denote the set of nodes incident to edges of F , and G(F ) = (V (F ), F ). Note that
G(F ) = G[V (F )] holds if and only if G(F ) is an induced subgraph of G.

We denote a directed graph (or digraph) by D = (V,A), where V is the node
set and A the arc set of D. An arc with initial node u and terminal node v will be
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denoted by uv. (Note that uv �= vu for digraphs.)
A path in G (resp., D) is an alternate sequence of nodes and edges (resp., arcs)

P = v1, e1, v2, . . . , vk, ek, vk+1 such that k ≥ 1, all the nodes vi are distinct, and
ei = vivi+1 ∈ E (resp., ei = vivi+1 ∈ A) for i = 1, 2, . . . , k. The nodes v1 and vk+1 are
the extremities of P , and we will say that P links v1 and vk+1 (resp., v1 to vk+1). The
integer k is called the length of P , and P is said to be even (odd) if k is even (odd).
If v1 = vk+1, P is called a cycle (resp., circuit). An edge linking two nonconsecutive
nodes of a path (cycle) P is called a chord of P . A chordless cycle is also called a
hole. Given a path P , we let E(P ) (resp., A(P )) and V (P ) denote the sets of edges
(resp., arcs) and nodes of P , respectively.

Given a vector x ∈ R

E and T ⊆ E, we let x(T ) denote
∑

e∈T x(e). Bipartite
graphs have the following property.

Remark 2.1. A graph is bipartite if and only if it does not contain an odd cycle.

2.2. Signed digraphs. A signed digraph consists of a digraph D = (V,A) and
a subset Σ ⊆ A of arcs called signed arcs. The arcs in A \ Σ are said to be unsigned.
Given a signed digraph D = (V,A), a circuit is said to be odd if it contains an
odd number of signed arcs. Note that if ω ∈ R

A is a weight vector, then finding a
minimum weight odd circuit in D reduces to finding a minimum weight odd circuit
in an unsigned digraph. In fact, for this, it suffices to replace every unsigned arc
uv ∈ A\Σ by a path u, uw,w,wv, v, where w is a new node, and associate to the new

arcs uw,wv the weight ω(uv)
2 . Moreover, finding a minimum weight odd circuit in a

digraph reduces to a shortest path problem [17] (see also [16]). As the weights are
nonnegative, it can then be solved in polynomial time, using, for instance, Dijkstra’s
algorithm [9].

2.3. Independent sets. Given a graph G = (V,E), we let B(G) denote the set
of the edge sets of the induced bipartite subgraphs of G, i.e.,

B(G) = {B ⊆ E : G(B) = G[V (B)] and G(B) is bipartite}.

Hence the MIBSP is equivalent to

maximize {ω(B) : B ∈ B(G)}.

Given a graph G = (V,E), a node subset W ⊆ V is called a stable set if E[W ] = ∅.
The stable set problem in G consists in finding a stable set of maximum cardinality.
Note that the stable set problem can be reduced to the MIBSP. In fact, consider the
graph Ḡ = (V̄ , Ē) obtained from G by adding a universal node (a node adjacent to
all the other nodes of G) and associate with the edges of Ē the weight ω(e) = 1 if
e ∈ Ē\E and ω(e) = 0 if not. It is easy to see that an optimum solution of the MIBSP
in Ḡ with respect to weight vector ω corresponds to a maximum cardinality stable set
in G. This implies that the MIBSP is NP-hard. The maximum cardinality MIBSP
is to find a set in B(G) with maximum cardinality. In what follows we shall show
that the maximum cardinality MIBSP is also NP-hard, which implies that MIBSP is
strongly NP-hard.

Proposition 2.2. The maximum cardinality MIBSP is NP-hard.
Proof. We show that the stable set problem in a graph G = (V,E) reduces to the

maximum cardinality MIBSP. As the former problem is NP-hard [14], the latter is
also NP-hard.

Let G̃ = (Ṽ , Ẽ) be the graph obtained from G = (V,E) by considering a copy
G′ = (V ′, E′) of G and adding all the possible edges between V and V ′, that is,
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Ṽ = V ∪ V ′ and Ẽ = E ∪ E′ ∪ {vv′ : v ∈ V , v′ ∈ V ′}. Note that for every stable set
S ⊆ V of G and its copy S′ ⊆ V ′ of G′, G̃[S ∪S′] is a complete bipartite graph. Thus
for every maximum cardinality solution B ∈ B(G̃) and every stable set S ⊆ V of G,
we have that |B| ≥ |S|2. In particular |B| ≥ |S∗|2, where S∗ is a maximum stable set
of G.

Now let B ∈ B(G̃) be of maximum cardinality and S̃ ⊆ Ṽ a maximum cardinality
stable set of G̃ such that every node v ∈ S̃ is incident to an edge in B. Obviously,
either S̃ ⊆ V or S̃ ⊆ V ′. Thus |S̃| ≤ |S∗|. As |B| ≤ |S̃|2, it follows that |B| ≤ |S∗|2.
Consequently, |B| = |S̃|2 = |S∗|2.

Denote by I(G) the set of the independent sets of G, i.e.,

I(G) = {I ⊆ E : ∃ B ∈ B(G), I ⊆ B}.

Obviously, B(G) ⊆ I(G). However, in general we have that B(G) is a strict subset of
I(G). For instance, consider the graph G consisting of a path of three edges (e1, e2, e3).
Clearly, the edge subset I = {e1, e3} is independent. However, G(I) �= G[V (I)], and
hence I /∈ B(G). Also note that, since the weights are nonnegative,

max{ω(I) : I ∈ I(G)} = max{ω(B) : B ∈ B(G)}.

Therefore the MIBSP is equivalent to finding a maximum weight independent set in
G. Moreover, we have the following which is a direct consequence of Remark 2.1.

Lemma 2.3. Given an edge set I ⊆ E, I ∈ I(G) if and only if G[V (I)] contains
no odd cycle.

In what follows we will denote by C(G) the set of the minimal dependent sets of
G, i.e.,

C(G) = {C ⊆ E : C �∈ I(G) and C ′ ∈ I(G) ∀ C ′ ⊂ C}.

We have the following.
Lemma 2.4. Given an edge set C ⊆ E, C ∈ C(G) if and only if
(i) there exists at least one odd cycle in G[V (C)], and
(ii) for every odd cycle Q of G[V (C)] and every edge f ∈ C, there exists a node

vf ∈ V (Q) such that f is the unique edge of C incident to vf .
Proof.
Necessity.
(i) This follows from Lemma 2.3.
(ii) Let Q be an odd cycle of G[V (C)] and f an edge of C ∈ C(G). If the statement

does not hold, it is not hard to see that V (Q) ⊆ V (C \ {f}). But this implies
that C \ {f} is dependent, contradicting the minimality of C.

Sufficiency. By Lemmas 2.4(i) and 2.3, we have that C /∈ I(G). Now suppose
that C is not minimal. Then there exists an edge f = uv ∈ C such that C ′ = C\{f} �∈
I(G). By Lemma 2.3, this implies that G[V (C ′)] contains an odd cycle, say Q, and
hence V (Q) ⊆ V (C ′). Moreover, by Lemma 2.4(ii), it follows that one of the nodes
of f , say v, belongs to V (Q) and is not incident to any edge in C ′. But this implies
that v ∈ V (Q) \ V (C ′), a contradiction.

Figure 1 shows a subgraph which is induced by the node set of a minimal de-
pendent set. The dependent set is presented by bold lines. We can remark that the
subgraph contains an odd cycle, and that for every edge f of the dependent set, there
is a node of the cycle such that f is the only edge incident to it.
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in F

in E \ F

Fig. 1. A subgraph induced by a minimal dependent set.

3. Minimal dependent sets. The characterization of the minimal dependent
sets, given by Lemma 2.4, is not strong enough to obtain certain polyhedral results
for the MIBSP which we will present in the next sections. In this section we give
a stronger characterization of the minimal dependent sets. This will be given in
Theorem 3.2. To this end, we first introduce some definitions.

Let F ⊆ E and Q be an odd cycle of G. A node v ∈ V (Q) is said to be unsaturated
with respect to F and Q if v is not incident to any edge of F ∩ E(Q); otherwise v is
said to be saturated.

Definition 3.1. Given an edge set F ⊆ E, we say that F induces an obstruction
with respect to an odd cycle Q if Q is an odd cycle of G[V (F )] and if conditions (1)
and (2) below are satisfied.

(1) Every edge f ∈ F \E(Q) is of the form f = vw where v ∈ V (Q), w ∈ V \V (Q),
and there is no edge in F \ {f} adjacent to f .

(2) Every edge in F ∩ E(Q) is adjacent to at most one edge of F .

Figure 2 shows an obstruction induced by an edge set F with respect to the odd
cycle on seven edges. We can remark here that F does not correspond to a minimal
dependent set. The edges e, f induce a minimal dependent set.

Let F ⊆ E be an edge set. And suppose that F induces an obstruction with
respect to an odd cycle

Q = v1, e1, v2, e2, . . . , vk, ek, vk+1

of G[V (F )], where vk+1 = v1. Let e ∈ E[V (F )] \ (F ∪ E(Q)). Edge e is called a
diagonal (with respect to F and Q) if there is i ∈ {1, . . . , k} such that e = vivi+3,
the edges ei, ei+2 are in F , and the edges ei−1, ei+1, ei+3 are in E \ F (the indices
are taken modulo k). And edge e is called a forward (resp., backward) wing (with
respect to F and Q) if there is i ∈ {1, . . . , k} and a node w ∈ V \ V (Q) such that
e = wvi with ei, wvi+2 ∈ F (resp., wvi−2, ei−1 ∈ F ), and ei−1, ei+1, ei+2 ∈ E \ F
(resp., ei−3, ei−2, ei ∈ E \ F ). An edge is called a wing if it is either a forward or a
backward wing.
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e

f

in F

in E \ F

Fig. 2. An obstruction induced by F .
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Fig. 3. Wings and diagonals.

We say that two wings wvi and w′vj overlap if vivj ∈ F . Note that if two wings
overlap, then necessarily one is forward and the other is backward (see Figure 3 for
an illustration).

The following theorem gives a characterization of the set of minimal dependent
sets of G.

Theorem 3.2. Let G = (V,E) be a graph and F ⊆ E an edge subset of E. Then
F is a minimal dependent set if and only if F induces an obstruction with respect to
an odd cycle Q such that

(i) every edge of E[V (F )] \ (F ∪ E(Q)) is either a diagonal or a wing, and
(ii) no wings overlap.

Proof.

Necessity. Suppose F ∈ C(G). Let W = V (F ). By Lemma 2.3, G[W ] contains
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an odd cycle. Let

Q = v1, e1, v2, e2, . . . , vk, ek, vk+1,

with vk+1 = v1, be an odd cycle of G[W ] such that |F ∩ E(Q)| is maximum. Let
F1 = F ∩ E(Q), F2 = F \ F1, and E′ = E[W ] \ (F ∪ E(Q)). Note that by Lemma
2.4(ii), no edge of F1 is adjacent to an edge of F2.

For the rest of the proof, we will need to consider paths of G[W ] with extremities
in V (Q) and internal nodes in W \ V (Q). If P is a path of G[W ] linking two nodes
vi and vj of V (Q) such that E(P ) ∩ E(Q) = ∅ and none of the internal nodes of P
belongs to V (Q), we let P1 = vj , ej+1, . . . , ei−1, vi and P2 = vi, ei, . . . , ej−1, vj (where
the indices are modulo k) denote the edge-disjoint paths of Q between vi and vj .
Note that Q = P1 ∪ P2. We also denote by Q1 = P ∪ P1 and Q2 = P ∪ P2 the cycles
obtained by adding P to Q. Note that Q1 and Q2 are of opposite parity. We will
suppose, without loss of generality, that Q1 is odd and Q2 is even.

By Lemma 2.4(ii), for every edge f ∈ F , there exists a node vf ∈ V (Q) such that
f is the only edge of F incident to vf . By a similar argument, there is also a node
v1
f ∈ V (Q1) such that f is the only edge of F incident to v1

f (v1
f and vf may be the

same). We have the following claims.
Claim 1. Let P be a path of G[W ] linking two nodes vi and vj of V (Q) whose

internal nodes belong to W \ V (Q). Let f2, f
′
2 ∈ F2 and e ∈ E′. Then the following

cases cannot occur:
(a) P = vi, f2, vj,
(b) P = vi, f2, w, f

′
2, vj with w ∈ W \ V (Q), or

(c) P = vi, f2, w, e, w
′, f ′

2, vj with w,w′ ∈ W \ V (Q).
Proof. Assume that P is of type (a), (b) or (c). Notice that if f ∈ F ∩ E(P2),

then v1
f = vi or vj . Also note that vi and vj are both incident to an edge of F \E(P2).

Then it follows that F ∩E(P2) = ∅. Since |F ∩E(P )| ≥ 1, |F ∩E(Q)| < |F ∩E(Q1)|.
But this contradicts the maximality of |F ∩ E(Q)|.

Claim 2. F induces an obstruction with respect to Q.
Proof. Let f = wvf ∈ F \ E(Q). (Recall that vf is the node of V (Q) such that

f is the only edge of F incident to it.) If w ∈ V (Q), then w, f, vf is a path of G[W ].
But this is impossible by Claim 1(a). So suppose that w �∈ V (Q). If there is an edge
f ′ = wvf ′ ∈ F , then P = vf , f, w, f

′, vf ′ is a path of G[W ], contradicting Claim 1(b).
In consequence, f is adjacent to no edge in F , and thus condition (1) of Definition 3.1
is satisfied.

Now let f = uvf be an edge of F ∩ E(Q). Since F satisfies condition (1) of
Definition 3.1, f is adjacent to no edge in F2. Moreover, we have that vf is incident
to no edge in F . Hence f is adjacent to at most one edge of F ∩ E(Q). Therefore
condition (2) of Definition 3.1 is satisfied.

Claim 3. Every edge of E′ is incident to a node of Q.
Proof. Suppose that for an edge e = ww′ of E′, we have {w,w′} ∩ V (Q) = ∅.

Since w,w′ ∈ W \ V (Q), there exist two edges f = wvf and f ′ = w′vf ′ of F . Note
that vf �= vf ′ . Hence vf , f, w, e, w

′, f ′, vf ′ is a path of G[W ], which contradicts Claim
1(c).

Claim 4. Let e ∈ E′, f ∈ F , and vi, vj ∈ V (Q).
(1) If P = vi, e, w, f, vj is a path of G[W ], then e is a forward wing.
(2) If P = vi, f, w, e, vj is a path of G[W ], then e is a backward wing.
Proof. We prove (1), the proof of (2) is similar. As Q2 is even, the path P2 must

contain an even number of edges, and hence |E(P2)| ≥ 2. Moreover, as by Claim 2 F
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induces an obstruction with respect to Q, f is the only edge of F incident to vj (w).
In consequence, vj is unsaturated. Moreover, vj is the unique unsaturated node of P2.
Indeed, if v was a further unsaturated node of P2, then there must exist an edge, say
f ′, of F2 incident to v. As by Claim 2 F induces an obstruction with respect to Q,
v1
f ′ ∈ V \V (Q). (Recall that v1

f ′ is the node of V (Q1) such that f ′ is the only edge of

F incident to it.) Thus v1
f ′ = w. But this is impossible since f is (the only edge of F )

incident to w. In consequence, ei is the unique edge of F in P2 and thus |E(P2)| = 2.
Therefore ei−1, ej−1, ej are not in F , and hence e is a forward wing.

Claim 5. Let e ∈ E′. If P = vi, e, vj is a path of G[W ] with vi, vj ∈ V (Q), then
e is a diagonal.

Proof. As |P | is odd and Q2 is even, P2 must be odd, and therefore |E(P2)| ≥ 3.
Also P2 contains no unsaturated nodes. In fact, if P2 contains an unsaturated node v,
then there must exist f ∈ F incident to v such that v1

f ∈ V (P1). But this contradicts
Claim 1(a). In consequence, two consecutive edges of E(P2) cannot both be in E′.
From Lemma 2.4(ii), it then follows that ei and ej−1 are the only edges of F in E(P2)
and that |E(P2)| = 3. We also have that ei−1 and ej are not in F , j = i + 3, and
ei+1 /∈ F . Thus e is a diagonal.

Claim 6. No wings overlap.
Proof. Suppose that there are two wings e = wvi+1 and e′ = w′vi that overlap.

Note that w,w′ ∈ W \ V (Q), w �= w′, and ei = vivi+1 ∈ F . The path P ′ with edge
set E(P ′) = {wvi−1, e, ei, e

′, w′vi+2} has three edges in F . And the path P ′′ of Q
with edge set E(P ′′) = {ei−1, ei, ei+1} has only one edge in F . Note that both P ′

and P ′′ are odd. Hence the cycle Q̃ obtained from Q by replacing P ′′ by P ′ is odd.
As V (Q̃) ⊆ W and |E(Q̃) ∩ F | > |E(Q) ∩ F |, we have a contradiction.

By Claim 2, F induces an obstruction with respect to Q. If e ∈ E′, then by
Claim 3, e belongs to a path P of the form either vi, e, w, f, vj or vi, f, w, e, vj or
vi, e, vj with vi, vj ∈ V (Q), f ∈ F , and w ∈ W \ V (Q). It then follows by Claims 4
and 5 that e is either a wing or a diagonal. Moreover, by Claim 6, no wings overlap.

Sufficiency. Suppose that F induces an obstruction with respect to an odd cycle
Q satisfying (i) and (ii). By Lemma 2.3, F is a dependent set. We will show that
F ′ = F \ {f} is an independent set for every f ∈ F . Let W ′ = V (F ′) and let us set
as before Q = v1, e1, v2, e2, . . . , vk, ek, vk+1 with v1 = vk+1. First remark that if f is
an edge of E(Q), as F induces an obstruction with respect to Q, at most one edge
of F is adjacent to f . Thus Q cannot be a subgraph of G[W ′]. If f links a node not
in V (Q) to an unsaturated node, say v, of V (Q), then v is not a node of G[W ′] and
again Q is not a subgraph of G[W ′].

Now assume, by contradiction, that F \{f} is not in I(G). By Lemma 2.3, G[W ′]
contains an odd cycle, say D. Suppose that D contains an edge e = vivi+3 which is a
diagonal with respect to F and Q. Thus ei, ei+2 ∈ F and ei−1, ei+1, ei+3 �∈ F . Also,
since F is an obstruction, ei and ei+2 are the only edges of F incident to vi and vi+3,
respectively. In consequence, f can be neither ei nor ei+2. Now if we replace in D e
by the path vi, ei, vi+1, ei+1, vi+2, ei+2, vi+3, we get a new cycle in G[W ′] which does
not contain e and which is still odd. We can reiterate this procedure until we get an
odd cycle in G[W ′], still denoted by D, without diagonals with respect to F and Q.

Suppose that V (D) contains a node w �∈ V (Q). As w ∈ V (F ′), there is an edge,
say g′, belonging to F2 ∩E(D) incident to w. By condition (1) of Definition 3.1, this
edge is the only edge of F incident to w. Consequently, there must exist an edge
g ∈ E(W ) \ ((F ∪E(Q)) ∩E(D)) incident to w. By our hypothesis, g is then a wing
with respect to Q. Suppose, without loss of generality, that g = wvi is a forward
wing. Hence g′ = wvi+2 ∈ E(D). Also note that ei is the only edge of F incident
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to vi, which implies that f �= vivi+1. If we replace in D the path vi, g, w, g
′, vi+2 by

vi, ei, vi+1, ei+1, vi+2, we get an odd cycle in G[W ′]. Moreover, this new cycle does
not contain the wing g. So, if we reiterate this procedure, we get an odd cycle D in
G[W ′] which contains neither a diagonal nor a wing with respect to F and Q and
whose nodes are all in V (Q). But this implies that D contains only edges of Q, which
contradicts the fact that Q is not a subgraph of G[W ′].

4. Finding a minimum dependent set. In this section we consider the prob-
lem of finding a minimum dependent set in a graph with nonnegative weights. Using
the characterization of the minimal dependent sets given in section 3, we will show
that this problem reduces to the minimum odd circuit problem in a signed directed
graph, and can then be solved in polynomial time. Some polyhedral and algorithmic
consequences of this result will be discussed in the next section.

Let G = (V,E) be a graph and (c(e), e ∈ E) a nonnegative weight vector associ-
ated with the edges of E. In what follows we are going to construct from G a signed
digraph D = (U,A). For convenience we will use the following notation.

For every node u of G, c(u) will denote the minimum weight of an edge incident
to u, and eu a minimum weight edge incident to u. That is, c(eu) = c(u). Given a
minimal dependent set F ∈ C(G) of G, we let

Q = v1, e1, v2, e2, . . . , vk, ek, vk+1

denote the odd cycle of the obstruction induced by F . (Such a cycle exists by Theo-
rem 3.2.) And we suppose that the sequence e1, . . . , ek follows the clockwise order. We
say that a node vi ∈ V (Q) is left-saturated (resp., right-saturated) if ei−1 (resp., ei) is
in F ; otherwise vi is said to be left-unsaturated (resp., right-unsaturated). Note that,
since by Definition 3.1 E(Q) \ F �= ∅, Q has at least one left-unsaturated node and
one right-unsaturated node. If vi is unsaturated (i.e., left- and right-unsaturated),
we denote by fi the unique edge in F incident to vi. A node v is said to be a left-
node (resp., right-node) if v is either left-saturated or left-unsaturated (resp., right-
saturated or right-unsaturated).

Now we define the signed digraph D = (U,A) (see Figure 4 for an illustration).

signed arc

unsigned arc

vRS

vRUvLU

vLS

uRU

uRSuLS

uLU

c(uv)

c(uv)

c(u) c(u)

Fig. 4. The subdigraph of D corresponding to an edge uv of G.
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• For every node u ∈ V , consider four nodes uLS, uRS, uLU, uRU which corre-
spond to the four possible states of u: left-saturated, right-saturated, left-
unsaturated, and right-unsaturated. And consider four unsigned arcs: uLSuRS,
uLSuRU, uLUuRS with weight 0 and uLUuRU with weight d(uLUuRU) = c(u).

• For every edge uv ∈ E consider four signed arcs: uRUvLU, vRUuLU with weight
d(uRUvLU) = d(vRUuLU) = 0 and uRSvLS, vRSuLS with weight d(uRSvLS) = d(vRSuLS) =
c(uv).

Observe that the tail of an unsigned arc is always a left-node and the head is always
a right-node. Also note that any sequence of arcs in D alternates between signed and
unsigned arcs. In consequence, any circuit of D has an even number of arcs.

We let Σ denote the set of signed arcs and U = A \ Σ the set of unsigned arcs.
So a circuit QD of D is odd if |A(QD) ∩ Σ| is odd.

Let QD be a minimum weight odd circuit of D with respect to the weight vector
d. Let F be a minimum weight dependent set of G with respect to the weight vector
c. In what follows we are going to show that d(QD) = c(F ). As a consequence, we
can compute minimum dependent sets by calculating minimum weight odd circuits
in an auxiliary graph.

First we show that c(F ) ≤ d(QD). Let F ′ be the set of edges uv of G such that
either

(i) uRSvLS is an arc of QD,
(ii) vRSuLS is an arc of QD, or
(iii) the edge uv is the minimum weight edge eu incident to u and uLUuRU is an arc

of QD.
The way we defined the cost vector d yields c(F ′) ≤ d(QD). Let w1, . . . , wq be
the sequence of nodes of QD (where the indices are modulo q). Then the sequence
u1, . . . , uq′ of nodes of G, obtained by taking the node ui if wi is either uLSi , uRSi , uLUi ,
or uRUi (note that q′ ≤ q), induces a subgraph H of G whose edges correspond to the
signed arcs of QD. Since QD is odd, H contains an odd cycle Q′. Since Q′ is a cycle
of the graph G[V (F ′)], by Lemma 2.3, F ′ is dependent. As F is chosen minimum,
c(F ) ≤ c(F ′) and therefore

c(F ) ≤ d(QD).

Now we show that c(F ) ≥ d(QD). Since c is nonnegative we can assume that F is
minimal. By Theorem 3.2, F induces an obstruction with respect to an odd cycle Q.

Let P1 = vi, ei, . . . , vj−1, ej−1, vj be a path of Q such that all the edges of P1

are in F and ei−1, ej /∈ F . The node vi is left-unsaturated and right-saturated,
the nodes vi+1, . . . , vj−1 are left- and right-saturated, and vj is left-saturated and
right-unsaturated. In the digraph D, the path P1 corresponds to a path PD

1 with
node set V (PD

1 ) = {vLUi , vRSi , vLSi+1, v
RS
i+1, . . . , v

LS
j−1, v

RS
j−1, v

LS
j , vRUj }. The arc set of PD

1

is A(PD
1 ) = {ai, σi, . . . , aj−1, σj−1, aj}, where ai, . . . , aj ∈ U are unsigned arcs with

weight 0 and σl is a signed arc with cost d(σl) = c(el) for l = i, . . . , j − 1. Thus

d(PD
1 ) = d(ai) + d(σi) + · · · + d(aj−1) + d(σj−1) + d(aj)

= c(ei) + · · · + c(ej−1)

= c(P1).

Let P2 = vi, ei, . . . , vj−1, ej−1, vj be a path of Q such that no edge of P2 is in
F . The node vi is right-unsaturated, the nodes vi+1, . . . , vj−1 are left- and right-
unsaturated, and vj is left-unsaturated. In D, there is a path PD

2 with node set
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V (PD
2 ) = {vRUi , vLUi+1, v

RU
i+1, . . . , v

LU
j−1, v

RU
j−1, v

LU
j }. The arc set of PD

2 is A(PD
2 ) = {σi,

ai+1, σi+1, . . . , aj−1, σj−1}, where al ∈ U is an unsigned arc with cost c(vl) for l =
i + 1, . . . , j − 1 and σi, . . . , σj−1 are signed arcs with cost 0.

Thus

d(PD
2 ) = d(σi) + d(ai+1) + d(σi+1) + · · · + d(aj−1) + d(σj−1)

= c(vi+1) + · · · + c(vj−1)

≤
∑

l=i+1,...,j−1

c(fl).

(Recall that fl is the unique edge of F incident to vl.) Observe now that Q decomposes
into paths of types P1 and P2. The associated paths of D of types PD

1 and PD
2

form a circuit RD of D whose weight d(RD) is less than or equal to c(F ). Since
|Σ ∩ A(RD)| = |E(Q)|, RD is an odd circuit of D. Then d(QD) ≤ d(RD), and
therefore

c(F ) ≥ d(QD).

So we can state the following theorem.
Theorem 4.1. The minimum dependent set problem with nonnegative weights

can be solved in polynomial time.

5. Polyhedral consequences and concluding remarks. Given a graph G =
(V,E), let IBSP(G) be the convex hull of the incidence vectors of the edge sets of
induced bipartite subgraphs of G.

Let P(G) be the polyhedron given by

0 ≤ x(e) ≤ 1 ∀ e ∈ E,(1)

x(C) ≤ |C| − 1 ∀ C ∈ C(G).(2)

Obviously, inequalities (1) and (2) are valid for IBSP(G). Constraints (1) are called
the trivial inequalities. Constraints (2) will be called the dependent set inequalities.

Moreover, we have that MIBSP is equivalent to the integer program

max {wx : x ∈ P(G), x integer}.

The separation problem for a class of inequalities is to decide whether a given vector
x̄ ∈ Q

E satisfies the inequalities and, if not, to find an inequality that is violated by x̄.
Given a vector x̃ ∈ R

E
+, let x̄ ∈ R

E
+ such that x̄(e) = 1−x̃(e) for all e ∈ E. Clearly,

there is an inequality of type (2) violated by x̃ if and only if the minimum weight of
a dependent set with respect to x̄ is less than 1. It thus follows by Theorem 4.1 that
the separation problem associated with inequalities (2) is solvable in polynomial time.
From [15] we then have the following corollary.

Corollary 5.1. The problem

max {wx : x ∈ P(G)}

can be solved in polynomial time.
A natural question that may be posed is to characterize the graphs for which the

polytope P(G) is integral. As it will turn out, these graphs are precisely the bipartite
graphs.
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Proposition 5.2. P(G) is integral if and only if G is bipartite.
Proof. If G = (V,E) is bipartite, then P(G) is given by the trivial inequalities,

and hence any extreme point of P(G) is integer.
Now suppose that G = (V,E) is not bipartite, and let Q = v1, e1, v2, e2, . . . , v2k+1,

e2k+1, v2k+2, where v2k+2 = v1, be an odd cycle of G. We can assume that Q is a
hole. Consider the solution x̄ ∈ R

E given by

x̄(e) =

{
k

k+1 if e ∈ E(Q),

0 if not.

Let Ci = {ei, ei+2, . . . , ei+2k} for i = 1, . . . , 2k + 1 (the indices are modulo 2k + 1).
Note that |Ci| = k + 1. By Theorem 3.2, the Ci’s are in C(G). We also have that x̄
satisfies the system

x(Ci) = |Ci| − 1 for i = 1, . . . , 2k + 1,
x(e) = 0 ∀e ∈ E \ E(Q).

Furthermore it is not hard to see that x̄ is the unique solution of that system. Hence
x̄ is an extreme point of P(G).

In contrast with the classical bipartite subgraph problem, the linear relaxation of
the MIBSP does not seem to be quite strong. As it has been shown by Guenin [19], for
the former problem, the trivial and the cycle inequalities suffice to describe the bipar-
tite subgraph polytope in a large class of graphs (the weakly bipartite graphs) which
contains, for instance, planar graphs and bipartite graphs. However, for the MIBSP,
as shown by Proposition 5.2, the graphs for which the trivial and the dependent set
inequalities completely describe IBSP(G) are reduced to the bipartite graphs. We
can also notice that any inequality that is valid for the bipartite subgraph polytope
is also valid for the IBSP(G). These inequalities are not, however, so strong for the
MIBSP. To see this, consider, for instance, a clique (W,T ) on p nodes in a graph G.
The inequality x(T ) ≤ p

2��
p
2� is valid for the bipartite subgraph polytope on G and

is facet defining [3], whereas, any solution for the MIBSP can take at most one edge
from T .

e f e e ef f f

(d)(c)(b)(a)

Fig. 5. The minimal dependent sets of size 2.

These negative observations motivated us to investigating new valid inequalities
for IBSP(G). By Theorem 3.2, {e, f} ∈ C(G) if and only if the subgraph induced by
the endnodes of e, f is one of the four graphs of Figure 5. Let us consider from G
an auxiliary graph A(G) whose nodes correspond to the edges of G and such that
two nodes e, f are linked by an edge if and only if {e, f} ∈ C(G). Remark that any
independent set of G is a stable set of A(G). (Note that the converse is not true.)
Hence the so-called clique and odd cycle inequalities of the stable set polytope of
A(G) (see [20]) given by

x(K) ≤ 1 for every clique K of A(G),(3)

x(C) ≤ |C| − 1

2
for every odd cycle C of A(G)(4)
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are valid for IBSP(G). Notice that the edge set of a clique of G corresponds to a clique
of A(G). (Note that the converse is not true.) As it will turn out, the separation
problem for inequalities (3) is NP-hard. The separation problem for inequalities (4)
can be solved in polynomial time (see, for instance, [17]).

Proposition 5.3. The separation problem for inequalities (3) is NP-hard.
Proof. We use a reduction from the maximum clique problem. Let G = (V,E)

be a graph. Add a node u and the edges uv for each v ∈ V to obtain the graph

G̃ = (Ṽ , Ẽ). Let x̃ ∈ R

Ẽ given by

x̃(e) =

{
1/k if e ∈ Ẽ \ E,
0 if e ∈ E.

Clearly, there is a clique K in A(G̃) with x̃(K) > 1 if and only if there is a clique of
size k + 1 in G.

Let G = (V,E) be a (nonbipartite) graph and let Q and Ci be as defined in the
proof of Proposition 5.2, i = 1, . . . , 2k + 1. Observe that e belongs to k + 1 different
Ci’s for each e ∈ E(Q). As the Ci’s are dependent sets in G, the following inequalities
are valid for IBSP(G):

x(Ci) ≤ k for i = 1, . . . , 2k + 1.

By summing these inequalities, we obtain the inequality

(k + 1)x(E(Q)) ≤ k(2k + 1).

Therefore the inequalities

(5) x(E(Q)) ≤ |E(Q)| − 2, for every odd cycle Q of G,

are valid for IBSP(G). Inequalities (5) also arise naturally since any independent set
of G uses at most |V (Q)| − 1 nodes (and thus at most |E(Q)| − 2 edges) of Q. Note
that inequalities (5) are different from the inequalities induced by the odd cycles of
A(G). (If, for instance, G = (V,E) is an odd cycle with edge set, say E = {e1, . . . , e5},
then A(G) has no edge, while G produces the inequality x(E) ≤ 3 of type (5) which
is facet defining.) Inequalities (5) will be called cycle inequalities.

Proposition 5.4. The separation problem for inequalities (5) can be solved in
polynomial time.

Proof. Let x̄ be a vector associated with the edges of G. We may suppose that x̄
satisfies the trivial inequalities. Let y ∈ R

E such that y(e) = 1 − x̄(e) for all e ∈ E.
An inequality (5) is violated by x̄ if and only if y(E(Q)) < 2. Thus the separation
problem for inequalities (5) reduces to finding a minimum odd cycle in G with respect
to the weight vector y. As y(e) ≥ 0 for all e ∈ E, this can be done in polynomial time
as shown in [18].

It would be interesting to determine when the dependent, cycle, and clique in-
equalities are facet defining for the polytope IBSP(G).

The approach presented in this paper can be adapted to handle the maximum
induced forest and the maximum induced acyclic subgraph problems (see [8]).

Acknowledgments. We would like to thank the anonymous referees for their
constructive comments. We are grateful to Hervé Kerivin for many comments that
have improved the presentation.
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ON THE CHROMATIC NUMBER OF
GEOMETRIC HYPERGRAPHS∗

SHAKHAR SMORODINSKY†

Abstract. A finite family R of simple Jordan regions in the plane defines a hypergraph H =
H(R) where the vertex set of H is R and the hyperedges are all subsets S ⊂ R for which there is a
point p such that S = {r ∈ R|p ∈ r}. The chromatic number of H(R) is the minimum number of
colors needed to color the members of R such that no hyperedge is monochromatic. In this paper
we initiate the study of the chromatic number of such hypergraphs and obtain the following results:
(i) Any hypergraph that is induced by a family of n simple Jordan regions such that the maximum

union complexity of any k of them (for 1 ≤ k ≤ m) is bounded by U(m) and
U(m)
m

is a nondecreasing

function is O(
U(n)
n

)-colorable. Thus, for example, we prove that any finite family of pseudo-discs can
be colored with a constant number of colors. (ii) Any hypergraph induced by a finite family of planar
discs is four colorable. This bound is tight. In fact, we prove that this statement is equivalent to the
four-color theorem. (iii) Any hypergraph induced by n axis-parallel rectangles is O(logn)-colorable.
This bound is asymptotically tight. Our proofs are constructive. Namely, we provide deterministic
polynomial-time algorithms for coloring such hypergraphs with only “few” colors (that is, the number
of colors used by these algorithms is upper bounded by the same bounds we obtain on the chromatic
number of the given hypergraphs). As an application of (i) and (ii) we obtain simple constructive
proofs for the following: (iv) Any set of n Jordan regions with near linear union complexity admits
a conflict-free (CF) coloring with polylogarithmic number of colors. (v) Any set of n axis-parallel
rectangles admits a CF-coloring with O(log2(n)) colors.

Key words. hypergraphs, conflict-free, coloring, wireless

AMS subject classification. combinatorics

DOI. 10.1137/050642368

1. Introduction. A hypergraph is a pair (V, E), where V is a finite set and
E ⊂ 2V . The set V is called the ground set or the vertex set and the elements of E
are called hyperedges. A k-coloring of a hypergraph H = (V, E), for some positive
integer k, is a function χ : V → {1, 2, . . . , k} such that no S ∈ E with |S| ≥ 2
is monochromatic. Let χ(H) denote the minimum integer k for which H has a k-
coloring. χ(H) is called the chromatic number of H.

Let R be a set of regions in the plane. For a point p ∈ ∪r∈Rr, put r(p) = {r ∈
R | p ∈ r}. Let H(R) denote the hypergraph (R, {r(p) | p ∈ ∪r∈R}). We say that
H(R) is the hypergraph induced by R.

Definition 1.1. Let R be a family of n simple Jordan regions in the plane. The
union complexity of R is the number of vertices (i.e., intersection of boundaries of
pairs of regions in R) that lie on the boundary ∂

⋃
r∈R r.

In this work we initiate the study of the chromatic number of hypergraphs that
are induced by simple geometric regions such as discs, pseudo-discs, axis-parallel rect-
angles, etc. Our main result (section 5) is a theorem correlating the chromatic number
of the underlying hypergraphs with the union complexity of the regions inducing those
hypergraphs. Specifically, we prove the following theorem.
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Theorem 1.2. Let R be a set of n regions and let U : N → N be a function
such that U(m) is the maximum complexity of any k regions in R over all k ≤ m, for

1 ≤ m ≤ n. We assume that U(m)
m is a nondecreasing function. Then, χ(H(R)) =

O(U(n)
n ). Furthermore, such a coloring can be computed in polynomial time.
In section 3 we study the chromatic number of a hypergraph that is induced by

discs and prove the following theorem.
Theorem 1.3. Let D be a finite family of discs in the plane. Then the hypergraph

H(D) is four colorable.
As one can easily see, this bound is tight by taking four pairwise touching discs.

In such a case, every pair of discs needs to be colored with distinct colors. This
bound is somewhat surprising in the following sense. In the restricted case where we
are given a finite family R of discs such that every two are either touching (i.e., the
boundaries of the two discs share a common point but the interiors of the discs are
disjoint) or disjoint, it is easy to see that bounding the chromatic number of H(R) by
four is equivalent to bounding the chromatic number of the “kissing” graph induced
by the discs (i.e., the vertex set of the graph is R and the edges are the touching
pairs) by four. However, this graph is planar. On the other hand, a classical theorem
due to Koebe [12] asserts that every planar graph can be realized as a kissing discs
graph. In section 3 we show that the four-color theorem is equivalent to coloring a
hypergraph induced by a finite family of discs (not necessarily interior disjoint but
also discs that might have arbitrary overlaps) with at most four colors. As mentioned
above, one direction of the proof easily follows from Koebe’s theorem [12].

In section 4 we study the chromatic number of a hypergraph induced by n axis-
parallel rectangles and prove the following theorem.

Theorem 1.4. Let R be a family of n axis-parallel rectangles. Then χ(H(R)) =
O(log n).

This bound is asymptotically tight as demonstrated recently by a lower bound
construction of Pach and Tardos [14].

To the best of our knowledge, these questions were not addressed previously.
Beyond their purely theoretical interest, we apply our results to obtain a simple
framework for tackling the problems of conflict-free colorings.

Definition 1.5 (see [7, 16]). A coloring of regions is conflict-free (CF) if for
any covered point in the plane, there exists a region that covers it with a unique color
(i.e., no other region covering that point has the same color).

In section 6 we show how to apply our results on proper colorings of regions
to obtain simple deterministic, polynomial-time algorithms for CF-colorings of those
regions.

CF-coloring problems were recently introduced in [7, 16] in the context of fre-
quency assignment in cellular networks. In addition to this practical motivation,
this new coloring model has drawn much attention of researchers through its own
theoretical interest and such colorings have been the focus of several recent papers
[1, 4, 6, 8, 9, 10, 13].

Even et al. [7] have shown that any family of n discs in the plane admits a
CF-coloring with only O(log n) colors and that this bound is tight in the worst case.
Furthermore, such a coloring can be computed in deterministic polynomial time.1

The results of Even et al. [7] were further extended by Har-Peled and Smorodinsky

1In [7] it is shown that finding the minimum number of colors needed to CF-color a given collection
of discs is NP-hard even when all discs are congruent, and an O(logn) approximation-ratio algorithm
is provided.
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[9] by combining more involved probabilistic and geometric ideas. The main result of
[9] is a randomized algorithm which CF-colors any set of n pseudo-discs with O(log n)
colors with high probability. As an application of our main result, we obtain a simple
deterministic, polynomial-time algorithm for CF-colorings regions. The performance
(i.e., the number of colors used by our algorithm) depends on the union complexity
of the underlying regions. For example, we obtain a simple determnistic, polynomial-
time algorithm that CF-colors any set of n pseudo-discs with only O(log n) colors.

2. Preliminaries. We start with some basic definitions and lemmas.
Definition 2.1. The Delaunay graph G(H) of a hypergraph H = (V, E) is a

simple graph G = (V,E), where the edge set E is defined as E = {(x, y) | {x, y} ∈ E}
(i.e., G is the graph on the vertex set V whose edges consist of all hyperedges in H of
cardinality two).

Lemma 2.2. For every hypergraph H we have

χ(G(H)) ≤ χ(H).

Proof. Simply because any proper coloring of the vertices of H is also a proper
coloring for G(H).

Definition 2.3. We say that a hypergraph H = (V, E) has rank i for i ≥ 2 if for
any hyperedge S ∈ E with |S| > i there exists a hyperedge S′ ∈ E such that S′ ⊂ S
and |S′| = i.

Lemma 2.4. Let H = (V, E) be a hypergraph of rank two. Then χ(H) =
χ(G(H)).

Proof. By Lemma 2.2 we have χ(G(H)) ≤ χ(H). It remains to prove that
χ(H) ≤ χ(G(H)). Let χ be a proper coloring of G(H) with k = χ(G(H)) colors.
This coloring is also a proper coloring of H. Indeed, let e ∈ E be a hyperedge with
cardinality > 1. Then, by assumption, there exists an edge e′ ⊂ e in G(H) and this
edge is nonmonochromatic. Then, obviously, e is nonmonochromatic. This completes
the proof of the lemma.

Definition 2.5. A simple graph G = (V,E) is called k-degenerate for some
positive integer k, if every (vertex-induced) subgraph of G has a vertex of degree at
most k.

Lemma 2.6. Let G = (V,E) be a k-degenerate graph. Then χ(G) ≤ k + 1.
Proof. Proceed by induction on n = |V |. Let v ∈ V be a vertex of degree at most

k. By the induction hypothesis, the graph G \ v (obtained by removing v and all of
its incident edges from G) is k+ 1 colorable. Since v has at most k neighbors there is
always a free color that can be assigned to v which is distinct from the colors of its
neighbors.

3. Hypergraphs induced by discs. In this section we show that any hyper-
graph induced by a finite family of discs in the plane is four colorable.

Let H+ denote the set of all positive halfspaces in R

3 (i.e., those halfspaces
consisting of all points that lie above some fixed plane). For a given set P ⊂ R

3, put
H+(P ) = {h ∩ P |h ∈ H+}.

A transformation to points and half-spaces. In what follows, we show that the
problem of coloring n arbitrary discs in the plane reduces (but is not equivalent) to
that of coloring a set of points P in R

3 with respect to the set of ranges H+(P ) (i.e.,
coloring the hypergraph H = (P,H+(P ))).

We transform a point p = (a, b) in R

2 to the plane p∗ in R

3, with the parametriza-
tion z = −2ax − 2by + a2 + b2 and transform a disc S in R

2, with center (x, y) and
radius r ≥ 0, to the point S∗ in R

3, with coordinates (x, y, r2 − x2 − y2).
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It is easily seen that in this transformation a point p ∈ R

2 lies inside (respectively,
on the boundary of, outside) a disc S, if and only if the point S∗ ∈ R

3 lies above
(respectively, on, below) the plane p∗. Indeed, assume that point p = (a, b) lies
inside (respectively, on the boundary of, outside) the disc S with center (x, y) and

radius r. This can be formulated by the inequality: (a− x)
2

+ (b− y)
2
< r2 or

−2ax − 2by + a2 + b2 < r2 − x2 − y2 (respectively, an equality =, or inequality
with >), which is equivalent to that of the point (x, y, r2 − x2 − y2) = S∗ lies above
(respectively on, or below) the plane z = −2ax− 2by + a2 + b2 (which is the dual p∗

of p), as asserted.

Given a collection S = {S1, . . . , Sn} of n distinct discs in the plane, one can use
the above transformation to obtain a collection S∗ = {S∗

1 , . . . , S
∗
n} of n points in R

3,
such that any valid coloring of S∗ with respect to H+(S∗) with k colors induces a
coloring of the discs of S with the same set of k colors.

Remark. We note that the two coloring problems are not equivalent. Indeed, the
set of all planes in R

3 that are images (under the above transformation) of points in
the plane are such that they are all tangent to the paraboloid z = −x2 − y2. Since
we color the points in R

3 so that any positive halfspace is not monochromatic (not
only positive halfspaces bounded by planes which are tangent to the paraboloid), we
actually result in a coloring of a hypergraph with potentially more hyperedges than
the original hypergraph.

Lemma 3.1. Let P ⊂ R

3 be a finite set. Let H be the hypergraph induced by
H+(P ) (that is, H = (P,H+(P ))). Then χ(H) ≤ 4.

Proof. Recall that G(H) is the graph whose vertex set is P and whose edge set
is E = {h ∩ P | h ∈ H+ and |h ∩ P | = 2}. Thus G, contains the skeleton graph of
the upper convex hull of P , although G may contain additional edges. The rank of
the hypergraph H is 2. Indeed, every subset P ′ ∈ H+(P ) such that |P ′| > 2 must
contain an edge of E. To see this, let h ∈ H+ be a positive halfspace containing at
least three points of P . Without loss of generality, assume that the plane π bounding
h is in “general position” with respect to the points of P (i.e., no line passing through
two points of P is parallel to π). This can be achieved by a proper perturbation of π
such that the set of points above the perturbed plane does not change. Then, we can
translate π upwards keeping the translated plane π′ parallel to π until the positive
halfspace bounded by π′ contains exactly two points of P ′. By definition, these pair
of points form an edge in G, so the rank of H is indeed 2. By Lemma 2.4, it is enough
to color the vertices of G properly (i.e., such that no color class contains an edge). We
will show that G is a planar graph and by the Four-Color Theorem (see, e.g., [2, 3]) it
is four colorable. To show that G is planar, we project P onto the plane orthogonally
and draw the graph G using straight line segments to represent the edges. We want
to show that in this drawing there are no crossings. Assume to the contrary that
there are two edges e1 = (p1, q1), e2 = (p2, q2) whose projections cross. Let l be the
line parallel to the z-axis that passes through this crossing point. Since e1, e2 ∈ E
belong to G, there exists a plane π1 (respectively, π2) such that the positive halfspace
bounded by π1 (respectively, π2) contains only e1 (respectively, only e2). l must pass
through a point v1 on the line segment (in R

3) connecting p1, q1 and a point v2 on
the line segment connecting p2, q2. Assume without loss of generality that v1 is below
v2. See Figure 1 for an illustration. It is easy to see that π1 intersect l in a point
q that is below v1. Indeed, since p1 and q1 are above π1 (recall that p1 and q1 are
the only points of P above π1) then (by convexity) also the point v1 is above π1.
Thus q is also below v2. However, we know that both p2 and q2 lie below π1 (π1
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p1

q1
p2

q2

l

v1

v2

π1

q

Fig. 1. Illustration of the proof of Lemma 3.1 with the two edges e1, e2, whose projection cross.
The plane π1 must intersect l below v1 but above v2, a contradiction.

separates p1, q1 from the rest of the points in P ). This means that the line segment
connecting p2, q2 is also below π1 which means that v2 is below q, a contradiction.
Thus G is a planar graph and therefore four-colorable. This completes the proof of the
lemma.

Proof of Theorem 1.3. We use the above “lifting transformation” such that the
discs are transformed into points in R

3. By Lemma 3.1, there is a coloring of the
transformed points with four colors, such that any positive halfspace that contains
at least two of these points contains at least two points with distinct colors. We use
the same coloring for the preimages of the points and obtain a valid coloring for the
hypergraph H(D).

Remark. It is not clear how to obtain a different proof of Theorem 1.3 without
the lifting transformation. The major problem is that H(D) may have rank greater
than two. Indeed, if a point p is contained in at least three discs of D, it does not
necessarily imply that two of those discs have a point common only to them. This is
illustrated in Figure 2. In section 5 we obtain a general upper bound on the chromatic
number of regions with low union complexity. Discs are an example of such regions.
Therefore, section 5 provides a different way to obtain an upper bound. However,
the method we develop in section 5 will only imply an upper bound of six on the
chromatic number of discs.

4. Axis-parallel rectangles. In this section we deal with coloring axis-parallel
rectangles. We show that any hypergraph that is induced by a family of n axis-parallel
rectangles admits an O(log n) coloring. This bound is asymptotically tight.

We show that the maximum number of colors f(n) needed to color n axis-parallel
rectangles satisfies the recursion f(n) ≤ 8+f(n2 ), and thus implies the asserted bound.
We start with a lemma concerning a restricted case when all rectangles of R intersect
some vertical line.

Lemma 4.1. Let R be a finite family of axis-parallel rectangles all of which
intersect some vertical line l. Then χ(H(R)) ≤ 8.

Proof. We assume that the rectangles are in general position in the sense that no
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d2

d1

d3

Fig. 2. An example of a set D of six discs (taken from [16]) whose induced hypergraph H(D)
has rank three; there is a point covered only by the three discs d1, d2, and d3. However, there is no
point that is covered by two of those discs and no other disc. Note that not every coloring of the
Delaunay graph G(H(D)) induces a valid coloring of H(D). Indeed in a coloring of G(H(D)), the
discs d1, d2, d3 might get the same color. However, then we would have the hyperedge {d1, d2, d3}
monochromatic.

two vertical (or two horizontal) sides share a point. This can be achieved by a small
perturbation which does not decrease the number of colors needed. It is easily seen
that in this case the hypergraph H = H(R) has rank two. Therefore, by Lemma 2.4,
it is enough to show that χ(G(H)) ≤ 8. We will show that G = G(H) is 7-degenerate
and therefore by Lemma 2.6 is 8-colorable. It is sufficient to argue that the average
degree of every (vertex-induced) subgraph of G is less than 8. Let p be a point that
is covered by exactly two rectangles r1, r2 ∈ R. Assume without loss of generality
that p is to the right of l (see Figure 3). We will charge the pair r1, r2 to one of the
horizontal sides of one of the rectangles of R so that each horizontal side is charged
at most twice. We translate p to the right until it reaches a vertical side of one of
the rectangles r1, r2. Assume without loss of generality that this is the side of r1.
Then we move downward until we reach a horizontal side e of some rectangle at a
point p′. The important fact is that the horizontal line segment connecting the line
l to the point p′ is contained in r1 ∩ r2 (we consider the rectangles in R as closed
regions). We charge the pair r1, r2 to e. We show that to the right of l at most one
charge can occur at such a side. There are two cases to consider: The side e is an
upper horizontal side of some rectangle r3 (note that it cannot be a lower horizontal
side of r3 since then p would have belonged to r1 ∩ r2 ∩ r3). Indeed, assume that
e is charged twice to the right of l and that the other charge can occur at a point
p′′. Assume without loss of generality that p′′ is to the left of p′. It is easily seen
that p′′ belongs to r1 ∩ r2 and therefore could not belong to any other rectangle of R.
The second case is when e is a lower horizontal side of either r1 or r2. In a similar
manner it is easily seen that such a side can be charged at most once to the right of
l. Altogether we charge each horizontal side of a rectangle in R at most once to the
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right of l. A symmetric argument implies that every horizontal side of a rectangle in
R is charged at most once to the left of l. Altogether we have at most 4n charges.
We have just shown that G(H) has at most 4n edges. As a matter of fact, G has at
most 4n − 4 edges since the uppermost (respectively, the lowermost) horizontal side
of the rectangles in R cannot be charged. Thus, the average degree of G is at most
8 − 8

n and therefore there must exist a vertex with degree at most 7. Obviously, this
charging scheme works for any subgraph of G as well. Thus G is 7-degenerate. By
Lemmas 2.6 and 2.4, H is 8-colorable, as asserted.

Proof of Theorem 1.4. Let l be a vertical line such that at most n/2 of the
rectangles in R lie fully to the right of l and at most n/2 rectangles of R lie fully
to its left. Let R′ (respectively, R′′) denote the subset of rectangles that lie to the
right (respectively, to the left) of l. Let Rl denote the subset of rectangles in R that
intersect the line l. Let f(n) denote the maximum number of colors needed to color a
family of n axis-parallel rectangles in the plane. We color (separately) the rectangles
in Rl with eight colors and recursively color the set R′ and R′′ using the same set of
colors but keeping this set disjoint from the colors used to color Rl. Thus f(n) obeys
the recursive relation

f(n) ≤ 8 + f(n/2),

which is easily seen to imply that f(n) ≤ 8 log n. This completes the proof of the
theorem.

p

l

q

r1

r2

p′p′′

Fig. 3. Illustration of the charging scheme in the proof of Lemma 4.1. Note that here the
Delaunay graph of the four rectangles is the clique K4, so any coloring must use at least four colors.

5. Chromatic number of regions with low-union complexity. In this sec-
tion we show a relation between the chromatic number of a hypergraph induced by
a finite family of regions R to the union complexity of R. For example, we show
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that if R is a family of planar simple Jordan regions such that any finite subset of
R has linear union complexity, then there exists a constant c = c(R) such that any
hypergraph induced by a finite subset of R is c colorable. Thus, for example, since
pseudo-discs have linear union complexity (see, e.g., [11]), there is a constant c such
that any family of pseudo-discs can be colored with c colors.

Lemma 5.1. Let R be a set of n regions and let U : N → N be a function such
that U(m) is the maximum complexity of any k regions in R over all k ≤ m, for
1 ≤ m ≤ n. Then, the Delaunay graph G of the hypergraph H = H(R) has a vertex

with degree at most O(U(n)
n ).

Proof. Let A(R) denote the arrangement of the boundary curves of the regions
in R and let F2 denote the set of faces of A(R) that are contained in exactly two
regions of R. Obviously, the number of edges in G is bounded by |F2|. We may
assume that the regions of R are in general position, in the sense that no three
distinct boundaries pass through a common point. This can be enforced by a slight
perturbation of the curves, which does not decrease |F2|. Let S≤2(R) be the set of
vertices of the arrangement A(R) that lie in the interior of at most 2 regions of R.
By the analysis of Clarkson and Shor [5], we have |S≤2(R)| = O(U(n)). We charge
a face f ∈ F2 to one of the vertices on the boundary ∂f , if ∂f has vertices. Thus,
the only faces unaccountable for by this charging scheme are the faces that have no
vertices on their boundary. However, the number of such faces is only O(n), as we
can charge such a face to the region of R that forms its outer boundary. It is easily
seen that in this charging scheme a vertex is charged at most four times, since it can
belong to the boundary of at most four faces. Note also that every charged vertex
is contained in at most two regions of R and therefore belongs to S≤2(R). Thus
E(G) ≤ |F2| ≤ 4 · S≤2(R) + n = O(U(n) + n). Thus, the average degree of G is

O(U(n)
n + 1) and therefore G must contain a vertex with degree at most O(U(n)

n ) as
asserted.

We are ready to prove Theorem 1.2.

Proof of Theorem 1.2. By Lemma 5.1 there exists a constant c such that the

Delaunay graph G of H(R) has a vertex with degree at most c · U(n)
n . We prove that

χ(H(R)) ≤ c · U(n)
n +1. The proof is by induction on n. Let r ∈ R be a region with at

most c · U(n)
n neighbors in G. By the induction hypothesis, the hypergraph H(R\{r})

is c · U(n−1)
n−1 + 1 ≤ c · U(n)

n + 1-colorable (by our monotonicity assumption on U(n)
n ).

We need to choose a color (out of the c · U(n)
n + 1 colors that are available for us) for

r such that the coloring of R is valid. Obviously, points that are not covered by r are
not affected by the coloring of r. Note also that any point p ∈ r that is contained in
at least two regions of R \ r is not affected by the color of r since by induction the
set of regions in R \ {r} containing such points is nonmonochromatic. We thus only
need to color r with a color that is different from the colors of all regions r′ ∈ R \ r
for which there is a point p that is contained only in r∩ r′. However, by our choice of

r, there are at most c · U(n)
n such regions. Thus we can assign to r a color among the

c · U(n)
n + 1 colors available to us and keep the coloring of R proper. This completes

the inductive step. As for the algorithmic perspective, we briefly sketch the simple
ideas behind it. Here, we do not attempt to optimize the efficiency of the algorithm.
Assume a model of computation as in [15] in which computing the intersection points
of any pair of regions in R, and a few similar operations, can be performed in constant
time. One can compute the arrangement A(R) using standard methods as in [15].
In addition, one can compute in polynomial time, for each face f of the arrangement
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A(R), its depth d(f) which is the number of ranges in R containing f . Next, we
compute the graph G(H(R)). Note that the edges of G(H(R)) consist of all pairs of
regions (r1, r2) whose intersection contains a face of depth two. This can be done by
checking for each face f of the arrangement and each region r ∈ R whether f ⊂ r.
This takes time which is proportional to A(R) ·n. Let r ∈ R be a vertex of minimum
degree in G(H(R)). We update the depth of the faces of the arrangement A(R\{r})
and construct G(H(R\{r})) and color R\{r}, recursively. This can be done in total
time proportional to the sum

∑n
i=1 if(i), where f(i) is the maximum complexity of

the arrangement of any i regions in R. Thus if f is polynomial then the total running
time is polynomial in n. See Algorithm 1 for a pseudo-code.

Algorithm 1. Color(R): Color the hypergraph H(R).

1: Order the elements of R: Compute a permutation R = {r1, . . . , rn} such
that the degree of ri in the Delaunay graph G(H({r1, . . . , ri})) is bounded

by c · U(i)
i , for i = {1, . . . , n}.

2: Color the elements: For(i = 2; i ≤ n; i++) ri ← A color different from its
neighbors in G(H({r1, . . . , ri})).

6. Application to conflict-free colorings. Among other results, Even et al.
[7] proved that any set of n discs in the plane can be CF-colored with O(log n) col-
ors and that this bound is tight in the worst case. They also provide a deterministic
polynomial time algorithm for coloring a given collection of n discs with only O(log n)
colors. Har-Peled and Smorodinsky [9] extended this result to any family of regions
with linear union complexity. For example, they provide a randomized algorithm for
CF-coloring any family of n pseudo-discs with O(log n) colors with high probability.
In particular, this randomized algorithm serves as a probabilistic proof that a CF-
coloring of any family of n pseudo-discs with only O(log n) colors exists. One of the
open problems left in [9] is to obtain a deterministic framework for CF-colorings any
family of regions with linear union complexity. As an application of Theorem 1.2 and
Algorithm 1, we provide such a framework. Our algorithm outperforms the one used
in [9] by being deterministic and conceptually simpler. The number of colors used in
our algorithm for CF-coloring the given regions depends on their union complexity.

Algorithm 2 CF-Color(R): CF-Color the hypergraph H(R).

1: i ← 0: i denotes an unused color
2: while R �= ∅
3: Increment: i ← i + 1
4: Color the hypergraph H(R): find a coloring χ of H(R) with “few” colors,

using (in most cases) Algorithm 1
5: R′ ← Largest color class of χ
6: Color: f(x) ← i for all x ∈ R′

7: Prune: R ← R \R′

8: end while

Theorem 6.1. Algorithm 2 outputs a valid CF-coloring of R.
Proof. For a point p ∈ ∪r∈Rr, let i be the maximal index (color) for which there

is a region r ∈ R that contains p and is colored with i. We claim that there is exactly
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Table 1

Summary of relation between the union complexity of the underlying objects R, the chromatic
number H(R), and its CF-chromatic number.

Type of regions U(n) χ(H(R)) χCF (H(R))
pseudo-discs, etc. O(n) O(1) O(log n)

convex fat regions, etc. O(n1+δ) O(nδ) O(nδ)

Axis-parallel rectangles Θ(n2) O(log n) O(log2 n)

one such region. Indeed, assume to the contrary that there is another such region
r′. Consider the i′th iteration where some of the regions of R were colored with i
(including r and r′). Since r and r′ belong to an independent set, there must have
been a third region r′′ containing p that wasn’t colored in the i′th iteration. This
means that the color of r′′ is greater than i, a contradiction to the maximality of i.
This completes the proof of the theorem.

Remark. Algorithm 2 yields a CF-coloring of regions with “low” union complexity
with only “few colors” in the following sense: If R has union complexity bounded by

U(n), then by Theorem 1.2, H(R) can be colored with O(U(n)
n ) colors. So the largest

color class is at least n2

U(n) by the pigeonhole principle. Thus, in the prune step of

Algorithm 2 we discard at least this many regions so, in total, Algorithm 2 does only

few iterations. This depends on the function n2

U(n) . Table 1 summarizes the relation

between the union complexity of the underlying objects, the chromatic number of
the induced hypergraph, and its CF-chromatic number. The bounds given on the
chromatic number and the CF-chromatic number are also bounds on the numbers of
colors produced by Algorithms 1 and 2, respectively.

Theorem 6.2. Let R be a set of n axis-parallel rectangles. Then Algorithm 2
applied to R, provides a CF-coloring of R with O(log2 n) colors in polynomial-time.

Remark. Note that the union complexity of n rectangles can be quadratic. Thus,
we cannot apply Theorem 1.2 directly to R, since we would obtain a coloring of H(R)
with potentially n colors. Thus, in the prune step of Algorithm 2 we might discard
only a constant number of rectangles and the algorithm might use linear number
of colors. The bound on the chromatic number of H(R) is asymptotically tight as
already mentioned. However, it is not clear that the bound O(log2 n) on the CF-
chromatic number of R is asymptotically tight. Maybe one can get better bounds.
We leave this as an open problem.

Proof. By Theorem 1.4, we can color H(R) with O(log |R|) colors. Thus, in

each prune step of Algorithm 2 we discard at least Ω( |R|
log|R| ) rectangles. It is easily

seen that the total number of iterations (which is the number of colors used by the
algorithm) will be O(log2 n).

Definition 6.3 (see [11]). A family R of Jordan regions in the plane is called a
family of pseudo-discs if the boundaries of each pair of them intersect at most twice.

Theorem 6.4. Let R be a family of n pseudo-discs. Then Algorithm 2 applied
to R provides a CF-coloring with O(log n) colors in polynomial-time.

Proof. The complexity of the union of any m regions of R is O(m) (see [11]).
By Theorem 1.2, there is a constant c such that Algorithm 1 provides a coloring χ of
H(R) with ≤ c colors. Such a coloring can be computed in polynomial-time. In the

prune step of Algorithm 2 we discard at least |R|
c regions. Thus, Algorithm 2 provides

a CF-coloring of R with only logn
log c

c−1
colors in polynomial-time.
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7. Discussion and open problems. Naturally, the problems addressed in this
paper have analogous versions in higher dimensions. For example, what is the min-
imum number of colors that always suffice to color any hypergraph induced by any
set B of n balls in R

3? Unfortunately, the complexity of the union of n balls could be
quadratic already in R

3, and we cannot apply the methods developed in this paper
directly. Moreover, for d ≥ 4 and any n > 1, there exist families of n balls in Rd

that are pairwise touching and therefore require n distinct colors for any proper col-
oring of H(R) as any two balls contain a point witnessing the fact that the two balls
must be colored with distinct colors. The best upper bound known for CF-coloring
any set of n balls in R

3 is the trivial bound n. It is interesting to relax the CF-
coloring requirements as follows: what is the minimum number of colors needed to
color any hypergraph induced by a set B of n balls in R

3 such that every hyperedge
of cardinality at least 3 is nonmonochromatic. It is easily seen that this number is
bounded by O(

√
n) since the maximum degree of any element is bounded by O(n)

in the 3-uniform hypergraph consisting of all hyperedges of H(B) with cardinality 3.
However, we conjecture that fewer colors are enough. This relates to the notion of
2-CF-coloring studied in [9]. Any improvement over the O(

√
n) bound would imply a

better bound on 2-CF-coloring of balls in R

3. Here, we omit the detailed description
of this relation.

Another open problem is to bound the chromatic number of any hypergraph
induced by n axis-parallel boxes in R

d (for d > 2). We conjecture that O(logd−1 n)
colors always suffice.
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LABELINGS OF GRAPHS WITH FIXED AND VARIABLE
EDGE-WEIGHTS∗
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Abstract. Motivated by L(p, q)-labelings of graphs, we introduce a notion of λ-graphs: a λ-
graph G is a graph with two types of edges: 1-edges and x-edges. For a parameter x ∈ [0, 1], a
proper labeling of G is a labeling of vertices of G by nonnegative reals such that the labels of the
endvertices of a 1-edge differ by at least 1 and the labels of the endvertices of an x-edge differ by
at least x; λG(x) is the smallest real such that G has a proper labeling by labels from the interval
[0, λG(x)]. We study properties of the function λG(x) for finite and infinite λ-graphs and establish
the following results: if the function λG(x) is well defined, then it is a piecewise linear function of x
with finitely many linear parts. Surprisingly, the set Λ(α, β) of all functions λG with λG(0) = α and
λG(1) = β is finite for any α ≤ β. We also prove a tight upper bound on the number of segments
for finite λ-graphs G with convex functions λG(x).

Key words. channel assignment problem, graph labeling with distance conditions
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1. Introduction. Several graph theory models for radio frequency assignment
were suggested by Hale [16]. One of the most important models is L(p, q)-labeling of
graphs, which can be traced back to the paper by Griggs and Yeh [15]. An L(p, q)-
labeling of a graph G for 1 ≤ q ≤ p is a labeling of the vertices by nonnegative integers
such that the labels of adjacent vertices differ by at least p and the labels of vertices
at distance two differ by at least q. The least integer K such that there is a proper
labeling using integers between 0 and K is called the span and is denoted by λp,q(G).

The case of L(2, 1)-labelings attracted a special attention of researchers, in partic-
ular with the connection to the conjecture of Griggs and Yeh [15] that λ2,1(G) ≤ Δ2

for every graph G with maximum degree Δ. Bounds on the span in terms of the
maximum degree have been proved in a series of papers [15, 5, 24, 9], and currently,
the best upper bound is λ2,1(G) ≤ Δ2 + Δ − 2. The conjecture itself has been ver-
ified for several classes of graphs, including graphs of maximum degree two, chordal
graphs [28]; see also [4, 22] and Hamiltonian cubic graphs [19, 20]. However, even
the case of general cubic graphs remains open. Because of practical motivation of the
problem, L(p, q)-labelings are also widely studied from the algorithmic point of view
[1, 3, 7, 8, 21, 27].

In this paper, we study how the span λp,q(G) depends on the parameters p and
q. This is well motivated from practical point of view since in applications, the pa-
rameters p and q are not fixed in advance but rather adjusted ad hoc depending on
the level of interference experienced for their different combinations. Our approach is
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similar to that of [25], but we focus on the original notion of L(p, q)-labeling rather
than its circular coloring version, and we do not determine the behavior for some
particular graphs, but rather prove general results. Also, we do not restrict our at-
tention to finite graphs. The inclusion of infinite graphs is motivated by applications,
e.g., L(p, q)-labelings of infinite triangular, square and hexagonal planar lattices nat-
urally arise in practice and have been addressed from the theoretical point of view as
well [18].

L(p, q)-labelings are closely related to the channel assignment problem. Our defi-
nition of the channel assignment problem is slightly more general than usual: both the
weights of edges and the labels of vertices are real numbers rather than just integers.
A channel assignment problem is determined by a pair (G,w) consisting of a (finite
or infinite) graph G and a function w : E(G) → R

+. A labeling c : V (G) → R

+
0 of

the vertices of G by nonnegative reals is proper if |c(v)− c(v′)| ≥ w(vv′) for each edge
vv′ of G. The span of a labeling c is the supremum of the labels used by c and the
span λw(G) of (G,w) is the infimum of the spans of proper labelings of (G,w). An
L(p, q)-labeling of a graph G can be viewed as the channel assignment problem for
the square of G (the second distance power): the edges of G have weights p and the
edges of G2 not belonging to G have weights q. The reader is also welcome to see the
survey [26] on the channel assignment problem.

The alternative view of L(p, q)-labelings presented above is a starting point for
our work. A λ-graph G is a graph with two types of edges: 1-edges and x-edges. For a
parameter x ∈ [0, 1], one forms a channel assignment problem on G by assigning the
weight 1 to every 1-edge and the weight x to every x-edge. The span of this channel
assignment problem is denoted by λG(x); the function λG(x) is called the λ-function
of G. For a graph H, let GH be the λ-graph on the same set of vertices as H such that
the vertices adjacent in H are joined by 1-edges in GH , and the vertices at distance
two in H are joined by x-edges in GH . Clearly, the following holds:

λGH

(
q

p

)
=

λp,q(H)

p
.

Therefore, the λ-function of GH can be viewed as normalized one-dimensional func-
tion describing the behavior of the two-parameter function λp,q(H). Note also that
λG(0) = χ(G(1)) − 1 and λG(1) = χ(G) − 1, where G(1) is the subgraph of G formed
by the 1-edges. This approach reflects the practical application of radio frequency
assignment: the 1-edges represent the pairs of close transmitters where huge interfer-
ence occurs, and the x-edges correspond to more distant transmitters where smaller
interference may appear. The value of the parameter x is then proportional to the
interference experienced and is adjusted according to its level. To get acquainted with
the concepts used in this paper, the reader may consult the appendix, where we pro-
vide the complete list of λ-graphs with four vertices together with their λ-functions,
as well as examples of other interesting λ-graphs.

A similar approach to the study of the span of L(p, q)-labeling was developed
by Griggs and Jin [11, 12, 13]. They presented their results, e.g., during the SIAM
Conference on Discrete Mathematics in Nashville, TN, in June 2004. In particular,
they proved (using a different terminology) that if H is a (finite or infinite) graph with
bounded maximum degree, then λGH

is a piecewise linear function of x for x ∈ [0,∞)
with finitely many linear parts. Moreover, the coefficients of the linear functions
forming λGH

are bounded by a constant that depends solely on the maximum degree
of H. The former statement can be derived from our Theorem 3.2 (see Corollary 3.3).
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Our Theorem 4.5 yields that there are only finitely many different λ-functions for
λ-graphs of the form GH where H is a graph of bounded maximum degree. Hence,
Theorem 4.5 also implies that the coefficients of linear functions forming λGH

are
bounded by a constant depending only on the maximum degree of H.

Our method is different from that in [11]: the arguments in [11] are based on
the structure of optimum labelings for a graph H obeying the given distance con-
straints, whereas we use a close correspondence between orientations of graphs and
their labelings, developed in section 2. Still, some of our results and their proofs,
e.g., Lemma 3.1, are analogous to those in [11]. Since we prove our results in a more
general setting, we decided, for the sake of completeness, to include full arguments
even in such cases.

Let us remark that the concept of λ-graphs have been further developed, e.g.,
in [23]. The reader can check a recent survey [14] for more results in this area.

1.1. Our results. We study general λ-graphs without restricting our attention
to those equal to GH for some H. In section 3, we show that the function λG(x) is a
piecewise linear function with finitely many linear parts, under the assumption that
it is well defined for some x > 0. The proof of this statement is quite straightforward
if G is finite, but it becomes more complex for infinite λ-graphs. In section 4, we
study λ-functions with prescribed values for x = 0, 1. Let Λ(α, β) be the set of all
λ-functions λG(x) of finite and infinite λ-graphs G with λG(0) = α and λG(1) = β.
One could expect that the set Λ(α, β) is infinite for α < β, but the opposite is true:
in fact, the set Λ(α, β) is finite for any integers α ≤ β. In Theorem 4.5, we present

the bound 22
(2αβ2+αβ+β2+2)2

2 on the size of the set Λ(α, β). At the end of the paper,
we focus on finite λ-graphs whose λ-function is convex and prove an asymptotically
tight upper bound on the number of the linear parts of the λ-functions in terms of
the order of a λ-graph: if G is a finite λ-graph of order n and the function λG(x) is
convex, then λG(x) consists of at most O(n2/3) linear parts.

2. Gallai–Roy theorem. We establish an analogue of the Gallai–Roy theorem
for channel assignment problems with (finite and) infinite underlying graphs. The
Gallai–Roy theorem in its original form relates colorings and lengths of paths in
acyclic orientations of a graph. Our proof follows the lines of a similar theorem for
channel assignment problems with finite graphs by McDiarmid [27], but we include
the proof for the sake of completeness.

First, we introduce some additional definitions necessary for stating and proving
the theorem. An orientation of a graph is finitary if there is a constant K ≥ 0 such
that every oriented walk has length at most K. The weight of a path is the sum of
the weights of the edges on the path. The channel assignment problem (G,w) is said
to be finitary if the image set of the function w is finite. If (G,w) is finitary, then
there exists a proper labeling c whose span is equal to the span of (G,w), and the
span of the optimum labeling c is equal to the maximum label used by c (these claims
will be established in the proof of Theorem 2.1).

We now state and prove the announced analogue of the Gallai–Roy theorem.
Theorem 2.1. Let (G,w) be a finitary channel assignment problem. The span

of (G,w) is finite if and only if G has a finitary orientation. In this case, the span
of (G,w) is equal to the minimum of the maximum weight of a path in a finitary
orientation of G, where the minimum is taken over all finitary orientations of G.

Proof. Consider a finitary orientation of G and let w0 be the maximum weight
of a path in the orientation. Label a vertex v of G with the maximum weight of an
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oriented path which ends at v. Clearly, the span of this labeling does not exceed w0.
Moreover, the labeling is proper: consider two vertices v and v′ joined by an edge of
G. Assume that the edge between v and v′ is oriented from v to v′. Since each path
leading to the vertex v can be prolonged to v′, the label of v′ is greater than the label
of v and they differ by at least w(vv′). Since there is a finite number of edge weights
(recall that both the channel assignment problem and the orientation are finitary),
we conclude that the span of (G,w) is at most the minimum of the maximum weight
of a path taken over all finitary orientations of G.

On the other hand, if c is a proper labeling of (G,w) with finite span, then there is
a finitary orientation of G such that the maximum weight of a path in the orientation
is at most the span. Consider the following orientation: an edge between two vertices
v and v′ is oriented from v to v′ if c(v) < c(v′), otherwise it is oriented from v′ to
v. Since the labels of the vertices on an oriented path increase on each edge at least
by its weight, the maximum weight of the path in the orientation is bounded by the
maximum label assigned to a vertex of G. The statement of the theorem now readily
follows.

The next corollary of Theorem 2.1 on the λ-functions of finite λ-graphs immedi-
ately follows.

Corollary 2.2. If G is a finite λ-graph of order n, then for each x ∈ [0, 1],
there exist nonnegative integers a and b with a+b ≤ n−1 such that λG(x) = a+b ·x.

Proof. Consider the channel assignment problem (G′, w′), where G′ is the under-
lying graph of G, the weight w′(e) of a 1-edge e is one and the weight w′(e) of an
x-edge e is x. Since the channel assignment problem (G′, w′) is finitary, its span is
equal to the maximum weight of a finite path of a finitary orientation of G′. Therefore,
λG(x) = a + b · x for some nonnegative integers a + b ≤ n− 1.

3. Piecewise linearity. In this section, we show that the function λG(x) of
every λ-graph is a piecewise linear function of x. As the first step, we show that the
function λG(x) is a linear function of x on some neighborhood of 0.

Lemma 3.1. Let G be a (finite or infinite) λ-graph. If the function λG(x) is finite
for some x > 0, then the function λG(x) is a linear function of x on the interval [0, ε]
for some ε > 0.

Proof. Since λG(x) is finite for some x > 0, there is a finitary orientation �D0 of G.
In particular, the chromatic number χ(G(1)) is finite (recall that G(1) is the spanning
subgraph of G whose edges are exactly the 1-edges of G), and λG(0) = χ(G(1)) − 1.

Next, we construct a finitary orientation of G that does not contain any oriented
path with more than λG(0) 1-edges. Let c be any proper coloring of G(1) with χ(G(1))

colors 0, . . . , λG(0). Consider the orientation �D of G such that an edge vv′ of G is

• oriented from v to v′, if c(v) < c(v′),
• oriented from v′ to v, if c(v) > c(v′), and

• oriented as in the orientation �D0, otherwise.

Since on each oriented path, the colors of the vertices form a nondecreasing sequence
that strictly increases on each 1-edge, there is no oriented path with more than λG(0)

1-edges. It remains to show that the orientation �D is finitary. Let k be the maximum
length of a path in �D0. As we have observed, the colors assigned by c to the vertices
of an oriented path of �D form a nondecreasing sequence. A subpath formed by the
vertices of the same color is also an oriented path in �D0. Hence, its length is at most
k. We conclude that each oriented path in �D has length at most χ(G(1))(k + 1). In

particular, the orientation �D is finitary.
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Choose �D to be a finitary orientation of G such that

1. �D does not contain any oriented path with more than λG(0) 1-edges, and
2. the maximum length of an oriented path with exactly λG(0) 1-edges is mini-

mal.

Since the orientation of G constructed in the previous paragraph has the first property,
the orientation �D exists and is well defined.

Let kD be the maximum length of a path in �D, and let k′D be the maximum

number of x-edges on a path of �D that has λG(0) 1-edges. We show the following:

λG(x) = λG(0) + k′Dx for every x ∈ [0, ε],

where ε = 1
kD

.

Assume, for contradiction, that there is x ∈ (0, ε] such that λG(x) < λG(0) +
k′Dx. Note that this inequality implies that λG(x) < λG(0) + 1 since k′D < kD. By

Theorem 2.1, G has a finitary orientation �D′ that does not contain any oriented path
with more than λG(0) 1-edges, and in addition, at least one of the following holds:

• �D′ has no oriented path with λG(0) 1-edges, or

• any oriented path of �D′ with λG(0) 1-edges has less than k′D x-edges.

The former is impossible because every finitary orientation of G(1), and therefore, of
G, has a path with λG(0) edges by Theorem 2.1. The latter contradicts the choice of

the orientation �D. We infer that λG(x) ≥ λG(0) + k′Dx for all x ∈ [0, ε].

It remains to establish the opposite inequality, i.e., λG(x) ≤ λG(0) + k′Dx for

x ∈ [0, ε]. Consider an oriented path P in �D. If P contains λG(0) 1-edges, then it
contains at most k′D x-edges, and consequently, its weight is at most λG(0) + k′Dx.
On the other hand, if P contains less than λG(0) 1-edges, then its weight is at most
λG(0)−1+kDx ≤ λG(0). We conclude that the maximum weight of an oriented path

in �D is at most λG(0)+k′Dx. Therefore, λG(x) ≤ λG(0)+k′Dx by Theorem 2.1.

We are ready to establish the main result of this section. Note that the statement
of Theorem 3.2 for finite λ-graphs can be easily derived from Corollary 2.2.

Theorem 3.2. Let G be a (finite or infinite) λ-graph. If the function λG(x) is
finite for some x > 0, then the function λG(x) is a piecewise linear function of x on
the interval [0, 1] with finitely many linear parts.

Proof. Since the function λG(x) is finite for some x > 0, G has a finitary orienta-
tion and the function λG(x) is finite for all x ∈ [0, 1] by Theorem 2.1. Let ε > 0 be a
real such that the function λG(x) is linear for x ∈ [0, ε]. Such ε exists by Lemma 3.1.
We may assume that ε ≤ 1/4. Moreover, if λG(1) = 0, then λG is identically equal
to 0 and the theorem holds. Therefore, we only need to consider the case λG(1) ≥ 1.
Let K = �λG(1)/ε�. By the previous assumptions, K ≥ 4. Consider the set D of

finitary orientations �D of G such that the maximum length of an oriented path in �D
is at most K. Note that the set D is nonempty since G has a finitary orientation with
maximum path length λG(1) by Theorem 2.1 applied to the graph G with all edge
weights equal to one.

For an orientation �D ∈ D, let F( �D) be the set of all the functions a+bx such that
�D contains an oriented path with a 1-edges and b x-edges. Since the maximum length
of an oriented path of �D is at most K, the sum a+ b is bounded by K. Therefore, the
set F( �D) is finite for every orientation �D ∈ D. Let f�D(x) = maxf∈F(�D) f(x). Since

the set F( �D) is finite, the function f�D(x) is the maximum of a finite number of linear
functions. In particular, the function f�D(x) is piecewise linear and has finitely many
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linear parts. Let us define

f0(x) := min
�D∈D

f�D(x) = min
�D∈D

max
f∈F(�D)

f(x).

Since there are at most
(
K+2

2

)
≤ K2 functions a + bx with 0 ≤ a, b and a + b ≤ K,

there are at most 2K
2

distinct sets F( �D), and the minimum in the definition of f0(x)

is always attained. Moreover, the function f0(x) is the minimum of at most 2K
2

distinct piecewise linear functions, and thus f0(x) is also a piecewise linear function.
In the rest of this proof, we show that λG(x) = f0(x) for all x ∈ [ε, 1].

Fix x ∈ [ε, 1]. Let �D be an orientation of G such that f�D(x) = f0(x). In the

orientation �D, the maximum weight of an oriented path is f�D(x) and λG(x) ≤ f0(x)
by Theorem 2.1. Assume for the sake of contradiction that λG(x) < f0(x) for some

x ∈ [ε, 1]. By Theorem 2.1, there exists a finitary orientation �D of G with the

maximum weight of an oriented path equal to λG(x). If �D contains a path with more

than K edges, then the weight of this path is at least (K + 1)x > λG(1)
ε x ≥ λG(1).

This is impossible, because λG(x) ≤ λG(1). Therefore, the length of each oriented

path in �D is at most K and �D ∈ D. Since the maximum weight of an oriented path
in �D is f�D(x), we have f0(x) ≤ f�D(x) = λG(x) < f0(x)—a contradiction.

We have shown that λG(x) = f0(x) for all x ∈ [ε, 1]. Since the function λG(x) is
piecewise linear on both the intervals [0, ε] and [ε, 1] and it has finitely many linear
parts on each of the two intervals, it is a piecewise linear function with finitely many
linear parts on the whole interval [0, 1].

Let us now show how Theorem 3.2 implies the results of Griggs and Jin on λ-
functions of λ-graphs of the form GH .

Corollary 3.3. Let H be a (finite or infinite) graph with a bounded maximum
degree, and let �H(x) := 1

pλp,q(H) for x = q/p. The function �H(x) is a piecewise

linear function for x ∈ [0,∞) with finitely many linear parts.
Proof. For x ∈ [0, 1], the statement follows from Theorem 3.2 applied to the

graph GH whose definition can be found in section 1. Next, consider the graph G′

obtained from GH by replacing 1-edges by x-edges and x-edges by 1-edges. Observe
that �H(x) = x·λG′(1/x). Again, Theorem 3.2 yields that λG′(x′) is a piecewise linear
function with finitely many linear parts for x′ ∈ [0, 1]. Hence, �H(x) is a piecewise
linear function with finitely many linear parts for x ∈ [1,∞), too.

Note that if H has bounded maximum degree, then GH has bounded maximum
degree as well, and, in particular, GH has bounded chromatic number. Our results
from section 4, namely Theorem 4.5, imply that for every finite bound K there is a
finite set LK of piecewise linear functions defined on [0,∞), with finitely many linear
parts, such that for any (finite or infinite) graph H with maximum degree at most K
we have �H ∈ LK .

Another immediate corollary of Theorem 3.2 is the following.
Corollary 3.4. If G is a finite λ-graph of order n, then there exist an integer

k, 1 ≤ k ≤ n2, real numbers x0, . . . , xk, 0 = x0 < x1 < · · · < xk = 1, and nonnegative
integers a1, . . . , ak and b1, . . . , bk with ai + bi ≤ n− 1, such that λG(x) = ai + bix for
every x ∈ [xi−1, xi]. Moreover, xi = ci

di
for some integers ci, di, with 0 ≤ ci ≤ di ≤

n− 1.
Proof. Since the function λG(x) is piecewise linear by Theorem 3.2, there exist

real numbers x0, . . . , xk, 0 = x0 < x1 < · · · < xk = 1, such that the function λG(x)
is linear on each interval [xi−1, xi], i = 1, . . . , k, for some integer k. By Corollary 2.2,
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the coefficients of these linear functions are nonnegative integers whose sum does not
exceed n− 1.

Furthermore, each of the reals x1, . . . , xk−1 can be expressed as a fraction with
both the numerator and denominator between 1 and n− 1: clearly, xi is the (unique)

solution of the equation ai + bixi = ai+1 + bi+1x. Hence, xi = ai−ai+1

bi+1−bi
= |ai+1−ai|

|bi+1−bi|
(the latter equality follows from the fact that xi is positive). Since there are at most
(n − 1)2 fractions with both the numerator and denominator between 1 and n − 1,
the bound on the number k follows.

Let us remark that the bound on the number of linear parts in Corollary 3.4

can be improved to 3n2

π2 + o(n2) using the results on the Farey fractions discussed in
section 5. However, we think that the order of the bound from Corollary 3.4 can be
asymptotically improved and conjecture the following.

Conjecture 3.5. If G is a finite λ-graph of order n, then the function λG(x)
consists of at most n linear parts.

4. λ-functions with boundary constraints. As the first step towards the
proof of Theorem 4.5, we establish two bounds on the growth of a λ-function.

Lemma 4.1. Let G be a (finite or infinite) λ-graph whose λ-function is finite,
and let λG(x) = a + bx for all x ∈ [0, γ] and some γ > 0. The following inequality
holds:

λG(x) ≥ a + bx

for all x ∈ [0, 1/b], if b > 0, and for all x ∈ [0, 1], otherwise.
Proof. If b = 0, the lemma holds trivially, because λG(x) ≥ λG(0) for all x ∈

[0, 1]. In the rest of the proof, we consider the case b > 0. Assume for the sake of
contradiction that there exists x0 ∈ [0, 1/b] such that λG(x0) < a+ bx0 ≤ a+1. Note
that x0 > γ because λG(x) is equal to a + bx for x ∈ [0, γ]. By Theorem 2.1, there

exists an orientation �D of G with the following property: for every oriented path P in
�D it holds that a′+b′x0 ≤ λG(x0) < a+bx0, where a′ and b′ are the numbers of 1-edges
and x-edges of P . Since a+bx0 ≤ a+1, we have a′ ≤ a. Therefore, a′+b′γ < a+bγ for
each such path P . We infer from Theorem 2.1 that λG(γ) < a+ bγ. This contradicts
the assumptions of the lemma.

Lemma 4.2. Let G be a (finite or infinite) λ-graph whose λ-function is finite.
The following inequality holds:

λG(x) ≤ α + (α + 1)βx,

where α = λG(0) and β = λG(1).
Proof. Fix vertex colorings c(1) and c of the graphs G(1) and G with colors

0, . . . , α and 0, . . . , β. Let �D be the following orientation of G: an edge e = uv of G
with c(1)(u) < c(1)(v) is oriented from u to v. An edge e = uv with c(1)(u) = c(1)(v)
is oriented from u to v if c(u) < c(v) and from v to u, otherwise.

We now bound the maximum weight of a path in �D. Consider an oriented path
P in �D. The function c(1) is nondecreasing along the path P . Since the value of c(1)

increases on each 1-edge of P , the path P contains at most α 1-edges. There are also
at most α + 1 subpaths of P formed by the vertices with the same color assigned by
c(1). On each such subpath, the function c is strictly increasing, and consequently,
such a subpath can consist of at most β x-edges. We conclude that each oriented
path in �D contains at most α 1-edges and at most (α+1)β x-edges. By Theorem 2.1,
λG(x) ≤ α + (α + 1)βx.
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A key essence of the proof that the set Λ(α, β) is finite is the following lower
bound on the length of the initial linear part of a λ-function in terms of λG(0) and
λG(1).

Lemma 4.3. Let G be a (finite or infinite) λ-graph whose λ-function is finite.
The length of the initial linear part of λG(x) is at least

1

2αβ + α + β + 1
,

where α = λG(0) and β = λG(1).
Proof. Let a and b be the nonnegative integers such that λG(x) = a + bx for all

x ∈ [0, γ] for some γ > 0. Note that a = α. By Lemma 4.2, we have 0 ≤ b ≤ (α+1)β.
We show that λG(x) = a+bx for all x ∈ [0, 1

2αβ+α+β+1 ]. The inequality λG(x) ≥ a+bx
follows from Lemma 4.1. In what follows, we focus on establishing the opposite
inequality λG(x) ≤ a + bx.

By Theorem 2.1 applied to the channel assignment problem derived from G for
x = min{1/(b + 1), γ}, there exists a finitary orientation �D of G with the following
properties:

1. �D contains no oriented path with a + 1 or more 1-edges, and
2. each oriented path of �D with a 1-edges contains at most b x-edges.

Let av, v ∈ V (G) be the maximum number of 1-edges on an oriented path of �D which
ends at v, and let bv be the maximum number of x-edges on an oriented path with av
1-edges which ends at v. In addition, let cβ be a coloring of G with colors 0, . . . , β.
For x ∈ [0, 1

2αβ+α+β+1 ], we define a labeling c of G as follows:

c(v) =

{
av + bvx if bv ≤ b,
av + av(β + 1)x + (cβ(v) + b + 1)x otherwise.

We now prove that c is a proper labeling of G for every x ∈ [0, 1
2αβ+α+β+1 ].

As the first step towards this goal, we show that if bv > b, then the label c(v) is
at most av + 1 − x (note that bv > b implies av < a = α):

c(v) = av + av(β + 1)x + (cβ(v) + b + 1)x

≤ av + (α− 1)(β + 1)x + (β + (α + 1)β + 1)x

= av + (2αβ + α + β + 1)x− x ≤ av + 1 − x.(4.1)

Next, we show that the labeling is proper on each edge of G. Consider an edge uv,
oriented from u to v in �D. We distinguish two major cases according to the type of
the edge uv:

• uv is an x-edge.
Clearly, au ≤ av, and if au = av, then bu < bv. We verify that |c(u)−c(v)| ≥ x
by considering the following four subcases:

– au < av
If bu ≤ b, we infer from x ≤ 1/(b+1) that c(u) ≤ au + bux ≤ au +1−x.
On the other hand, if bu > b, it holds that c(u) ≤ au + 1 − x by (4.1).
Since au + 1 ≤ av ≤ c(v), we have c(v) − c(u) ≥ x as desired.

– au = av and bu < bv ≤ b
The inequality c(v) − c(u) ≥ x follows from the definition of c.

– au = av and bu ≤ b < bv
We have c(v) − c(u) ≥ (cβ(v) + b + 1)x− bux ≥ x.
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– au = av and b < bu < bv
By the definition of c, we have |c(v) − c(u)| = |cβ(v) − cβ(u)|x ≥ x.

• uv is a 1-edge.
Clearly, au < av. If au = av−1, then bu ≤ bv. We establish that |c(u)−c(v)| ≥
1 by considering the next four subcases:

– au ≤ av − 2
Observe that c(u) ≤ au + 1 and av ≤ c(v). Since au ≤ av − 2, we can
immediately conclude that c(v) − c(u) ≥ 1.

– au = av − 1 and bu ≤ bv ≤ b
The definition of c immediately yields that c(v) − c(u) ≥ 1.

– au = av − 1 and bu ≤ b < bv
By the definition of c, we have c(v)−c(u) ≥ 1+(cβ(v)+b+1)x−bux ≥ 1.

– au = av − 1 and b < bu ≤ bv
We again inspect the definition of c: c(v) − c(u) ≥ 1 + (β + 1)x +
[(cβ(v) + b + 1) − (cβ(u) + b + 1)]x ≥ 1.

We have shown that c is a proper labeling of G. Note that the maximum label assigned
by c does not exceed a + bx. The inequality λG(x) ≤ a + bx for x ∈ [0, 1

2αβ+α+β+1 ]
readily follows.

Before we prove Theorem 4.5, we observe the following proposition. Its statement
can be verified by inspection of the proof of Theorem 3.2.

Proposition 4.4. Let G be a (finite or infinite) λ-graph whose λ-function is
finite. Furthermore, let F be the set of all linear functions ax + b with integral non-
negative coefficients a and b such that a + b ≤ β/γ, where β = λG(1) and γ is a real
such that λG(x) is linear on the interval [0, γ]. There exist sets F1, . . . ,Fk ⊆ F such
that the following equality holds for all x ∈ [γ, 1]:

λG(x) = min
i=1,...,k

max
f∈Fi

f(x).

Finally, we are ready to prove the main result of this section.
Theorem 4.5. Let α ≤ β be any two nonnegative integers. The following esti-

mate on the size of Λ(α, β) holds:

|Λ(α, β)| ≤ 22
(2αβ2+αβ+β2+2)2

2 .

In particular, the set Λ(α, β) is finite.
Proof. Let f0 ∈ Λ(α, β), i.e., there exists a λ-graph G with λG(x) = f0(x) and

f0(0) = α and f0(1) = β. By Lemma 4.3, the function f0 is a linear function of x
on the interval [0, γ], where γ = 1

2αβ+α+β+1 . In particular, the values of f0 on the

interval [0, γ] are uniquely determined by the value of f0(γ) (recall that f0(0) = α).
As in Proposition 4.4, let F be the set of all linear functions ax+ b with integral

nonnegative coefficients a and b such that a+b ≤ β/γ. Let us estimate the cardinality
of the set F :

(4.2) |F| =

�β/γ�∑
i=0

(i + 1) ≤ (β/γ + 2)
2

2
=

(2αβ2 + αβ + β2 + 2)2

2
.

By Proposition 4.4, there exist subsets F1, . . . ,Fk ⊆ F such that f0(x) is equal to
mini=1,...,k maxf∈Fi f(x) for all x ∈ [γ, 1]. Once the sets F1, . . . ,Fk are fixed, the
value f0(γ) is uniquely determined and thus the function f0 is uniquely determined
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by F1, . . . ,Fk on the entire interval [0, 1]. Since F contains 2|F| subsets, there are

22|F|
choices of the subsets F1, . . . ,Fk. The statement of the theorem now follows

from the estimate (4.2).

5. Convex λ-functions. In this section, we focus on λ-graphs with convex λ-
functions. We decided to study convex λ-functions in more detail since it seems that
most λ-functions exhibit mixed convex-concave behavior and the first step towards
understanding this behavior could be the analysis of λ-graphs with convex λ-functions.
Let us start with a simple upper bound on the number of linear parts of convex λ-
functions of finite λ-graphs.

Theorem 5.1. Let G be a finite λ-graph of order n. If the function λG(x) is
convex, then it consists of at most 3n2/3 + 1 linear parts.

Proof. Let k be the number of linear parts of λG(x) and let the reals x0, . . . , xk

and the integers a1, . . . , ak and b1, . . . , bk be as in Corollary 3.4. Since the function
λG(x) is convex, ai > aj and bi < bj for every 1 ≤ i < j ≤ k.

Let αi = ai − ai+1 > 0 and βi = bi+1 − bi > 0 for i = 1, . . . , k − 1. In particular,
a1 = ak +α1 + · · ·+αk−1 and bk = b1 + β1 + · · ·+ βk−1. Note that xi = αi/βi for all
i = 1, . . . , k− 1. Let IA be the set of the indices i = 1, . . . , k− 1 such that αi ≥ n1/3,
and let IB be the set of the indices i = 1, . . . , k− 1 such that βi ≥ n1/3. Since a1 < n
by Corollary 3.4, |IA| ≤ n2/3. Similarly, |IB | ≤ n2/3.

Let I = {1, . . . , k}\ (IA∪ IB). For i ∈ I, the number xi = αi/βi is a fraction with
both the numerator and denominator between 1 and n1/3. Since there are at most n2/3

distinct fractions, we infer that |I| ≤ n2/3. Consequently, k ≤ |I|+|IA|+|IB | ≤ 3n2/3.
The statement of the theorem now follows.

In the rest of this section, we construct λ-graphs whose convex λ-functions have
Ω(n2/3) linear parts. The first step towards our construction is the next proposition.
We leave its straightforward proof to the reader.

Proposition 5.2. Let G be the λ-graph which is the disjoint union of a clique
of order k1 + 1 with 1-edges and a clique of order kx + 1 with x-edges. If kx > k1,
then the function λG(x) consists of two linear parts meeting at the point k1/kx.

The second tool is the next lemma on joins of λ-graphs.
Lemma 5.3. Let G1 and G2 be two disjoint λ-graphs with finite λ-functions, and

let G = G1 ⊕ G2 be the λ-graph obtained from G1 and G2 by adding 1-edges v1v2

between any pair of vertices v1 ∈ V (G1) and v2 ∈ V (G2). The following holds:

λG(x) = λG1(x) + λG2(x) + 1.

Proof. Fix the number x ∈ [0, 1]. By Theorem 2.1, G1 and G2 have finitary

orientations �D1 and �D2 with the maximum weights of an oriented path equal to
λG1(x) and λG2(x). Let �D be the orientation of G obtained from �D1 and �D2 by
orienting all the edges between G1 and G2 from G1 to G2. Clearly, the maximum
weight of an oriented path in �D is λG1(x) + λG2(x) + 1. By Theorem 2.1, λG(x) ≤
λG1

(x) + λG2
(x) + 1. In the next paragraph, we finish the proof of the lemma by

establishing the opposite inequality.
Assume for contradiction that λG(x) < λG1(x) + λG2

(x) + 1. By Theorem 2.1,

G has a finitary orientation �D with the maximum weight of an oriented path strictly
less than λG1(x) + λG2(x) + 1. On the other hand, the orientation �D restricted to

G1 contains an oriented path P1 with weight at least λG1(x), and �D restricted to G2

contains a path P2 with weight at least λG2(x). Let G′ be the subgraph of G induced

by the vertices of P1 and P2, and let p = |V (G′)|. Note that the orientation �D is acyclic
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and any two vertices of G′ are connected by an oriented path, which implies that there
is a unique way to order the vertices of G′ into a sequence S = (v1, v2, v3, . . . , vp),

which is topologically sorted with respect to �D, i.e., if �D contains an edge oriented
from vi to vj , then i < j. The uniqueness of S implies that for each i < p the
vertices vi and vi+1 are connected by an oriented edge vivi+1. Therefore, G′ contains
an oriented Hamilton path P = v1v2, . . . , vp. Furthermore, every x-edge of P is also
an edge of P1 or P2, and thus the weight of P is at least λG1(x) + λG2(x) + 1. This

contradicts our assumption that the weight of every oriented path in �D is strictly
smaller than λG1

(x) + λG2(x) + 1.

Finally, we recall some results on the Farey fractions. The Farey sequence is
formed by sets Fn of rationals, where Fn is the set of all irreducible fractions a/b with
0 ≤ a ≤ b ≤ n, e.g., F4 = {0, 1/4, 1/3, 1/2, 2/3, 3/4, 1} (note that 1/2 = 2/4). The
Farey fractions appear, e.g., in [2, 6, 17]. For our considerations, the following result
[10, 29, 30] on the Farey fractions is of interest:

(5.1) lim
n→∞

|Fn|
n2

=
3

π2
.

We can now construct a λ-graph whose λ-function consists of Ω(n2/3) linear parts.

Theorem 5.4. For every positive integer n, there is a λ-graph G of order n

whose λ-function consists of
3√3

(2π)2/3n
2/3 − o(n2/3) ≈ 0.42n2/3 linear parts.

Proof. Fix a positive integer k. We construct a graph G of order at most (2k +
1)|Fk| whose λ-function consists of |Fk|−1 linear parts. The statement of the theorem
will then follow from the limit (5.1).

Let F ◦
k be the set of the Farey fractions from Fk strictly between 0 and 1. For

each fraction a
b ∈ F ◦

k , consider the graph Ga/b from Proposition 5.2 with k1 = a and
kx = b. Note that there are |Fk| − 2 choices of a and b (we exclude the fractions 0
and 1). The λ-function of Ga/b consists of two linear parts meeting at the point a

b .

Let G be the λ-graph obtained from vertex-disjoint copies of Ga/b,
a
b ∈ F ◦

k , by
adding 1-edges between all pairs of vertices from distinct copies, i.e., G =

⊕
a
b ∈F◦

k
Ga/b.

By Lemma 5.3, the λ-function of G is equal to the following:

λG(x) = |F ◦
k | − 1 +

∑
a
b ∈F◦

k

λGa/b
(x).

Therefore, the function λG(x) consists of |Fk| − 1 linear parts.

It remains to estimate the order of the λ-graph G. The order of every graph Ga/b

is at most 2k + 1. Hence, the order of G does not exceed (2k + 1)|Fk| as claimed in
the beginning.

We remark that the multiplicative factors both in Theorems 5.1 and 5.4 can be
improved by a finer analysis of the estimates used in the proofs. We decided not to
do so in order to keep our arguments simple.

Appendix.

All λ-graphs on four vertices. First, we list all nonisomorphic λ-graphs on
four vertices together with their λ-functions. The λ-graphs corresponding to the
depicted λ-function can be found under the graph of the function. The 1-edges are
depicted as solid segments, while the x-edges are represented by dashed segments.



GRAPH LABELINGS WITH EDGE-WEIGHTS 699
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Other selected λ-graphs. We also list some other small λ-graphs with inter-
esting λ-functions: the first one is an example of a λ-graph with a concave λ-function,
the second one is an example of a λ-graph whose λ-function is neither convex nor con-
cave (note that it even contains two different constant parts), and the third one is an
example of a λ-graph such that two different linear parts of its λ-function correspond
to the same linear function.
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LARGE COMPLETE BIPARTITE SUBGRAPHS IN INCIDENCE
GRAPHS OF POINTS AND HYPERPLANES∗
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Abstract. We show that if the number I of incidences between m points and n planes in R
3 is

sufficiently large, then the incidence graph (which connects points to their incident planes) contains

a large complete bipartite subgraph involving r points and s planes, so that rs ≥ I2

mn
−a(m+n), for

some constant a > 0. This is shown to be almost tight in the worst case because there are examples
of arbitrarily large sets of points and planes where the largest complete bipartite incidence subgraph

records only I2

mn
− m+n

16
incidences. We also take some steps towards generalizing this result to

higher dimensions.
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1. Introduction. Let P be a set of m points, and let Π be a set of n hyperplanes
in R

d. An incidence in this setting is a point-hyperplane pair (p, π) ∈ P × Π, such
that p ∈ π. We denote by G(P,Π) ⊆ P × Π the bipartite graph whose edges connect
all incident pairs and call it the incidence graph of P and Π. We denote by I(P,Π)
the total number of incidences |G(P,Π)|. There have been several works on point-
hyperplane incidences in the past 15 years [AA, BK, EGS, ET], which we shall review
later on. The reader can also consult the recent survey by Pach and Sharir [PS], which
reviews some of these results.

As we show, an interesting property of point-hyperplane incidence graphs is that if
the number of incidences is large (close to mn), then the incidence graph contains large
complete bipartite subgraphs. Such a subgraph is in fact a configuration consisting of
many hyperplanes of Π intersecting at a common lower-dimensional affine subspace
H, together with many points of P , all incident to H. This property arises, in one way
or another, in almost all previous works; see subsection 1.2 for details. In this paper
we continue to study this property and ask: Given a point-hyperplane configuration
with many incidences, what is the size of the largest complete bipartite incidence
subgraph? To state the question more precisely, we define

rs(P,Π) = max {rs |Kr,s ⊆ G(P,Π)} ,

where Kr,s denotes the complete bipartite subgraph with r vertices on one side and s
vertices on the other, and the notation Kr,s ⊆ G(P,Π) means that Kr,s is a subgraph
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of G(P,Π), such that there are some r points of P and s hyperplanes of Π all incident
to one another. We let

rsd(m,n, I) = min
|P | = m
|Π| = n
I(P, Π) ≥ I

rs(P,Π)

denote the minimum of rs(P,Π) over all choices of a set P ⊂ R

d of m points and a set Π
of n hyperplanes in R

d, such that I(P,Π) ≥ I. Note that rsd(m,n, I) ≥ max
{

I
m , I

n

}
,

since there always exists a point incident to at least I/m hyperplanes and a hyperplane
incident to at least I/n points, which give rise to both subgraphs KI/n,1 and K1,I/m.

We thus have rsd(m,n, I) ≥ I
min{m,n} = Ω

(
I
m + I

n

)
, and any nontrivial estimate must

exceed this lower bound.
For convenience, and to prevent an overflow of constants, we make extensive use

of O-notation in our bounds. An expression of the form y = O(f(x1, . . . , xn)), is
shorthand to the statement that there exist two positive constants b and C such that
for each x1, . . . , xn, if f(x1, . . . , xn) > b, then y < Cf(x1, . . . , xn). Similarly, “y =
Ω(f(x1, . . . , xn))” means that there are constants b and c, such that if f(x1, . . . , xn) >
b, then y > cf(x1, . . . , xn). Finally, “y = Θ(f(x1, . . . , xn))” means that both y =
O(f(x1, . . . , xn)) and y = Ω(f(x1, . . . , xn)) hold.

1.1. Our results. For the case d = 3, we can estimate rsd(m,n, I) almost ex-
actly.

Theorem 1.1.

(i) If I = Ω(m
√
n + n

√
m), with a sufficiently large multiplicative constant, then

rs3(m,n, I) =
I2

mn
− Θ(m + n).

(ii) If m ≤ n, I = O(n
√
m), and I = Ω((mn)3/4), for appropriate multiplicative

constants, then

rs3(m,n, I) = Θ

(
I4

m2n3
+

I

m

)
.

(iii) Symmetrically, if m ≥ n, I = O(m
√
n), and I = Ω((mn)3/4), then

rs3(m,n, I) = Θ

(
I4

m3n2
+

I

n

)
.

(iv) If I = O(m3/4n3/4 + m + n), then

rs3(m,n, I) = Θ

(
I

m
+

I

n

)
.

The interesting case is (i), where the number of incidences is largest. The up-
per bound construction for this case consists of almost disjoint complete bipartite
subconfigurations.

As the dimension d increases beyond 3, the bounds that we are able to derive
are less sharp. Moreover, they only apply within certain ranges of the value of I.
Extending the analysis to the remaining values of I and tightening the bounds on
rsd(m,n, I) seems to be much harder problems, which we leave open for further
research.
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We have obtained some nontrivial results for the higher-dimensional case, but not
tight ones.

Theorem 1.2 (lower bound). If I = Ω(mn1− 1
d−1 + m1− 1

d−1n), then

rsd(m,n, I) = Ω

((
I

mn

)d−1

mn

)
,

where the constant of proportionality depends on d.

Theorem 1.3 (upper bound). If I = Ω((mn)1−
1

d−1 ), then

rsd(m,n, I) = O

((
I

mn

) d+1
2

mn

)
,

where the constant of proportionality depends on d.

Note that for d = 3, both theorems yield the same bound on rs3, which is also
identical (up to multiplicative constants) to that in Theorem 1.1(i). Moreover, all
three theorems apply within the same (asymptotic) range I = Ω(m

√
n+n

√
m) (The-

orem 1.3 applies within a wider range).

It is interesting to compare these bounds to the equivalent bounds for general
graphs. There are (m,n)-bipartite graphs with 1

2mn edges, such that the largest
complete bipartite subgraph has fewer than 2(m+ n) edges. In fact, a random graph
satisfies this property with very high probability. In contrast, Theorems 1.1 and 1.2
assert that a point-hyperplane incidence graph with these many edges has a complete
bipartite subgraph with Ω(mn) edges.

1.2. Previous work. The problem of bounding the number of incidences be-
tween points and curves or surfaces is one of the classical problems in combinatorial
geometry and has been studied extensively during the past 20 years; see the recent
survey [PS] for a comprehensive review of the state of the art in this area. Most of the
study has focused on incidences in the plane, but a considerable amount of work has
also been devoted to higher-dimensional problems. The specific problem of analyzing
and bounding the number I(P,Π) of incidences between a set P of m points and a set
Π of n hyperplanes in d dimensions has already been studied in [AA, BK, EGS, ET].

A major issue that arises in the study of point-hyperplane incidences in d ≥ 3
dimensions is the possible presence of many points of P incident to many hyperplanes
of Π. This happens when the intersection of many of the hyperplanes is a nonzero-
dimensional affine subspace, and many of the points lie in that subspace. In this case
the incidence graph G(P,Π) can be a complete bipartite graph, or contain large such
subgraphs, and then I(P,Π) can be as high as (the trivial upper bound) mn.

Several attempts can be (and have been) made to study this problem in more
restricted settings. One is to assume that in R

3 not too many points and/or not too
many planes are collinear (or, for hyperplanes in higher dimensions, affinely depen-
dent); see [EGS]. Another is to restrict the problem only to points that are vertices
of the arrangement of the hyperplanes [AA, EGS]. Under these assumptions, better
(nontrivial) upper bounds on I(P,Π) can be obtained. For example:

• The maximum number of incidences between n hyperplanes in R

d and m
vertices of their arrangement is Θ(m2/3nd/3 + nd−1), for m ≥ nd−2, and
Θ(mn) for m < nd−2 [AA].
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• For m points and n planes in R

3, if no three points are collinear, the number
of incidences is O(m3/5n4/5 + m + n) (see [EGS]1). The symmetric bound
O(m4/5n3/5 + m + n) holds when no three planes are collinear. Brass and
Knauer [BK] give a construction from which it follows that the latter bound
is tight in the worst case, when no three planes are collinear.2

• As Brass and Knauer [BK] show (see also Chazelle [Ch]), for m points and
n hyperplanes in R

d, and for any fixed r, s > 0, if the incidence graph does

not contain Kr,s as a subgraph, the number of incidences is O(((mn)1−
1

d+1 +
m + n) log(m + n)). (In fact, using a standard analysis, based on cuttings,
one can improve the bound and get rid of the logarithmic factor.)

• Elekes and Tóth [ET] have studied incidences between points and “nonde-
generate” hyperplanes, where a hyperplane is considered degenerate if it con-
tains a lower-dimensional affine subspace that contains at least a constant
fraction, say β, of its incident points. Elekes and Tóth show that the number
of incidences between m points and n nondegenerate hyperplanes in R

d is

O((mn)1−
1

d+1 +mn1− 1
d−1 ), where the constant of proportionality depends on

d and β.
Brass and Knauer [BK] considered the general case, where the incidence graph

G(P,Π) can contain large complete bipartite subgraphs. Rather than bounding
I(P,Π) itself, they have obtained an upper bound for the overall minimum possi-
ble complexity of a representation of G(P,Π) as the disjoint union of complete bi-
partite graphs, that is, G(P,Π) =

⋃s
i=1 Ai × Bi, where Ai ⊆ P and Bi ⊆ Π, for all

i = 1, . . . , s, and each incidence is recorded exactly once in this union. The complexity
of such a representation of G(P,Π) is defined to be

∑s
i=1(|Ai|+ |Bi|), and the smallest

complexity of such a representation, or the representation complexity of G(P,Π), is
denoted by J(P,Π). We let Jd(m,n) denote the maximum of J(P,Π) over all sets P
of m points and Π of n hyperplanes in R

d. Brass and Knauer [BK] have shown that

(1.1) Jd(m,n) = O(((mn)1−
1

d+1 + m + n) log(m + n)),

and that such a decomposition can be computed within the same asymptotic bound.
One way to interpret (1.1) is that if the number of incidences I(P,Π) is much

larger than Jd(m,n), then G(P,Π) should contain large complete bipartite subgraphs
(or else the succinct representation would not be possible). This has been one of our
main motivations to study how large must these complete bipartite subgraphs be. We
strongly suspect, by the way, that the bound (1.1) can be improved by removing the
logarithmic factor, which we pose as an interesting technical open problem.

On the flip side of the same coin, one would like to obtain constructions of sets
P of m points, and Π of n hyperplanes, so that G(P,Π) contains no large complete
bipartite subgraphs and I(P,Π) is as large as possible. Here too one would hope
to obtain such constructions with I(P,Π) close to Jd(m,n), or, in three dimensions,
to Θ(m3/4n3/4 + m + n). The best three-dimensional construction to date is due to
Brass and Knauer [BK], where G(P,Π) does not contain any K2,3, and I(P,Π) =
Ω(m7/10n7/10) in the balanced case m ≈ n. We note that their construction actually

1In the original paper, this bound is multiplied by a subpolynomial factor of the form mδnδ , for
any δ > 0. This factor, however, can be eliminated using a more refined analysis.

2Brass and Knauer do not derive this specific bound, although it is implicit in their construction;
see later in this section and in the appendix. We remark that the symmetric case, where no three
points are collinear, is not known to be tight in the worst case, because of some subtle aspects of
point-hyperplane duality; see the appendix.
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yields the bound I(P,Π) = Ω(m4/5n3/5) and has the property that no three planes
are collinear. Thus, the known upper bound I(P,Π) = O(m4/5n3/5 + m + n) for
this restricted case (which, as noted above, follows from the analysis in [EGS]) is
worst-case tight. For the sake of completeness, we present the construction in the
appendix.

2. Many incidences yield large complete bipartite incidence subgraphs
(in R

3). In this section we prove Theorem 1.1. The main result here is the following
lower bound.

Theorem 2.1 (cf. Theorem 1.1(i)—lower bound). Let P be a set of m points
and Π a set of n planes in R

3, with I incidences between them. Then there exists a
line � containing r points of P and contained in s planes of Π, such that

√
rs ≥ I√

mn
− a(m + n)

√
mn

I
,

where a > 0 is some sufficiently large constant.

This inequality, when squared, implies that rs ≥ I2

mn − 2a(m + n). This es-
tablishes the lower bound of Theorem 1.1(i). Note that here there is no lower
bound requirement on I, as opposed to Theorem 1.1(i), where it is required that
I = Ω(m

√
n + n

√
m). However, if I <

√
amn(m + n), then the right-hand side is

negative. Thus the theorem is interesting only for point-plane configurations with
I >

√
amn(m + n) = Ω(m

√
n + n

√
m).

On the upper bound side, the situation is much simpler, so we first dispose of this
case.

Lemma 2.2 (cf. Theorem 1.1(i)—upper bound). There exist arbitrarily large
configurations of m points and n planes in R

3 with I = Ω(m
√
n + n

√
m) incidences,

such that every Kr,s incidence subgraph satisfies

rs ≤ I2

mn
− 1

16
(m + n).

Proof. Without loss of generality, we present the construction for m ≥ n. Fix
three arbitrarily large numbers, r ≥ s ≥ k ≥ 2. Take a set L of k parallel lines such
that no three lines are coplanar. Then each pair of lines in L determine a distinct
plane. We include all these

(
k
2

)
planes in the set Π of n planes. We include in Π

additional planes, each of which contains just one of the lines of L, so that each line
is incident to exactly s planes. The set P of points consists of m = rk elements,
so that each line of L contains r points. The set Π consists of sk −

(
k
2

)
planes, and

I(P,Π) = krs. Put n0 = sk = n +
(
k
2

)
. Note that rs(P,Π) = rs, because the

corresponding subgraph Kr,s cannot contain points from three lines—no plane passes
through three lines of L and if it contains points from two lines, then there is only
one plane that passes through both lines. This gives

rs(P,Π) = rs =
I2

mn0
=

I2

m
· 1

n +
(
k
2

) ≤ I2

m
· 1

n + k2/4
.

We now use the inequality

1

x + h
≤ 1

x
− h

2x2
,
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which holds for all x ≥ h > 0, with x = n and h = k2/4 ≤ n, to get

rs ≤ I2

m
·
(

1

n
− k2/4

2n2

)
=

I2

mn
− (kI)2

8mn2
,

and since k = mn0

I , we get

rs ≤ I2

mn
− (mn0)

2

8mn2
≤ I2

mn
− m

8
≤ I2

mn
− 1

16
(m + n),

as claimed. Note that I = mn0

k ≥ m
(
n
k + k

4

)
≥ m

√
n = Ω(m

√
n + n

√
m) is in the

required range.
The case m ≤ n is handled in a symmetric manner, using duality between points

and planes. This completes the proof.
Remark. A simpler construction, consisting of disjoint copies of Kr,s, yields the

lower bound I2/(mn). Our construction shows that a lower order term proportional
to m + n is unavoidable.

Lemma 2.3 (cf. Theorem 1.1(iv)—upper bound). There exist sufficiently large
constants b, C > 0 and a sufficiently small constant c > 0, such that for any m,n > b,
and for any I such that c(m + n) < I < C(mn)3/4, there exist configurations of at
most m points and at most n planes in R

3 with at least I incidences, such that every
Kr,s incidence subgraph satisfies

rs ≤ 6I

min {m,n} .

Remark. The construction of [BK] (see the appendix), in which there are no K3,2

or K2,3 incidence subgraphs, provides us with an example where rs = O(I/min {m,n}),
showing the bound is asymptotically tight. This construction, however, is good only
for the range I = O(m3/5n4/5 + m4/5n3/5) and cannot be used for larger values of I
within the assumed larger range O((mn)3/4). In contrast, our construction is good for
the entire range specified in Lemma 2.3, but may have complete bipartite incidence
subgraphs with an arbitrarily large number of elements on both sides.

Proof. This construction resembles similar constructions of Elekes [El]. Put k =
	
√

2I/n
, l = 	
√

6I/m
, and t =
⌊
(mn)3/2/(12

√
3I2)

⌋
. With an appropriate choice

of the constants, we may assume that k, l, t ≥ 100, say, and so k3l3t ≥ I. Define

P = { (x1, x2, x3) |x1, x2 ∈ {1, . . . , k} , and x3 ∈ {1, . . . , 3klt}} ,

and

Π = {x3 = a1tx1 + a2tx2 + b | a1, a2 ∈ {1, . . . , l} , and b ∈ {1, . . . , klt}} .

The set P consists of 3k3lt ≤ m points, and the set Π consists of kl3t ≤ n planes.
Each plane is incident to k2 points, so the number of incidences is k3l3t ≥ I. In
addition, each point is incident to at most l2 planes.

Now there are three types of complete bipartite incidence subgraphs Kr,s.
1. Between a point and all its incident planes. Then r = 1, s ≤ l2, and rs ≤

l2 ≤ 6I/m.
2. Between a plane and all its incident points. Then r = k2, s = 1, and rs =

k2 ≤ 2I/n.
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3. Between some r collinear points and s collinear planes, all incident to the same
line. Then r ≤ k, s ≤ l, and rs ≤ kl = 2

√
3I/

√
mn ≤ 2

√
3I/min {m,n}.

In either case, we have rs ≤ 6I
min{m,n} . This completes the proof.

To prove Theorem 2.1, we use the results of Szemerédi and Trotter [ST] and of
Elekes and Tóth [ET].

Szemerédi and Trotter’s celebrated point-line incidence bound states the following
theorem.

Theorem 2.4 (see [ST]). There exists a constant C > 0, such that for any m
and n, the number of incidences between any m points and n lines in the plane is
upper-bounded by

C(mn)2/3 + m + n.

Equivalently, for any set P of n points in the plane, and for any k ≤ n, the number
of lines containing at least k points of P is bounded by

C ′
(
n2

k3
+

n

k

)
,

and the number of incidences between them is at most

C ′′
(
n2

k2
+ n

)
,

for corresponding constants C ′, C ′′. Furthermore, these bounds are best possible.

Finding the smallest value of C for which Theorem 2.4 is true is an interesting problem
in its own right. The best estimates at present are C ≥ 0.42 [PT], and C ≤ 2.5
[PRTT]. See also [BMP].

Elekes and Tóth [ET] bound the number of incidences between points and “de-
generate” hyperplanes. We define a hyperplane π to be β-degenerate with respect to
a point set P , if some lower-dimensional flat F ⊂ π contains at least a β-fraction of
the points of P incident to π, i.e., if

|P ∩ F | ≥ β |P ∩ π| ,

for some lower-dimensional flat F ⊂ π. If no such flat exists, then the hyperplane is
said to be β-nondegenerate.3 A hyperplane π is called k-rich (with respect to P ) if it
contains at least k points of P . Elekes and Tóth state the following theorem.

Theorem 2.5 (see [ET]). For any integer d ≥ 3, there is a constant βd > 0,
such that the number of incidences between any set of m points and any set of n
βd-nondegenerate hyperplanes (with respect to the given point set) in R

d is

O
(
(mn)1−

1
d+1 + mn1− 1

d−1

)
.

Equivalently, for any set of m points in R

d, the number of k-rich βd-nondegenerate
hyperplanes is

O

(
md

kd+1
+

md−1

kd−1

)
.

3We caution the reader that this notation is the opposite to that used in [ET].
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Furthermore, these bounds are best possible.
Using this bound, we can prove the following result, which is slightly weaker than

Theorem 2.1; see below for a more detailed comparison.
Lemma 2.6. Let P be a set of m points and Π a set of n planes in R

3, such that
I = I(P,Π) = Ω((mn)3/4 + m

√
n), with a sufficiently large multiplicative constant.

Then there exists a line � containing r points of P and contained in s planes of Π,
such that

rs = Ω

(
min

{
I4

m2n3
,
I2

mn

})
.

This bound is asymptotically tight in the worst case.
Proof. Applying Theorem 2.5 with d = 3, we see that when the constant of

proportionality is chosen sufficiently large, most incidences are with planes of Π that
are β3-degenerate, i.e., for each such plane, at least a β3-fraction of its incident points
are contained in a single line.

Put β = β3, and let Π′ ⊆ Π be the subset of those planes in Π that contain at
least I/(2n) points each and are β-degenerate. By the preceding argument, if the
constant of proportionality in the assumed lower bound on I is sufficiently large, then
I(P,Π′) ≥ I/3, say. We replace each plane of Π′ with a line that lies on it and
contains a β-fraction of its incident points. Thus, each such line contains at least
βI/(2n) points of P . By projecting these lines and the points of P onto some generic
plane and applying Theorem 2.4, the number of incidences between the points of P
and these lines is

I ′ = O

(
m2

(βI/(2n))2
+ m

)
= O

(
m2n2

I2
+ m

)
.

Note that I(P,Π′) differs from I ′, because we count in I(P,Π′) each line with its mul-
tiplicity, equal to the number of planes of Π′ that contain it. The average multiplicity
of a line is thus

s =
I(P,Π′)

I ′
= Ω

(
I

I ′

)
= Ω

(
min

{
I3

m2n2
,
I

m

})
.

By the pigeonhole principle, some line � does have at least this multiplicity, i.e., it is
contained in at least s planes. By construction, it also contains r = Ω(I/n) points.
Altogether, we get

rs = Ω

(
min

{
I4

m2n3
,
I2

mn

})
.

We have thus found a line � with the asserted properties.
We can obtain a point-plane configuration that has a matching upper bound on

rs(P,Π) of the same order of magnitude as the lower bound we have just proved
(that is, unless the trivial bound rs(P,Π) ≥ max {I/m, I/n} dominates). This is
done as follows. We take m points spanning the maximal number of lines incident to
r = Θ(I/n) of the points, which, by Theorem 2.4, is

Θ

(
m2

r3
+

m

r

)
= Θ

(
m2n3

I3
+

mn

I

)
.

We then let each such line occur on s = Θ(min
{
I3/(m2n2), I/m

}
) planes. The con-

stants of proportionality are chosen so that the total number of planes is n, and the
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number of incidences is I. We have thus shown that the bound asserted in the lemma
is asymptotically tight in the worst case.

Proof of Theorem 1.1(ii,iii). If I = O(n
√
m), for an appropriate multiplicative

constant, then, in the bound of Lemma 2.6, the first term I4/(m2n3) is smaller than
the second term I2/(mn). Moreover, the lower bound on I that the lemma requires
holds under the assumptions I = Ω((mn)3/4) and m ≤ n. Hence, under the assump-
tions of part (ii) of the theorem, rs3(m,n) = Ω(I4/(m2n3)), which clearly implies the
lower bound of Theorem 1.1(ii). The upper bound also follows easily from Lemma
2.6. Finally, Theorem 1.1(iii) follows by point-plane duality.

On the other hand, if I = Ω(n
√
m), then the second term in Lemma 2.6, namely

I2/(mn), dominates. We thus get the following corollary.

Corollary 2.7. Let P be a set of m points and Π a set of n planes in R

3, such
that I = I(P,Π) = Ω(m

√
n + n

√
m), with a sufficiently large multiplicative constant.

Then there exists a line � containing r points of P and contained in s planes of Π,
such that

rs = Ω

(
I2

mn

)
.

(The lemma is applicable since (mn)3/4 is always dominated by m
√
n + n

√
m.)

This is already very close to the bound we are trying to prove, except for the
multiplicative constant. We shall now get rid of this constant and finish the proof of
Theorem 2.1. Recall that the theorem states that

√
rs ≥ I√

mn
− a(m + n)

√
mn

I
,

for some r points and s planes all incident to one another, and for some constant
a > 0.

Proof of Theorem 2.1. Let P be a set of m points and Π a set of n planes in R

3,
with I = I(P,Π) incidences. By Corollary 2.7, there exist positive absolute constants
A, k, and β, such that for all m > k and n > k, if I > A(m

√
n + n

√
m), then

√
rs(P,Π) ≥ βI√

mn
.

We choose the constant a so that it satisfies a ≥ max
{

4, 2A2, k, 2
β

}
.

The proof proceeds by induction on m and n. It is easy to see that the theorem
holds for sufficiently small values of m, n, or I. More precisely, if I <

√
amn(m + n),

then I√
mn

− a(m+n)
√
mn

I < 0, and the theorem holds trivially. Moreover, if m ≤ a or

n ≤ a, then I ≤ mn <
√
amn(m + n). Hence, the theorem holds for all m and n

such that m ≤ a or n ≤ a.
Suppose then that m > a and n > a are arbitrary, and that the claim holds for

all (m′, n′) satisfying m′ < m and n′ < n. Let P be a set of m points and Π a set
of n planes in R

3 with I >
√
amn(m + n) incidences between them. Let � be a line

that maximizes rs, where r = |� ∩ P | and s = |{π ∈ Π |π ⊃ �}|.
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Remove from the setting all the points and planes incident to �. We are left with
m − r points and n − s planes, and denote by I1 the number of incidences among
them. We note that

(2.1) I1 ≥ I − rs− (m + n) + (r + s).

Indeed, by removing the elements incident to �, we lose the rs incidences between these
elements. We may also lose incidences between the removed points and the surviving
planes and between the removed planes and the surviving points. However, each
surviving plane can be incident to at most one removed point, and each surviving point
can be incident to at most one removed plane. This implies the asserted inequality
(2.1).

We next choose a line �1 incident to r1 of the remaining points and to s1 of the

remaining planes, such that r1s1 is maximized. If
√
r1s1 ≥ I√

mn
− a(m+n)

√
mn

I , then

we are done, since, by construction, rs ≥ r1s1. Otherwise, we may write

I√
mn

− a(m + n)
√
mn

I
>

√
r1s1 ≥ I1√

(m− r)(n− s)

− a((m + n) − (r + s))
√

(m− r)(n− s)

I1
,

where the right inequality follows from the induction hypothesis. Thus,

I√
mn

>
I1√

(m− r)(n− s)

+ a

(
(m + n)

√
mn

I
− ((m + n) − (r + s))

√
(m− r)(n− s)

I1

)
.

Put

h =
(m + n)

√
mn

I
− ((m + n) − (r + s))

√
(m− r)(n− s)

I1
,

so we have

I√
mn

>
I1√

(m− r)(n− s)
+ ah.

We now distinguish between the two cases h ≥ 0 and h < 0. If h ≥ 0, then we have

(2.2)
I√
mn

>
I1√

(m− r)(n− s)
,

or, using the inequality (m− r)(n− s) ≤ (
√
mn−

√
rs)2, and applying (2.1),

I√
mn

>
I − rs− (m + n)√

mn−
√
rs

=⇒ I
√
mn− I

√
rs > I

√
mn−

√
mnrs− (m + n)

√
mn

=⇒ rs− I√
mn

√
rs + (m + n) > 0.
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x = lognm

y = logn I

1

2

3

4

1 2 31
3

3/2
7/5

I
=
m
n

I
=

Θ
(m
n
1/

2 +
m
1/

2 n)

I
=

Θ
(m

3/
4 n

3/
4 +

m
+
n)

I
=

Θ(m
3/

5 n
4/

5 +
m
4/

5 n
3/

5 +
m

+
n)

rs = Ω
(

I4

m2n3 + I
m

)
rs ≥ I2

mn
− 4(m + n)

rs = Ω
(

I4

m3n2 + I
n

)

rs = Ω
(

I
m

+ I
n

)
Constructions with no K2,3 or K3,2 exist

Fig. 2.1. The known lower bounds for the maximum number of edges in a complete bipartite
incidence subgraph in R

3.

This quadratic inequality in the variable
√
rs solves to

√
rs >

I√
mn

+
√

I2

mn − 4(m + n)

2
, or

√
rs <

I√
mn

−
√

I2

mn − 4(m + n)

2
.

Note that, since a ≥ 4, it follows that I2

mn − 4(m+ n) ≥ 0 for the assumed range of I.

We can then use the inequality
√
x− Δx ≥

√
x − Δx√

x
, which holds for 0 ≤ Δx ≤ x,

to obtain

√
rs >

I√
mn

− 2(m + n)
√
mn

I
, or

√
rs <

2(m + n)
√
mn

I
.

Since a ≥ 2A2, it is easily checked that Corollary 2.7 is applicable for the assumed
range of I and implies that

√
rs ≥ βI√

mn
. Hence, if the second case were possible, we

would have βI√
mn

< 2(m+n)
√
mn

I , or I <
√

2
βmn(m + n), which, having chosen a ≥ 2

β ,

would contradict our assumption on I. Hence, only the first inequality is possible,
and the theorem holds in this case.

Consider now the case h < 0. We have

(m + n)
√
mn

I
<

((m + n) − (r + s))
√

(m− r)(n− s)

I1

<
(m + n)

√
(m− r)(n− s)

I1
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=⇒ I√
mn

>
I1√

(m− r)(n− s)
.

But this is exactly inequality (2.2), which, as we have already seen, implies
√
rs >

I√
mn

− a(m+n)
√
mn

I , so the theorem holds in this case too.

This completes the induction step, and thus the proof of the theorem.
Figure 2.1 summarizes our findings. Each differently-shaded region represents

certain values of m,n, and I, and has a different lower bound for rs.

3. Large complete bipartite incidence subgraphs in higher dimensions.
In Lemma 2.6 we require that I = Ω((mn)3/4 + m

√
n), because we want to ensure

that most planes are “degenerate” in the sense that they can be replaced by lines,
and the number of incidences will stay roughly the same. However, the lemma holds
in a considerably more general setting, involving any family of “degenerate” subsets
of points in any dimension. Specifically, we call a finite set of points S ⊂ R

d (β, j)-
degenerate, if some j-flat contains at least a β-fraction of the points of S; in other
words, if

|F ∩ S| ≥ β|S|

for some j-flat F of R

d. If no such j-flat exists, we call S (β, j)-nondegenerate.4 With
this notion of degeneracy, Lemma 2.6 becomes a special case of the following lemma
(with each plane π ∈ Π being mapped to the set π ∩ P , and the entire set of planes
Π being mapped to a multiset of subsets of P ).

Lemma 3.1. Let P ⊂ R

d be a set of m points, let T ⊆ 2P be a multiset of n
subsets of P , and let 0 < β < 1 be some constant, such that all the members of T are
(β, 1)-degenerate. Then there exists a subset R ⊆ P of |R| = r points and a subfamily
S ⊂ T of |S| = s subsets (counted with multiplicity), such that R ⊆ S for each S ∈ S,
and

rs = Ω

(
min

{
I4

m2n3
,
I2

mn

})
,

where I =
∑

T∈T |T |.

In particular, the multiset T need not be induced by planes, as in Lemma 2.6, but
can be induced by hyperplanes of any dimension. The proof of the lemma is omitted,
but it is, essentially, identical to that of Lemma 2.6. We replace each subset S ∈ S
by a line that contains a fraction of its points and estimate the average multiplicity
of the lines using the Szemerédi–Trotter bound within a generic 2-plane onto which
we project the points and lines.

We next obtain the following generalization of Lemma 3.1.
Lemma 3.2. Let P ⊂ R

d be a set of m points, let T ⊆ 2P be a multiset of n
subsets of P , and let β > 0 and j ≥ 1 be some constants, such that all the members
of T are (β, j)-degenerate. Then there exist a subset R ⊆ P of |R| = r points and
a subfamily S ⊂ T of |S| = s subsets (again, counted with multiplicity), such that
R ⊆ S for each S ∈ S, and

rs = Ω

(
min

{
Ij+3

mj+1nj+2
,
Ij+1

mjnj

})
,

4Again, this notation is opposite to that of [ET].
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where I =
∑

T∈T |T |, and the constant of proportionality depends on β and j.
Proof. The proof proceeds by double induction on j and n. The base case j = 1

is given by Lemma 3.1 (for any n). Suppose now that the lemma holds for j − 1 ≥ 1,
and also for j and for n′ < n, and we shall see that it also holds for j and for n. (The
base case for n, at any fixed j, is trivial, with an appropriate choice of the constants
of proportionality.)

Delete from T all the members containing fewer than I/(2n) points, and let
T ′ denote the multiset of the remaining sets. We have I ′ =

∑
T∈T ′ |T | ≥ I/2. If

|T ′| < n/4, then, by induction on n, we have subsets R ⊆ P and S ⊆ T ′, such that
R ⊆ S for each S ∈ S, and

|R| · |S| = Ω

(
min

{
(I/2)j+3

mj+1(n/4)j+2
,

(I/2)j+1

mj(n/4)j

})

= Ω

(
min

{
2j+1 Ij+3

mj+1nj+2
, 2j−1 Ij+1

mjnj

})
.

Since j ≥ 2, we obtain R and S that satisfy the asserted lower bound. We can
therefore assume that there are at least n/4 remaining sets in T ′.

For each set T ∈ T ′, let πT be a j-flat (which exists by assumption) containing
at least β|T | ≥ βI

2n points of P . Project these j-flats and the points of P onto some
generic (j + 1)-space Q, and partition T ′ into two subfamilies:

T1 = {T ∈ T ′ |πT is βj+1-nondegenerate in Q} , and T2 = T ′ \ T1.

Note that all the members of T2 are (ββj+1, j − 1)-degenerate, that is, informally,
they are “more degenerate” than the other members of T ′. One of these two families
contains at least half of the members of T ′. If |T2| ≥ |T ′|/2 ≥ n/8, we have, by
induction on j,

rs = Ω

(
min

{
Ij+2

mjnj+1
,

Ij

mj−1nj−1

})

= Ω

(
min

{
Ij+3

mj+1nj+2
,
Ij+1

mjnj

})
,

with an appropriate careful choice of the constants of proportionality, and the lemma
holds in this case.

Suppose then that |T1| ≥ |T ′|/2 ≥ n/8. Put Π = {πT |T ∈ T1}. Since the j-
flats π ∈ Π are βI

2n -rich and βj+1-nondegenerate with respect to P (in the space Q of
projection), Theorem 2.5 implies that the number of these j-flats is upper-bounded
by

|Π| = O

(
mj+1

(βI/(2n))j+2
+

mj

(βI/(2n))j

)

= O

(
mj+1nj+2

Ij+2
+

mjnj

Ij

)
.

Taking into account that |T1| ≥ n/8, the average multiplicity of an element of Π is

|T1|
|Π| = Ω

(
min

{
Ij+2

mj+1nj+1
,

Ij

mjnj−1

})
.
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Let π ∈ Π be a j-flat with at least this multiplicity. Define R = π ∩ P , and S =
{T ∈ T1 |πT = π}. We have (i) r = |R| ≥ βI

2n = Ω(I/n), (ii) s = |S| ≥ |T1|/|Π|, (iii)
R is contained in every member of S, and

rs = Ω

(
I

n
· |T1|
|Π|

)
= Ω

(
min

{
Ij+3

mj+1nj+2
,
Ij+1

mjnj

})
,

as asserted by the lemma.
As a corollary, we obtain the following theorem.

Theorem 3.3. If I = Ω((mn)1−
1

d+1 +mn1− 1
d−1 ), with a sufficiently large multi-

plicative constant, then

rsd(m,n, I) = Ω

(
min

{
Id+1

md−1nd
,

Id−1

md−2nd−2

})
.

Proof. Let P be a set of m points in R

d and Π a set of n hyperplanes in R

d,
with I = I(P,Π) in the assumed range. By Theorem 2.5, an appropriate choice
of constants implies that most incidences are with hyperplanes of Π that are βd-
degenerate with respect to P . We map each hyperplane π ∈ Π, which is βd-degenerate,
to the set Tπ = P ∩ π, and let T be the multiset of all those Tπ’s. This multiset has
n′ < n elements, all of which are (βd, d − 2)-degenerate and I ′ ≥ I/2 incidences. By
Lemma 3.2, there are subsets R ⊆ P and S ⊆ T , such that R ⊆ S for each S ∈ S and

rs = Ω

(
min

{
(I ′)d+1

md−1(n′)d
,

(I ′)d−1

md−2(n′)d−2

})

= Ω

(
min

{
Id+1

md−1nd
,

Id−1

md−2nd−2

})
,

where r = |R| and s = |S|.
We map each member S ∈ S back to the hyperplane π ∈ Π that satisfies S = Tπ

(by the multiset structure of S, this inverse mapping can be assumed to be well
defined). We denote the resulting set of hyperplanes by Σ. Then G(R,Σ) = Kr,s and
rs has the asserted lower bound. This completes the proof.

We can now prove Theorem 1.2, which states that in the range I = Ω(mn1− 1
d−1 +

nm1− 1
d−1 ), we have the lower bound

rsd(m,n, I) = Ω

((
I

mn

)d−1

mn

)
.

That is, in this range the minimum in the expression provided by Theorem 3.3 is
attained by the second term.

Proof of Theorem 1.2. Let P be a set of m points and Π a set of n hyperplanes

in R

d, with I = I(P,Π) = Ω(mn1− 1
d−1 + nm1− 1

d−1 ) incidences. This lower bound is

larger than the one required in Theorem 3.3. Indeed, we have (mn)1−
1

d+1 ≤ mn1− 1
d−1

when n ≤ m(d−1)/2, and, symmetrically, (mn)1−
1

d+1 ≤ nm1− 1
d−1 when m ≤ n(d−1)/2;

since (d − 1)/2 ≥ 1, one of the latter inequalities must hold. Therefore, we have in
this range

rsd(m,n, I) = Ω

(
min

{
Id+1

md−1nd
,

Id−1

md−2nd−2

})
.
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However, the minimum is attained by the second term when I = Ω(mn1/2), which

certainly holds for I = Ω(mn1− 1
d−1 + nm1− 1

d−1 ), which therefore yields

rsd(m,n, I) = Ω

(
Id−1

md−2nd−2

)
= Ω

((
I

mn

)d−1

mn

)

as claimed.
Next, we give an upper bound construction showing that

rsd(m,n) = O

((
I

mn

) d+1
2

mn

)
,

as asserted in Theorem 1.3.

Proof of Theorem 1.3. We start with the following d-dimensional structure, which
is similar to constructions of Elekes [El]. For arbitrary integers k, l > 0, let Pd,k,l and
Πd,k,l denote the following respective sets of points and hyperplanes in R

d:

Pd,k,l = { (x1, . . . , xd) |x1, . . . , xd−1 ∈ {1, . . . , k} , and xd ∈ {1, . . . , dkl}} ,

Πd,k,l =

{
xd =

d−1∑
i=1

aixi + b

∣∣∣∣∣ a1, . . . , ad−1 ∈ {1, . . . , l} , and b ∈ {1, . . . , kl}
}
.

Note that |Pd,k.l| = dkdl and |Πd,k,l| = kld. For any hyperplane π ∈ Πd,k,l, and for
each choice of x1, . . . , xd−1 ∈ {1, . . . k}, there is a point (x1, . . . , xd−1, xd) ∈ Pd,k,l ∩π.

The set Pd,k,l ∩ π is thus a (d− 1)-lattice isomorphic to the hypercube {1, . . . , k}d−1
,

and contains kd−1 points. Hence the number of incidences between Pd,k,l and Πd,k,l

is I = kdld.
Each j-flat F ⊂ R

d, which is the intersection of some d− j or more hyperplanes
of Πd,k,l, is the image of some j-flat of the hypercube, as embedded into any of the
hyperplanes π ∈ Πd,k,l that contain F . Since any j-flat of the hypercube contains
at most kj points, we have |F ∩ Pd,k,l| ≤ kj . Furthermore, we have the following
observation.

Observation 3.4. Any j-flat F ⊂ R

d (for j < d) is contained in at most ld−j−1

hyperplanes of Πd,k,l.
Proof. F is the image of some affine mapping T : R

j → R

d, that is, T (y) = My+v,
for some matrix M ∈ R

d×j , with rank ρ(M) = j, and vector v ∈ R

d.
Let π ∈ Πd,k,l be a hyperplane containing F , given by the linear equation xd =∑d−1

i=1 aixi + b, for some a1, . . . , ad−1 ∈ {1, . . . , l} and b ∈ {1, . . . , kl}. Put ad = −1,
and a = (a1, . . . , ad) ∈ R

d. Thus we can write π =
{
x ∈ R

d
∣∣ aTx + b = 0

}
.

Since π ⊃ F , we have aT(My + v) + b = 0 for all y ∈ R

j . In particular, for y = 0,
we have

aTv + b = 0.

This gives aTMy = 0, for all y ∈ R

j , which is equivalent to

MTa = 0.
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Thus, a is in the kernel of MT ∈ R

j×d. We have

dim Ker(MT) = d− dim Im(MT) = d− ρ(M) = d− j.

Hence a lies in the (d− j)-flat K = Ker(MT). In addition, the requirement ad = −1
constrains a to a hyperplane H. Note that H �⊃ K, since 0 ∈ K, but 0 �∈ H. Hence
a lies in the (d − j − 1)-flat K ∩ H. This flat can contain at most ld−j−1 points of
the l× · · · × l× 1 lattice section. Hence there are at most ld−j−1 possible values of a.
Once a has been determined, b = −aTv is also uniquely determined. Thus, there are
at most ld−j−1 possible hyperplanes π ∈ Πd,k,l containing F , and the observation is
established.

By adding another dimension to the construction, an xd+1-axis, we turn every
point of Pd,k,l into a line parallel to the xd+1-axis, and every (d − 1)-hyperplane
of Πd,k,l into a d-hyperplane parallel to the xd+1-axis. We denote the resulting set
of lines by P ′

d,k,l and the set of d-hyperplanes by Π′
d,k,l. These sets have the same

incidence relations as the original sets of points and (d−1)-hyperplanes. In particular,
every j-flat in R

d+1, which is the intersection of some d− j+1 or more d-hyperplanes
of Π′

d,k,l, contains at most kj−1 lines of P ′
d,k,l (all parallel to the xd+1-axis), and is

contained in at most ld−j d-hyperplanes of Π′
d,k,l.

To construct an example that attains the asserted bound rs = O(( I
mn )

d+1
2 mn),

we proceed as follows. Let P ′ = P ′
d−2,k,k and Π′ = Π′

d−2,k,k be sets of (d−2)kd−1 lines

and kd−1 (d−2)-flats in R

d (these lines and flats are constructed in R

d−1, but we embed
them in a natural way in R

d). For every line � ∈ P ′, choose μ arbitrary points on �,
and let P denote the overall resulting set of points, and put m = |P | = (d− 2)μkd−1.
For every (d − 2)-flat π′ ∈ Π′, choose ν distinct arbitrary hyperplanes, i.e., (d − 1)-
flats, containing π′, and let Π denote the overall resulting set of hyperplanes. The
hyperplanes are chosen so that no two hyperplanes containing two different flats from
Π′ coincide. Put n = |Π| = νkd−1.

Now every hyperplane π ∈ Π contains one flat π′ ∈ Π′, which contains kd−3

lines of P ′, yielding a total of μkd−3 points of P incident to π. The number of
incidences between P and Π is thus I = μνk2d−4 = Θ(k−2mn), or I

mn = Θ(k−2).
Note that the freedom of choice of the parameters k, μ, and ν allows I to have almost

any asymptotic value from Θ((mn)1−
1

d−1 ) (choose μ = ν = 1) up to Θ(mn) (choose

k = 1). In particular, we may assume I = Ω(mn1− 2
d+1 + m1− 2

d+1n). Suppose now
that G(P,Π) contains a Kr,s subgraph, that is, there exists some j-flat F (for some
j = 1, . . . , d − 2) containing r points of P , and contained in s hyperplanes of Π.
Without loss of generality, we may take F to be the intersection of these s hyperplanes.
Thus, F is parallel to the xd+1-axis, so any line of P ′ that meets F is fully contained
in F . F contains at most kj−1 lines of P ′, hence, r ≤ μkj−1. Also, F is contained in
at most kd−j−2 flats of Π′, hence, s ≤ νkd−j−2. Altogether,

rs ≤ μνkd−3 = μkd−1︸ ︷︷ ︸
≈m

· νkd−1︸ ︷︷ ︸
=n

· k−d−1︸ ︷︷ ︸
≈( I

mn )
d+1
2

= O

((
I

mn

) d+1
2

mn

)
,

as claimed.

We leave it as an open problem to close the gap between the bounds in Theo-
rems 1.2 and 1.3, for d ≥ 4.
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4. Conclusion. We have studied the structure of point-hyperplane incidence
graphs and have shown that whenever the number of incidences is large, the incidence
graph contains large complete bipartite subgraphs. Specifically,

1. We have derived lower bounds on the number of edges in the largest complete
bipartite incidence subgraph in three dimensions (Theorems 1.1) and in higher
dimensions (Theorem 1.2).

2. We have obtained matching upper bound constructions for these lower bounds.
The three-dimensional constructions (Lemmas 2.2, 2.3, and 2.6) are worst-
case tight, whereas the higher-dimensional one (Theorem 1.3) is not known
to be tight.

3. For each of these bounds, we have provided an estimate of how many in-
cidences there must be in order to ensure the existence of large complete
bipartite incidence subgraphs that attain the asserted lower bounds. The
three-dimensional estimates are tight, whereas the higher-dimensional ones
are not known to be tight.

We leave as an open problem to close the gap between the higher-dimensional bounds
on the number of edges in the largest complete bipartite point-hyperplane incidence
subgraph.

Appendix. Incidences between points and planes in R

3 with no three
collinear planes. An upper bound on the number of incidences between m points
and n planes in R

3 with no three collinear planes (and a symmetric bound for the
dual problem, where no three points are collinear) has been known for a while. As
discussed in the introduction, we attribute the result to [EGS]; the bound there is
slightly weaker, but can be cleaned-up using a more careful analysis.

Theorem A.1 (see Edelsbrunner, Guibas, and Sharir [EGS]). Let P ⊂ R

3 be a
set of m points and let Π be a set of n planes in R

3, such that no three planes of Π
are collinear. Then the number of incidences is bounded by

I(P,Π) = O(m4/5n3/5 + m + n).

The symmetric bound I(P,Π) = O(m3/5n4/5 + m + n) holds in the dual case, where
no three points of P are collinear.

The proof of the first bound uses the fact that if no three planes are collinear,
then the incidence graph does not contain a K2,3, i.e., every two distinct points lying
in the intersection of three distinct planes. Note that the converse is not true, i.e.,
we can construct point-plane configurations with no K2,3, but with (many) triples
of collinear planes. Thus, Edelsbrunner, Guibas, and Sharir have implicitly proved a
slightly stronger statement, whose proof follows the one in [EGS] almost verbatim.

Theorem A.2. Let P ⊂ R

3 be a set of m points and let Π be a set of n planes
in R

3, such that G(P,Π) does not contain a K2,3 subgraph. Then the number of
incidences is bounded by

I(P,Π) = O(m4/5n3/5 + m + n).

The symmetric bound I(P,Π) = O(m3/5n4/5 + m + n) holds in the dual case, where
G(P,Π) does not contain a K3,2 subgraph.

Recently, Brass and Knauer [BK] constructed an example that effectively shows
that these bounds are worst-case tight. For the sake of completeness, we repeat (and
slightly modify) their construction here. It relies on the following result.

Theorem A.3 (see Bárány et al. [BHPT]). Let Q be a subset of the integer lattice
in R

3 contained in the ball of radius r centered at the origin. Assume further that
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every three distinct vectors of Q are linearly independent, and that Q is a maximal
set satisfying this property. Then

|Q| = Θ
(
r3/2

)
.

Theorem A.4 (see Brass and Knauer [BK]). For any m and n, such that m =
O(n3), there exist a set P of m points and a set Π of n planes in R

3, with no three
collinear planes, such that

I(P,Π) = Ω(m4/5n3/5).

Proof. Let P =
{
1, . . . ,m1/3

}3
be an m1/3 × m1/3 × m1/3 lattice section. Put

r = Θ(n2/5m−2/15), and let Q be a maximal lattice subset of the ball of radius r about
the origin that satisfies the property in Theorem A.3, i.e., every three vectors of Q are
linearly independent, and |Q| = Θ(r3/2). Note that for our assumed range of m and
n, we have r > 1, with an appropriate choice of the constants of proportionality. For
each point p ∈ P and for each vector q ∈ Q, we construct a plane through p normal
to q; its equation is x · q = p · q. Let Π denote the resulting set of planes. Since each
coordinate of p is an integer of magnitude at most m1/3, and each coordinate of q is
an integer of magnitude at most r, there are O(m1/3r) distinct values of p · q, and
the number of planes is thus |Π| = |Q| ·O(m1/3r) = O(n). The number of incidences
between P and Π is I(P,Π) = |P | · |Q| = Θ(mr3/2) = Θ(m4/5n3/5), and no three
planes are collinear. Indeed, suppose there were three collinear planes in Π with
normals q1, q2, q3 ∈ Q. These normals are all distinct and lie in the plane through
the origin normal to the intersection line of the three planes and are thus linearly
dependent—a contradiction.

Interestingly, this construction, when transformed to dual space, does not have
the dual property that no three points are collinear. This is because the duals of
three parallel planes are three collinear points, and the construction does contain
many triples of parallel planes. Thus, the problem of obtaining a tight bound on
the number of incidences between m points, no three of which are collinear, and n
planes in R

3, remains open. Nevertheless, the following somewhat weaker result,
which follows from the dual construction, holds.

Corollary A.5. The maximum number of incidences between m points and
n planes in R

3, such that no three points lie in two or more common planes, is
Θ(m3/5n4/5 + m + n).

In other words, both primal and dual versions of Theorem A.2 yield bounds that
are worst-case tight. In contrast, the bound in the primal version of Theorem A.1 is
worst-case tight, but the bound in the dual version is not known to be tight.

Acknowledgment. We wish to thank Csaba D. Tóth, one of our referees, for
his careful and very helpful review, in which he has made several important comments
and noticed some inaccuracies in the original version.
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CONSTRUCTING FINITE FIELD EXTENSIONS WITH LARGE
ORDER ELEMENTS∗

QI CHENG†

Abstract. In this paper, we present an algorithm that, given a fixed prime power q and a positive

integer N , finds an integer n ∈ [N, 2qN ] and an element α ∈ Fqn of order greater than 5.8n/ logq n,
in time polynomial in N . We present another algorithm that finds an integer n ∈ [N,N +O(N0.77)]

and an element α ∈ Fqn of order at least 5.8
√
n, in time polynomial in N . Our result is inspired by

the recent AKS primality testing algorithm [M. Agrawal, N. Kayal, and N. Saxena, Ann. of Math.
(2), 160 (2004), pp. 781–793] and the subsequent improvements [P. Berrizbeitia, Math. Comp.,
74 (2005), pp. 2043–2059, Q. Cheng, in Proceedings of the 23rd Annual International Cryptology
Conference (CRYPTO 2003), D. Boneh, ed., Lecture Notes in Comput. Sci. 2729, Springer-Verlag,
Berlin, 2003, pp. 338–348, D. J. Bernstein, Math. Comp., 76 (2007), pp. 389–403].
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1. Introduction. It is well known that every finite field has multiplicative gen-
erators, which are sometimes called primitive elements. An important open problem
in computational number theory is to construct a multiplicative generator for a given
finite field. Although there are plenty of generators in a finite field [7, Chapter 1,
Theorem 5.1], finding one is notoriously difficult, since we do not know how to test
whether an element is a generator or not without factoring integers or finding discrete
logarithms. Assuming the generalized Riemann hypothesis does not seem to help.

In practice, small characteristic fields are particularly useful. In this context, one
can ask a relevant but less restrictive question: for a fixed prime power q, can we find
an element in Fqn with large order in time polynomial in n? Note in the question
that we are not required to give the exact order of the element. Instead, we only need
to give a proof that the element has high order. Besides the apparent connection to
the generator problem, the problem is interesting in its own regard [12]. However, it
does not seem easier than finding a primitive element if we require the order to be
greater than qn

c

for a constant c. A weak solution was given in [6], which presented a
polynomial time algorithm producing an element with order at least nlogq n. Another
relevant question asks one to find a number n greater than a given number N , and
an element of order at least qn

c

in Fqn for some constant c. The rationale of this
question, which we call the special finite field high order element problem, is to deal
with special finite fields first, and then try to increase the density of the sequence of
n so that the high order element problem can be eventually solved. Von zur Gathen
and Shparlinski [12, 11] have obtained the following results.

Proposition 1.1. Let q be a fixed prime power. For any positive integer N ,
an integer n ≥ N with n = O(N logN) and an element α ∈ Fqn of order at least

2(2n)1/2−2 can be computed in time polynomial in N .
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Proposition 1.2. Let q be a fixed prime power. For any positive integer N , an
integer n ≥ N with n = N + O(N/ logc N) and an element α ∈ Fqn of order at least

210q−12n1/2−25 can be computed in time polynomial in N .
All of the previous results are based on the properties of Gauss periods. For a

survey, see [12].

2. Our results. A novel technique in the celebrated Agrawal–Kayal–Saxena
primality testing algorithm and its subsequent improvements is to use polynomials
of degree one to generate a large multiplicative subgroup modulo, an integer, and a
polynomial. In this paper, we apply this idea to obtain a new solution to the special
finite field high order element problem. Our result, which can be summarized in the
following theorems, features a denser sequence of n and/or a much higher order.

Theorem 2.1. Let q be a fixed prime power. For a sufficiently large positive
integer N we can compute in time polynomial in N an integer n ∈ [N, 2qN ] and an
element α ∈ Fqn with an order greater than 5.8n/ logq n.

Theorem 2.2. Let q be a fixed prime power. We can compute in time polynomial
in N an integer n ∈ [N,N +O(N0.77)] and an element α ∈ Fqn with an order greater

than 5.8
√
n.

The previous theorems are based on the following result.
Lemma 2.3. Let r be a prime power. Let m be a positive divisor of r − 1. Let

xm − g, g ∈ Fr, be an irreducible polynomial over Fr and α be one of its roots in the
extension field Frm . Then for any a ∈ F∗

r, α + a has an order greater than

max
0≤d−≤d≤m

(
m

d−

)(
d− 1

d− − 1

)(
2m− d− − d− 2

m− d− − 1

)
.

The finite field Frm is a Kummer extension of Fr. By a numerical search [3], it
can be shown that, asymptotically, max0≤d−≤d≤m

(
m
d−

)(
d−1
d−−1

)(
2m−d−−d−2

m−d−−1

)
is Ω(5.8m)

when we take d− = 0.292m and d = m/2.
Proof. Without loss of generality, suppose that Frm = Fr[x]/(xm − g), and

α = x (mod xm − g). Denote the order of α + a by s. Then α + a is one of the
roots of Xs = 1. We want to estimate the number of roots of Xs = 1. For any
c ∈ (F∗

r)
(r−1)/m, cα + a is one of the roots as well, since cα + a is a conjugate of

α+ a over Fr. If A is a solution and B is a solution, then AB and A/B are solutions
as well. We use this fact to find more solutions. Let c1, c2, . . . , cm be a list of all
the elements in (F∗

r)
(r−1)/m. If (e1, e2, . . . , em) and (e′1, e

′
2, . . . , e

′
m) are two different

sequences of integers, suppose that
∑

1≤i≤r−1 |ei| = m − 1,
∑

1≤i≤r−1 |e′i| = m − 1,
|{i : ei < 0}| = |{i : e′i < 0}| = d−, and

∑
ei<0 |ei| =

∑
e′
i
<0 |ei| = d; we claim that∏

1≤i≤m(ciα+ a)ei �=
∏

1≤i≤m(ciα+ a)e
′
i . Assume that these two elements are equal,

we then have

∏
1≤i≤m,ei≥0

(ciα + a)ei
∏

1≤i≤m,e′
i
<0

(ciα + a)−e′i

=
∏

1≤i≤m,ei<0

(ciα + a)−ei
∏

1≤i≤m,e′
i
≥0

(ciα + a)e
′
i .

Since
∑

1≤i≤m,ei≥0 ei+
∑

1≤i≤m,e′
i
<0(−e′i) =

∑
1≤i≤m,ei<0(−ei)+

∑
1≤i≤m,e′

i
≥0 e

′
i

= m− 1, we obtain that
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∏
1≤i≤m,ei≥0

(cix + a)ei
∏

1≤i≤m,e′
i
<0

(cix + a)−e′i

=
∏

1≤i≤m,ei<0

(cix + a)−ei
∏

1≤i≤m,e′
i
≥0

(cix + a)e
′
i

in the ring Fr[x], contradicting the unique factorization of the ring.
Now consider the subset of Frm :

S =

⎧⎨
⎩

∏
1≤i≤m

(ciα + a)ei

∣∣∣∣∣∣
∑

1≤i≤m

|ei| = m− 1,

∣∣∣∣∣∣ {i : ei < 0}| = d−,
∑
ei<0

|ei| = d

⎫⎬
⎭ .

All of the elements in S are roots of Xs = 1. Thus s ≥ |S|. The cardinality of S
is

(
m
d−

)(
d−1
d−−1

)(
2m−d−−d−2

m−d−−1

)
. The exponential size of the group generated by linear

factors in a polynomial ring was known before. Using negative exponents to obtain a
better bound was suggested by Voloch [10] recently.

Does there exist an irreducible polynomial of form xm−g over Fr? The following
lemma answers this question.

Lemma 2.4. The polynomial xm−g is an irreducible polynomial over Fr if m|r−1
and g is not a lth power in Fr for any l|m (l > 1); in particular, if g is a multiplicative
generator of Fr.

Proof. Let α be a root of xm − g over some extension of Fr. Denote [Fr(α) : Fr]
by d. We have [Fr(aα) : Fr] = d for any a ∈ (F∗

r)
(r−1)/m, and aα is also a root

of xm − g. This implies that xm − g can be factored into irreducible polynomials of
degree d over Fq and d|m. Take the factor f(x) satisfying f(α) = 0. Assume that
f(x) is monic and the constant coefficient of f(x) is f0. The roots of f(x) have the

form α, a1α, . . . , ad−1α. We have f0 = (
∏d−1

i=1 ai)α
d. So αd = m(∏d−1

i=1
ai

) ∈ F∗
r , and

(αd)m/d = g. This contradicts the condition in the lemma.

3. The algorithms and proofs. Now we are ready to describe the algorithms.
Let q be a fixed prime power. The input of the algorithm is a positive integer N > 0.
The first algorithm is designed to prove Theorem 2.1.

1. Find the smallest positive integer t such that t(qt−1) ≥ N . Let n = t(qt−1).
2. Find a generator in Fqt , denote it by g.

3. Solve the equation xqt−1 − g = 0 in Fqn , let α be one of the roots.
4. Output α + 1 (or α + a for any a ∈ F∗

qt).
From Step 1, we see that N ≤ n ≤ 2qN . Steps 2 and 3 together take time

(qt)O(1) = NO(1). Hence the algorithm takes time NO(1). Applying Theorem 2.3
with r = qt ≥ n/ logq n and m = r − 1, we get that the order of the output element

is greater than 5.8q
t

for a sufficiently large n, which is greater than 5.8n/ logq n. This
proves Theorem 2.1.

The second algorithm is designed to prove Theorem 2.2
1. Find the smallest prime t greater than

√
N + 1.

2. Use the algorithm described in [9, Theorem 2.4] and [8] to construct a small
set G ⊆ Fqt such that at least one of the elements in the subset is a primitive
element.

3. For g ∈ G, test the irreducibility of xt − g. Stop if xt − g is irreducible over
Fqt−1 .
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4. Solve the equation xt − g = 0 in Fq(t−1)t , let α be one of the roots.
5. Output α + 1 (or α + a for any a ∈ F∗

qt).

From Step 1, we see that
√
N + 1 ≤ t ≤

√
N + O

(√
N

0.525
)

[2]. Hence N ≤
t(t − 1) = N + O(N0.77). Testing irreducibility and factoring polynomials can be
solved in polynomial time if the characteristic of the field is small—and there is at
least one primitive element in G. (However, the fact that xt−g is irreducible does not
imply that g is a primitive element in Fqt−1 .) Hence steps 3 and 4 together take time

(t log q)O(1) = NO(1). The whole algorithm takes time NO(1). Applying Theorem 2.3
with r = qt−1 and m = t, the order of the output element is greater than 5.8t for
sufficiently large n, which is greater than 5.8

√
n.

4. Concluding remarks. A few comments are in order.

1. A similar idea can be applied to solve the problem of constructing extensions
of Fqr (q is a fixed prime power) with an element of provable high order.

2. Numerical evidences suggest that the order of g is often equal to the group
order qn − 1 and is close to the group order otherwise. However, it seems
hard to prove that. In fact, this is one of the main obstacles in improving the
space efficiency of AKS-style primality testing algorithm [1]. We make the
following conjecture.
Conjecture 1. Let q be a prime power and n be a positive factor of q − 1.
Assume that n ≥ log q. Let xn− g (g ∈ Fq) be an irreducible polynomial over
Fq and let α be one of its roots. Then the order of α+ 1 is greater than qn/c

for an absolute constant c.
3. Let p be a prime. The Artin–Schreier extension of a finite field Fp is Fpp . It

is easy to show that xp − x − a = 0 is an irreducible polynomial in Fp for
any a ∈ F∗

p. Therefore, we may take Fpp = Fp[x]/(xp − x − a). Let α = x
(mod xp − x − a). It can be shown similarly that the order of α + b for any
b ∈ Fp is asymptotically greater than 5.8p.

Acknowledgments. We thank Dr. Igor Shparlinski for his suggestion to deran-
domize the second algorithm. We are also grateful to Dr. Pedro Berrizbeitia and Mr.
Yu-Hsin Li for helpful discussions.
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A TWO-SET PROBLEM ON COLORING THE INTEGERS∗

JEFFREY A. RYAN†

Abstract. For positive integers m, r and a system of inequalities �, define f(m, r,�) to be
the minimum integer n such that for every coloring of {1, 2, . . . , n} with r colors, there exist two
monochromatic subsets X,Y ⊆ [1, n] (but not necessarily of the same color) which satisfy: (i)
�, (ii) the largest number in X is less than the smallest number in Y , (iii) |X| = |Y | = m. Let
LX = −2x1 +xm−1+xm for x1, xm−1, xm ∈ X, LY = −2y1 +ym−1+ym for y1, ym−1, ym ∈ Y , and
let � := LX ≤ LY . In this paper we prove that f(m, r,�) = 5m− 3 and consider the corresponding
question for zero-sum sets and generalize our result in the sense of the Erdős–Ginzburg–Ziv theorem.

Key words. combinatorics, Ramsey theory, number theory, sequences mod m
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1. Introduction. Following the Erdős–Ginzburg–Ziv theorem [1], several theo-
rems of Ramsey-type have been generalized by considering Zm-colorings, where Zm

is the cyclic group of order m and zero-sum configurations, rather than two-colorings
and monochromatic configurations. We call such theorems generalizations to be in
the sense of Erdős–Ginzburg–Ziv (EGZ). Surveys on zero-sum problems appear in [2]
and [3].

First, we introduce some notation. We denote X <p Y if and only if max (x) <
min (y). A mapping Δ : X → C is called a coloring and we refer to C as the set of
colors. For a nonempty subset S ⊆ X let Δ(S) denote the set {Δ(s) | s ∈ S}. We say
that a subset S ⊆ X is monochromatic if and only if Δ(s) = Δ(s∗) for all s, s∗ ∈ S.
Let LX = −2x1 + xm−1 + xm for x1, xm−1, xm ∈ X and LY = −2y1 + ym−1 + ym
for y1, ym−1, ym ∈ Y . For c ∈ C, where Δ−1(c) is nonempty, we denote first(c) =
min{x ∈ X | Δ(x) = c}, last(c) = max{x ∈ X | Δ(x) = c}, and second to last(c) =
max{x ∈ X | Δ(x) = c and x �= last(c)}. Moreover, colorings Δ : {1, 2, . . . , n} → C
will be identified with the strings Δ(1)Δ(2) · · ·Δ(n), and we use xi to denote the
string xx · · ·x of length i. Finally, let [a, b] be the set of integers {n ∈ N | a ≤ n ≤ b}.

Definition 1. Let m, r be positive integers. Let � be a system of inequalities.
Define n = f(m, r,�) to be the least positive integer such that for every coloring
Δ : [1, n] → [1, r] there exist two monochromatic subsets X,Y ⊆ [1, n] (but elements
from X,Y may be colored differently) which satisfy

(i) �,

(ii) |X| = |Y | = m,

(iii) X <p Y .
In this paper we consider � := LX ≤ LY .

At present there is no general theory which addresses generalizations of systems
of inequalities and equations � in the sense of the EGZ theorem. Partial results,
which motivated this research, can be found in [6] and [7]. As of this writing these
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are the first two-set results concerning more than two variables xi or yi in a system
�.

2. Two-colorings. In this section we will study f(m, r,�). To do so, we use
the following lemma.

Lemma 2. Let m be a positive integer, m ≥ 3. Let Δ : [1, 3m− 2] → {1, 2} be a
coloring. Then the following holds:

(i) either there exists a monochromatic m-element subset Y ⊆ [1, 3m − 2] with
LY ≥ 4m− 5,

(ii) or there exist monochromatic m-element subsets X,Y ⊆ [1, 3m − 2] with
X <p Y and LX ≤ LY ,

(iii) or Δ([1, 3m− 2]) = 1m−122m−312.
Proof. Let Δ : [1, 3m − 2] → {1, 2} be a coloring. Without loss of generality,

let Δ(1) = 1. If |Δ−1(1)| < m, then |Δ−1(2)| ≥ 2m − 1; hence there exists a set Y
with LY ≥ 4m − 5, and (i) follows. Therefore, we can assume that |Δ−1(1)| ≥ m.
Similarly, |Δ−1(2)| ≥ m. We have the following two cases.

Case 1. Δ(3m − 2) = 1. Assume there is some coloring Δ : [1, 3m − 2] → {1, 2}
for which the lemma does not hold. Then we must have Δ([m− 1, 3m− 3]) = 22m−1

as otherwise (i) follows; however, this contradicts our assumption that |Δ−1(1)| ≥ m.
Case 2. Δ(3m − 2) = 2. First, suppose Δ([1,m]) = 1m. If we have at least

m of some color in [m + 1, 3m − 2], then we can take X = [1,m] and Y as some
monochromatic m-element subset of [m+1, 3m−2] so that (ii) is satisfied. Therefore,
to avoid satisfying the lemma we must have no more than m − 1 elements of either
color in [m+1, 3m− 2]; however, this contradicts our assumption that |Δ−1(2)| ≥ m.

Therefore, suppose that there exists some x ∈ [1,m] with Δ(x) = 2. If Δ(3m −
3) = 2, then since |Δ−1(2)| ≥ m we can take y1 = first (2), ym−1 = 3m − 3,
ym = 3m − 2 so that LY ≥ 4m − 5, and (i) holds. So, assume Δ(3m − 3) = 1,
and we can assume secondtolast(1) < m as otherwise (i) would follow. This implies
that Δ([m, 3m − 4]) = 22m−3. Since |Δ−1(1)| ≥ m, we must have Δ([1, 3m − 2]) =
1m−122m−312, satisfying (iii). In this case, we can take y1 = 1, ym−1 = m − 1, ym =
3m− 3 for LY = 4m− 6.

Theorem 3. For each positive integer m ≥ 3,

f(m, 2,�) = 5m− 3.

Proof. The coloring Δ : [1, 5m− 4] → {1, 2} given by the string

1m−22m−21212m−12m−1

shows the lower bound f(m, 2,�) ≥ 5m− 3.
To see that f(m, 2,�) ≤ 5m− 3, consider an arbitrary coloring Δ : [1, 5m− 3] →

{1, 2}. Without loss of generality let Δ(1) = 1. By the pigeonhole principle the set
[1, 2m− 1] contains a monochromatic m-element subset X with LX ≤ 4m− 5. Next,
consider the restriction of the coloring Δ to the set [2m, 5m − 3] which is isometric
to the set [1, 3m − 2] and apply Lemma 2. The only coloring Δ : [1, 2m − 1] →
{1, 2} that avoids some monochromatic m-element subset X with LX ≤ 4m − 6 is
Δ([1, 2m− 1]) = 12m−11m−1, so we have two strings left to consider:

(a) 12m−112m−222m−312,
(b) 12m−11m−12m−112m−321.
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In (a), we can take X = [m + 1, 2m] and Y = [3m − 1, 4m] so that we have
LX ≤ LY . In (b), we can take x1 = 2, xm−1 = m,xm = 2m for LX = 3m − 4,
and y1 = 3m − 1, ym−1 = 5m − 5, ym = 5m − 3 for LY = 4m − 6, and we have LX

≤ LY .

3. Zero-sum sets.
Theorem 4. (see Erdős, Ginzburg, and Ziv [1]). IfA = a1, a2, . . . , a2m−1 is a

sequence of integers, then there are m indices i1, i2, . . . im ∈ {1, 2, . . . , 2m − 1} such
that

ai1 + ai2 + · · · + aim ≡ 0 (mod m).

Theorem 5 (see Caro [2]). Let S be a finite set with |S| = 2m − 2. If Δ :
S → Zm is a coloring and S does not contain a zero-sum m-element subset T , then
Δ(S) = {a, b} and |Δ−1(a)| = |Δ−1(b)| = m− 1 .

Let A = a1, a2, . . . , at be a sequence. If b is an element of A, which belongs to a
residue class X, then |x|A denotes the cardinality of the set {i | ai ∈ x, where ai is in
the sequence A}. We say that the sequence A is arranged normally with parameters
v1, v2, . . . , vs, if there are s distinct residue classes modulo m, say x1, x2, . . . , xs,
where |x1|A ≥ |x2|A ≥ . . . ≥ |xs|A and |xi|A = vi for i = 1, 2, . . . , s such that the first
v1 elements A belong to x1, the next v2 of the elements of A belong to x2, and so on
up to the last vs of the elements of A which belong to xs.

Theorem 6. (see Bialostocki and Lotspeich [5]). Let m be an integer, m ≥ 3,
and let A = a1, a2, . . . , a2m−3 be a sequence of integers. Suppose that A is arranged
normally with parameters v1, v2, v3(v1 and v2 if m = 3.) If there are no m indices
i1, i2, . . . , im ∈ {1, 2, . . . , 2m− 3} such that

ai1 + ai2 + · · · + aim ≡ 0 (mod m),

then v1 = m− 1, v2 = m− 3, and v3 = 1(v1 = 2 and v2 = 1, if m = 3).
Definition 7. Let m, r be positive integers. Let � be a system of inequalities.

Define n = f(m,Zm,�) to be the least positive integer such that for every coloring
Δ : [1, n] → Zm there exist two zero-sum subsets X,Y ⊆ [1, n] which satisfy

(i) �,
(ii) |X| = |Y | = m,
(iii) X <p Y .

Again, we consider � := LX ≤ LY .

4. Zero-sum generalizations. We now determine the value of f(m,Zm,�).
We use the following lemma.

Lemma 8. Let m be an integer, m ≥ 3, and let Δ : [1, 3m−2] → Zm be a coloring
that uses at least three colors. Then the following holds:

(i) either there exists a zero-sum m-element subset Y ⊆ [1, 3m − 2] with LY ≥
4m− 5,

(ii) or there exist two zero-sum m-element subsets X,Y ⊆ [1, 3m−2] with X <p Y
and LX ≤ LY .

Proof. Let [1, 3m− 2] be the disjoint union of P , Q, and R, where P = [1,m− 2],
Q = [m− 1, 2m− 1], and R = [2m, 3m− 2]. If there is a monochromatic m-element
subset B ⊆ P ∪ R, then we have LB ≥ 4m − 5, and (i) holds. Therefore, assume
there is no such set B. Then as |P ∪R| = 2m− 3, we have by Theorem 6 that P ∪R
contains m−3 elements of one color, say a, m−1 elements of another color (different
from a), say b, and one element of a third color that may or may not be a and cannot
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be b, as otherwise we would have a zero-sum m-element subset of color b . Let us call
this third color c. Now, either P ∪R is colored by two colors or it is colored by three
according to c. We have the following two cases.

Case 1. c �= a. Recall that we also must have c �= b. Let Δ(m − 1) = α. By
Theorem 5 we must have a zero-sum m-element subset X ⊆ P ∪ {m − 1} ∪ R. We
have three subcases according to α.

Subcase (1a). α = a. If X has less than m− 2 elements of color a, then we would
have a zero-sum m-element subset of P ∪ R, a contradiction. Therefore, assume
that X has m − 2 elements of color a. We know that X has at least one element
of color b and there must be at least one element z ∈ R such that Δ(z) = b. If
|{Δ(x) = a|x ∈ R}| ≥ 1, then we can take xm−1 and xm to be elements from R and
(i) holds. Therefore, assume that |{Δ(x) = a|x ∈ R}| = 0. If Δ−1(c) is not an element
of X, then there are two elements of color b in X, and so we can choose xm−1, xm as
two b-colored elements of R and (i) follows. Now, assume Δ−1(c) ∈ X. If Δ−1(c) ∈ R,
then we can choose xm−1, xm as z and c in R and (i) holds. If Δ−1(c) ∈ P , then
Δ(R) = bm−1; therefore, we can take x1 = 1, xm−1 = m − 1, and xm = 3m − 2 so
that LX = 4m− 5 and (i) holds.

Subcase (1b). α = b. Then all of the elements of X must have color b. If
|{Δ(x) = b|x ∈ R}| ≥ 2, then (i) holds. So, as we must have |{Δ(x) = b|x ∈ R}| ≥ 1,
assume |{Δ(x) = b|x ∈ R}| = 1, which implies that Δ([1,m − 1]) = bm−1. Suppose
Δ(m) = b. Then we have Δ([1,m]) = bm, and so [1,m] is zero-sum. If there is
another zero-sum m-element subset Y ⊆ [m+1, 3m−2], then (ii) follows. So, assume
there is no such set Y . In this case we have by Theorem 4 that there is a zero-sum
m-element subset Z ⊆ {1}∪ [m+1, 3m−2], and since there is no m-element zero-sum
set Y ⊆ [m + 1, 3m− 2], we must have z1 = 1 and (i) follows.

Therefore, assume Δ(m) �= b. The set [1,m − 3] ∪ {m} ∪ R contains at most
(m− 2) elements of one color and by Theorem 6 must contain a zero-sum m-element
subset and (i) follows.

Subcase (1c). α �= a and α �= b. In this case we must have (m − 1) ∈ X as
otherwise P ∪ Q would contain a zero-sum m-element subset B, contradicting our
assumption that there is no such B. Let us assume that there is some coloring
ϕ : [1, 3m − 2] → Zm that uses at least three colors with c �= a, ϕ(m − 1) �= a,
ϕ(m − 1) �= b, and no monochromatic m-element subset B ⊆ P ∪ R for which the
lemma does not hold.

Suppose |{ϕ−1(b) ∈ X}| ≥ 2. Then we must have ϕ(P ) = bm−2, as otherwise
we could take xm−1 and xm from R and (i) follows. This implies that |{ϕ−1(b) ∈
X\(m− 1)}| = m− 1, which implies that ϕ(m− 1) = b, a contradiction.

Therefore, we must have |{ϕ−1(b) ∈ X}| = 1. This implies that we must have
m−3 elements of color a in X, and that X must include the element of color c. Since
we must have at least one element of color b in R, we must have no elements of colors
a or c in R, as otherwise (i) would follow. Therefore, ϕ(R) = bm−1, but in this case
we can take x1 = 1, xm−1 = m− 1, and xm = 3m− 2 so that LX = 4m− 5, satisfying
(i) and contradicting our assumption that there exists a coloring ϕ with the above
assumptions for which the lemma does not hold.

Case 2. c = a. Then in P ∪ R we have (m − 2) elements of color a and (m − 1)
elements of color b. By assumption, there is some β ∈ Q such that Δ(β) �= a and
Δ(β) �= b, and let Δ(β) = c. By Theorem 5 we must have a zero-sum m-element
subset X ⊆ P ∪{β}∪R. Since β ∈ X, X must contain elements of both colors a and
b. We have Δ(1) ∈ {a, b}, and so we can take x1 = 1 in each of the following three
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subcases.
Subcase (2a). X has exactly one element of color a. If Δ(1) = a, then |{Δ(x) =

b|x ∈ R}| ≥ 2 and we can take xm−1 and xm from R and (i) follows. If Δ(1) = b,
then we can assume |{Δ(x) = b|x ∈ R}| = 1, as otherwise (i) holds. This implies that
R contains m − 2 elements of color a. In this case, we can take xm−1 and xm to be
two elements of colors a and b from R, which implies (i).

Subcase (2b). X has exactly one element of color b. If Δ(1) = a, we can assume
that |{Δ(x) = a|x ∈ R}| = 0, as otherwise (i) follows. Then, we can take xm−1 = β
and xm = 3m−2 so that LX ≥ −2+(m−1)+(3m−2) = 4m−5. Therefore, assume
that Δ(1) = b. If |{Δ(x) = a|x ∈ R}| ≥ 2 (i) follows, so we must have exactly one
element of color a in R. Therefore Δ(P ) = bam−3, and in this case we can take x1 = 2
and xm−1 and xm to be elements of colors a and b in �, satisfying (i).

Subcase (2c). X has more than one element of color a and more than one element
of color b. In this case, we can take xm−1 and xm from R, implying (i), and the
lemma follows.

Corollary 9. Any coloring of [1, 3m− 2] that avoids satisfying either condition
(i) or condition (ii) of the lemma must be a two-coloring.

Theorem 10. Let m be an integer, m ≥ 3. Then,

f(m,Zm,�) = 5m− 3.

Proof. The string 1m−20m−21012m−10m−1, which corresponds to a coloring Δ :
[1, 5m−4] → {0, 1}, implies the lower bound f(m,Zm,�) ≥ 5m−3. Next, we show the
upper bound f(m,Zm,�) ≤ 5m − 3. By the pigeonhole principle we are guaranteed
a monochromatic m-element subset X ⊆ [1, 2m− 1] with LX ≤ 2m− 1. By Lemma
8 we are guaranteed some monochromatic m-element subset Y ⊆ [2m, 5m − 3] with
LY ≥ 4m− 5 unless [2m, 5m− 3] is two-colored, and then applying Lemma 2 shows
that Δ([2m, 5m− 3]) = cm−1d2m−3cd for some c, d ∈ Zm. Since the only colorings of
[1, 2m − 1] that avoid a zero-sum m-element subset X with LX ≤ 4m − 6 are those
of the form abm−1am−1, the only strings that we have left to check are those of the
form abm−1am−1cm−1d2m−3cd. First, consider the case where Δ(2m) = b. Then we
have a set X with LX = 3m − 4, and we can take Y from among the last 2m − 1
elements so that LY ≥ 3m − 4, and we have LX ≤ LY . Second, consider the case
where Δ(2m) �= b. Then in [2, 2m] we must have a set X with LX ≤ 4m − 6, and
we can take Y from the last (2m − 1) elements so that LY = 4m − 6 and we have
LX ≤ LY ; hence, the theorem is proven.

Acknowledgment. Many thanks to Arie Bialostocki for his guidance.
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CROSSING STARS IN TOPOLOGICAL GRAPHS∗
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Abstract. Let G be a graph without loops or multiple edges drawn in the plane. It is shown
that, for any k, if G has at least Ckn edges and n vertices, then it contains three sets of k edges,
such that every edge in any of the sets crosses all edges in the other two sets. Furthermore, two of
the three sets can be chosen such that all k edges in the set have a common vertex.
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1. Introduction. A topological graph is a graph drawn in the plane with no
loops or multiple edges so that its vertices are represented by points and its edges
are represented by Jordan curves connecting the corresponding points. We do not
distinguish these points and curves of the topological graph from the vertices and
edges of the underlying abstract graph they represent. We assume that (i) the edges
of a topological graph do not pass through any vertex, (ii) two edges share a finite
number of interior points and properly cross each other, and (iii) no three edges cross
at the same point. Conditions (ii) and (iii) are simplifying assumptions only; graph
drawings violating them can be modified to satisfy them without affecting which pairs
of edges cross. A topological graph is called simple if any pair of its edges have at
most one point in common (either a common endpoint or a crossing).

It is well known that every planar graph with n vertices has at most 3n − 6
edges. Equivalently, every topological graph G with n vertices and more than 3n− 6
edges has a pair of crossing edges. This simple statement was generalized in several
directions. For a survey, see [P99].

Pach and Tóth [PT97] and Pach et al. [PRTT04] proved that a topological graph
of n vertices and more than (k + 2)(n − 2) edges must have k edges that cross the
same edge. This bound is tight for k = 1, 2, 3 but can be substantially improved for
large values of k.

For k ≥ 2, let fk(n) (resp., fs
k(n)) be the maximum number of edges of a topolog-

ical graph (resp., simple topological graph) on n vertices and no k pairwise crossing
edges. Agarwal et al. [AAPPS97] proved (for simple topological graphs), and Pach,
Radoičić, and Tóth [PRT03] proved, with a shorter and more general argument, that
for some c > 0, every topological graph with n vertices and more than cn edges has
three pairwise crossing edges. That is, fs

3 (n) ≤ f3(n) ≤ cn. Very recently, Ackerman
and Tardos [AT07] proved that 7n−O(1) ≤ f3(n) ≤ 8n and that fs

3 (n) = 6.5n+Θ(1).
Moreover, Ackerman [A06] managed to prove that f4(n) ≤ 36n. For m ≥ 5 the
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best known upper bounds are fs
m(n) ≤ cn log2m−8 and fm(n) ≤ c′n log4m−16 n (see

[PSS96], [PT05], [A06]), while the best known lower bounds are all linear functions
of n, and it is conjectured that they are much closer to the truth.

Conjecture 1. For every k ≥ 3 there is a ck > 0 such that every topological
graph with n vertices and Ckn edges contains k pairwise crossing edges.

In [PRT04], the results about three pairwise crossing edges were further general-
ized: for every integer k > 0, there exists a constant ck > 0, such that every topological
graph with n vertices and more than ckn edges has k+2 edges such that the first two
cross each other and both of them cross the remaining k edges (see Figure 1(a)).

In [PPST05] another generalization was shown. For any k and l there is a constant
ck,l with the following property: Every topological graph with n vertices and more
than ck,ln edges has k+ l edges such that the first k have a common vertex, and each
of them crosses all of the remaining l edges (see Figure 1(b)).

(a) (b)

Fig. 1. A topological graph without either configuration has only a linear number of edges.

In this paper we prove a common generalization of the above results.

Let k be a positive integer. The edges A ∪ B ∪X of a topological graph form a
k-star grid if A is a set of k edges incident to a common endpoint x, B is a set of k
edges incident to a common endpoint y, and any edge from A crosses any edge from
B; furthermore, X also contains k edges, and any edge in X crosses all edges in A∪B.
See Figure 2. In this definition we allow the case x = y and we also allow the edges
of X to be incident to x or y. These pathological cases are not possible in a simple
topological graph.

Theorem 1.1. For any k ≥ 1, there is a constant Ck such that every topological
graph with n vertices and at least Ckn edges contains a k-star grid.

We did not attempt to optimize our proof for Ck, but we note that this proof gives
Ck that is triply exponential in k. The condition that all edges in the set A (resp.,
B) have a common endpoint is essential; our proof does not work if we want to have
independent edges in the set A (or B). The situation is very similar with the previous
results [PRT04], [PPST05], and we cannot even prove the following well-established
conjecture.

Conjecture 2. For every k ≥ 2, there is a Ck > 0 such that every topological
graph with n vertices and Ckn edges contains k + 2 independent edges such that the
first two of them cross each of the last k.

2. Proof of the theorem. The proof of Theorem 1.1 is rather technical and
consists of several steps. We give an overview first and then indicate which steps of
the proof can be eliminated if we consider only simple topological graphs. Note that
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y

x

Fig. 2. A 4-star grid.

we do not strive for absolute preciosity in this overview. The reader will find the
precise definitions later in the proof.

For the proof, we fix k and take an arbitrary topological graph F . We let C =
|E(F )|/|V (F )|. Our goal is to prove that if C is large enough (as a function of k),
then we find a k-star grid in F . This clearly establishes Theorem 1.1.

First we take a densest subgraph F0 of F and concentrate on F0 only.
Next we redraw F0, i.e., we take another topological graph G0 which has the same

underlying abstract graph as F0 but eliminates certain unnecessary crossings. This
step of the proof is not needed if F is a simple topological graph, i.e., we may take
G0 = F0.

We then use subdivisions, i.e., we introduce vertices at certain edge-crossings. We
obtain a subdivision G1 of G0 with a crossing-free spanning tree T . This step is taken
from [PRT04] and [PPST05].

We further subdivide G1 to obtain G2 and its crossing-free spanning subgraph H
with no proper cut. This means that any two consecutive crossing points of any edge
e in G2 \H with H are with “close-by” edges of H. This step is taken from [PPST05].
In this and the previous step we make sure that the size (number of vertices) of the
graph increases by only a constant factor. Note also that subdivisions in these two
steps can create k-star grids. This does not happen for simple topological graphs for
k > 2.

The next step represents the new idea in this paper. For many vertices we find
a large number of edges emanating from that vertex with the property that they go
“parallel” (with respect to H) for a long time and then one by one “depart” from the
rest of the edges. All these “departures” take place in separate cells of H. We call
these sets of edges bundles.

Using the fact that C is large enough, we find a cross-track configuration in G2,
i.e., k edges of a bundle, another k edges of a (perhaps different) bundle such that
these 2k edges go parallel through l− 1 cells of H but such that, eventually, the first
k edges cross the second k edges. For simple topological graphs we can choose l = k,
and the proof ends here. Indeed, the 2k edges in the cross-track configuration plus k
edges of H form a k-star grid. In the general case, however, some of the edges of H
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crossed by the edges in the cross-track configuration may coincide or may be parts
of the same edge of G0, separated only by our subdivision process. We take l to be
an exponential function of k and use the following result of Schaefer and Stefankovič
[SS04] to take care of the technical difficulties mentioned above.

Theorem A (Schaefer and Stefankovič [SS04]). Let T be a topological graph.
Redraw T so that the resulting topological graph T ′ satisfies the following two condi-
tions:

(i) If two edges of T ′ cross each other, then the corresponding edges also cross
in T ;

(ii) T ′ has the minimum number of crossings among all drawings with prop-
erty (i).

Now for any i > 0 and any edge e, any 2i consecutive crossings on e arise from
at least i different edges.

By an application of Theorem A, we show that if l is large enough, then out of the
l edges of H crossed by the parallel track of the edges of the cross-track configuration,
at least k must come from distinct edges of G0.

We continue with the detailed execution of the above plan.
Let k ≥ 1 fixed, and let F be a topological graph with n′ vertices and Cn′ edges.

Our goal is to prove that F contains a k-star grid if C is large enough. The bound on
C depends on k but not on n′. This will establish the validity of Theorem 1.1.

Let F0 be the densest nonempty connected subgraph of F ; that is, F0 ⊆ F
connected and |E(F0)|/|V (F0)| is maximal. Clearly, the requirement that F0 has to be
connected does not change the value of the maximum, so we have |E(F0)|/|V (F0)| ≥
|E(F )|/|V (F )| = C. Removing a vertex of F0 of degree d increases the ratio if d < C;
therefore each vertex in F0 has degree at least C. Let n denote the number of vertices
of F0. Clearly, n > C so we may assume n ≥ 5.

Redraw F0 so that the resulting topological graph G0 satisfies the following two
conditions:

(i) If two edges of G0 cross each other, then the corresponding edges also cross
in F0;

(ii) G0 has the minimum number of crossings among all drawings with prop-
erty (i).

It is enough to find a k-star grid in G0, as property (i) shows that the correspond-
ing edges form a k-star grid in F0, and thus in F too.

We will apply a subdivision to G0, i.e., we declare a certain intersection point of
two edges as a new vertex and replace each of the two edges by their two segments
up to and from that new vertex. Notice that in this way we may create two edges
connecting the same pair of vertices, and thus we have to extend our definition of
topological graph to allow for this. No pair of vertices will ever be connected by
more than two edges. The graph obtained from G0 by several subdivisions is called
a subdivision of G0. To distinguish this from the new vertices of the subdivision,
vertices of G0 are called old vertices.

Notice that for k > 2, a subdivision does not introduce a k-star grid in a simple
topological graph, so if G0 is simple, it is enough to find a k-star grid in a subdivision
of G0. The situation is somewhat more complex if G0 is not simple. If G0 contains
two k-edge stars A and B such that each edge of A is crossed by each edge of B and
another edge e0 crosses every edge in A∪B k times, then the repeated subdivision of
e0 may result in a k-star grid.

Obviously, no edge of G0 intersects itself; otherwise we could reduce the number
of crossings by removing the loop. Suppose that G0 has two distinct edges, e and
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f , that meet at least twice (including their common endpoints, in the case that they
have a common endpoint). A simply connected region whose boundary is composed
of an arc of e and an arc of f is called a lens.

Claim 1. Every lens in G0 has a vertex in its interior.
Proof. Suppose, for a contradiction, that there is a lens � that contains no vertex

of G in its interior. Consider a minimal lens �′ ⊆ �, by containment. Notice that by
swapping the two sides of �′, we could reduce the number of crossings without creating
any new pair of crossing edges, contradicting property (ii) above.

Clearly, the property of having no self-intersecting edge and the property stated
in Claim 1 are both inherited from G0 to its subdivisions.

Let G be a topological graph and H a subgraph of G. Let e be an edge of
G not contained in H. We always consider e with an orientation. Each edge can
be considered with either orientation. The edge e has a finite number of intersection
points with edges of H, and these points split the Jordan curve e into a finite number of
shorter curves. We call these shorter curves the segments of the edge e determined by
H and denote them by s1(e), s2(e), . . . in the order they appear on e. The dependence
on H is not explicit in the notation, but H will always be clear from the context. If
e does not cross the edges of H, the entire edge is a single segment.

We consider a crossing-free subgraph H of a topological graph G that is connected
and contains all vertices. Such a graph H subdivides the plane into cells. The
boundary of a cell is a closed walk in H that may visit vertices several times and may
even pass through an edge twice. The size of a cell is the length of the corresponding
walk, that is, the number of edges in the walk, with multiplicity. A segment s of an
edge e not in H inherits its orientation from e. It is contained in a single cell α, and
the endpoints of s are on the boundary of α. We call the cell α, and the vertex or edge
of the boundary walk of α where s starts, the origin of s. Similarly, α and the vertex
or edge of this walk where s ends is the destination of s. Notice that in the case when
the boundary of α visits the relevant vertex or edge more than once, the origin or
destination of e contains more information than the vertex or edge itself and tells us
“which side” of the vertex or edge is involved. If two segments have the same origin
and the same destination, we call them parallel and say that their type is the same. If
two segments s and s′ have the same origin but different destinations, then they are
contained in the same cell. We say that s turns left from s′ if the common origin, the
destination of s, and the destination of s′ appear in this order in the clockwise tour of
the boundary of the cell. Notice that the common origin must differ from both of the
destinations. A segment with equal origin and destination would define an “empty
lens,” thus contradicting Claim 1. As a consequence, for segments s and s′ with a
common origin, either s and s′ are parallel, or s turns left from s′, or s′ turns left
from s.

As in [PRT04] and [PPST05], first we construct a subdivision G1 of G0 that
contains a crossing-free spanning tree T .

Since the abstract underlying graph of G0 is connected, we can choose a sequence
of edges e1, e2, . . . , en−1 ∈ E(G0) such that e1, e2, . . . , ei form a tree Ti, for every
1 ≤ i ≤ n− 1. In particular, e1, e2, . . . , en−1 form a spanning tree Tn−1 of G.

Construct the crossing-free topological graphs T̃1, T̃2, . . . , T̃n−1, as follows. Each
is a subtree of a subdivision of G0. Let T̃1 be defined as a topological graph of two
vertices consisting of the single edge e1. Suppose that T̃i has already been defined for
some 1 ≤ i < n − 1, and let v denote the endpoint of ei+1 that does not belong to
Ti. Then we define T̃i+1 as follows. Add to T̃i the piece of ei+1 between v and its
first crossing with T̃i. More precisely, follow the edge ei+1 from v up to the point v′
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where it hits T̃i for the first time. If this is a vertex of T̃i, simply add ei+1 to T̃i to
get T̃i+1. If v′ is in the interior of an edge e, then we apply subdivision: we introduce
v′ as a new vertex. We replace the edge e of T̃i with the two resulting parts and add
the segment of ei+1 between v and v′ to obtain T̃i+1. See Figure 3.

We let T = T̃n−1 and G1 be the subdivision of G0 obtained in the process. Note
that G1 has n old and at most n− 2 new vertices.

e

e

T

e5e
e

T

1 2

4

3

~
5 5

Fig. 3. Constructing T̃5 from T5.

Next, just like in [PPST05], we further subdivide G1 to obtain G2 and a crossing-
free subgraph H of G2.

Start with H0 = T and G̃0 = G1. Define H1, . . . , Hu and G̃1, . . . , G̃u recursively,
maintaining that Hi is a crossing-free connected subgraph of a subdivision G̃i of G0.
Furthermore, Hi is connected and contains all vertices of G̃i, and all the cells of Hi

are of size at least 8. This clearly holds for H0 and G̃0 if n ≥ 5.
Having defined Hi and G̃i, consider the segments of the edges of G̃i as determined

by Hi. Let s be such a segment. By adding s to Hi we mean constructing a subdivision
of G̃i by inserting new vertices for the endpoints of s, if necessary, and defining a
subgraph Hs

i of the subdivision by adding s to Hi. More precisely, we also have
to replace any edge of Hi that contains in its interior an endpoint of s by the two
new edges resulting from the subdivision. Notice that s itself is an edge after the
subdivision. The resulting graph Hs

i is a crossing-free connected spanning subgraph
of the resulting subdivision of G̃i. The cell of Hi containing s is now subdivided into
two cells, and the other cells remain intact (but their size may increase). We call s a
proper cut of Hi if both new cells of Hs

i are of size at least 8. See Figure 4.
If there exists a proper cut of Hi, then we choose one such segment s, set

Hi+1 = Hs
i , and let G̃i+1 be the resulting subdivision of G̃i. If there is no proper cut

of Hi, we set u = i, H = Hu, and G2 = G̃u.
The number of cells starts at 1 cell, at H0 = T , and increases by 1 in every step,

so Hi contains i + 1 cells. Each of these cells is of size at least 8, so we have at least
4i+4 edges in Hi. From the Euler formula, the number of vertices vi of Hi is at least
3i + 5. As H0 = T contains at most 2n− 2 vertices and we introduce at most 2 new
vertices in every step, so we also have vi ≤ 2i+ 2n− 2. The upper and lower bounds
on vi imply i ≤ 2n − 7. So the above process terminates in u ≤ 2n − 7 steps. This
proves the following.

Claim 2. G2 is a subdivision of G0 with at most 6n − 16 vertices. H is a
connected, spanning, crossing-free subgraph of G2 with no proper cut. H has at most
8n− 24 edges.

We call an old vertex of G2 important if its degree in H is less than 32. By
Claim 2, H has less than n/2 vertices of degree 32 or more. Out of the n old vertices,
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s

Fig. 4. A proper cut.

we must have more than n/2 important vertices.
Let l = 2k+1k2 + 1. Consider an edge e of G2 not in H. Call any l consecutive of

the segments s1(e), s2(e), . . . a track of e. The type of a track is simply the sequence
of the types of the l segments, si(e), . . . , si+l−1(e). Tracks (of possibly different edges)
of the same type are called parallel. Consider two edges e and f of G2 that are not in
H. Let d(e, f) be the largest index i ≥ 1 such that for all 1 ≤ j < i the segments sj(e)
and sj(f) exist and are parallel. For example, if e and f start at different vertices or
in different cells, we have d(e, f) = 1.

Notice that for any origin of a segment, at most 24 destinations are possible.
For large cells of H, more choices would be possible but they yield proper cuts of H
which do not exist by Claim 2. By the same claim, there are less than 32n possible
origins and therefore less than 768n types of segments. The destination of a segment
determines the origin of the next segment; therefore there are less than 32 · 24ln
different types of tracks.

Let m = 300k · 24l. We call the sequence e1, . . . , e2m of 2m edges of G2 but not
in H a bundle if l ≤ d(e1, e2m) < d(e2, e2m) < · · · < d(e2m−1, e2m). Notice that the
edges of a bundle start at a common vertex. We say that the bundle emanates from
this common starting vertex.

Claim 3. If C ≥ Ck := 31 · 242m+l + 31, then there exists a bundle emanating
from every important vertex.

Proof. Consider an important vertex x. Let S0 be the set of edges of G2 not in
H that start at x. The vertex x has degree at least C in G0 and has the same degree
in its subdivision G2. Its degree in H is at most 31, so |S0| ≥ C − 31. For i ≥ 1 we
define Si to be a subset of maximal size of Si−1 with si(e) existing and having equal
type for each e ∈ Si. The number of possible origins for the type of segment s1(e)
of an edge e ∈ S0 is the degree of x in H. Since x is important, at most 31 origins
and at most 744 types of s1(e) may exist for e ∈ S0. Thus, |S1| ≥ |S0|/744. Notice
that the type of si(e) determines if e ends with the segment si(e), and if so, then it
determines the ending vertex. So if one of the edges e ∈ Si ends with its ith segment,
then all do, and they all connect the same pair of vertices. Thus, as long as |Si| > 2,
si+1(e) exists for all e ∈ Si. Furthermore, the type of si(e) determines the origin of
si+1(e). So if |Si| > 2, then |Si+1| ≥ |Si|/24.

The finiteness of the entire topological graph G2 implies that Si = ∅ for large
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enough i. Let l ≤ d1 < d2 < · · · < dv be all the indices d ≥ l such that |Sd+1| < |Sd|.
The above calculations yield that |Sd1 | ≥ 242m and Sdi+1 = Sdi+1 ≥ 242m−i for
i ≤ 2m. We choose ei to be an arbitrary element of Sdi \Sdi+1. We have d(ei, e2m) =
di + 1 for i < 2m. This establishes that (e1, . . . , e2m) form a bundle.

Fix a bundle Bx = {ex1 , . . . , ex2m} from every important vertex x. The existence
is given by Claim 3. These will be all the bundles, and in fact all the edges of G2 \H
we consider from now on.

The segments s1(e
x
2m), s2(e

x
2m), . . . , sdx(ex2m) for dx = d(exm, ex2m) form the back-

bone of the bundle Bx. The tracks of ex2m contained in the backbone are called the
vertebras. We denote the vertebra starting with the segment si(e

x
2m) by txi . Notice

that the vertebras interleave: the last l − 1 segments of a vertebra are the first l − 1
segments of the next vertebra. With any vertebra txi we find m − 1 parallel tracks:
the tracks starting with the segments si(e

x
m+1), . . . , si(e

x
2m−1).

Let e = txi and f = tyj be two distinct parallel vertebras. Notice that i > 1 and
j > 1 must hold, since we consider only a single bundle from any (important) vertex.
Let e′ and f ′ be the inverse orientation of the “previous” segments si−1(e

x
2m) and

sj−1(e
y
2m), respectively. Notice that e′ and f ′ have the same origin. We say that

e < f if e′ turns left from f ′. We also say that e < f if txi−1 and tyj−1 are parallel, and
txi−1 < tyj−1. Notice that the recursive definition is well founded and defines a linear
order among parallel vertebras. We call a vertebra extremal if it is smallest or largest
among the vertebras of its type. If e is a nonextremal vertebra, we let e+ stand for the
next larger vertebra of the same type, while e− stands for the next smaller vertebra.
We say that a vertebra e is special either if it is extremal or if one of e+ or e− is the
last vertebra in a backbone.

Claim 4. The number of special vertebras is at most 65 · 24ln.
Proof. We have at most two extremal vertebras for every type, that is, at most

64 · 24ln extremal vertebras. We have one last vertebra in every backbone, that is, at
most n last vertebras. Each last vertebra makes its at most two neighbors special, so
the claimed bound holds.

We define a cross-track configuration as two sets of k edges such that every edge
from the first set crosses every edge from the second set, and all 2k edges go parallel
for a long time. More precisely, let A and B both be sets of k edges. We say that
A ∪B is a cross-track configuration if the following conditions are satisfied:

(i) Every a ∈ A crosses every b ∈ B.
(ii) Every a ∈ A is incident to an old vertex x, and every b ∈ B is incident to an

old vertex y.
(iii) There are α, β > 0 such that for every a ∈ A, b ∈ B, and 0 ≤ i < l − 1,

sα+i(a) and sβ+i(b) exist and are parallel.
Notice that for simple topological graphs, a cross-track configuration A ∪ B can

be appended with the set X ⊆ E(H) consisting of k of the origins of the segments
in the parallel tracks of the edges in A ∪ B. These edges cross every edge in A ∪ B;
therefore A ∪ B ∪ X form a k-star grid. Unfortunately, if G2 is not simple, then X
may contain fewer than k edges; in extreme situations X might consist of a single
edge (the edges in A∪B go around and around, crossing this single edge many times).
Also, finding a k-star grid in G2 is not enough in this case.

Our immediate goal is to find a cross-track configuration in G2; see Claim 6.
As explained above, this leads immediately to a k-star grid in G2, and also in G0

if G0 is simple. For nonsimple topological graphs, we will also use the cross-track
configuration to find k-star grids in G0, but the argument is more involved.

The following claim is based on a similar observation in [AAPPS97].
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Claim 5. Let e and f be two consecutive vertebras of the bundle Bx, neither of
which is special. Then either e+ and f+ are also consecutive vertebras of a backbone,
or there exists a cross-track configuration in G2. The same holds for e− and f−.

Proof. Assume f follows e in Bx, and let e+ = tyi . We have to show that
f+ = tyi+1. Suppose that f+ = tzj .

Since e is not special, e∗ = si+l(e
y
2m) is still in the backbone of By. Let f∗ be the

last segment of f . These two segments have a common origin. We distinguish three
cases. See Figure 5.

Case 1. e∗ and f∗ are parallel. Then, by the definition of the order of vertebras,
tyi+1 must be f+.

Case 2. f∗ turns left from e∗. In this case all edges exa intersect all edges eyb for
m < a, b ≤ 2m. This provides a cross-track configuration. See Figure 5(a).

Case 3. e∗ turns left from f∗. Now the edges eya and ezb must cross for m < a, b ≤
2m, and this also provides a cross-track configuration. See Figure 5(b).

The proof for e− and f− is similar.

(a) (b)

*

e+e

f

f

e*
*

e+e

f

f f
+

*e

x y x y z

Fig. 5. e+ and f+ are consecutive vertebras.

We considered at least n/2 bundles. By Claim 4 we have at most 65 ·24ln special
vertebras, so the pigeonhole principle gives the existence of a bundle Bx with at most
130·24l special vertebras. We fix such a bundle Bx and let ei stand for the ith segment
in the backbone of Bx: ei = si(e

x
2m) for 1 ≤ i ≤ d(exm, ex2m). We call ei a departure

point if i = d(exj , e
x
2m) for some 1 ≤ j ≤ m. We look for an interval of the backbone of

Bx without special vertebras but with the largest number of departure points. There
are m departure points, so at least �m/(130 · 24l + 1)	 of them are in an interval that
has no special vertebra. Formally, we have 1 ≤ i < j ≤ d(exm, ex2m) − l + 1, such that
none of the vertebras txi , t

x
i+1, . . . , t

x
j are special, but for some indices 1 ≤ i′ < j′ ≤ m

we have i+ l ≤ d(exi′ , e
x
2m) < d(exj′ , e

x
2m) ≤ j+ l−1 and j′− i′+1 ≥ �m/(130 ·24l+1)	.
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By Claim 5 either we have a cross-track configuration, or the vertebras (txi )+,
(txi+1)

+, . . . , (txj )+ are consecutive tracks of some bundle By, while (txi )−, (txi+1)
−,

. . . , (txj )− are also consecutive tracks of some bundle Bz. In the latter case, for any
i′ ≤ v ≤ j′ the edge exv crosses all edges eyw with m < w ≤ 2m, or it crosses all edges ezw
with m < w ≤ 2m. One of the options must occur with at least �m/(260·24l+2)	 ≥ k
edges. This provides us with a set A of k edges of the bundle Bx and another set B of
k edges of a bundle such that the properties of cross-track configuration are satisfied.
Thus, a cross-track configuration must exist. See Figure 6. This proves the following.

Claim 6. For C ≥ Ck there exists a cross-track configuration in G2.

H

H
H

y

x
z

Fig. 6. Hy and Hz envelop a vertebra of Hx.

Let A ∪ B be a cross-track configuration in G2. We use it to find a k-star grid
in G0. There are α, β > 0 such that for every a ∈ A, b ∈ B, and 0 ≤ i < l − 1,
the segments sα+i(a) and sβ+i(b) are parallel. Let s∗i (e) = sα+i(e) for e ∈ A and
s∗i (e) = sβ+i(e) for e ∈ B. We say that 0 ≤ i < l − 1 is bad if two distinct segments
from the set {s∗i (e) | e ∈ A ∪B} intersect.

Observe that we counted at most one crossing for each pair of edges in A ∪ B;
otherwise we would get an “empty lens.” Therefore, there are at most

(
2k
2

)
bad values

of i. So there are 0 ≤ i0 < i1 ≤ l − 1, with i1 − i0 + 2 > l/(
(
2k
2

)
+ 1) > 2k + 1 such

that there is no bad i with i0 ≤ i ≤ i1. For i0 ≤ i ≤ i1, let hi be the edge of H that
is the common origin of the segments s∗i (e) for e ∈ A∪B. Order the edges e ∈ A∪B
according to the order in which the starting points of s∗i (e) appear on hi. Notice that
we get the same order for each i. Let a and b be the first and last edges in this order.
Let pi and qi be the starting points of s∗i (a) and s∗i (b), respectively. Let a∗ be the
“relevant” part of a; that is, a∗ is the interval of a between pi0 and pi1 .

At this point we shift our attention from G2 and H to the original graph G0 and
modify its drawing in the plane. Let S be the set of edges of G0 containing the edges
A ∪B of G2. Note that the edges in A are incident to the same old vertex; therefore
they cannot be different segments of an edge of G0. The same holds for the edges in
B. Moreover, any edge of A and any edge of B intersect, so they are not different
segments of the same edge. Consequently, S contains 2k distinct edges. We do not
redraw the edge containing a but redraw some segments of other edges making sure
that conditions (i) and (ii) of the definition of G0 are maintained, and furthermore,
every edge that intersects a∗ also intersects all edges in S.
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b

a
p

hi+1

qi+1

hi

qi

i+1

p
i

Ri

e

e

ea

e

a

h

h

e

Fig. 7. Procedure Redraw.

Ri

i
p

= hi+1hi

qi

p
i+1

Ri

i
p

qi

= hi+1hi

p
i+1

qi+1 qi+1

Fig. 8. We cannot even rule out that hi = hi+1.

Let i0 ≤ i < i1 and consider the following four intervals: (1) the interval of hi

between pi and qi, (2) s∗i (a), (3) the interval of hi+1 between pi+1 and qi+1, and
(4) s∗i (b). These segments bound a quadrilateral shaped region Ri, with “vertices” pi,
qi, pi+1, and qi+1. See Figure 7. We cannot rule out that some of the regions Ri are
not disjoint and, in fact, we cannot even rule out that hi = hi+1 (see Figure 8), but
it does not affect the argument to be presented.

The region Ri does not contain vertices; therefore no edge of G0 entering Ri

through s∗i (a) may leave Ri through s∗i (a) again, as that would contradict Claim 1.
We distinguish three types of edges of G0 entering Ri through s∗i (a). Note that an
edge can cross s∗i (a) several times; in this case we consider separately each of the
segments of e inside Ri.

Type 1. The edge e enters Ri through s∗i (a) and leaves Ri through s∗i (b). In this
case, e crosses each edge in S.

Type 2. The edge e enters Ri through s∗i (a) and leaves Ri through hi.
Type 3. The edge e enters Ri through s∗i (a) and leaves Ri through hi+1.
We describe procedure Redraw. If there exists i0 ≤ i < i1 with an edge of
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Type 2 crossing s∗i (a), then we choose an arbitrary such i and the edge e of Type 2
crossing s∗i (a) closest to pi. Let ea be the point of e where it enters Ri, and let eh
be the point where it leaves Ri. Let e′a and e′h be points on e outside Ri but close
to ea and eh, respectively. Replace the interval e′ae

′
h of e by a curve outside Ri,

which follows very closely the interval of a between ea and pi, and then follows the
interval of hi between pi and eh. In the case when hi = hi+1, the new curve is drawn
similarly, but it does not go outside the region Ri. It is easy to verify that if the
new segment of e follows the boundary of Ri close enough, then no new crossings are
created, and therefore the modified topological graph satisfies properties (i) and (ii).
See Figure 7.

If there exists i0 ≤ i < i1 and an edge of Type 3 crossing s∗i (a), then we proceed
analogously. We choose such an i arbitrarily, choose a Type 3 edge that crosses s∗i (a)
closest to pi+1, and redraw the segment of the edge in Ri taking a detour around pi+1.

As long as there is an i, i0 ≤ i < i1, with a Type 2 or Type 3 edge, execute
Redraw.

If a∗ enters the region Ri (we cannot rule out this possibility), then Redraw

choosing this i affects other regions Rj . In the extreme case when pi+1 is on hi

between pi and qi, by redrawing edges of Type 2 we create another crossing with
s∗i (a) itself, possibly another Type 2 crossing. Nevertheless, it can be shown that the
procedure terminates after finitely many steps. To see this, consider an edge e. The
set

⋃i1−1
i=i0

Ri divides e into several intervals. Let e∗ be one of them. For each crossing
p of e∗ and a∗ let r(p) = i if and only if p is on s∗i (a). Let r(e∗, a∗) be the sum of all
r(p) over all crossings. This sum will either always decrease or always increase when
we execute Redraw involving e∗; therefore e∗ is involved in only finitely many steps.
To see this “monotonicity condition” notice that each segment of a∗ entering Ri has
the “same orientation”; that is, it enters Ri through hi and leaves through hi+1.

Let G′
0 be the topological graph obtained in the process. All edges of G′

0 crossing
the curve a∗ cross all edges in S. We did not create any additional crossing, so the
graph G′

0 satisfies properties (i) and (ii) in the definition of G0. These properties and
a result of Schaefer and Stefankovič [SS04] imply the following.

Claim 7. For any edge e of G′
0 and for any i > 0, any 2i consecutive crossings

on e arise from at least i different edges.

The interval a∗ of a crosses H at least 2k times, and we did not “redraw” these
segments of edges of G0. We can therefore take 2k consecutive crossings of a∗ in G′

0,
and by Claim 7 they are from at least k edges. Let X be a set of k edges of G′

0

crossing a∗. Clearly, S ∪X is a k-star grid in G′
0.

Clearly, the corresponding edges form a k-star grid in F too. This finishes our
proof of Theorem 1.1.
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by finding more crossings in sparse graphs, in Proceedings of the 20th Annual
ACM Symposium on Computational Geometry (SoCG), ACM, New York, 2004,
pp. 68–75.

[PPTT02] J. Pach, R. Pinchasi, G. Tardos, and G. Tóth, Geometric graphs with no self-
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OPTIMAL LEE-TYPE LOCAL STRUCTURES IN CARTESIAN
PRODUCTS OF CYCLES AND PATHS∗

SIMON ŠPACAPAN†

Abstract. We define the neighborhood of an r-ball B(u, r) centered on u ∈ G as the set of all
vertices x, such that d(u, x) = r + 1, and denote it by N(u, r). We call a set X of pairwise disjoint
r-balls an optimal local structure for B(u, r) if N(u, r) ⊂

⋃
X and no r-ball from X intersects

B(u, r). We prove the nonexistence of an optimal local structure in G = Cq1�Cq2� · · ·�Cqn for
any B(u, r) ⊂ G, where n ≥ 3, r ≥ n, and qi ≥ 2r + 1 for i = 1, . . . , n. In particular, this confirms
the nonexistence of perfect Lee codes with parameters n ≥ 3, e ≥ n, and q ≥ 2e + 1. We also prove
that if qi is even for i = 1, . . . , n,

∑n
i=1 qi/2 is odd, and 2r + 1 =

∑n
i=1 qi/2, then for every r-ball in

G there is an optimal local structure.

Key words. perfect Lee codes, optimal local structure
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1. Introduction. The question of existence of perfect Lee codes was raised in
1968 by Golomb and Welch, when they proved in [8] the existence of perfect Lee codes
with parameters (n, e, q) = (2, e, 2e2 +2e+1) for e ≥ 1 and (n, e, q) = (n, 1, 2n+1) for
n ≥ 1, where n denotes the length of the codewords, e denotes the number of errors
this code corrects, and q is the number of symbols in the alphabet. They also proved
the nonexistence in some special cases and conjectured [8] the nonexistence of perfect
Lee codes for all values of n and e, except n ∈ {1, 2} or e = 1.

In 1975 Post proved in [20] the nonexistence of perfect Lee codes over large al-
phabets (q ≥ 2e + 1) for 3 ≤ n ≤ 5 and e ≥ n − 1, and for n ≥ 6 and e ≥
n
√

2/2−3
√

2/4−1/2. There have also been numerous results given in [2, 3, 4, 16, 17].
For example, in [2] Astola gives an infinite family of new perfect Lee codes, called the
repetition codes. These are codes with parameters (n, e, q), where n is odd, q congru-
ent to 2 (mod 4), and e = (nq−2)/4. However, the question of the existence of perfect
Lee codes has not been completely solved and remains open for large alphabets and
small values of e and is also not completely solved for small alphabets (q < 2e + 1).

Lee codes are known to be useful in transmitting information over channels with
error patterns suitable for the Lee metric. Some recent results from [6, 21] give
(de)coding algorithms for a certain class of BCH (Bose, Ray-Chaudhuri,
Hocquenghem) Lee codes. BCH Lee codes are also considered in [1], where the con-
struction of BCH Lee codes is addressed. Some recent results from [19] improve
certain known bounds on the cardinality of Lee codes. We also mention that in [10]
an upper bound for the domination number and r-domination number of the Carte-
sian product of paths is obtained by using known results of Golomb and Welch on
perfect Lee codes. For more information about perfect codes in graphs we refer the
reader to [5] and [15].

Note that the existence of a perfect Lee code with parameters (n, e, q) is equivalent
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2007; published electronically September 26, 2007.
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to the existence of an e-perfect code in the Cartesian product of n copies of Cq,
Cq�Cq� · · ·�Cq (n times).

There are basically two possible ways to prove the nonexistence of perfect Lee
codes. One way, such as in the previously mentioned papers, is by dealing with a
sphere packing condition and some other related conditions. There have also been
some proofs in which certain counting arguments were given to obtain nonexistence
theorems (see, for example, [20]); however, the sphere packing condition and similar
conditions do not provide an understanding of the local structure of a code. In this
paper we are concerned with the local structure of the Cartesian product of cycles, and
we show the nonexistence of an optimal local structure for a large class of products.
Clearly, the nonexistence of an optimal local structure for B(u, e) in Cq�Cq� · · ·�Cq

(n times) implies the nonexistence of a perfect Lee code with parameters (n, e, q);
moreover, this result gives even better insight into the structure of the Lee code, in
particular the local structure of the code. In this way Golomb and Welch [9] proved
nonexistence for n = 3, e = 2, and q ≥ 2e+ 1. Gravier, Mollard, and Payan proved in
[11] the nonexistence of an optimal local structure in Cq1�Cq2�Cq3 for any B(u, e),
where e ≥ 2 and qi ≥ 2e + 1 for i = 1, 2, 3. The main goal of this paper is to prove
the nonexistence of an optimal local structure for any B(u, r) ⊂ Cq1� · · ·�Cqn , where
n ≥ 3, r ≥ n, and qi ≥ 2r + 1 for i = 1, . . . , n.

2. Preliminaries. For a graph G = (V (G), E(G)), the distance d(u, v) between
vertices u and v is defined as the number of edges on a shortest u, v-path. We define
the r-ball B(u, r) centered on u ∈ V (G) by

B(u, r) = {x ∈ V (G) | d(u, x) ≤ r} .

A set C ⊆ V (G) is an r-code in G if B(c1, r)∩B(c2, r) = ∅ for any c1, c2 ∈ C, c1 
= c2,
and an r-code C is called an r-perfect code if ∪c∈CB(c, r) = V (G).

The distance between two r-balls L1 and L2 is defined by

d(L1, L2) = min{d(l1, l2) | l1 ∈ L1, l2 ∈ L2},

and L1 and L2 are said to be neighboring r-balls if d(L1, L2) = 1 . The neighborhood
N(u, r) of r-ball B(u, r) is defined by

N(u, r) = B(u, r + 1) \B(u, r) .

We now formally define an optimal local structure. Let L0 = B(u, r) be an
r-ball and suppose that r-balls L1, . . . , Lk are neighboring L0. If Li ∩ Lj = ∅ for

i, j ≥ 0, i 
= j, and N(u, r) ⊂
⋃k

i=1 Li, then L1, . . . , Lk is called an optimal local
structure for L0.

For i = 1, . . . , n let Gi = (V (Gi), E(Gi)). The Cartesian product of graphs
G1, G2, . . . , Gn is the graph G1�G2� · · ·�Gn with the vertex set V1 × V2 × · · · × Vn

(where × denotes the Cartesian product of sets), and the vertices (u1, . . . , un) and
(v1, . . . , vn) are adjacent in G1�G2� · · ·�Gn if for some j ∈ {1, . . . , n} uj is adjacent
to vj in Gj and for any i 
= j, ui = vi.

We will denote the cycle of length q by Cq, and we set V (Cq) = Zq = {0, 1, . . . , q−
1}. The vertices of Cq will be calculated modulo q whenever applicable. A per-
fect Lee code with parameters n, e, and q is an e-perfect code in the graph Cn

q =
Cq�Cq� · · ·�Cq (n times).

Let G = Cq1�Cq2� · · ·�Cqn ; then we will denote the vertices of G with bold
letters. For u ∈ G we reserve the symbols u1, . . . , un for the components of u, and
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thus u = (u1, . . . , un). The distance function in the graph G will be denoted by d,
and the distance function in Cqi will be denoted by di, so that for x,y ∈ G we have

di(xi, yi) = min{|xi − yi|, qi − |xi − yi|}

and

d(x,y) =

n∑
i=1

di(xi, yi) .

Note also that d(x,y) ≤
∑n

i=1 |xi − yi| and d(x,0) =
∑n

i=1 d(xi, 0) ≤
∑n

i=1 |xi|.

3. Some existence results. The following theorem describes an optimal local
structure for an r-ball in the graph G = Cq1�Cq2� · · ·�Cqn , where n ≥ 3 and r ≥ 2
(and q1, . . . , qn are appropriate).

Theorem 3.1. Let n ≥ 3, G = Cq1�Cq2� · · ·�Cqn , where qi is even for i =
1, . . . , n. If

∑n
i=1 qi/2 is odd and 2r + 1 =

∑n
i=1 qi/2, then for any r-ball in G there

exist an optimal local structure.
We prove the existence of an optimal local structure for B(0, r). Let u =

(q1/2, . . . , qn/2). We claim that B(u, r) is an optimal local structure for B(0, r)
(and vice versa). We have d(0,u) =

∑n
i=1 qi/2 = 2r + 1, and hence B(0, r) ∩

B(u, r) = ∅. If x ∈ G \ B(0, r), then
∑n

i=1 di(xi, 0) ≥ r + 1, and therefore d(u,x) =∑n
i=1 di(qi/2, xi) =

∑n
i=1 qi/2 − di(xi, 0) ≤ r. Thus C = {0,u} is an r-perfect code

in G, and hence B(u, r) is an optimal local structure for B(0, r) (and vice versa).
Let n ≥ 3, r ≥ 2, and G = Cq1�Cq2� · · ·�Cqn . We conjecture that the only

existing optimal local structures in G are the optimal local structures of Theorem
3.1; that is, an optimal local structure for an r-ball exists if and only if qi is even for
i = 1, . . . , n,

∑n
i=1 qi/2 is odd, and 2r + 1 =

∑n
i=1 qi/2.

4. Nonexistence of an optimal local structure for n = 3. We first show
the nonexistence of an optimal local structure for B(0, r) ⊂ Cq1�Cq2�Cq3 , where
r ≥ 3 and q1, q2, q3 ≥ 2r + 1. Clearly, the proof of the nonexistence of an optimal
local structure for B(0, r) implies nonexistence for B(u, r) for any u ∈ Cq1�Cq2�Cq3 .
The general idea of the proof is to find a large enough set U ⊂ N(0, r), such that if
x,y ∈ U ,x 
= y, then every r-ball containing x and y intersects B(0, r). Thus the
number of r-balls constituting an optimal local structure is at least |U|. Since the
set U is large, any family of r-balls neighboring B(0, r) and containing the set U will
contain intersecting r-balls. In this section we assume r ≥ 3 and G = Cq1�Cq2�Cq3 ,
where q1, q2, q3 ≥ 2r+1. Since the results of this section are more or less special cases
of the results in the next section, we refer the reader to the proofs of Lemma 4.1–4.6.

Lemma 4.1. Let
A1 = {(2, 1, r − 2), (1, 2, r − 2), (1, 1, r − 1)};
A2 = {(−2, 1, r − 2), (−1, 2, r − 2), (−1, 1, r − 1)};
A3 = {(2,−1, r − 2), (1,−2, r − 2), (1,−1, r − 1)};
A4 = {(−2,−1, r − 2), (−1,−2, r − 2), (−1,−1, r − 1)} .

Then Ai ⊂ N(0, r) for i = 1, . . . , 4.

Proof. Since q1, q2, q3 ≥ 2r+1, we have for t ∈
⋃4

i=1 Ai that d(t,0) =
∑3

k=1 |tk| =
r + 1.

The vertices of A1 and A2 are depicted in Figure 4.1 for the case r = n = 3.
Lemma 4.2. Let t ∈ Ai for some i = 1, . . . , 4. If t ∈ B(u, r), B(u, r)∩B(0, r) =

∅, then the following hold.
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Fig. 4.1. The vertices of A1 and A2.

(i) If i ∈ {1, 2} and ti > 0, then ui = ti + wi, where 0 ≤ wi ≤ r.
(ii) If i ∈ {1, 2} and ti < 0, then ui = ti − wi, where 0 ≤ wi ≤ r.
(iii) u3 = t3 + r − |u1 − t1| − |u2 − t2|, where |u1 − t1| + |u2 − t2| ≤ r.

Conversely, for every u satisfying (i), (ii), and (iii), t ∈ B(u, r).
Proof. See the proof of Lemma 5.2.
Lemma 4.2 is describing all potential centers u of an r-ball containing t and not

intersecting B(0, r). Let t ∈ Ai and denote by Ut the set of all vertices u satisfying
(i), (ii), and (iii) of Lemma 4.2. With this notation we have the following corollary.

Corollary 4.3. If B(x(1), r), B(x(2), r), . . . , B(x(m), r) is an optimal local struc-

ture for B(0, r), then for every t ∈
⋃4

i=1 Ai there is exactly one k ∈ {1, . . . ,m} such
that x(k) ∈ Ut.

For i = 1, . . . , 4 we define the sets Ai by

Ai =
⋃

t∈Ai

Ut .

The following lemma gives an explicit description of the sets Ai (see Figure 4.2).
Lemma 4.4. For i = 1, . . . , 4 the sets Ai are the following:

A1 = {(1 + v1, 1 + v2, 2r − 1 − v1 − v2) | v1, v2 ≥ 0, v1 + v2 ≤ r + 1};
A2 = {(−1− v1, 1 + v2, 2r− 1− v1 − v2) | v1, v2 ≥ 0, v1 + v2 ≤ r+ 1};
A3 = {(1 + v1,−1− v2, 2r− 1− v1 − v2) | v1, v2 ≥ 0, v1 + v2 ≤ r+ 1};
A4 = {(−1−v1,−1−v2, 2r−1−v1−v2) | v1, v2 ≥ 0, v1 +v2 ≤ r+1}.

Moreover, if qi ≥ 2r + 5 for i = 1, 2, then Aj ∩ Ak = ∅ for j 
= k.
Proof. See the proof of Lemma 5.4.
By the definition of the set Ai, for any vertex x ∈ Ai we have B(x, r) ∩ Ai 
= ∅,

and conversely, for any t ∈ Ai and any u such that B(u, r) ∩ B(0, r) = ∅ we have
u ∈ Ai. In what follows we will use the following notation for x ∈ A1. Instead of
writing

x = (1 + v1, 1 + v2, 2r − 1 − v1 − v2),

we write

x = (1 + v1(x), 1 + v2(x), 2r − 1 − k(x)) ,

where v1(x) = v1, v2(x) = v2, and k(x) = v1(x) + v2(x). Similar notation is used for
any x ∈

⋃
Ai.
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2r-1

2r-2

2r-3

2r-4

r

r+1

r-2

r-1

Fig. 4.2. The sets Ai, i = 1, 2, 3, 4, for r = 6.

Lemma 4.5. Suppose B(x(1), r), B(x(2), r), . . . , B(x(m), r) is an optimal local
structure for B(0, r), and let X = {x(1),x(2), . . . ,x(m)},Xj = Aj∩X for j = 1, . . . , 4.
Then for every j ∈ {1, . . . , 4} there is exactly one x ∈ Xj such that k(x) ≤ r. Addi-
tionally, for every s ∈ {1, 2} and every j ∈ {1, . . . , 4}, there is exactly one y ∈ Xj,
such that vs(y) > 0.

Proof. See the proof of Lemma 5.5.
Lemma 4.6. Let u ∈ A1,w ∈ A2, x ∈ A3, and y ∈ A4. If

u = (1 + v1(u), 1 + v2(u), 2r − 1 − k(u));
w = (−1 − v1(w), 1 + v2(w), 2r − 1 − k(w));
x = (1 + v1(x),−1 − v2(x), 2r − 1 − k(x));
y = (−1 − v1(y),−1 − v2(y), 2r − 1 − k(y)),

then
d(u,w) ≤ max{2k(u), 2k(w)} + 2 − 2 min{v2(u), v2(w)};
d(u,x) ≤ max{2k(u), 2k(x)} + 2 − 2 min{v1(u), v1(x)}; and
d(u,y) ≤ max{2k(u), 2k(y)} + 4 .

Proof. See the proof of Proposition 5.7.
The above lemma gives us the distance function defined on

⋃4
i=1 Ai ×

⋃4
i=1 Ai.

We are now ready to prove the nonexistence of an optimal local structure for B(0, r)
in the case when n = 3.

Theorem 4.7. Let r ≥ 3 and G = Cq1�Cq2�Cq3 , where qi ≥ 2r+1 for i = 1, 2, 3.
Then there does not exist an optimal local structure for B(u, r) for any u ∈ G.

Proof. Assume first q1, q2 ≥ 2r + 5; thus Aj ∩ Ak = ∅ for j 
= k. Suppose

B(x(1), r), B(x(2), r), . . . , B(x(m), r)

is an optimal local structure for B(0, r), and denote X = {x(1),x(2), . . . ,x(m)} and
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Xj = Aj ∩ X for j = 1, . . . , 4. By Lemma 4.5 we have exactly one x ∈ X1 such that
k(x) ≤ r. Let

x = (1 + v1(x), 1 + v2(x), 2r − 1 − k(x))

and suppose v1(x) ≥ 2. Then for every u ∈ A3,

u = (−1 − v1(u), 1 + v2(u), 2r − 1 − k(u)) ,

such that v1(u) ≥ 1 and u 
= (2,−r − 1, r − 2), we have

d(x,u) ≤ max{2k(x), 2k(u)} + 2 − 2 min{v1(x), v1(u)} ≤ 2r .

Thus (2,−r − 1, r − 2) is the only element from Uh, where h = (2,−1, r − 2), at a
distance of more than 2r from x. Thus by Corollary 4.3 and Lemma 4.5,

X3 = {(2,−r − 1, r − 2), (1,−1, 2r − 1)},

and therefore for every u ∈ A4 we get u ∈ Uw, where w = (−2,−1, r − 2), and
therefore |X4| = 1. Thus X4 = {(−r,−2, r − 1)}. If z = (−r,−2, r − 1) and y ∈⋂

t∈A2
Ut, then v1(y), v2(y) ≥ 1 and k(y) ≤ r, and hence

d(y, z) ≤ max{2k(y), 2k(z)} + 2 − 2 min{v1(y), v1(z)} ≤ 2r .

Thus |X2| ≥ 2, but this is impossible since u ∈ X2 implies v2(u) ≥ 1 (because
z, (1,−1, 2r−1) ∈ X ). Analogously we get a contradiction in the case when v2(x) ≥ 2.
Suppose then v1(x), v2(x) ≤ 1.

Case 1. If v1(x), v2(x) = 1, then k(x) = 2 and X1 = {(2, 2, 2r − 3)}. Since
k(y) ≤ r for some y ∈ X3, we have

y = (1,−r − 1, r − 1) ∈ X3 ,

since this is the only vertex of A3, such that k(y) ≤ r and d(x,y) > 2r. Analogously

u = (−1 − r, 1, r − 1) ∈ X2 .

But then for every z ∈ A4 we have that d(z,x) or d(z,u) or d(z,y) is less than
2r.

Case 2. If v1(x) = 1 and v2(x) = 0, then k(x) = 1 and

X1 = {(2, 1, 2r − 2), (1, r + 2, r − 2)} .

In this case (−r, 2, r− 1), (1,−r− 1, r− 1), (r+2,−1, r− 2) ∈ X . Thus if d(x,y) > 2r
for x,y ∈ X ,x 
= y, then X4 = ∅, which is a contradiction.

Case 3. If v1(x) = 0 and v2(x) = 0, then k(x) = 0 and |X1| ≥ 2. If |X1| = 2, then

X1 = {(1, 1, 2r − 1), (1 + v1, 1 + v2, r − 2)}

and v1, v2 ≥ 1. Without loss of generality, v2 ≥ 2, and then for all u ∈ X2, we have
v2(u) ≤ 1 and k(u) ≥ r, and hence X2 = {(−r, 2, r − 1)}. Now let y ∈ X3 be the
element with k(y) = r. If v2(y) = 0, then y = (r + 1,−1, r − 1), and therefore
t = (1,−r − 2, r − 2) ∈ X3 (otherwise, v2(y) ≥ 1). Hence if z ∈ X4, such that
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k(z) ≤ r, then d(z,w) ≤ 2r for some w ∈ X , which by Lemma 4.5 is a contradiction.
If |X1| = 3, then

X1 = {(1, 1, 2r − 1), (r + 2, 1, r − 2), (1, r + 2, r − 2)}

and

X2 = {(−r, 2, r − 1)} and X3 = {(2,−r, r − 1)} ,

and hence X4 = ∅.
The same proof works also for q1, q2 ≥ 2r + 1; one only has to be aware that a

vertex x from Ai could be contained in Aj , and in this case one coordinate of x is
greater than r.

Note that in the case when one cycle is of length less than 2r+1, an optimal local
structures might exist. Take the example of G = C6�C6�C14. If x = (0, 0, 0) and
y = (3, 3, 7), then B(x, 6) is an optimal local structure for B(y, 6), and vice versa.
Moreover, C = {x,y} is a 6-perfect code in G.

5. The general case. In this section we consider products Cq1�Cq2� · · ·�Cqn ,
where n ≥ 4, r ≥ n, and qi ≥ 2r + 1 for i = 1, . . . , n, and we wish to prove that they
possess no optimal local structure.

Lemma 5.1. Let U be the set of all vertices (t1, . . . , tn−1, tn), such that |ti| ≥ 1
for i = 1, . . . , n− 1, tn = r + 1 − n, or tn = r + 2 − n, and such that

(i) if tn = r + 1 − n, then there is exactly one i ≤ n − 1, such that |ti| = 2 and
|tj | = 1 for j 
= i, n;

(ii) if tn = r + 2 − n, then |ti| = 1 for i = 1, . . . , n− 1.
Then U ⊂ N(0, r).

Proof. Since for every t ∈ U , we have d(t,0) =
∑n

i=1 |ti| = r + 1, hence we have
U ⊂ N(0, r).

Lemma 5.2. Let t ∈ U and suppose u is a vertex such that t ∈ B(u, r) and
B(u, r) ∩B(0, r) = ∅. Then

(i) if i ∈ {1, . . . , n− 1} and ti > 0, then ui = ti + wi, where 0 ≤ wi ≤ r;
(ii) if i ∈ {1, . . . , n− 1} and ti < 0, then ui = ti − wi, where 0 ≤ wi ≤ r;

(iii) un = tn + r −
∑n−1

i=1 |ui − ti|, where
∑n−1

i=1 |ui − ti| ≤ r.
Conversely, for every u satisfying (i), (ii), and (iii), t ∈ B(u, r).

Proof. Let t ∈ U and suppose u is a vertex, such that t ∈ B(u, r) and B(u, r) ∩
B(0, r) = ∅. Suppose there is a coordinate i0 ≤ n − 1 for which (i) does not hold.
Then ui0 = ti0 + wi0 , and since di0(ui0 , ti0) ≤ r we have −r < wi0 < 0. Thus
t′ = (t1, . . . , ti0−1, . . . , tn) ∈ B(u, r), contradicting the fact that B(u, r)∩B(0, r) = ∅.
With analogous argument we prove (ii).

Let un = tn + r − k for some k. Since dn(un, tn) ≤ r we have 0 ≤ k ≤ 2r.
If k > r, then t′ = (t1, . . . , tn−1, tn − 1) ∈ B(u, r), which is a contradiction. Thus
un = tn + r − k for some k ∈ {0, . . . , r}. Since B(u, r) ∩B(0, r) = ∅ and t ∈ N(0, r)

we have d(u, t) = r, and thus
∑n−1

i=1 |ui − ti| = k.
Conversely, if u satisfies (i), (ii), and (iii), then d(t,u) = r, and thus t ∈ B(u, r).

Note that if qn > 4r − 2 and qi > 4r + 4 for i = 1, . . . , n − 1, then (i), (ii), and (iii)
together give B(u, r) ∩B(0, r) = ∅.

Lemma 5.2 is an analog of Lemma 4.2, describing all potential centers u of an
r-ball containing t and not intersecting B(0, r). Let t ∈ U and denote by Ut the set
of all vertices u satisfying (i), (ii), and (iii) of Lemma 5.2. With this notation we have
the following corollary.
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Corollary 5.3. If B(x(1), r), B(x(2), r), . . . , B(x(m), r) is an optimal local struc-
ture for B(0, r), then for every t ∈ U there is exactly one i ∈ {1, . . . ,m} such that
x(i) ∈ Ut.

For i = 0, . . . , n− 1 we define the sets Ui as follows:
U0 = {(t1, . . . , tn) ∈ U | ti > 0 for i = 1, . . . , n} and
Ui = {(t1, . . . , tn) ∈ U | ti < 0, tj > 0 for j 
= i} for i 
= 0 .

Note that U0, U1, and U2 are the sets A1, A2, and A3, if n = 3. Finally, we define for
i = 0, . . . , n− 1 the set Vi as follows:

Vi =
⋃
t∈Ui

Ut .

Note that the sets Vi are analogous to the sets Ai and that these sets appear sym-
metrically. The following lemma gives an explicit description of the sets Vi.

Lemma 5.4. Let x ∈ G. Then x ∈ V0 if and only if

x =

(
1 + v1, . . . , 1 + vn−1, 2r + 2 − n−

n−1∑
i=1

vi

)

for some v1, . . . , vn−1 such that
∑n−1

i=1 vi ≤ r+1 and 0 ≤ vi ≤ r+1 for i = 1, . . . , n−1,
and x ∈ Vi if and only if

(5.1) x =

(
1 + v1, . . . ,−1 − vi, . . . , 1 + vn−1, 2r + 2 − n−

n−1∑
i=1

vi

)

for some v1, . . . , vn−1 such that
∑n−1

i=1 vi ≤ r+1 and 0 ≤ vi ≤ r+1 for i = 1, . . . , n−1.
Proof. We use the notation of Lemma 5.2. Suppose u ∈ Vi for some i ≥ 1. We

shall prove u is of the form (5.1). Since u ∈ Vi, there is a t ∈ Ui such that u ∈ Ut.
Thus u satisfies (i), (ii), and (iii) of Proposition 5.2. Consider the equation

u =

(
t1 + w1, . . . , ti − wi, . . . , tn−1 + wn−1, tn + r −

n−1∑
i=1

wi

)

= (1 + v1, . . . ,−1 − vi, . . . , 1 + vn−1, 2r + 2 − n− k)

and define k = r + 2 − n− tn +
∑n−1

i=1 wi. Since tn = r + 1 − n or tn = r + 2 − n we
infer k ∈ {0, . . . , r + 1}. We have 0 ≤ vi ≤ r + 1 and 0 ≤ vj ≤ r + 1 for j 
= i by (ii)
and (i), respectively. Finally, we have for tn = r + 2 − n

n−1∑
i=1

vi =

n−1∑
i=1

wi = k,

and for tn = r + 1 − n

n−1∑
i=1

vi =

n−1∑
i=1

wi + 1 = k .

Now let’s prove the converse. Suppose u is of the form (5.1) and let
∑n−1

i=1 vi = k.
Case 1. If k ≤ r, then let tn = r + 2− n, ti = −1, and tj = 1 for j 
= i. It is easy

to check that then t ∈ Ui and u ∈ Ut.
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Case 2. If k = r + 1, then let tn = r + 1− n. Since
∑n−1

i=1 vi = r + 1, at least one
vi > 0. Let i0 be any index such that vi0 > 0, and let ti0 = 2, tj = 1 for j 
= i and
ti = −1 (if i0 
= i) or ti0 = −2 and tj = 1 for j 
= i (if i0 = i). With these settings we
again have t ∈ Ui and u ∈ Ut.

Note that in the case when qi ≥ 2r + 5 for i = 1, . . . , n− 1, we have Vj ∩ Vk = ∅
for j 
= k. In what follows we will use the following notation for x ∈ Vi. Instead of
writing

x =

(
1 + v1, . . . ,−1 − vi, . . . , 1 + vn−1, 2r + 2 − n−

n−1∑
i=1

vi

)
,

we write

x = (1 + v1(x), . . . ,−1 − vi(x), . . . , 1 + vn−1(x), 2r + 2 − n− k(x)) ,

where vi = vi(x) for i = 1, . . . , n− 1 and k(x) =
∑n−1

i=1 vi(x).

Lemma 5.5. Suppose B(x(1), r), B(x(2), r), . . . , B(x(m), r) is an optimal local
structure for B(0, r), and let X = {x(1),x(2), . . . ,x(m)},Xj = X∩Vj for j = 0, . . . , n−
1. Then for every j there is exactly one x ∈ Xj such that k(x) ≤ r, and for every
s ∈ {1, . . . , n− 1}, there is exactly one y ∈ Xj such that vs(y) > 0.

Proof. Both assertions follow from Corollary 5.3 and the proof of Lemma
5.4.

Example. We give an illustration of Lemma 5.5. Suppose n = 7 and r = 9; then
the set U0 can be covered by r-balls centered on the vertices x,y, z, and w:

x = (2, 4, 1, 1, 1, 1, 9) and (2, 1, 1, 1, 1, 1, 3), (1, 2, 1, 1, 1, 1, 3), (1, 1, 1, 1, 1, 1, 4) ∈ B(x, 9),
y = (1, 1, 11, 1, 1, 1, 3) and (1, 1, 2, 1, 1, 1, 3) ∈ B(y, 9),
z = (1, 1, 1, 11, 1, 1, 3) and (1, 1, 1, 2, 1, 1, 3) ∈ B(z, 9),
w = (1, 1, 1, 1, 4, 8, 3) and (1, 1, 1, 1, 1, 2, 3), (1, 1, 1, 1, 2, 1, 3) ∈ B(w, 9).

Note that k(x) = 4 ≤ r and k(y) = k(z) = k(w) = 10 = r + 1 and that the
vertices x,y, z, and w are pairwise on a distance 2r + 2 = 20.

Definition 5.6. Let u ∈ V0,x ∈ Vi, and y ∈ Vj for some i, j 
= 0, i 
= j. If

u = (1 + v1(u), . . . , 1 + vn−1(u), 2r + 2 − n− k(u)) ,
x = (1 + v1(x), . . . ,−1 − vi(x), . . . , 1 + vn−1(x), 2r + 2 − n− k(x)) ,
y = (1 + v1(y), . . . ,−1 − vj(y), . . . , 1 + vn−1(y), 2r + 2 − n− k(y)) ,

then we define the function χ : (
⋃n−1

i=0 Vi) × (
⋃n−1

i=0 Vi) → N0 by

χ(u,x) =
∑

k �=i min{vk(u), vk(x)} ,
χ(u,y) =

∑
k �=j min{vk(u), vk(y)}, and

χ(x,y) =
∑

k �=i,j min{vk(x), vk(y)} .

Proposition 5.7. Let u,x, and y be as in Definition 5.6. Then

d(u,x) ≤ max{2k(u), 2k(x)} + 2 − 2χ(u,x),
d(u,y) ≤ max{2k(u), 2k(y)} + 2 − 2χ(u,y), and
d(x,y) ≤ max{2k(x), 2k(y)} + 4 − 2χ(x,y) .
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Proof. Since |vk(u) − vk(x)| = vk(u) + vk(x) − 2 min{vk(u), vk(x)} for k 
= i, we
have

d(u,x) ≤
n∑

k=1

|uk − xk| =
∑
k �=i,n

|vk(u) − vk(x)| + vi(u) + vi(x) + 2 + |k(u) − k(x)|

=

n−1∑
k=1

vk(u) +

n−1∑
k=1

vk(x) + 2 − 2χ(u,x) + |k(u) − k(x)|

= k(u) + k(x) + 2 − 2χ(u,x) + |k(u) − k(x)|,

and therefore d(u,x) ≤ max{2k(u), 2k(x)} + 2 − 2χ(u,x). The rest we prove analo-
gously.

Corollary 5.8. Suppose x,y ∈
⋃
Vi and d(x,y) ≥ 2r + 1. Then

(i) if x ∈ V0,y ∈ Vi, i 
= 0, then χ(x,y) ≤ 1;
(ii) if x ∈ V0,y ∈ Vi, i 
= 0, and k(x), k(y) ≤ r, then χ(x,y) = 0;
(iii) if x ∈ Vi,y ∈ Vj , i 
= j, then χ(x,y) ≤ 2;
(iv) If x ∈ Vi,y ∈ Vj , i 
= j, and k(x), k(y) ≤ r then, χ(x,y) ≤ 1.

Now suppose that B(x(1), r), B(x(2), r), . . . , B(x(m), r) is an optimal local struc-
ture for B(0, r) and X = {x(1),x(2), . . . ,x(m)}. We already know by Corollary 4.3 and
the definition of Vj that Xj = X ∩ Vj 
= ∅ for j = 0, . . . , n− 1. Since d(x,y) ≥ 2r + 1
for x,y ∈ X ,x 
= y, we can use Proposition 5.7 to give us some further requirements
on the set X . Also, Lemma 5.5 gives some restrictions on the sets Xj . In the following
lemmas we will first show some additional properties of the sets Xj and then show
that either d(x,y) ≤ 2r for some x,y ∈ X ,x 
= y, or for some j the set Xj does
not fulfill Lemma 5.5, contradicting the fact that r-balls centered on vertices from X
constitute an optimal local structure.

Lemma 5.9. Suppose B(x(1), r), B(x(2), r), . . . , B(x(m), r) is an optimal local
structure for B(0, r). Then |Xj | ≥ 2 for j = 0, . . . , n− 1.

Proof. Assume on the contrary that |Xj | = 1 for some j ≤ n− 1. Without loss of
generality we can assume j = 0. Thus X0 = {x}, where

x = (1 + v1(x), . . . , 1 + vn−1(x), 2r + 2 − n− k(x)) ,

k(x) ≤ r, and vi(x) ≥ 1 for i = 1, . . . , n − 1. For i = 1, . . . , n − 1 let yi ∈ Xi

be the element such that k(yi) ≤ r (see Lemma 5.5). Since there is at most one
i ∈ {1, . . . , n− 1} such that k(yi) = 0 (see Proposition 5.7) and n− 1 ≥ 3, there exist
a, b ≤ n− 1, a 
= b, such that k(ya), k(yb) ≥ 1. Since vi(x) ≥ 1 for i = 1, . . . , n− 1 we
have by Corollary 5.8(ii) that

ya = (1, . . . , 1,−1 − k(ya), 1, . . . , 1, 2r + 2 − n− k(ya)) ∈ Xa

and

yb = (1, . . . , 1,−1 − k(yb), 1, . . . , 1, 2r + 2 − n− k(yb)) ∈ Xb

(recall that the elements of Xa and Xb have, respectively, an ath and a bth coordinate
negative). For i = 1, . . . , n− 1 and i 
= a let wi ∈ Xa be the element with vi(wi) ≥ 1;
then by Corollary 5.8(i), we have

wi = (1, . . . ,−1, . . . , r + 2, . . . , r + 1 − n),
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where the ith coordinate of wi is r + 2. Analogously for i = 1, . . . , n− 1 and i 
= b let
zi ∈ Xb be the element with vi(zi) ≥ 1; then by Corollary 5.8(i) we have

zi = (1, . . . ,−1, . . . , r + 2, . . . , r + 1 − n),

where the ith coordinate of zi is r + 2. Thus

Xa = {ya,wi | i = 1, . . . , n− 1, i 
= a} and Xb = {yb, zi | i = 1, . . . , n− 1, i 
= b} .

Since n ≥ 4 we have i 
= a, b for some i ∈ {1, . . . , n−1} and d(zi,wi) = 4 ≤ 2r .
Theorem 5.10. Let r ≥ n ≥ 4 and G = Cq1�Cq2� · · ·�Cqn , qi ≥ 2r + 1 for

i = 1, . . . , n. Then there does not exist an optimal local structure for B(u, r) for any
u ∈ G.

Proof. It is enough to prove this for u = 0. Assume on the contrary that
B(x(1), r), B(x(2), r), . . . , B(x(m), r) is an optimal local structure for B(0, r). Suppose
that there is an x ∈ ∪n−1

i=0 Xi such that k(x) ≤ r − 1. Since the sets Vi are symmetric
we can assume, without loss of generality, that x ∈ X0. (If there is no x ∈ ∪n−1

i=0 Xi

such that k(x) ≤ r − 1, then let x ∈ X0 be the vertex with k(x) ≤ r.) Therefore,

by Proposition 5.7, k(y) ≥ r for every y ∈
⋃n−1

i=0 Xi,y 
= x. Let s be the number of
coordinates of x, with vi(x) 
= 0. Thus

s = |{i | vi(x) > 0}| ,

and we can assume, without loss of generality, that v1(x), . . . , vs(x) > 0.
By Lemma 5.9, 0 ≤ s ≤ n− 2 and |Xi| ≥ 2 for i = 1, . . . , n− 1. We claim that for

every i 
= 0 there is a y ∈ Xi, such that vk(y) ≥ 3 for some k ∈ {1, . . . , n− 1}, k 
= i.
Assume on the contrary that for some i0 ∈ {1, . . . , n−1} and for every y ∈ Xi0 , vk(y) ≤
2 for k 
= i0. Since |Xi0 | ≥ 2, there is a u ∈ Xi0 such that vi0(u) = 0. Thus∑

i �=i0
vi(u) = r if k(u) = r and

∑
i �=i0

vi(u) = r + 1 if k(u) = r + 1. Assume
k(u) = r + 1. Let

Q1 = {i | vi(u) = 1} and Q2 = {i | vi(u) = 2} ,

and denote

q1 = |Q1| and q2 = |Q2| .

Thus

q1 + 2q2 = r + 1 ≥ n + 1 .

Let z ∈ V0 and z 
= x. Since k(x) ≤ r, we have k(z) = r + 1 and vi(z) = 0 for
i ≤ s. For any i ∈ Q2,we have vi(z) ≤ 1, since otherwise vi(z), vi(u) ≥ 2, and
χ(u, z) ≥ 2, and therefore d(u, z) = 2k(z) + 2− 2χ(u, z) ≤ 2r. Note that q2 ≥ 3, and
by Corollary 5.8(i) there is at most one coordinate i ≤ s with vi(u) ≥ 1. For every

i ∈ Q2, i ≥ s+ 1, there is z ∈ V0 such that vi(z) = 1. Since
∑n−1

i=s+1 vi(z) = r+ 1 ≥ 5,
there is a coordinate � 
= i such that v�(z) ≥ 1. Moreover, � ≥ s+ 1 and � /∈ Q1 ∪Q2.
This reasoning gives the following inequality:

(5.2) n−1−s−(q1+q2−1) ≥ q2−1 for s ≥ 1, n−1−(q1+q2) ≥ q2 for s = 0.

The left side of the inequality is (at most) the number of the coordinates i ≥ s+1 with
vi(u) = 0, and the right side is (at least) the number of the coordinates i ≥ s+1, i 
= i0,
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with vi(u) = 2. But since q1 + 2q2 = r + 1 ≥ n + 1, the inequalities (5.2) yield a
contradiction. Assume now that k(u) = r; then

n− 1 − s− (q1 + q2) ≥ q2 for s ≥ 0,

and since q1 + 2q2 = r ≥ n we have a contradiction again. So in any case, we ran
into contradiction, and thus for every i 
= 0 there is a y ∈ Xi, such that vk(y) ≥ 3 for
some k ∈ {1, . . . , n− 1}, k 
= i. But if y1,y2 are from Xi1 ,Xi2 , respectively, such that
vk(y1), vk(y2) ≥ 3 for some k 
= i1, i2, then χ(y1,y2) ≥ 3, and hence d(y1,y2) ≤ 2r.
Thus for every k ∈ {1, . . . , n − 1}, there is a y ∈ Xi, i 
= k, such that vk(y) ≥ 3.
Since there is a z ∈ X0 such that vk(z) ≥ 2 for some k ≥ s + 1 and a y ∈ Xi, i 
= k,
such that vk(y) ≥ 3, we have χ(y, z) ≥ 2, and therefore d(y, z) ≤ 2r, which is a
contradiction.

Note that in the proof of the above theorem the sets Vi do not need to be disjoint,
all arguments work also if 2r + 1 ≤ qi ≤ 2r + 4, and the sets Vi are not disjoint.

Since the local structure of Cartesian products of paths is the same as the local
structure of Cartesian products of cycles, we can state the following theorem (we
denote the path of length k by Pk and set V (Pk) = {0, 1, . . . , k}).

Theorem 5.11. Let r ≥ n ≥ 3. If G = Pq1�Pq2� · · ·�Pqn , qi ≥ 4 for i =
1, . . . , n, and qj ≥ r+2−n for some j ∈ {1, . . . , n}, then there does not exist an optimal
local structure for B(u, r) for any u such that uj ≥ r + 2− n (or uj ≤ qj − r− 2 + n)
and 2 ≤ ui ≤ qi − 2 for i 
= j.

The position of u makes it possible to define a set analogous to the set U of
Lemma 5.1 and proceed with the proof of the above theorem, as done in the proof for
products of cycles.

6. Conclusion. Combining sections 4 and 5, we have the following theorem.
Theorem 6.1. Let r ≥ n ≥ 3 and G = Cq1�Cq2� · · ·�Cqn , qi ≥ 2r + 1 for

i = 1, . . . , n. Then there does not exist an optimal local structure for B(u, r) for any
u ∈ G.

The results of this paper and the fact that there does not exist an optimal local
structure for n = 3, r ≥ 2 (cf. [9, 11]) and for n = 4, r ≥ 2 (cf. [22]) justify the following
conjecture.

Conjecture 6.2. Let n ≥ 3 and 2 ≤ r ≤ n− 1. If G = Cq1�Cq2� · · ·�Cqn and
qi ≥ 2r + 1 for i = 1, . . . , n, then there does not exist an optimal local structure for
B(u, r) for any u ∈ G.

Lee codes have been a subject of intense research, and numerous results related to
Lee codes and perfect Lee codes have been given by different authors. However, the
underlying question of the existence of an optimal local structure remained unsolved
(except for some special cases). The results of this paper provide an understanding of
the local structure of Lee codes and give further suggestions for the study of Lee codes
and related topics such as domination and packing in Cartesian product of cycles and
paths.

Acknowledgment. Many thanks to Sandi Klavžar for many valuable sugges-
tions regarding this manuscript.

REFERENCES

[1] A. A. Andrade, J. C. Interlando, and R. Palazzo, Jr., Alternant and BCH codes over
certain rings, Comput. Appl. Math., 22 (2003), pp. 233–247.



762 SIMON ŠPACAPAN
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Abstract. In the study of double-loop computer networks, the diagrams known as L-shapes arise
as a graphical representation of an optimal routing for every graph’s node. The description of these
diagrams provides an efficient method for computing the diameter and the average minimum distance
of the corresponding graphs. We extend these diagrams to multiloop computer networks. For each
Cayley digraph with a finite abelian group as vertex set, we define a monomial ideal and consider
its representations via its minimal system of generators or its irredundant irreducible decomposition.
From this last piece of information, we can compute the graph’s diameter and average minimum
distance. That monomial ideal is the initial ideal of a certain lattice with respect to a graded
monomial ordering. This result permits the use of Gröbner bases for computing the ideal and finding
an optimal routing. Finally, we present a family of Cayley digraphs parametrized by their diameter d,
all of them associated to irreducible monomial ideals.

Key words. monomial ideals, Cayley digraph, Gröbner bases, multiloop networks

AMS subject classifications. 13P10, 05C25, 68M10

DOI. 10.1137/050646056

1. Introduction. Let Γ be a group and S ⊆ Γ a subset. The Cayley digraph
associated to (Γ, S) is a directed graph whose vertex set is Γ and whose edge set is
{(g, h) ∈ Γ2 | g−1h ∈ S}. Every Cayley digraph is vertex-symmetric and its degree
equals the number of elements in S. These graphs are connected if and only if the
set S generates the group. We are dealing with digraphs associated to finite abelian
groups, but we are mainly interested in those associated to cyclic groups. Let N be
a positive integer and ZN the integers modulo N . For any subset S = {j1, . . . , jr} of
this abelian group we denote by CN (S) = CN (j1, . . . , jr) the corresponding Cayley
digraph (see Figure 1.1), which is called the circulant digraph or multiloop computer
network of jumps j1, . . . , jr. It is connected if and only if gcd(j1, . . . , jr, N) = 1.
If S is a subset of ZN such that for every element in S its inverse also lies in S,
then CN (S) is an undirected graph called a circulant graph or distributed multiloop
computer network.

Multiloop networks were first proposed in [32] for organizing multimodule memory
services and have a vast number of applications in telecommunication networking,
VLSI design, and distributed computation. Their properties, such as diameter and
reliability, have been the focus of much research in computer network design; see, for
instance, [5, 7, 12, 13, 19, 21, 25, 33].

The single-loop network or ring network is mathematically trivial. Digraphs with
r = 2 or double-loop networks and their corresponding undirected graphs (distributed
double-loop networks, with degree four) have been extensively studied; see the sur-
veys [3, 20] and the references therein. When CN (j1, j2) is connected, one can define a
minimum distance diagram (MDD) as an array with vertex 0 in cell (0, 0) and vertex c
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Fig. 1.1. C18(3, 8).
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Fig. 1.2. MDD of C33(5, 14).

in cell (x, y) (x is the column index and y the row index), for a particular choice satis-
fying j1x+ j2y ≡ c mod N , and x+ y minimum. One example is shown in Figure 1.2.

The classical work of Wong and Coppersmith [32] presents an algorithm for con-
structing an MDD of CN (j1, j2) in O(N2) steps and shows it has an “L” shape.
Several characterizations and applications of this idea for describing circulants with
desirable properties appear in [1, 8, 9, 13]. However, they do not focus on higher
degree digraphs.

Two notable parameters in a graph are the diameter d and the average minimum
distance d̄. The former represents the worst delay in the communication between two
nodes, and the latter represents the average delay. Given an L-shape, it is easy to
compute d and d̄.

On the other hand, let dr(N) := min{d(CN (j1, . . . , jr) | j1, . . . , jr ∈ ZN}. An im-
portant problem is to determine this value and find a specific CN (j1, . . . , jr) attaining
this minimum. The network CN (j1, . . . , jr) is said to be optimal if its diameter equals
dr(N). In some cases, it is difficult to obtain optimal networks; however, one can find
general simple functions serving as upper and lower bounds for dr(N); see [3]. The
paper [32] shows d2(N) ≤

√
3N − 2 and presents a family of circulant digraphs with

diameter 2
√
N − 2.

In this article we present monomial ideals as a natural tool for studying the
MDDs of arbitrary Cayley digraphs, provided that the vertex group is finite and
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abelian. Given a graded monomial ordering and a Cayley digraph (Γ, S), we build a
monomial ideal in the polynomial ring K[X1, . . . , Xr], where K is an arbitrary field
and r = #S. We obtain some properties of this monomial ideal: in particular, a
certain generalization of the two-dimensional L-shape is shown. On the other side, it
is the initial ideal of a certain lattice. This result permits the use of Gröbner bases
for computing the ideal and finding an optimal routing for each pair of nodes. Given
the representation of the monomial ideal via its irreducible decomposition, we provide
formulae to compute d and d̄. We also show a family of circulant digraphs of degree
two which coincides with the family obtained in paper [32]. Finally, we present a
new and attractive family of circulant digraphs of arbitrary degree parametrized by
the diameter d, with average minimum distance d/2, and whose associated monomial
ideals are irreducible.

The paper is divided into nine sections. In section 2 we collect several known
facts about monomial ideals, presenting examples and fixing notation for later use.
Section 3 presents the key idea of associating monomial ideals to digraphs in order to
obtain an MDD, and it also provides an algorithm to construct an MDD for Cayley
digraphs with a finite abelian group as vertex set. Section 4 is devoted to present-
ing the relation between MDDs and the ideal of a lattice. In section 5 we present
an algorithm to compute a shortest path between two vertices by means of Gröbner
bases. Section 6 presents an algorithm specifically tailored for degree three circulants.
It computes the minimal system of generators in O(s logN) arithmetic operations,
where s is the number of generators and N is the number of nodes. Section 7 is dedi-
cated to providing formulae to find the diameter and the average minimum distance.
Then section 8 presents a family of multiloop computer networks with an arbitrary
number of jumps, parametrized by the diameter d, and all of them associated to ir-
reducible monomial ideals. We conclude with a short summary and a discussion of
open questions.

2. Monomial ideals. Monomial ideals form an important link between com-
mutative algebra and combinatorics. Here we review several basic related results and
definitions concerning monomial ideals; see, for instance, [2, 30].

Let K be an arbitrary field and K[X1, . . . , Xr] the polynomial ring in the variables
X1, . . . , Xr. Throughout the paper, we very often identify monomials of K[X1, . . . , Xr]
with vectors of N

r and use the following notation:

xa = Xa1
1 · · ·Xar

r ←→ a = (a1, . . . , ar),

xa|xb ⇐⇒ a = (a1, . . . , ar) ≤ b = (b1, . . . , br)
def⇐⇒ ai ≤ bi ∀i = 1, . . . , r,

a = (a1, . . . , ar) � b = (b1, . . . , br)
def⇐⇒ (bi > 0 ⇒ ai < bi) ,

ei := (0, . . . ,
i
�
1 , . . . , 0), m

a := (Xai
i | ai > 0), 1 := (1, . . . , 1).

The definition of � suits the characterization in (2.2), and when it is employed
(in expressions like a � b), we usually have 1 ≤ b.

A monomial ideal is an ideal generated by monomials, i.e., I ⊂ K[X1, . . . , Xr] is
a monomial ideal if there is a subset A ⊆ N

r such that

I = (xa | a ∈ A) = (A).
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y3

x2y3

x2y2

x4y2

x4

Fig. 2.1. Staircase diagram and Buchberger’s graph.

There are two standard ways of describing a nontrivial monomial ideal:
• Via the (unique) minimal system of monomial generators I = (xa1 , . . . ,xas),

we have

(2.1) xu ∈ I ⇐⇒ ∃ i ∈ {1, . . . , s} | ai ≤ u.

• Via the (unique) irredundant decomposition by irreducible monomial ideals
I = mb1 ∩ · · · ∩ mbn , we have

(2.2) xu �∈ I ⇐⇒ ∃ i ∈ {1, . . . , n} | u � bi.

The so-called staircase diagram is a useful graphical representation of monomial
ideals.

Example 2.1. The monomial ideal I1 := (x4, x2y2, y3) = (x2, y3) ∩ (x4, y2) is
represented on the left in Figure 2.1.

There is an algorithm for finding the irredundant irreducible decomposition of a
monomial ideal based on Alexander duality; see [27]. An irreducible component ma

can be associated to lcm(Xa1
1 , . . . , Xar

r ) = xa. On the other hand, if K[X1, . . . , Xr]/I
is an artinian ring, then the monomial xa associated to the irreducible component ma

must coincide with the least common multiple of a subset of the minimal generators
of I. In the above Example 2.1 we have

x2y3 = lcm(x2y2, y3), x4y2 = lcm(x4, x2y2).

The diagram on the right in Figure 2.1 is called Buchberger’s graph of the mono-
mial ideal I1; see [28]. At any stage in Buchberger’s algorithm for computing Gröbner
bases, one considers the S-pairs among the current polynomials and removes those
which are redundant; the minimal S-pairs define a graph on the generators of any
monomial ideal.

Theorem 2.2. Let I be a nontrivial monomial ideal given by a minimal system
of generators I = (xa1 , . . . ,xas) and by the irredundant irreducible decomposition
I = mb1 ∩ · · · ∩ mbn . The following are equivalent:

1. K[X1, . . . , Xr]/I is an artinian ring.
2. ∀i = 1, . . . , r, one of the generators’ exponents is aj = αiei for some αi ∈ N.
3. ∀i = 1, . . . , n, ∀j = 1, . . . , r, bi,j > 0.

Proof. We need to prove that the number of monomials outside I is finite if and
only if either of the two last items is satisfied. We do that using the characterizations
in (2.1) and (2.2).
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Fig. 2.2. Planar graph associated to I2.

If the second item is true, then the number of monomials which do not lie in the
ideal is bounded by the product

∏
αi. Conversely, if that item is false, there exists

an index i ∈ {1, . . . , r} such that Xα
i �∈ I ∀α ∈ N.

The third item is obviously equivalent to #{u ∈ N

r | u � bi for some i ∈
{1, . . . , r} } < ∞.

We conclude this section by illustrating those facts in the following example.
Example 2.3. In [28], a planar graph is associated to every monomial ideal in three

variables satisfying the conditions in Theorem 2.2. The monomial xb associated to
an irreducible component mb is identified with a connected component in the graph’s
complement and can be obtained as the least common multiple of the generators in
its boundary. In Figure 2.2 we show this construction for the ideal:

I2 := (x8, x4y2, y5, y3z, z5, x3z4, x7z, x3y2z2)

= (x8, y2, z) ∩ (x7, y2, z4) ∩ (x4, y3, z2) ∩ (x4, y5, z) ∩ (x3, y3, z5).

The description of those relations permits the simplification of some computations
on Cayley digraphs, as pointed out in section 7.

3. Minimum distance diagrams. There are different ways to relate monomial
ideals with graphs (see, for instance, [30]). In this section we propose a new approach
to studying Cayley digraphs in which we associate a graph with a monomial ideal.
The routing problem for Cayley digraphs reduces to studying paths originating at
a fixed vertex, as these graphs are vertex-symmetric. Given a graph associated to
(Γ, {s1, . . . , sr}), where Γ is finite and abelian, we are looking for the shortest path
from node 0Γ to node c ∀c ∈ Γ, i.e., a minimum distance diagram (MDD). We can
construct the routing mapping R:

(3.1)
R : N

r −→ Γ
a �→ a1s1 + · · · + arsr.

Thus, we need to find a right inverse map of R:

D : Γ −→ N

r,

such that

R(D(c)) = c ∀c ∈ Γ and ‖D(c)‖1 = min{‖x‖1 | x ∈ R−1(c)}.

In general, map D is not unique; see Figure 3.1. This happens when the set R−1(c)
contains two or more elements with minimum �1-norm for some c ∈ Γ.
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Fig. 3.1. Different MDDs for C33(5, 14).

In digraphs of degree two, we can characterize this situation in terms of lattices.
Let R̄ be the extended map of R from N

r to Z

r, and L the kernel of R̄.
Proposition 3.1. Let D be an MDD for (Γ, {s1, s2}), where Γ is finite and

abelian. Then there is a different MDD for the same graph if and only if there exists
a vector (T,−T ) ∈ L with T > 0 and T ≤ max{a1, a2} for some a = (a1, a2) ∈ D(Γ).

In the example C33(5, 14) from Figure 1.2, the associated lattice is generated by
{(−16, 1), (−1,−2)}:

(T,−T ) = α(−16, 1) + β(−1,−2) ∈ L ⇐⇒ α =
−T

11
, β =

5T

11
∈ Z ⇐⇒ T ∈ (11).

In consequence, this graph admits exactly four MDDs: the L-shape one given
in the introduction and the three shown in Figure 3.1. However, only two of them
have an “L” shape. These correspond with the only two graded monomial orderings
in K[X,Y ].

In accordance with the previous discussion, a well-ordering in N

r compatible with
the norm �1 determines a unique MDD. Then, fixing a graded monomial ordering ≺,
the obtained MDD is

(3.2)
D : Γ −→ N

r

c �→ min(R−1(c)).

For each graded monomial ordering we can associate the bijective map p : N −→ N

r,
such that n < m ⇒ p(n) ≺ p(m), that is, satisfying

p(i) = min (Nr\{p(j) | j < i}) .

This map provides a method of constructing the MDD with respect to a fixed mono-
mial ordering. The procedure visits (through p) the elements in N

r corresponding
with vertices (elements in Γ) until all of them are completed.
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Algorithm 3.1: MDD construction.
Input: Γ = {ci | 0 ≤ i < N}, abelian group, {s1, . . . , sr}, generating set; s.
Output: D(ci), i = 0, . . . , N − 1.
D[c0, . . . , cN−1] := ∅̄, S := 0, a := 0;1

while S < N do2

c := R(a);3

if D(c) = ∅ then4

D(c) := a;5

S := S + 1;6

end7

a := s(a);8

end9

We include in the MDD building method’s input the mapping s, such that

s : N

r −→ N

r

a �→ p(p−1(a) + 1),

a ≺ s(a), (a ≺ b ⇒ s(a) � b).

Of course, computing the whole diagram D[0, . . . , N − 1] of a circulant cannot be
computationally efficient, its size being exponential in the input size. Furthermore,
Algorithm 3.1 performs an exhaustive search that can last at most for

(
d+r
d

)
loops

until reaching its ending, where d is the graph’s diameter. When r � d, that bound
is approximately 1

r!d
r. The examples in Figure 3.2 illustrate the algorithm’s output.

Definition 3.2. Let Γ be a finite abelian group and (Γ, S) an associated connected
digraph. Let ≺ be a graded monomial ordering. The monomial ideal

IS := (Nr\D(Γ))

is the ideal associated with the graph (Γ, S) and the monomial ordering ≺.
In the examples of Figure 3.2 we have two monomial ideals (J1 and J2) associated

with C104(1, 5, 31) and with graded lex x ≺ y ≺ z and x ≺ z ≺ y, respectively:

J1 = (x5, xy6, y7, y3z3, z4, xy2z3) = (x5, y2, z4) ∩ (x5, y6, z3) ∩ (x, y7, z3) ∩ (x, y3, z4),

J2 = (x5, y4, y3z3, z7, xy2z3) = (x5, y2, z7) ∩ (x5, y4, z3) ∩ (x, y3, z7).

Proposition 3.3. With the above notation, we have that N

r\D(Γ) is an ideal of
the semigroup N

r.
Proof. Let a be an element in the ideal generated by N

r\D(Γ). Then ∃b ∈ N

r,
∃z ∈ N

r\D(Γ) such that a = b+z. Now, z �∈ D(Γ). Then ∃u ∈ N

r, with R(u) = R(z),
u ≺ z. Since u+b ≺ z+b and R is a linear map, R(u+b) = R(a) and a �∈ D(Γ).

Obviously, D is an injective map and #
(
D(Γ)

)
= #Γ < ∞. So, the monomial

ideal IS always contains generators of the form Xa1
1 , . . . , Xar

r ; that is, the quotient
ring K[X1 . . . , Xr]/IS is artinian (see Theorem 2.2). We say that an MDD built from a
graded monomial ordering is degenerated if IS is an irreducible ideal, that is, when the
minimal system of generators of IS contains only as many generators as the cardinal
of S. In general, it is not the case as illustrated in the above examples. The paper [32]
constructed MDDs in L-shape from circulant digraphs of degree two (i.e., r = 2). The
following concept is the generalization of L-shapes to arbitrary dimension.
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Fig. 3.2. MDD of C104(1, 5, 31).

Definition 3.4. Let I be a monomial ideal and let A be the minimal system
of generators of I. We say that I is an L-shape if there exists at most one element
xa = Xa1

1 · · ·Xar
r ∈ A such that ai > 0 ∀i = 1, . . . , r.

We say that an MDD built following Algorithm 3.1 is an L-shape if the associated
monomial ideal is an L-shape.

In the examples of Figure 3.2 the generator involving every variable is xy2z3. We
will prove that any MDD built with Algorithm 3.1 is an L-shape. First we need the
following technical result.

Lemma 3.5. Let A be the minimal system of generators of IS. If the exponent
of xa ∈ A has some component ai positive, then b = (b1, . . . , br) := D(R(a)) satisfies
bi = 0.

Proof. Since a is an element of A, then a �∈ D(Γ). We must have a − ei ∈ D(Γ),
because otherwise a would not be a minimal generator. Now, b ≺ a and R(b) = R(a).
If we suppose bi > 0, then

R(b − ei) = R(a − ei), b − ei ≺ a − ei,

which contradicts a − ei ∈ D(Γ).

Now, we state the main result in this section.

Proposition 3.6. The output of Algorithm 3.1 is an L-shape.

Proof. Let A be the minimal system of generators of IS . If a ∈ A is such that
ai > 0 ∀i, then by Lemma 3.5 we have R(a) = R(0) = 0Γ.

Moreover, a − e1 ∈ D(Γ), and R(a − e1) = −s1. So, if a ∈ A and b ∈ A are two
generators with every component positive, then a − e1 = D(−s1) = b − e1. That
completes the proof.

Now, the problem is to find the list of generators describing the ideal associated to
a circulant digraph in a convenient way. The following section answers this question.
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4. Lattice ideals and L-shapes. In this section we study the initial ideal of
the lattice defined by the kernel of the extended routing map R̄ and the monomial
ideal associated to a circulant graph.

An integral lattice L of Z

r is the set of integer linear combinations of some integral
vectors; in other words, an integral lattice is a Z-submodule of Z

r. This object has
been used to solve many problems in mathematics and computer science (see, for
instance, [4, 16, 24, 26]).

For any integral lattice L ⊂ Z

r there is an associated binomial ideal (see [10, 31]):

IL := (xa+ − xa− | a ∈ L) ⊆ K[X1, . . . , Xr],

where a+ and a− are the positive and negative parts of vector a, that is, the unique
vectors with no negative component and such that a = a+ − a−.

The interesting articles [10, 31] study the combinatorics, geometry, and complex-
ity of Gröbner bases for the ideals IL. In particular, they show that

(4.1) xa − xb ∈ IL ⇐⇒ a − b ∈ L.

Given a Cayley digraph (Γ, S = {s1, . . . , sr}) associated to a finite abelian group,
we can extend the routing map R defined in (3.1) from N

r to Z

r:

R̄ : Z

r −→ Γ
a �→ a1s1 + · · · + arsr.

The kernel LS of the map R̄, i.e.,

LS := {(a1, . . . , ar) ∈ Z

r | a1s1 + · · · + arsr = 0Γ},

is the lattice associated to (Γ, {s1, . . . , sr}).
Given an integral lattice L and a monomial ordering ≺, for every nonzero binomial

xa − xb ∈ IL, the leading or initial monomial with respect to ≺ is given by

LM(xa − xb) :=

{
xa if xa � xb,
xb otherwise.

As usual, given a polynomial ideal J in K[X1, . . . , Xr] we denote by LM(J) the
monomial ideal generated by the leading monomials of all nonzero elements of J ,
that is,

LM(J) := (LM(f) | f ∈ J∗).

The following is one of the main results in this section.
Proposition 4.1. For every graded monomial ordering ≺, we have that

LM(ILS
) = IS .

Proof. The ideal ILS
is generated by binomials of the form xa − xb. Then it has

a Gröbner basis G also consisting of that kind of binomial. Let xa be a monomial in
LM(ILS

). There exists a binomial xa − xb in the basis G, and by (4.1), a − b ∈ LS .
Now, since a � b and both paths have the same image by R, then a �∈ D(ZN ).
Conversely, let xa ∈ IS . We take b := D(R(a)) ≺ a. It is clear that a − b ∈ LS , and
so xa − xb is a binomial in ILS

, whose leading monomial is xa.
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Gröbner bases were introduced by Buchberger in his thesis [6] and their use has
become widespread in commutative algebra and algebraic geometry. The theory of
Gröbner bases is related to several areas in mathematics and computer science; see,
for instance, [2, 17, 30]. As a consequence of the previous result we have that if G is
a minimal or reduced Gröbner basis of the ideal ILS

, then the leading monomials of
the elements of G constitute a minimal system of generators of our MDD. In order
to apply Buchberger’s algorithm for computing a finite Gröbner basis of an ideal, we
need to start with a finite set of generators. In this sense, we must point out that every
generating set of binomials for ILS

corresponds to a generating set of LS (see (4.1)),
but the converse is not true. Lemma 2.1 of [31] provides a sufficient condition for this
converse result to be true.

Proposition 4.2. Let CN (j1, . . . , jr) be a connected circulant graph with asso-

ciated lattice L. We have IL = (XN
1 XN

2 · · ·XN
r − 1, xa+ − xa− | a ∈ U), where

U := {(Nα1, . . . , Nαr), (α1j1 − 1, α2j2, . . . , αrjr), (α1j1, α2j2 − 1, . . . , αrjr), . . . ,

(α1j1, . . . , αr−1jr−1, αrjr − 1)},

and β, αi ∈ Z, (i = 1, . . . , r), satisfying 1 = α1j1 + · · · + αrjr + βN .
Proof. The proof follows from [31, Lemma 2.1] and a simple linear algebra

exercise.
Using Propositions 4.1 and 4.2 we can compute a minimal system of generators

of IS for circulant digraphs. The paper [31] also contains results on the complexity of
computing the reduced Gröbner basis of lattice ideals and on its size. In particular, it
provides an upper bound for the number of elements and shows an example lattice L
with exponential size in the bit complexity of a basis of L. Nevertheless, we must cite
program 4ti2, which is extremely efficient in computing the reduced Gröbner basis of
binomials ideals. That software is available at http://www.4ti2.de; see [18].

5. Optimal routing. In this section we show an algorithm for computing a
shortest path between two vertices for any Cayley digraph with a finite abelian group
as vertex set using a finite Gröbner basis of ILS

.
Message routing is a basic function in communication networks. The problem is

to find a route along which messages should be sent. The routing algorithm dictates
token passing strategies in communication networks.

Given a pair of nodes (t, s) in a graph, there are several paths which join the
origin t and the destination s. We are interested in optimal paths, i.e., those with
minimum length. For general graphs, finding a shortest path between two vertices
is a well-known and important problem. Efficient polynomial time algorithms have
been developed for various routing problems. However, for the family of circulant
graphs, there is an important distinction to be made, and that concerns the natural
input size to a problem. For an arbitrary graph it is common to consider the input
size to be O(N2), which is the number of bits in its adjacency matrix. However,
any circulant graph can be described by only r integers. In this representation the
input size is O(r logN). Thus, polynomial time algorithms for general graphs may
exhibit exponential complexity in the special case of circulant graphs for this compact
input representation. In [7] it is shown that the shortest path problem is NP-hard
for this concise representation. The paper [15] presents very efficient algorithms for
computing a shortest path for circulants with two jumps.

As we have already pointed out, in our case the routing problem is reduced to
pairs of nodes (0Γ, j) where the starting point is fixed. Using the well-known extended
Euclidean algorithm we compute a path c from vertex 0Γ to vertex j if it exists.
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We can apply the general integer programming techniques (see [29]) to find a
shortest path for circulant digraphs as follows.

Lemma 5.1. Any shortest path from 0 to j in CN (j1, j2, . . . , jr) is a solu-
tion to the following integer program: min{d · x|Ax ≥ b,x ∈ Z

r+1}, where x =
(x1, x2, . . . , xr, y) ∈ Z

r+1, d = (1, 1, . . . , 1, 0) ∈ Z

r+1, b = (j,−j, 0, . . . , 0) ∈ Z

r+2,
and

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

j1 j2 . . . jr N
−j1 −j2 . . . −jr −N
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ Z

(r+2)×(r+1),

and conversely.
So, with the number of jumps r fixed, we can derive an algorithm to compute a

shortest path in circulant digraphs requiring O(r + log r logN) arithmetic operations
on rational numbers of size O(logN); see [11, 15, 22, 23].

The main result of this section is the following.
Proposition 5.2. Let G be a Gröbner basis of the ideal ILS

with respect to any
graded monomial ordering ≺, and let c be a path (not necessarily a shortest one) in
R−1(j). Then the normal form of xc − 1 with respect to G is xd − 1, where d is the
shortest path from vertex 0Γ to vertex j with respect to the monomial ordering ≺.

Proof. We have c − d ∈ IL, which implies (xc − 1) − (xd − 1) ∈ ILS
. Clearly,

xd − 1 is a normal form, because xd �∈ IS .
This result provides a convenient algorithm to compute a shortest path and then

to design optimal routings.

6. An algorithm of MDD for triple-loop computer networks. In this
section we provide an algorithm specifically tailored for computing the minimal system
of generators for a triple-loop computer network, which requires O(s logN) arithmetic
operations, where s is the number of generators of the minimal system.

The case of degree two circulants is very simple. We always have two generators
of the form xa, yb, and there are two possibilities: there is one other generator xcyd

(c < a, d < b) or those two are the only generators (irreducible ideal case). We can
obtain this representation in an efficient way, for instance, using the algorithm in [8].

We present Algorithm 6.1 to compute the minimal generators of the ideal IS asso-
ciated to a circulant digraph of degree three. Once we have fixed a graded monomial
ordering, we need as an intermediate step a procedure to decide, given a path b,
whether or not it lies in the MDD. For b ∈ N

3, we define the Boolean function P (b)
to be the truth value of D(R(b)) = b.

Algorithm 6.1 works by computing, one by one, every generator in the ideal’s
minimal system. For each generator we use one or two binary searches. So, its
complexity is O(s logN) steps, where s is the number of generators. In the worst
case, an upper bound for s is 2N +1; see [31]. In practice, most of the time consumed
in each step is used calling up the boolean function P , which will be proved to be
computable in polynomial time.

Proposition 6.1. Algorithm 6.1 is correct.
Proof. By Theorem 2.2, among the generators of IS are monomials of the form xa,

yb, and zc. These are computed in lines 2–14 (part I). Lines 15–44 (part II) find every
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Algorithm 6.1: MDD description. The three jumps case. (I)

Input: j1, j2, j3, N ∈ N, gcd(j1, j2, j3, N) = 1, P .
Output: a1, . . . ,as ∈ N

3 | (xa1 , . . . ,xas) = (N3\D(ZN )); ai �≤ aj if i �= j.
k := 1;1

for i = 1, 2, 3 do2

m := 0, M := N.;3

while M −m > 1 do4

l :=

⌊
m + M

2

⌋
;

5

if P (lei) then6

m := l;7

else8

M := l;9

end10

end11

ak := Mei;12

k := k + 1;13

end14

generator involving two variables, and lines 45–54 (part III) work for the (possibly
missing) generator with all three variables.

The key fact is that if (a, 0, 0) is one of the generators we are looking for in the
first part, then for any l ∈ N, P (l, 0, 0) ⇐⇒ l < a. We can perform a binary search
to obtain the three generators.

In the second part, we start with generators involving the first two variables,
continue with the one without the y, and so on. For instance, for the first case,
we look at the generator (0, a, 0) found in the previous step. Then if (q, ∗, 0) is the
generator with lowest first component involving the first two variables, we can use
P (l, a − 1, 0) ⇐⇒ l < q to find q by a binary search. Once this is done, we fix the
generator’s second component ∗, aided by P (q, l, 0) ⇐⇒ l < ∗. In a similar way, we
continue to discover all the generators in this form.

Finally, there is only one generator possibly missing, which must satisfy R(b) = 0.
So, steps 45–47 find a candidate. This possible generator is checked for possible
irredundancy in the remaining lines.

To finish the method, we need a way to decide P (b). In fact, we can use integer
programming to solve the problem of finding a shortest path; see Lemma 5.1.

However, we need to find the minimum element according to the ordering ≺. We
can follow Algorithm 6.2, which takes as input a matrix A to represent the monomial
ordering (see [2]) in this way:

x ≺ y ⇐⇒ Ax <
lex

Ay.

We represent the matrix rows with subindices: A1, . . . , Am. Then we obtain
Algorithm 6.2.

Proposition 6.2. Algorithm 6.2 is correct.

Proof. Steps 1–6 are clear. The only trouble arises when the vector that we
get as result of the integer programming–type search c has the same �1-norm as b,
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Algorithm 6.1: MDD description. The three jumps case. (II)

for i = {(1, 2), (1, 3), (2, 3)} do15

T := ai[2][i[2]] − 1;16

Q := 0;17

repeat18

m := Q, M := ai[1][i[1]];19

while M −m > 1 do20

l :=

⌊
m + M

2

⌋
;

21

if P (lei[1] + Tei[2]) then22

m := l;23

else24

M := l;25

end26

end27

Q := M ;28

if Q < ai[1][i[1]] then29

m := 0, M := T ;30

while M −m > 1 do31

l :=

⌊
m + M

2

⌋
;

32

if P (Qei[1] + lej[2]) then33

m := l;34

else35

M := l;36

end37

end38

ak := Qei[1] + lei[2];39

k := k + 1;40

T := l − 1;41

end42

until Q = ai[1][i[1]] ;43

end44

Algorithm 6.1: MDD description. The three jumps case. (III)

c := N − j1 mod N ;45

b := D(c);46

b[1] := b[1] + 1;47

for i = 1, . . . , k − 1 do48

if ai ≤ b then49

k := k − 1;50

STOP;51

end52

ak := b;53

end54
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Algorithm 6.2: Deciding if a given path lies in an MDD.

Input: j1, . . . , jr, N ∈ N, gcd(j1, . . . , jr, N) = 1, A ∈ R

m×r, b ∈ N

r.
Output: Boolean value P (b) := (b = D(R(b))).
Execute an integer programming–type algorithm to get c, an element with1

minimum �1-norm in R−1(R(b));
if ‖c‖1 < ‖b‖1 then2

OUTPUT false;3

else4

if c ≺ b then5

OUTPUT false;6

else7

Compute a basis for the lattice8

L := {c ∈ N

r | < c, (j1, . . . , jr) >= 0, < c, (1, . . . , 1) >= 0};
for i = 1, . . . ,m do9

Set ∗ = (< Ai,b > −(min A)/2);10

Set the boolean value α, depending on whether there is a point in11

the set (b + L) ∩ N

r ∩ {c ∈ N

r | < c, A1 >=< b, A1 >, . . . , <
c, Ai−1 >=< b, Ai−1 >,< c, Ai >≤ ∗};
if α then12

OUTPUT false;13

end14

end15

OUTPUT true;16

end17

end18

and b � c. In this case, we have to decide whether there is another vector d ∈ N

r,
satisfying

‖d‖1 = ‖b‖1 = ‖c‖1, d ≺ b.

Obviously, if such a vector d does exist, it lies in the set (b + L) ∩ N

r. So, we check
in steps 9–14 if there is another path c such that Ac <

lex
Ab.

7. Diameter and average minimum distance. Two notable parameters in a
digraph are the diameter and the average minimum distance. The former represents
the worst delay in the communication between two nodes, and the latter represents
the average delay. In this section we show formulae to compute those parameters in a
circulant digraph given by the irredundant irreducible decomposition of the monomial
ideal IS .

7.1. Diameter. Given an MDD of a digraph (Γ, S), it is easy to obtain the
diameter

d = max{‖a‖1 | a ∈ D(Γ)}.
The description of the monomial ideal IS in terms of its irreducible components per-
mits a simplification.

Proposition 7.1. Let mb1 ∩ · · · ∩mbn be the irredundant irreducible decomposi-
tion of the ideal IS. Then

d = max{‖bi‖1 − r | i = 1, . . . , r}.
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Proof. If we define the corners of IS as

E(D) := {a ∈ D(Γ) | a + ei �∈ D(Γ) ∀i = 1, . . . , r},

then it is clear that d = max{‖a‖1 | a ∈ E(D)}. We will prove that {a + 1 | a ∈
E(D)} = {b1, . . . ,bn}.

Let i ∈ {1, . . . , n}. By Theorem 2.2, we have bi ≥ 1. Let us check that a :=
bi − 1 ∈ E(D). If xa ∈ IS , we would have xa ∈ mbi ⇒ ∃j ∈ {1, . . . , r} | aj ≥
bij = aj + 1. So, xa �∈ IS . Further, if ∃j ∈ {1, . . . , r} such that xa+ej �∈ IS , then
∃k ∈ {1, . . . , n}, k �= i | xa+ej �∈ mbk ⇒ a + ej � bk ⇒ bi ≤ bk ⇒ mbk ⊆ mbi . So,
xa+ej ∈ IS and a ∈ E(D).

On the other hand, let a ∈ E(D). First we will see that IS ⊆ ma+1. Suppose
that xu ∈ IS\ma+1. Then a + 1 > u ⇒ a ≥ u. Since xu ∈ IS , then xa ∈ IS ; this is a
contradiction because a ∈ E(D). If ma+1 were not an irreducible component in the
decomposition of IS , it would be satisfied:

∃j ∈ {1, . . . , n} | m
bj

� m
a+1 ⇒

{
a + 1 ≤ bj

a + 1 �= bj

}
⇒ ∃i ∈ {1, . . . , r} | xa+ei ∈ D(Γ).

7.2. Average minimum distance. Again, given an MDD of a digraph, it is
easy to obtain the average minimum distance. Let N be the number of nodes.

d̄ =

∑
c∈Γ ‖D(c)‖1

N
=

∑
xu �∈IS

‖u‖1

N
.

The following result provides a formula for computing d̄ in digraphs with a degener-
ated MDD.

Lemma 7.2. Let IS = ma+1 = mb. Then

∑
xu �∈IS

‖u‖1 =
b1 · · · br

2
(b1 + · · · + br − r) =

a1 + · · · + ar
2

r∏
i=1

(ai + 1).

Proof. By Proposition 7.1, we have

d = ‖b‖1 − r = ‖a‖1.

On the other hand,

u = (u1, . . . , ur) ∈ D(Γ) ⇐⇒ ∀i ∈ {1, . . . , r}, ui < bi.

We define the following relation in D(Γ): (u1, . . . , ur) ≡ (a1−u1, . . . , ar−ur). So,
every equivalence class contains two elements (whose degrees add up to ‖a‖1) or only
one. This last happens if and only if ∀i ∈ {1, . . . , r}, ui = ai − ui ⇒ 2‖u‖1 = ‖a‖1.
We can state the following:

∑
xu �∈I

‖u‖1 =
N

2
d,

and the proof is complete.
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Note 7.3. In the above case, that is, when IS is an irreducible ideal, we have
d̄ = d/2.

To discuss the general case we introduce some new notation. Let mb1 ∩ · · · ∩mbn

be the irreducible decomposition of the monomial ideal IS ; so we define

dΔ := exponent
(
gcd(xbi | i ∈ Δ)

)
∀Δ ⊆ {1, . . . , n}, Δ �= ∅.

σ(u) :=
u1 · · ·ur

2
(u1 + · · · + ur − r).

Our next goal is to find a formula for the average minimum distance. We will apply
the general inclusion-exclusion principle as follows.

Proposition 7.4. Let mb1 ∩ · · · ∩ mbn be the irreducible decomposition of the
ideal IS. We have ∑

xu �∈IS

‖u‖1 =
∑

∅�Δ⊆{1,...,n}
(−1)#Δ+1σ(dΔ).

Proof. Applying Lemma 7.2, we obtain∑
∅�Δ⊆{1,...,n}

(−1)#Δ+1σ(dΔ) =
∑
Δ

(−1)#Δ+1
∑

xu �∈mbi ∀i∈Δ

‖u‖1.

If xu �∈ IS , that is, if ∃i ∈ {1, . . . , n} | xu �∈ mbi , then the above sum includes ‖u‖1

exactly once, as seen in the following equation, where j = #{j ∈ 1, . . . , n} |xu �∈ mbi :(
j

1

)
−
(
j

2

)
+ · · · + (−1)j+1

(
j

j

)
= 1.

This completes the proof.
Considering the ideal I1 = (x4, x2y2, y3) from Example 2.1, the sum of the degrees

of the monomials outside this ideal is (see Figure 7.1)∑
xu �∈I1

‖u‖1 = σ(2, 3) + σ(4, 2) − σ(2, 2) = 9 + 16 − 4 = 21.

The several results introduced in section 2 permit a strong reduction in the number
of sum terms we need to consider in the expression of Proposition 7.4. For instance,
if we consider Example 2.3, Proposition 7.4 solves (see Figure 7.2)∑
xu �∈I

‖u‖1 = σ(8, 2, 1) + σ(7, 2, 4) + σ(3, 3, 5) + σ(4, 3, 2) + σ(4, 5, 1)

− [σ(7, 2, 1) + σ(3, 2, 1) + σ(4, 2, 1) + σ(4, 2, 1) + σ(3, 2, 4)

+ σ(4, 2, 2) + σ(4, 2, 1) + σ(3, 3, 2) + σ(3, 3, 1) + σ(4, 3, 1)]

+ σ(3, 2, 1) + σ(4, 2, 1) + σ(4, 2, 1) + σ(3, 2, 1) + σ(3, 2, 1)

+ σ(4, 2, 1) + σ(3, 2, 2) + σ(3, 2, 1) + σ(4, 2, 1) + σ(3, 3, 1)

− [σ(3, 2, 1) + σ(3, 2, 1) + σ(4, 2, 1) + σ(3, 2, 1) + σ(3, 2, 1)] + σ(3, 2, 1)

= σ(8, 2, 1) + σ(7, 2, 4) + σ(3, 3, 5) + σ(4, 3, 2) + σ(4, 5, 1)

− [σ(7, 2, 1) + σ(3, 2, 4) + σ(4, 2, 2) + σ(3, 3, 2) + σ(4, 3, 1)]

+ s(3, 2, 2) = 454.
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Clearly, if b ∈ N

r has a zero coordinate, then σ(b) = 0. This fact produces several
cancellations in the formula of Proposition 7.4. We end up with a sum of the simplex
labels, affected with the sign: + for faces, − for edges, and + for nodes.

In Cayley digraphs of degree two the associated monomial ideal has only one
or two irreducible components (see Proposition 3.6). Then the computation of the
average minimum distance is immediate. For digraphs of degree three we can follow
this strategy:

• Construct the Miller–Sturmfels graph G as in the previous examples such
that each irreducible component corresponds with the least common multiple
of some generators of the minimal system.

• Let E be the set of all edges, F the set of faces, and N the set of vertices
of G:

d̄ =
1

N

(∑
e∈F

σ(e) −
∑
e∈E

σ(e) +
∑
e∈N

σ(e)

)
.
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8. Degenerated L-shapes. We recall that an MDD is degenerated if the asso-
ciated monomial ideal is irreducible, that is, of the form

(
Xα1

1 , . . . , Xαr
r

)
. In general,

the family of graphs having this property does not have optimal properties according
to the ratio nodes/diameter. In this section we present families of circulant digraphs
having a degenerated MDD and with a relatively small diameter.

Proposition 8.1. Let a, s, k be natural numbers such that gcd(a, s) = 1 and
a < s. The monomial ideal associated with Csk(a, s) is IS = (xs, yk) for any monomial
ordering.

Proof. Since K[x, y]/IS is an artinian ring (see Theorem 2.2), the minimal system
of generators of IS contains monomials of the form xα, yβ . We claim that β = k.
In order to prove it, we note that D(si) = (0, i) ∀i = 0, . . . , k − 1. In fact, let
i ∈ {0, . . . , k− 1} and suppose that ∃(u, v) ∈ N

2, | u+ v ≤ i with R(u, v) = si. Then

si ≡sk au + sv ⇒ ∃h ∈ N / si = au + sv + hsk ⇒ s|au ⇒ s|u

⇒

⎧⎨
⎩

u = 0
∨
∃t ∈ N

∗ / u = st.

In the first case, we have

i = v + kh ≤ k − 1 ⇒ h = 0 ⇒ v = i.

In the second,

i = at + v + kh ≤ k − 1 ⇒ h = 0, i = at + v ≥ u + v ⇒ at ≥ u,

but this a contradiction because a < s. So, β ≥ k. On the other hand, D(0, k) = 0 =
D(0, 0) implies β = k. Finally, suppose that (see Figure 8.1)

IS = (xα, xγyδ, yk), γ < α, δ < k, R(γ, δ) = R(0, k) = 0.

Thus,

R(γ, k) = R(γ, δ) + R(0, k − δ) = R(0, k − δ),

R(γ, k) = R(γ, 0) + R(0, k) = R(γ, 0).

Therefore, one of the two vectors (0, k − δ), (γ, 0) should be in IS , but this is false.
Consequently, IS is degenerated and

sk = dim (K[x,y]/(xα,yk)) = αk ⇒ s = α.

The following example shows that we cannot omit from the above result hypothe-
ses the requirement a < s.

Example 8.2. The monomial ideal IS associated with C60(7, 6) and any graded
monomial ordering in K[x, y] is not degenerated: IS = (x12, x6y3, y7).

Using the Gröbner bases theory and previous results we can generalize Proposi-
tion 8.1 from two jumps to an arbitrary number of them.

Proposition 8.3. Let α1, . . . , αr be positive integers, neither of them equal to
one. Setting N := α1 · · ·αr, the circulant digraph CN (1, α1, α1α2, . . . , α1 · · ·αr−1)
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)

(α, 0)

(γ, δ)

(γ, k)

)

k0,(

(0,0

Fig. 8.1.

is associated to the—incidentally, irreducible—monomial ideal (Xα1
1 , . . . , Xαr

r ), with
any graded monomial ordering. The Gröbner basis of the associated binomial ideal is
{Xαi

i −Xi+1 | i = 1, . . . , r − 1} ∪ {Xαr
r − 1}.

Proof. First of all, every element of the proposed basis lies in the binomial ideal.
This is because their associated lattice points,

{(0, . . . ,
i
�
αi,−1, . . . , 0) | i = 1, . . . , r − 1} ∪ {(0, . . . , 0, αr)},

are paths for node 0. Then the initial ideal of this lattice ideal must contain the
following one:

(Xα1
1 , . . . , Xαr

r ) ⊆ IS .

We know that the dimension of the quotient vector space K[x]/IS equals the number
of nodes N = α1 · · ·αr. Moreover, the dimension of K[x]/(Xαi

i | i = 1, . . . , r) is N , so
both ideals must coincide. In order to obtain a reduced Gröbner basis, we must have
one binomial for each generator in the initial ideal. That is, the reduced Gröbner
basis is

{Xαi
i −mi(x) | i = 1, . . . , r},

where mi is a monomial satisfying mi �∈ (Xα1
1 , . . . , Xαr

r ). Then mi = xa, with ai <
αi, i = 1, . . . , r. Set Xr+1 := 1. Then (Xαi

i −Xi+1)−(Xαi
i −mi) = mi−Xi+1 belongs

to the ideal. If mi �= Xi+1, we would have αi+1 = 1, which is a contradiction.
The following result is an immediate consequence.
Corollary 8.4. Let d, r be two positive integers. Let k be the residue class of d

modulo r. Then, if we fix

α1 = · · · = αk =
d− k

r
+ 2, αk+1 = · · · = αr =

d− k

r
+ 1,

the following is a directed circulant graph with r jumps, N := α1 · · ·αr nodes, and
diameter d:

CN (1, α1, α1α2, . . . , α1 · · ·αr−1).

We note that the number of vertices is

N =

(
d− k

r
+ 2

)k (
d− k

r
+ 1

)r−k

.
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Fig. 8.2. Family of circulant digraphs.

Once r is fixed, increasing the diameter d makes the number of nodes in this graph
family increase as O(dr).

Proposition 8.1 provides a family with diameter 2
√
N − 2 and average minimum

distance
√
N − 1. Let d > 1 be a natural number:

C( d+2
2 )

2

(
1,

d + 2

2

)
if d ≡ 0 mod 2 and C (d+1)(d+3)

4

(
1,

d + 1

2

)
if d ≡ 1 mod 2.

Basically, this family was discovered in the paper [32]. However, determining d2(N)
and finding the optimal CN (j1, j2) is an open problem.

In the case of undirected circulant graphs of degree four, i.e., CN (j1,−j1, j2,−j2),
several papers have shown that the lower bound 1

2

(√
2N − 1 − 1

)
can be achieved by

taking j1 = 1
2

(√
2N − 1 − 1

)
and j2 = 1

2

(√
2N − 1 − 1

)
+ 1; see the survey [3]. In

the middle, that is, between circulant digraphs of degree two and circulant graphs of
degree four, Proposition 8.3 and the above corollary provide a very attractive family
of circulant graph of degree three; see Figure 8.2. Let d > 2 be a natural number:

C( d+3
3 )

3

(
1,

d + 3

3
,

(
d + 3

3

)2
)

if d ≡ 0 mod 3,

C (d+2)2(d+5)
27

(
1,

d + 2

3
,

(
d + 2

3

)2
)

if d ≡ 1 mod 3,

C (d+4)2(d+1)
27

(
1,

d + 4

3
,

(
d + 4

3

)2
)

if d ≡ 2 mod 3.

Graphs in this family have diameter d and average minimum distance d/2.

9. Conclusions. In this paper we have proposed monomial ideals as a natural
tool for studying Cayley digraphs with a finite abelian group as vertex set. We have
generalized the L-shape concept in the plane to L-shape in the r-dimensional affine
space. We think that this new point of view may shed light on problems in multiloop
computer networks. We also have introduced the Gröbner bases theory in this context,
which seems very useful. Many interesting questions remain unsolved. We would like
to provide fault tolerance routing algorithms. From a more practical point of view,
it would be interesting to investigate the implementation in computer networks of
the family of circulant graphs of degree three under parameters such as routing, fault
tolerance, etc.
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hedra, and integer programming, Beiträge Algebra Geom., 36 (1995), pp. 281–298.

[32] C. K. Wong and D. Coppersmith, A combinatorial problem related to multimodule memory
organizations, J. ACM, 21 (1974), pp. 392–402.
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Abstract. The link between finite geometry and various classes of error-correcting codes is well
known. Arcs in projective spaces, for instance, have a close tie to linear MDS codes as well as the
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1. Introduction. An (n,w, λa, λc)-optical orthogonal code (OOC) is a family of
binary sequences (codewords) of length n, with constant hamming weight w satisfying
the following two conditions:

• (auto-correlation property) for any codeword c = (c0, c1, . . . , cn−1) and for

any integer 1 ≤ t ≤ n− 1, there holds
∑n−1

i=0 cici+t ≤ λa,
• (cross-correlation property) for any two distinct codewords c, c′ and for any

integer 0 ≤ t ≤ n− 1, there holds
∑n−1

i=0 cic
′
i+t ≤ λc,

where each subscript is reduced modulo n.

One of the first proposed applications of OOCs was to optical code-division mul-
tiple access communication systems where binary sequences with strong correlation
properties are required [1, 3, 5]. Subsequently, OOCs have found application for
multimedia transmissions in fiber-optic LANs [9]. OOCs have also been called cycli-
cally permutable constant weight codes in the construction of protocol sequences for
multiuser collision channels without feedback [11].

An (n,w, λa, λc)-OOC with λa = λc is denoted (n,w, λ)-OOC. The number of
codewords is the size of the code. For fixed values of n, w, and λ, the largest size of
an (n,w, λ)-OOC is denoted Φ(n,w, λ). An (n,w, λ)-OOC of size Φ(n,w, λ) is said
to be optimal. From the Johnson bound for constant weight codes it follows that [3]

Φ(n,w, λ) ≤
⌊

1

w

⌊
n− 1

w − 1

⌊
n− 2

w − 2

⌊
· · ·

⌊
n− λ

w − λ

⌋⌋
· · ·

⌋
.(1.1)

Much of the literature is restricted to (n,w, λ)-OOCs. If C is an (n,w, λa, λc)-
OOC with λa �= λc, then we obtain a (perhaps naive) bound on the size of C by
taking λ = max{λa, λc} in (1.1). In [17], Yang and Fuja discuss OOCs with λa > λc
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and the following bound is established:

Φ(n,w, λ + m,λ) ≤ Φ(n,w, λ) · (λ + m).(1.2)

The codes we construct in sections 4.1, 4.2, and 5 have λa < λc. As such, (1.1) seems
the only applicable bound. We do, however, offer some analysis regarding the possible
optimality of our codes.

Let F be an infinite family of OOCs with λa = λc. For any (n,w, λ)-OOC
C ∈ F containing at least one codeword, the number of codewords in C is denoted
by M(n,w, λ) and the corresponding Johnson bound is denoted by J(n,w, λ). F is
called asymptotically optimal if

lim
n→∞

M(n,w, λ)

J(n,w, λ)
= 1.(1.3)

For λ = 1, 2, optimal OOCs are known to exist (see, e.g., [3, 4, 13]). There are
very limited examples of such optimal OOCs with λ > 2 (in [12, 13] optimal OOCs
consisting of a single codeword are shown to exist). Our constructions were originally
motivated by the results in [10] where certain families of conics in PG(2, q) are used
to construct (n, q+1, 2)-OOCs that are close to optimal. We build on the ideas in [10]
and construct several new classes of OOCs based on arcs in finite projective spaces.

2. Preliminaries. As our work relies heavily on the structure of finite projec-
tive spaces, we start with a short overview of the fundamentals of finite projective
geometry. We let PG(k, q) represent the finite projective geometry of dimension k
and order q. Due to a result of Veblen and Young [16], all finite projective spaces of
dimension greater than two are isomorphic up to the order q. The space PG(k, q)
can be modeled most easily with the vector space of dimension k + 1 over the finite
field GF (q). In this model, the one-dimensional subspaces represent the points, two-
dimensional subspaces represent lines, etc. Using this model, it is not hard to show by

elementary counting that the number of points of PG(k, q) is given by θk,q = qk+1−1
q−1 .

The fundamental theorem of projective geometry states that the full automor-
phism group of PG(k, q) is the group PΓL(k + 1, q) of semilinear transformations
acting on the underlying vector space. The subgroup PGL(k+1, q) ∼= GL(k+1, q)/Z0

(where Z0 represents the center of the group GL(k+1, q)) of projective linear transfor-
mations is easily modeled by matrices and will be useful in our constructions. Another
property that we rely on is the principle of duality. For any space S = PG(k, q), there
is a dual space S∗ whose points and hyperplanes (subspaces of dimension k − 1) are,
respectively, the hyperplanes and points of S. For any result about points of S, there
is always a corresponding result about hyperplanes of S∗. More generally, for any
result dealing with subspaces of S, replacing each reference to a subspace PG(m, q),
m < k, with a reference to the subspace PG(k−m− 1, q) yields a corresponding dual
statement of S∗ that has the same truth value. For instance, a result about a set of
points of PG(k, q), no three of which are collinear, could be rewritten dually about
a set of hyperplanes of PG(k, q), no three of which meet in a common subspace of
dimension k − 2.

3. OOCs from lines of PG(k, q). In [3], Chung, Salehi, and Wei provide
a method for constructing (n,w, 1)-OOCs using lines of the projective geometry
PG(k, q). Briefly, let ω be a primitive element of GF (qk+1). The points of Σ =

PG(k, q) can be represented as ω0 = 1, ω, ω2, . . . , ωn−1, where n = qk+1−1
q−1 . Hence, in
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a natural way a point set A of PG(k, q) corresponds to binary n-tuple (or codeword)
(a0, a1, . . . , an−1), where ai = 1 if and only if ωi ∈ A.

Denote by φ the collineation of Σ defined by ωi �→ ωi+1, a singer cycle acting on
Σ. The map φ acts transitively on the points (and dually on the hyperplanes) of Σ.
If A is a point set of Σ corresponding to the codeword c = (a0, a1, . . . , an−1), then φ
induces a cyclic shift on the entries of c.

For each line � of Σ, consider the orbit O� under φ. If O� is a full orbit (has size
n), then a representative line and corresponding codeword are chosen. Short orbits
are discarded. Let L(k, q) represent the cardinality of this set of chosen lines. Two
lines of Σ intersect in at most one point and each line contains q+1 points. It follows
that the codewords satisfy both λa ≤ 1 and λc ≤ 1, and by counting the number of
full orbits under φ, the following theorem is obtained.

Theorem 3.1. For any prime power q and any positive integer k, there exists

an (optimal) (θk,q, q + 1, 1)-OOC consisting of L(k, q) =
⌊
qk−1
q2−1

⌋
codewords.

4. OOCs from arcs in PG(k, q). An n-arc in PG(k, q) is a collection of n > k
points such that no k + 1 are incident with a common hyperplane. It follows that if
K is an n-arc in PG(k, q), then no k + 1 points of K lie on a hyperplane, no k lie
on a (k − 2)-flat,. . . , and no 3 lie on a line. An n-arc is called complete if it is not
contained in an (n + 1)-arc.

For given k and q, let m(k, q) denote the maximum value of n for which an n-arc
exists in PG(k, q). Then m(k, q) = k + 2 for q ≤ k + 1. In homogeneous coordinates,
the points (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . ,(0, . . . , 0, 1), and (1, 1, . . . , 1) constitute
such an arc. Hence, for q ≤ k + 1, every point in PG(k, q) is a linear combination of
at most k of these k + 2 points. In PG(2, q), a (nondegenerate) conic is a (q + 1)-arc
and elementary counting shows that this arc is complete when q is odd.

When q is even, one can add one additional point to each conic, the so-called knot
where all of the tangent lines intersect. The resulting (q+2)-arc is called a hyperoval
and is necessarily complete. Conics are a special case of the so-called normal rational
curves. A rational curve Cn of order n in PG(d, q) is a set of points

{P (t) = P (g0(t0, t1), . . . , gd(t0, t1)) | t0, t1 ∈ GF (q)},

where each gi is a binary form of degree n and the highest common factor of g0, g1, . . . ,
gd is 1. The curve Cn may also be written

{P (t) = P (f0(t), . . . , fd(t)) | t ∈ GF (q) ∪ {∞}},(4.1)

where fi(t) = gi(1, t).
Definition 4.1. A normal rational curve (NRC) in PG(d, q), 2 ≤ d ≤ q − 2, is

a rational curve (of order d) projectively equivalent to the set of points

{(1, t, . . . , td) | t ∈ GF (q)} ∪ {(0, . . . , 0, 1)}.

It is well known that an NRC is, in fact, a (q+1)-arc. When stated in terms of arcs,
the main conjecture (MC) for MDS codes, always taking q > k+ 1, is m(k, q) = q+ 2
for k = 2 and k = q − 2, both with q even, and q + 1 in all other cases. The main
conjecture has its roots in a problem first posed over 50 years ago by B. Segre. The
MC has not been proved in general, but it has been verified in many cases. See [6]
for a recent survey of results relating to the MC.

Definition 4.2. Let π = PG(k, q). A t-family F of m-arcs in π is a collection
of m-arcs mutually meeting in at most t points.
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Theorem 4.3. Let F be a t-family of m-arcs in π = PG(k, q). Let μ = max{k, t}.
Then there exists a ( q

k+2−1
q−1 ,m, k, μ)-OOC C consisting of |F| codewords.

Proof. Consider π = PG(k, q) as embedded in Σ = PG(k + 1, q), and let ω
be a primitive element of GF (qk+2). Let C be t-family of m-arcs π. Identify each

arc in C with the corresponding codeword of length qk+2−1
q−1 and weight m. As in

section 3, let φ : ωi �→ ωi+1 be a singer group acting on Σ. Let K be an arc in C. The
auto-correlation λa is the maximum number of points in the intersection of φi(K) and
φj(K), where i �= j. Since φ is a collineation of Σ, φi(K)∩φj(K) ⊂ φi(π)∩φj(π). As φ
acts regularly on the hyperplanes of Σ, φi(π) �= φj(π) and φi(π)∩φj(π) is necessarily
a (k− 1)-flat. It follows that λa is bounded above by the maximum intersection of an
arc in PG(k, q) and a (k − 1)-flat; hence λa ≤ k. Now let K and K′ be distinct arcs
in C. The cross-correlation λc is the maximum number of points in the intersection
of φi(K) and φj(K′). If i �= j, then, as above, this number is at most k. However,
if i = j, then φi(K) and φj(K′) are in a common hyperplane of Σ and can therefore
share as many as t points. It follows that λc = max{k, t}.

Using the notation of the previous proof, a line of Σ intersects any member of F in
at most 2 points. Hence, adding the L(k, q) codewords from Theorem 3.1 to C will not
violate either correlation requirement. However, each line gives a codeword of weight
q + 1, whereas the weight of C is m. This poses no problem if m ≤ q + 1. Moreover,
if m ≤ q + 1 the points of each of the L(k, q) lines may be arbitrarily subdivided into
� q+1

m  disjoint subsets (or, more generally, into subsets mutually intersecting in at

most k points) of size m. Each of the resulting � q+1
m  ·L(k, q) subsets then correspond

to a codeword of C. This gives the following corollary.

Corollary 4.4. Let F be a t-family of m-arcs, m ≤ q + 1 in π = PG(k, q). Let

μ = max{k, t}. Then there exists a ( q
k+2−1
q−1 ,m, k, μ)-OOC consisting of |F|+

⌊
q+1
m

⌋
·

L(k, q) codewords.

4.1. An (n,w, λ, λ+ 2) construction using normal rational curves. The
following theorem is a well known property of NRCs (see, e.g., [15]).

Theorem 4.5. A (d+3)-arc in PG(d, q) is contained in a unique normal rational
curve.

If C is an NRC in PG(d, q), then the subgroup of PGL(d+1, q) leaving C fixed is
(isomorphic to) PGL(2, q) (see [7, Theorem 27.5.3]). It follows that if ν(d, q) denotes
the number of distinct normal rational curves in PG(d, q), then

ν(d, q) =
|PGL(d + 1, q)|
|PGL(2, q)| =

(qd+1 − 1)(qd+1 − q) · · · (qd+1 − qd)

(q2 − 1)(q2 − q)
.(4.2)

Theorem 4.6. For any prime power q and for each k ≥ 2 there exists a

( q
k+2−1
q−1 , q + 1, k, k + 2)-OOC consisting of ν(k, q) + L(k, q) ≈ qk

2+2k−3 codewords.

Proof. This follows immediately from Corollary 4.4 and Theorem 4.5.

Taking k = 2 in Theorem 4.6 gives the following corollary.

Corollary 4.7. For any prime power q there exists a (q3 + q2 + q + 1, q + 1,
2, 4)-OOC consisting of q5 − q2 + q codewords.

Remark 4.7.1. 1. Let M( q
k+2−1
q−1 , q + 1, k, k + 2) denote the size of the codes

constructed in Theorem 4.6. We compare the size of our codes to other codes with
similar correlation parameters in order to obtain some insight on the optimality of
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our codes. On the one hand (as one might expect), we have

M

(
qk+2 − 1

q − 1
, q + 1, k, k + 2

)
< J

(
qk+2 − 1

q − 1
, q + 1, k + 2

)
≈ qk

2+2k−1,

while on the other hand,

M

(
qk+2 − 1

q − 1
, q + 1, k, k + 2

)
> J

(
qk+2 − 1

q − 1
, q + 1, k + 1

)
≈ qk

2+k−1.

Also, from the bound of Yang and Fuja (1.2), it follows that if qk > k+2
q4 , then

M

(
qk+2 − 1

q − 1
, q + 1, k, k + 2

)
> Φ

(
qk+2 − 1

q − 1
, q + 1, k + 2, k + 1

)
.

Thus, we have a strong indication that the codes constructed in Theorem 4.6 are quite
robust. Moreover, we see that for the code parameters specific to the theorem and
for q sufficiently large

Φ (n,w, λ + 1, λ) < Φ (n,w, λ− 1, λ + 1) .

2. Let C be a ( q
k+2−1
q−1 , q+1, k, k+2)-OOC constructed as in the theorem and let

Σ = PG(k + 1, q). Let c1, c2 ∈ C be two codewords. By the construction, it follows
that there is at most one cyclic shift of c2, say, c′2, for which the cross-correlation of
c1 and c′2 is greater than k (this will only occur if the NRCs C1 and C2 corresponding
to c1 and c′2, respectively, are contained in a common hyperplane of Σ, and intersect
in more than k points).

4.2. An (n,w, λ) construction from m-arcs. In [10], Miyamoto, Mizuno,
and Shinohara prove the existence of an asymptotically optimal family of (n,w, 2)-
OOCs. Their proof utilizes a clever construction of a large 2-family of (q + 1)-arcs in
PG(2, q). The construction relies heavily on the fact that the (q + 1)-arcs concerned
are conics (i.e., NRCs). In what follows we provide a construction for large families of
arcs in PG(k, q), k ≥ 2. For k = 2 the corresponding OOCs form an asymptotically
optimal family. Also, for k = 2 our code parameters match those of [10] for q even
(see Corollary 4.11). Our construction is quite general in that it holds for arbitrary
arcs; that is to say we do not rely on any correspondence between the arcs involved
and algebraic curves. As such, our construction holds for arcs of size larger than q+1
in PG(d, q) (which do not necessarily correspond to NRCs).

Theorem 4.8. Let π = PG(k, q). If π contains an m-arc, then π contains a
(k + 1)-family F of m-arcs where |F | = qk+1 − qk. Moreover, there exists a point P
incident with each member of F . Consequently, there exists a k-family consisting of
qk+1 − qk distinct (m− 1)-arcs.

Proof. We work with the dual. Let K = {λ1, λ2, . . . , λm} be a dual m-arc in π.
Consider π as embedded in Σ = PG(k+1, q) and let Σ∗ = Σ\π be the associated affine
space. Let σ be any hyperplane of Σ on λm other than π. For each point P ∈ Σ∗ \ σ
denote by φP the projection map taking π to σ through P . Each such φP fixes λm

and carries K to a dual arc φP (K) in σ (containing λm). Let S = {φP (K)|P ∈ Σ∗ \σ}
be the set of qk+1 − qk dual m-arcs in σ obtained by projection. We claim that apart
from λm no two dual arcs S share as many as k + 1 common members. Let λ �= λm

be a member of φP (K) and let ψ = λ ∩ λm. Other than λm there is precisely one
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member of K, say, λ′, containing ψ (at most two members of K are incident with a
given (k − 2)-flat). So 〈P, λ〉 = 〈P, λ′〉 = 〈λ, λ′〉. It follows that if λ ∈ φQ(K) with
P �= Q, then the line 〈P,Q〉 intersects π in a point of λ′. Hence, if φP (K) and φQ(K)
have k + 1 common members other than λm, then the point at which the line 〈P,Q〉
intersects π will be incident with k+1 members of K, which is a contradiction. Hence,
S is a (k + 1)-family of m-arcs where |S| = qk+1 − qk. By removing λm from each
member of S we obtain the k-family of dual (m− 1)-arcs as required.

Restricting to k = 2 we can give explicit coordinates for constructing the q3 − q2

conics of the projective plane described in Theorem 4.8. These coordinates are derived
directly from the projection construction when q is odd. Let (x, y, z) represent the
homogeneous coordinates for a projective point of π. Then, for fixed a, b, c ∈ GF (q),
c �= 0, let Ca,b,c = {(1, a− cx2, b− cx) : x ∈ GF (q)} ∪ {(0, 1, 0)}. One can easily show
that Ca,b,c defines a conic of π. Varying a, b, and c gives a family of q3−q2 conics that
have the desired intersection property and which meet in the point (0, 1, 0). As c �= 0,
we have exactly q3 − q2 conics of this form. These coordinates generate a similar set
when q is even.

Lemma 4.9. If there exists an m-arc in PG(k, q), then there exists a (θk+1,q,
m− 1, k)-OOC C where

|C| =

{
qk+1 − qk + � q+1

m−1 · L(k + 1, q), m ≤ q + 2,

qk+1 − qk otherwise.

Proof. The proof follows immediately from Theorem 4.8 and Corollary 4.4.

Corollary 4.10. For any prime power q and k ≥ 2 there exists a (θk+1,q, q, k)-
OOC consisting of qk+1 − qk + L(k, q) codewords.

Proof. Normal rational curves provide (q+ 1)-arcs in PG(k, q), k ≥ 2. The result
follows from Lemma 4.9.

Thus, for each k ≥ 2 we have (via Corollary 4.10) an infinite family of OOCs.
Moreover, for k = 2 it is easily verified that the family is asymptotically optimal.
When k = 2 and q is even the fact that hyperovals exist in PG(2, q) gives the following
corollary yielding codes with parameters matching those of Miyamoto, Mizuno, and
Shinohara [10].

Corollary 4.11. For q = 2t there exists a ( q
4−1
q−1 , q + 1, 2)-OOC consisting of

q3 − q2 + q codewords.

4.3. An (n,w, λ) construction from (k+1)-arcs in PG(k, q). As observed
above, (k+2)-arcs exist in PG(k, q) for every k. Denote by N (k+1, q) the family of all
(k+1)-arcs in PG(k, q). As N (k+1, q) is a k-family of arcs in PG(k, q), Theorem 4.3
gives the following.

Theorem 4.12. For any prime power q and k ≥ 1 there exists a (θk+1,q, k+1, k)-
OOC consisting of |N (k + 1, q)| codewords.

Corollary 4.13. For any prime power q and 1 ≤ k ≤ q there exists a (θk+1,q, k+
1, k)-OOC consisting of |N (k + 1, q)| + � q+1

k+1 · L(k, q) codewords.

Observe the Johnson bound:

J(θk+1,q, k + 1, k) =
(θk+1,q − 1)(θk+1,q − 2) · · · (θk+1,q − k)

(k + 1)!
≈ q(k+1)k

(k + 1)!
.(4.3)

By counting ordered (k+2)-tuples (P1, P2, . . . , Pk+1,K), where K is a (k+1)-arc



CONSTRUCTIONS OF OOCs FROM FINITE GEOMETRY 791

in PG(k, q) and P1, P2, . . . , Pk+1 are the points in K, we get

|N (k + 1, q)| =
θk,q (θk,q − 1) (θk,q − θ1,q) (θk,q − θ2,q) · · · (θk,q − θk−1,q)

(k + 1)!
≈ qk(k+1)

(k + 1)!
.

(4.4)
It follows that the family of codes constructed as in Theorem 4.12 and Corol-

lary 4.13 are asymptotically optimal.

5. An (n,w, λ, λ+1) construction from arcs in PG(k, q2). Since GF (q) is
a subfield of GF (qn) for n > 1, the projective space PG(k, q) is naturally embedded in
PG(k, qn) once the coordinate system is fixed. In particular, any PG(k, q) embedded
in PG(k, q2) is called a Baer subspace (BSS) of PG(k, q2) (for an introduction to Baer
subspaces, see [2] or [14]). A frame of a k-dimensional projective space is a set of k+2
points of which any k + 1 points are a basis, that is, a (k + 2)-arc. It is well known
that a BSS of PG(k, q2) is uniquely determined by a frame. Denote by B(k, q2) the
number of BSSs of PG(k, q2). Then by counting ordered (k + 2)-tuples or otherwise
(see, e.g., [14]), we have

B(k, q2) = q
k(k+1)

2

k+1∏
i=2

(q i + 1) ≈ qk
2+2k.(5.1)

Theorem 5.1. If Π = PG(k, q) contains a (k+1)-family F of m-arcs, then there
exists a (k + 1)-family S of m-arcs in Σ = PG(k, q2), where |S| = B(k, q2) · |F|.

Proof. Let Πi, 1 ≤ i ≤ B(k, q2), denote the BSSs of Σ. By assumption, for each
j, 1 ≤ j ≤ B(k, q2), there exists a (k + 1)-family Fj of m-arcs in Πj with |Fj | = |F|.
Let

S =

B(k,q2)⋃
j=1

Fj .

As a BSS is uniquely determined by a frame, two distinct BSSs cannot share a (k+2)-
arc. It follows that S is a (k + 1)-family of m-arcs with |S| = B(k, q2) · |F|.

Theorem 5.2. In PG(k, q) there exists a (k + 1)-family F of q-arcs where

|F | = qk−1 ·
k−1∏
i=1

(qk+1 − qi).

Proof. Denote by XP the number of NRCs through an arbitrary fixed point
P ∈ Σ = PG(k, q). By counting ordered pairs (C, Q), where C is an NRC in Σ and Q
is a point of C, we get

ν(k, q)(q + 1) =

(
qk+1 − 1

q − 1

)
·XP ,

which gives

XP = qk−1 ·
k−1∏
i=1

(qk+1 − qi).

Hence, removing P from each of the XP NRCs through P yields a (k + 1)-family F
of q-arcs.



792 T. L. ALDERSON AND KEITH E. MELLINGER

Corollary 5.3. For k > 1 and q > k a prime power, there exists a ( q
k+2−1
q−1 , q,

k, k + 1)-OOC consisting of

B(k, q2) ·XP + L(k, q2) · B(1, q2)

= q
k2+3k−2

2

(
qk+1 + 1

) k−1∏
i=1

[(
qk+1 − qi

) (
qi+1 + 1

)]

+

⌊
q2(k+1) − 1

q4 − 1

⌋
(q3 + q2) ≈ q2k2+3k−2

codewords.
Proof. Fix k > 1 and q > k and let Σ = PG(k+1, q2). From Theorems 5.1 and 4.3

there exists a ( q
k+2−1
q−1 , q, k, k+1)-OOC C consisting of B(k, q2) ·XP codewords. Let �

be one of the L(k+1, q2) lines in Σ with full orbit. As a frame uniquely determines a
BSS, it follows that any two Baer sublines of � intersect in at most two points. Thus,
as in Corollary 4.4 we may add L(k, q2) · B(1, q2) codewords to C. This gives a code
of size B(k, q2) ·XP + L(k, q2) · B(1, q2).

Remark 5.3.1. Let M(n,w, k, k + 1) be the size of the codes constructed as in

the theorem. Note that J(n,w, k + 1) ≈ q2k2+3k and J(n,w, k) ≈ q2k2+2k, so though
the codes constructed in the corollary are not asymptotically optimal with respect to
the Johnson bound, they appear to be of a competitive size. We also point out that
from (1.2) it follows that M(n,w, k, k + 1) > Φ(n,w, k + 1, k) for k > 2.

Corollary 5.4. For any prime power q, there exists a ( q
8−1

q2−1 , q + 1, 2, 3)-OOC

consisting of B(2, q2) · (q4 − q2) + L(3, q2) · B(1, q2) = q12 + q9 − q8 + q4 codewords.

For q = 2t there exists a ( q
8−1

q2−1 , q + 2, 2, 3)-OOC consisting of B(2, q2) · (q4 − q2) =

q12 + q9 − q8 − q5 codewords (in this case, we cannot include the lines).
Proof. (q + 1)-arcs (conics) exist in PG(2, q) and if q is even, then (q + 2)-arcs

(hyperovals) exist. Appealing to Theorems 4.8 and 5.1 to construct the appropri-
ate families of conics and hyperovals, the results then follow from Theorem 4.3 and
Corollary 4.4.

5.1. Codes from Baer subspaces. One last consideration for constructing
larger weight codes is to use BSSs of PG(k, q2) themselves to correspond to the
codewords. The correlation numbers, in this case, are functions of q (for k > 1),
which is probably not desirable. We provide the example nonetheless. Regarding the
maximal intersection of two BSSs, we have the following result (see [8, Theorem 1.3]).

Theorem 5.5. Let B1 and B2 be two BSSs of PG(k, q2). Then

|B1 ∩B2| ≤ θk−1,q + 1.

This gives us the following theorem.
Theorem 5.6. For any prime power q, there exists a (θk+1,q2 , θk,q, θk−1,q, θk−1,q+

1)-OOC consisting of B(k, q2) codewords.
Proof. As in the previous sections, embed Π = PG(k, q2) into Σ = PG(k + 1, q2)

and consider the set of all BSSs in Π. Proceed with a construction as in Theorem 4.3
with BSSs in place of arcs. The auto-correlation, λa, is bounded above by the max-
imum intersection of two BSSs lying in different hyperplanes of Σ. As two such
hyperplanes meet in a (k − 1)-flat of Σ, this intersection is bounded by θk−1,q. For
the cross-correlation λc, we need to consider the intersection of two BSSs lying in the
same hyperplane of Σ. By Theorem 5.5 we have λc ≤ θk−1,q + 1.
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6. Conclusion. We have exhibited several classes of OOCs generated by the
same basic ideas in finite projective spaces. Our codes are derived from a nice geo-
metric construction of sets of objects with small intersection sizes. Our hope was to
find more examples of (asymptotically) optimal codes. Perhaps more research into the
packing of various geometric objects into projective spaces, subject to a small inter-
section condition, may lead to further examples of optimal OOCs. We have exhibited
constructions of code families wherein the auto-correlation is smaller than the cross-
correlation. Perhaps these constructions will serve to motivate new investigations of
upper bounds on Φ(n,w, λa, λc) with λa < λc.
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Abstract. For S ⊆ Z
+ and k and r fixed positive integers, denote by f(S, k; r) the least positive

integer n (if it exists) such that within every r-coloring of {1, 2, . . . , n} there must be a monochromatic
sequence {x1, x2, . . . , xk} with xi − xi−1 ∈ S for 2 ≤ i ≤ k. We consider the existence of f(S, k; r)
for various choices of S, as well as upper and lower bounds on this function. In particular, we show
that this function exists for all k if S is an odd translate of the set of primes and r = 2.
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1. Introduction. Van der Waerden’s theorem on arithmetic progressions [10]
states that for every partition of Z

+ into r sets, at least one of the sets will contain
arbitrarily long arithmetic progressions. An equivalent form of this theorem says that
for all k, r ∈ Z

+, there exists a least positive integer n = w(k; r) such that within every
r-coloring of [1, n] = {1, 2, . . . , n} there must be a monochromatic k-term arithmetic
progression. By replacing the family of arithmetic progressions, AP , with another
family F of sets, one may ask if the corresponding theorem holds, i.e., is it true that for
all k, r ∈ Z

+, there exists a positive integer n = f(k; r) such that for every r-coloring
of [1, n], there is a monochromatic k-term member of F? Rado’s theorem involving
monochromatic solutions to systems of linear homogeneous equations illustrates one
way of choosing F . Other examples may be found in [3, 4, 6, 7, 8, 9].

In [4], the authors considered replacing AP with the collection of those arithmetic
progressions {x + id : 0 ≤ i ≤ k − 1} whose common differences, d, belong to a
prescribed set. Specifically, for r ∈ Z

+ and A ⊆ Z

+, call A an r-large set if for every
r-coloring of Z

+ there exist arbitrarily long monochromatic arithmetic progressions
whose common differences belong to A. Define A to be large if it is r-large for every r.
They gave several sufficient conditions and some necessary conditions for largeness and
2-largeness. They also conjectured that any set that is 2-large must be large.

In this paper we consider a property related to largeness. We consider sequences
where the differences between consecutive terms belong to a prescribed set S; however,
we do not insist that the sequence be an arithmetic progression.

We begin with the following notation and definitions. For any string u and any
t ∈ Z

+, we denote by ut the string of t consecutive u’s. For t = 0, we let ut represent
the empty string. For S ⊆ Z

+, a sequence of positive integers {x1, . . . , xk} is called a
k-term S-diffsequence if xi−xi−1 ∈ S for 2 ≤ i ≤ k. For r ∈ Z

+, S is called r-accessible
if whenever Z

+ is r-colored, there are arbitrarily long monochromatic S-diffsequences.
The set S is called accessible if it is r-accessible for all r ∈ Z

+. If S is not accessible,
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the degree of accessibility of S, denoted DA(S), is the largest value of r such that S is
r-accessible. Finally, we denote by f(S, k; r) the least positive integer n (if it exists)
such that for every r-coloring of [1, n] there is a monochromatic k-term S-diffsequence.
(Obviously, for S an r-accessible set, if S ⊆ T , then f(S, k; r) ≥ f(T, k; r).)

Denote the family of all accessible sets by A and the family of all r-accessible
sets by Ar. Likewise, denote the families of large sets and r-large sets by L and Lr.
Clearly, L ⊆ A and Lr ⊆ Ar for all r. As stated before, it is conjectured that L = L2.
As we shall see, A �= A2 and A2 �= L2. Moreover, Jungić [5] has proved that A �= L.

In section 2 we give some basic lemmas and consider a few elementary examples;
in particular, we show that for any d ∈ Z

+, there is a set with degree of accessibility
d (this is in contrast to what is conjectured about large sets). In section 3 we prove
that for each odd positive integer t there are arbitrarily long sequences of primes
p1 < · · · < pk such that pi − pi−1 ∈ P + t for 2 ≤ i ≤ k, where P is the set of primes.
From this it follows that P + t ∈ A2. Section 4 contains some open questions and a
table of computer-generated values of f(S, k; 2) for a few sets S and values k.

2. A few simple examples. We begin with two useful lemmas.
Lemma 2.1. Let c ≥ 0 and r ≥ 2, and let S ⊆ Z

+. If every (r − 1)-coloring of S
yields arbitrarily long monochromatic (S + c)-diffsequences, then S + c ∈ Ar.

Proof. Let S = {si : i ∈ Z

+} and assume every (r − 1)-coloring of S admits
arbitrarily long monochromatic (S + c)-diffsequences. Let χ be an r-coloring of Z

+.
By induction on k, we show that, under χ, for all k there are k-term monochromatic
(S+ c)-diffsequences. Since there are trivially 1-term sequences, assume that under χ
there is a monochromatic (S+c)-diffsequence X = {x1, . . . , xk}. Say X is of color red.
Consider A = {xk +si +c : si ∈ S}. If some member of A is colored red, then we have
a red (k+1)-term (S+c)-diffsequence. Otherwise, we have an (r−1)-coloring of A and
hence, A must contain arbitrarily long monochromatic (S + c)-diffsequences.

Remark. The converse of Lemma 2.1 is false. For example, let S = {2}∪(2Z

+−1).
Let χ be the 2-coloring of S defined by χ(x) = 1 if x ≡ 1(mod 4) or x = 2, and
χ(x) = 0 if x ≡ 3(mod 4). Then χ does not yield arbitrarily long monochromatic
S-diffsequences (there are none of length four). On the other hand, S ∈ A3 [8,
Remark 5], and in fact f(S, k; 3) ≤ 6k2 − 13k + 6 (see Theorem 2.6); more generally,
from this same reference it follows that if m is even, and j ∈ Z

+, then the set
{jm} ∪ {x : x ≡ m

2 (mod m)} is 3-accessible.
We leave to the reader as an easy exercise the proof of the following result.
Lemma 2.2. Let S be a set of positive integers, and let k, r, j ∈ Z

+. If f(S, k; r) =
M, then f(jS, k; r) = j(M − 1) + 1.

Using Lemma 2.1, with c = 0 and r = 2, it is clear that the set {2i : i ≥ 0} is
2-accessible. The following result tells us more.

Theorem 2.3. Let a ∈ Z

+ \ {1, 3}, and define S = {(a− 1)aj : j = 0, 1, 2, . . . } ∪
{(a− 1)2aj : j = 0, 1, 2, . . . }. Then 2 ≤ DA(S) ≤ a and f(S, k; 2) ≤ ak − a + 1.

Proof. To show that DA(S) ≤ a, let χ be the (a+1)-coloring defined by χ(x) = x
mod (a + 1). Assume that χ(y) = χ(z) and that z − y ∈ S. By the definition of χ,
a+1 divides z−y, and therefore either (a+1)|(a−1)aj or (a+1)|(a−1)2aj for some
j ≥ 0. Since a �= 1, 3, neither of these is possible.

Now let α : [1, ak−a+1] → {0, 1}. We will show, by induction on k, that under α
there is a monochromatic k-term S-diffsequence. Obviously, it holds for k = 1. Now
assume k ≥ 2 and that it holds for k−1. Let X = {x1, . . . , xk−1} be a monochromatic
S-diffsequence, say of color 0, that is contained in [1, ak−1 − a + 1]. Consider the set
A = {xk−1 + (a− 1)ai : 0 ≤ i ≤ k − 1}. Note that A ⊆ [1, ak − a + 1]. If there exists
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y ∈ A of color 0, then X ∪ {y} is a monochromatic k-term S-diffsequence. If, on the
other hand, no such y exists, then A is a monochromatic k-term S-diffsequence.

Corollary 2.4. If S = {2i : i ≥ 0}, then DA(S) = 2 and 8(k − 3) + 1 ≤
f(S, k; 2) ≤ 2k − 1 for all k ≥ 3.

Proof. The fact that DA(S) = 2 and the upper bound follow from Theorem
2.3. For the lower bound, it is straightforward to show (by induction on k) that, for
k ≥ 4, the 2-coloring χk = (10010110)k−3 avoids monochromatic k-term S-diffsequen-
ces.

The details of the proof of Corollary 2.4 are given in [9].

Remark. Note that a = 2 is the only value of a for which {ai : i ≥ 0} ∈ A2.
This follows immediately from the observation that if gcd(i,m) = 1 and S = {x ∈
Z

+ : x ≡ i(mod m)}, then there exists a (fairly obvious) 2-coloring of Z

+ that avoids
monochromatic m-term S-diffsequences.

In [4] it was shown that if A �∈ Lr and B �∈ Ls, then A ∪ B �∈ Lrs by using
the canonical product coloring. The same simple argument can be used to prove the
following lemma. We omit the details.

Lemma 2.5. If S �∈ Ar and T �∈ As and either S +T = {s+ t : s ∈ S, t ∈ T} ⊆ S
or S + T ⊆ T, then S ∪ T �∈ Ars.

It is easy to see, using Lemma 2.1, that the set S = {2}∪(2Z

+−1) is 2-accessible,
since the set of odd numbers itself is an S-diffsequence. The next theorem tells us
more about S. We omit the proof, which is given in [9].

Theorem 2.6. If S = {2}∪(2Z

+−1), then DA(S) = 3. Furthermore, f(S, k; 3) ≤
6k2 − 13k + 6, f(S, k; 2) = 3k − 3 for k even, and f(S, k; 2) = 3k − 4 for k odd.

The proof of the following example is an easy exercise and is left to the reader.

Proposition 2.7. Let F = {F1, F2, F3, F4 . . . } = {1, 2, 3, 5 . . . } be the set of
Fibonacci numbers. Then f(F, k; 2) ≤ Fk+2 − 2 for k ≥ 1.

The following simple result provides us with examples of very sparse sets which
are nonetheless accessible.

Proposition 2.8. For T ⊆ Z

+ infinite, T −T = {t−s : s < t and s, t ∈ T} ∈ A.

Proof. Let r ∈ Z

+ and let χ be an r-coloring of Z

+. Let s be the minimum
element in T and consider Ts = {t − s : t ∈ T}. Some color class must contain
an infinite number of elements of Ts. This gives an infinitely long monochromatic
(T − T )-diffsequence. Since this argument holds for all r, T − T ∈ A.

We now look at the accessibility of certain collections of congruence classes. In
[4] it was proved that if A ∈ L2, then A must contain a multiple of every positive
integer. We have seen that this is not true if we replace L2 with A2 (see, for example,
Corollary 2.4 or Theorem 2.6). By the next proposition, we see that this condition is
necessary in order for a set to be accessible. In addition to giving another example for
which 2-accessible does not imply 2-large, it also shows that for all positive integers
m, there exists a set having m as its degree of accessibility.

Proposition 2.9. For m ≥ 2, let Sm = {x ∈ Z

+ : m � x}. Then DA(Sm) =
m− 1.

Proof. That DA(Sm) ≤ m − 1 is easily seen by considering the m-coloring χ
of Z

+ defined by χ(x) = x (mod m). To prove the reverse inequality, let χ be any
(m−2)-coloring of Sm. Then some color must contain an infinite number of elements
from each of at least two of the residue classes 1 (mod m), 2 (mod m), . . . , (m − 1)
(mod m). Thus, some color contains an infinite Sm-diffsequence and the proof is
complete.
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For some results about the values of f(Sm, k; 2) for specific choices of m, we refer
the reader to [9].

3. Translations of the set of primes. In [4], the question was raised as to
whether there exists a translation of P , the set of primes, that is large, or for that
matter 2-large. Since a 2-large set must contain a multiple of every integer, P +e �∈ L2

if e is even. Likewise, by Proposition 2.9, if e is even, then P+e �∈ A, and P itself is not
4-accessible. In fact, P �∈ A3. To see this, color the multiples of 9 green, the remaining
even numbers red, and the remaining odd numbers blue. It is easy to see that any
sequences of nine reds, nine blues, or two greens must have numbers that differ by
a nonprime. We do not know if P is 2-accessible or if some even translation of P is
2-accessible. On the other hand, as we shall see in this section, all odd translations
of P are 2-accessible. In fact, we prove the following stronger result.

Theorem 3.1. Let t ∈ Z

+ be odd. For any k ≥ 2, there exist p1, p2, . . . , pk ∈ P
such that pi − pi−1 ∈ P + t for 2 ≤ i ≤ k.

Combining Theorem 3.1 with Lemma 2.1, we immediately get the following.
Corollary 3.2. If t is odd, then P + t ∈ A2.
We prove Theorem 3.1 as an application of a powerful number theoretic result

due to Balog [1]. The application is stated as Theorem 3.3 below. Before stating the
theorem, we mention some notation.

Let b = (b1, b2, . . . , bk) ∈ Z

k, p ∈ P , and x ∈ R

+. We define the following:
(1) π(x;b) = |{n : 1 < n + bi ≤ x is prime for every 1 ≤ i ≤ k}|;
(2) ρ(p) = ρ(p;b) = |{bi (mod p) : 1 ≤ i ≤ k}|;
(3) σ(b) =

∏
p∈P (1 − 1

p )−k(1 − ρ(p)
p );

(4) T (x;b) =
∑

R(x)
1

log(n+b1) log(n+b2)... log(n+bk) , where R(x) = {n : 1 < n+ bi ≤
x for all i, 1 ≤ i ≤ k}.

Finally, we remind the reader of the following standard notation: For functions
f(x) and g(x), we write f(x) 
 g(x) if there exists a positive constant c such that

lim infx→∞
f(x)
g(x) ≥ c. Furthermore, for a parameter k, we write f(x) 
k g(x) if the

constant c is dependent upon k.
Theorem 3.3 (Balog). Let k ∈ Z

+, x ∈ R

+, and t ∈ Z

+ ∪ {0}. Define

B =

{(
0, q1 + t, . . . ,

k−1∑
i=1

(qi + t)

)
: qi ∈ P, k < qi ≤ x/2k, 1 ≤ i ≤ k − 1

}
.

Then ∑
b∈B

|π(x;b) − σ(b)T (x;b)| �k
xk

log2k x
.

Remark. This is a special case of Balog’s theorem [1, p. 49] (where we use A = 2k,
c = 0, D = 1, and ai = 1 for 1 ≤ i ≤ k).

We will need the following technical lemma.
Lemma 3.4. Let k ≥ 2 and let t ≥ 1 be odd. For q = (q1, . . . , qk−1) ∈ P k−1, let

b(q) = b(q, t) =

(
0, q1 + t, . . . ,

k−1∑
i=1

(qi + t)

)
.

Let

M(x) =

{
q ∈ P k−1 : q ∈

(
k,

x

2k

]k−1

and ρ(p,b(q)) < p for all p ∈ P

}
.
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Then |M(x)| 
k ( x
log x )k−1.

Proof. Our goal is to show that “most” q ∈ P k−1 fail to define a complete set of
residue classes modulo p for all p ∈ P . First of all, it is clear that ρ(p,b(q)) < p for
any prime p > k since ρ(p,b(q)) ≤ k. Hence, we need only to consider those primes

r1, r2, . . . , rd ≤ k; let m =
∏d

i=1 ri. We will obtain a lower bound for the number of
q such that ρ(ri,b(q)) < ri for all 1 ≤ i ≤ d.

It suffices to show that for some integer h, all entries of (h, h, . . . , h) + b(q) are
not divisible by ri for all i, 1 ≤ i ≤ d. To this end, choose h such that gcd(h,m) = 1
(note that h is odd). Obviously, this condition holds for the first entry.

In order to have that each ri, 1 ≤ i ≤ d, does not divide h+q1+t (the second entry
in (h, h, . . . , h) + b(q)), it is sufficient that q1 belong to some particular congruence
class c1 (mod m), where gcd(c1,m) = 1. Since t and h are both odd, such a c1 exists,
and by Dirichlet’s theorem for primes in arithmetic progressions, there are 
k

x
log x

choices for q1.
Similarly, once h, q1, q2, . . . , qj−1 have been chosen, we need only consider those

qj so that for each ri, qj does not belong to any of the residue classes −(h + q1 +
q2 + · · · qj−1 + jt) (mod ri), 1 ≤ i ≤ d. So it suffices to have qj belong to one specific
congruence class cj(mod m), with gcd(cj ,m) = 1.

Using the above criteria, we have at least
∏d

i=2(ri − 2) reduced residue classes
modulo m/2 in which the entries of (h, h, . . . , h) + b(q) may reside. To see this,
note that for 2 ≤ j ≤ d, for each prime rj , we cannot have cj = 0 (mod rj) or
−(h + q1 + · · · + qj−1 + jt) (mod rj), giving rj − 2 choices. Now, by Dirichlet’s
theorem we have 
k

x
log x choices for each qi, and thus 
k ( x

log x )k−1 valid choices for

the (k − 1)-tuple of primes (q1, q2, . . . , qk−1) that belong to M(x).
Using Theorem 3.3 and Lemma 3.4, we have the following result.
Lemma 3.5. Let k ≥ 2, t ≥ 1 and odd, and x ∈ R

+. If

W (x) =
{

(p, q1, . . . , qk−1) : p, q1, . . . , qk−1 are primes and k < q1, q2, . . . , qk−1 ≤ x

2k

}
and

S(x) =

⎧⎨
⎩(p, q1, . . . , qk−1) ∈ W : p +

i∑
j=1

(qj + t) ≤ x is prime for all i (0 ≤ i ≤ k)

⎫⎬
⎭ ,

then |S(x)| 
k
xk

log2k−1 x
.

Proof. We use the notation from Theorem 3.3 and Lemma 3.4. In order to apply
Theorem 3.3, we first obtain effective bounds for ρ, σ, and T .

We first show that 0 < σ(b(q)) < ∞. The fact that σ(b(q)) < ∞ is shown in [2].
We see that for all q ∈ M(x), by the definition of M(x) we have ρ(p;b(q)) < p for
all primes p. Since it is also true that ρ(p;b(q)) ≤ k for any prime p, we have

(3.1) σ(b(q)) ≥
∏
p≤k

(
1 − 1

p

)−k (
1 − p− 1

p

) ∏
p>k

(
1 − 1

p

)−k (
1 − k

p

)
= σk,

a constant dependent upon only k. We next show that σk > 0.
Clearly, we have the finite product in (3.1) positive, so we must show that the

infinite product in (3.1) converges to a positive constant. To this end, let 1 + ap =

(1 − 1/p)
−k

(1 − k/p). By the binomial theorem, we have ap =
−

∑k
i=2(−1)k−i(ki)p

−i

(1−1/p)k
.
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Since |ap| ≤
∑k

i=2 (ki)p
−i

(1−1/p)k
≤

∑k
i=2 (ki)p

−2

(1−1/p)k
≤

∑k
i=2 (ki)p

−2

1/2k = 2k(2k − k− 1)p−2, we see that∑
p∈P ap converges absolutely. It follows that

∏
p∈P (1 + ap) converges to a positive

number. Thus, from (3.1),

(3.2) for all q ∈ M(x), σ(b(q)) ≥ σk > 0.

We next bound T (x;b(q)) by using

|{n : 1 < n + bi ≤ x, 1 ≤ i ≤ k}| = (x− bk) + O(1)

= x−
k−1∑
i=1

(qi + t) + O(1)

> x−
k−1∑
i=1

qi − kt


k,t x− k
(

x
2k

)
= x

2 .

This gives us

(3.3) T (x;b(q)) 
k,t
x

2 logk x
.

We now apply our above bounds to complete the proof. Noting that {b(q) : q ∈
M(x)} ⊆ B (where B is as defined in Theorem 3.3), Theorem 3.3 implies that

(3.4)
∑

q∈M(x)

∣∣∣π(x;b(q)) − σ(b(q))T (x;b(q))
∣∣∣ �k

xk

log2k x
.

Let N(x) = P k−1 ∩ (k, x
2k ]k−1. Since we can write

W (x) =
⋃
p∈P

⋃
q∈N(x)

{(p, q1, q2, . . . , qk−1)},

we have

|S(x)| ≥
∑

q∈M(x)

π(x;b(q)).

Using (3.2) and (3.3) along with Lemma 3.4, inequality (3.4) yields

∑
q∈M(x)

π(x;b(q)) 
k

∑
q∈M(x)

σ(b(q))T (x;b(q)) −O
(

xk

log2k x

)


k,t σk|M(x)|
(
x
2 + O(1)

) (
1

logk x

)
−O

(
xk

log2k x

)

k,t σk

(
x

log x

)k−1 (
x

logk x

)
−O

(
xk

log2k x

)

k,t

xk

log2k−1 x
.

Having Lemma 3.5, we are now in a position to complete the proof of Theorem 3.1.
We choose primes p1, q1, . . . , qk−1 so that pi = p1 +

∑i−1
j=1(qj + t) ∈ P for 2 ≤ i ≤ k.

Since pi − pi−1 = qi−1 + t for 2 ≤ i ≤ k, we are done.
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4. Open questions and some exact values. There are many interesting ques-
tions left unanswered about accessibility. Here is a list of some.

1. Let T = {2i : i ≥ 0}. What is the exact value of f(T, k; 2)? In Table 1 we give
the first few values of this function.

2. What is the exact value of f(S, k; 3), where S = {2} ∪ (2Z

+ − 1)?

3. What is a formula for f(Sm, k; 2)? Calculations for the case m = 6 support
our conjecture that for k ≥ 2,

f(S6, k; 2) =

⎧⎪⎪⎨
⎪⎪⎩

(5k − 4)/2 if k ≡ 2(mod 4),
(5k − 5)/2 if k ≡ 3(mod 4),
(5k − 6)/2 if k ≡ 0(mod 4),
(5k − 7)/2 if k ≡ 1(mod 4).

Also note that (see [9]) if we let am ≤ k < (a+1)m, a a nonnegative integer, we have
2k + 2a− 1 ≤ f(Sm, k; 2), with equality when a = 0. We believe that this inequality
is an equality for all a ∈ Z

+.

4. If t is an odd positive integer, what is DA(P + t)? Moreover, is it true that for
every 2-coloring of P , there exist arbitrarily long monochromatic (P+t)-diffsequences?
If the answer to the latter question is true, then by Lemma 2.1, P + t ∈ A3.

5. What is the order of magnitude of f(P+t, k; 2) for a fixed odd positive integer t?
Table 1 includes some specific values of this function.

6. As stated earlier, P �∈ A3. Is P ∈ A2? If so, what is the magnitude of f(P, k; 2)?
We have calculated the first several values of f(P, k; 2) (see Table 1).

Table 1

S \ k 2 3 4 5 6 7 8
T 3 7 11 17 25 35 51
F 3 5 9 11 15 19 21
P 5 9 13 21 25 33 ?

P + 1 7 13 21 27 35 ? ?
P + 2 9 17 25 33 ? ? ?
P + 3 11 21 31 42 ? ? ?
P + 4 13 25 37 ? ? ? ?
P + 5 15 29 ? ? ? ? ?
P + 6 17 33 ? ? ? ? ?
P + 7 19 37 ? ? ? ? ?

S5 3 5 7 11 13 15 19
S6 3 5 7 9 13 15 17

7. Let F be the set of Fibonacci numbers. What is DA(F )? What is the order of
magnitude of f(F, k; 2)?

8. For k,m ≥ 2, what can we say about DA(S) and f(S, k; 2), where S is the
union of more than one congruence class modulo m?

Table 1 gives the exact value of f(S, k; 2) for various S and k. The symbols T ,
F , and P denote {2i : i ≥ 0}, the set of Fibonacci numbers, and the set of primes,
respectively.

Acknowledgments. We thank Andrew Granville for guiding us to Balog’s the-
orem and for his invaluable assistance with the proofs of Lemmas 3.4 and 3.5. We
also thank Scott Ahlgren for helping with some details of the proof of Lemma 3.5.
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Math. 85, Birkhäuser, Boston, 1990, pp. 47–75.

[2] P. T. Bateman and R. A. Horn, A heuristic asymptotic formula concerning the distribution
of prime numbers, Math. Comp., 16 (1962), pp. 363–367.
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ON ROTA’S BASIS CONJECTURE∗

JIM GEELEN† AND KERRI WEBB‡

Abstract. Rota conjectured that if (B1, . . . , Bn) are disjoint bases in a rank-n matroid M ,
then there are n disjoint transversals of (B1, . . . , Bn) that are bases of M . We prove the weaker
result that there are O(

√
n) disjoint transversals of (B1, . . . , Bn) that are bases. We also prove that

if (B1, . . . , Bk) are disjoint bases of a rank-n matroid with n >
(k+1

2

)
, then there are n disjoint

independent transversals of (B1, . . . , Bk).

Key words. matroids, Rado’s theorem, Rota’s basis conjecture

AMS subject classification. 05B35

DOI. 10.1137/060666494

1. Introduction. In 1989, Rota conjectured that, given n bases of a rank-n
matroid, there is an n by n grid such that the rows contain the given bases and each
column also contains a basis; see Huang and Rota [1]. By possibly adding parallel
elements to the matroid, we can assume that the original n bases are disjoint, and
thus we have the following equivalent conjecture.

Conjecture 1.1 (Rota’s basis conjecture). If (B1, . . . , Bn) are disjoint bases in
a rank-n matroid M , then there are n disjoint transversals of (B1, . . . , Bn) that are
bases of M .

We prove the following related results.
Theorem 1.2. For n ≥ k2 − k+1, if (B1, . . . , Bn) are disjoint bases in a rank-n

matroid, then there are k disjoint transversals of (B1, . . . , Bn) that are bases.
Theorem 1.3. If (B1, . . . , Bk) are disjoint bases in a rank-n matroid where

n ≥
(
k+1
2

)
+ 1, then there are n disjoint independent transversals of (B1, . . . , Bk).

We hope that the quadratic bounds in Theorems 1.2 and 1.3 will be improved to
linear functions.

2. Disjoint independent transversals. In this section we prove Theorem 1.2.
For sets (S1, . . . , Sn) and X ⊆ {1, . . . , n}, we let S(X) denote

⋃
(Si : i ∈ X). We use

the following result; see Rado [3] or Oxley [2, p. 388].
Theorem 2.1 (Rado’s theorem). Let (S1, . . . , Sn) be sets in a matroid. Then

there is an independent transversal of (S1, . . . , Sn) if and only if r(S(X)) ≥ |X| for
each X ⊆ {1, . . . , n}.

As a corollary we have the following lemma.
Lemma 2.2. Let t ≤ n, and let (S1, . . . , Sn) be independent sets of a matroid. If

|Si| ≥ min(i, n − t) for each i ∈ {1, . . . , n} and there are disjoint subsets Y1, . . . , Yt

of {1, . . . , n} such that S(Y1), . . . , S(Yt) each have rank at least n, then there is an
independent transversal of (S1, . . . , Sn).
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Proof. Let X ⊆ {1, . . . , n}. If Yi ⊆ X for some i ∈ {1, . . . , t}, then r(S(X)) ≥
r(S(Yi)) ≥ n ≥ |X|. If Yi is not contained in X for each i, then |X| ≤ n− t. Let k be
the maximum index in X in this case. Then |X| ≤ k, and since r(S(X)) ≥ r(Sk) =
|Sk| ≥ min(k, n− t), it again follows that r(S(X)) ≥ |X|. Hence, by Rado’s theorem,
there is an independent transversal of (S1, . . . , Sn).

Proof of Theorem 1.2. Let l =
(
k
2

)
; note that n ≥ 2l + 1. We can choose bases

X1, . . . , Xl such that Xi ⊆ Bi∪Bn−i and |Xi∩Bi| = n− i. Let S = (B1∪· · ·∪Bn)−
(X1 ∪ · · · ∪Xl). Now let A1 = ∅ and, for each i ∈ {2, . . . , k}, let Ai =

{
1, . . . ,

(
i
2

)}
.

We claim that there are disjoint independent transversals T1, . . . , Tk of (B1, . . . , Bn)
with Ti ⊆ S ∪ X(Ai) for each i ∈ {1, . . . , k}. Certainly there exists an independent
transversal T1 ⊆ S of (B1, . . . , Bn). Assume that, for some t ∈ {1, . . . , k−1}, we have
found disjoint independent transversals T1, . . . , Tt of (B1, . . . , Bn) with Ti ⊆ S∪X(Ai)
for each i ∈ {1, . . . , t}. Let T ′ = T1 ∪ · · · ∪ Tt, let S′ = S ∪ X(At+1) − T ′, and let
r =

(
t+1
2

)
. Consider the independent sets (S1, . . . , Sn), where

Si =

⎧⎪⎨
⎪⎩
Br+i ∩ S′, if 1 ≤ i < n− 2r;

B2r−n+1+i ∩ S′ = B2r−n+1+i − T ′, if n− 2r ≤ i < n− r;

Bi ∩ S′ = Bi − T ′, if n− r ≤ i ≤ n.

We claim that |Si| ≥ min(i, n− t) for each i ∈ {1, . . . , n}.
First consider the case that 1 ≤ i ≤ l − r. Then

Si = Br+i ∩ S′ = Br+i −Br+i ∩Xr+i −Br+i ∩ T ′.

Since r + i 	∈ At, the sets Xr+i and T ′ are disjoint, and therefore |Si| = n− (n− (r +
i)) − t = i + r − t ≥ i. Similarly, if n− l − r ≤ i < n− 2r, then

Si = Br+i ∩ S′ = Br+i −Br+i ∩Xn−(r+i) −Br+i ∩ T ′,

and again |Si| = i + r − t ≥ i. It remains to consider the case that either l − r <
i < n − l − r or n − 2r ≤ i ≤ n. Here Si = Bj − T ′ for some j ∈ {1, . . . , r} ∪ {l +
1, . . . , n− l− 1} ∪ {n− r, . . . , n}, and thus |Si| = n− t. Hence |Si| ≥ min(i, n− t) for
each i ∈ {1, . . . , n}.

Let yi =
(
t
2

)
+ i for each i ∈ {1, . . . , t}. Then yi ∈ At+1 − At, and thus the

basis Xyi is contained in (Byi ∩ S′) ∪ (Bn−yi ∩ S′) = Sn−2r−1+yi ∪ Sn−yi . Hence if
Yi = {n − 2r − 1 + yi, n − yi}, then S(Yi) has rank n for each i ∈ {1, . . . , t}. By
Lemma 2.2, there is an independent transversal Tt+1 ⊆ S′ of (B1, . . . , Bn), and we
therefore inductively obtain the required transversals.

3. Partitioning into independent transversals. In this section we prove
Theorem 1.3 using the following lemma.

Lemma 3.1. Let (S1, . . . , Sk) be disjoint k-element sets in a matroid, and let
(Y1, Y2, . . . , Yk−1) be disjoint independent sets such that Yi is an i-element transversal
of (S1, . . . , Si) for each i ∈ {1, . . . , k − 1}. If (S1 ∪ · · · ∪ Sk) − (Y1 ∪ · · · ∪ Yk−1) is
independent, then there are k disjoint independent transversals of (S1, . . . , Sk).

Proof. Let Z = (S1 ∪ · · · ∪ Sk) − (Y1 ∪ · · · ∪ Yk−1), and let Y0 = ∅. For each
i ∈ {0, . . . , k − 1}, there is a set Xi ⊆ Z such that |Xi| = |Yi| and (Z − Xi) ∪ Yi

is independent. We can now find disjoint sets (Wk−1,Wk−2, . . . ,W0), in that order,
such that Wi is a transversal of (S1, . . . , Sk) with Yi ⊆ Wi ⊆ (Z − Xi) ∪ Yi, for
each i ∈ {0, . . . , k − 1}. Note that each Wi is independent since it is contained in
(Z −Xi) ∪ Yi.



804 JIM GEELEN AND KERRI WEBB

Fig. 1. Proof of Theorem 1.3.

Proof of Theorem 1.3. Since n ≥
(
k+1
2

)
+ 1, we can find disjoint independent sets

Z and Z ′ such that |Z ∩Bi| = k + 1− i and |Z ′ ∩Bi| = i for each i ∈ {1, . . . , k}. Let
m = (n − (k + 1)) − (k − 1). By Rado’s theorem, we can find disjoint independent
transversals (T1, . . . , Tm) of (B1 − (Z ∪ Z ′), . . . , Bk − (Z ∪ Z ′)).

Let S = (B1∪· · ·∪Bk)−(Z∪Z ′∪T1∪· · ·∪Tm). We can find disjoint independent
subsets (Y ′

1 , . . . , Y
′
k−1) of S such that Y ′

i is a transversal of (B1, . . . , Bk−i). Let S′ =
S− (Y ′

1 ∪ · · · ∪Y ′
k−1). We can then find disjoint independent subsets (Y1, . . . , Yk−1) of

S′ such that Yi is a transversal of (Bi+1, Bi+2, . . . , Bk); see Figure 1. By Lemma 3.1,
we can partition Z∪Y1∪· · ·∪Yk−1 and Z ′∪Y ′

1∪· · ·∪Y ′
k−1 into independent transversals

of (B1, . . . , Bk).
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ON EXTREMAL k-GRAPHS WITHOUT REPEATED COPIES OF
2-INTERSECTING EDGES∗
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Abstract. The problem of determining extremal hypergraphs containing at most r isomorphic
copies of some element of a given hypergraph family was first studied by Boros et al. in 2001. There
are not many hypergraph families for which exact results are known concerning the size of the
corresponding extremal hypergraphs, except for those equivalent to the classical Turán numbers. In
this paper, we determine the size of extremal k-uniform hypergraphs containing at most one pair of
2-intersecting edges for k ∈ {3, 4}. We give a complete solution when k = 3 and an almost complete
solution (with eleven exceptions) when k = 4.
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1. Introduction. A set system is a pair G = (X,A), where X is a finite set and
A ⊆ 2X . The members of X are called vertices or points, and the members of A are
called edges or blocks. The order of G is the number of vertices |X|, and the size of G
is the number of edges |A|. The set K is called a set of block sizes for G if |A| ∈ K
for all A ∈ A. G is called a k-uniform hypergraph (or k-graph) if {k} is a set of block
sizes for G. A 2-graph is also known simply as a graph.

A pair of edges is said to be t-intersecting if they intersect in at least t points. The
k-graph of size two whose two edges intersect in exactly t points is denoted Λ(k, t).

Let F be a family of k-graphs. Boros et al. [2] introduced the function T (n,F , r),
which denotes the maximum number of edges in a k-graph of order n containing no r
isomorphic copies of a member of F . So T (n,F , 1) is just the classical Turán number
ex(n,F) [1]. A family of k-graphs F is said to grow polynomially if there exist c > 0
and a nonnegative integer s such that, for every m, there are at most cms members
in F having exactly m edges. The following theorem is established in [2].

Theorem 1.1 (Boros et al. [2]). Let F be a family of k-graphs which grows
polynomially with parameters c and s. Then, for n sufficiently large,

T (n,F , r) < ex(n,F) + (c · (r − 1) · s! + 1)ex(n, F )(s+1)/(s+2)

+ 2(c · (r − 1) · s! + 1)2ex(n,F)s/(s+2).

For k ≥ 3, let F(k) be the family of k-graphs of two 2-intersecting edges; that
is, F(k) = {Λ(k, t) : 2 ≤ t ≤ k − 1}. T (n,F(k), 1), which is the Turán number
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ex(n,F(k)), is equal to the following well studied parameters in design theory and
coding theory:

• D(n, k, 2), the maximum number of blocks in a 2-(n, k, 1) packing [11], and
• A(n, 2(k − 1), k), the maximum number of codewords in a binary code of

length n, minimum distance 2(k − 1), and constant weight k [10].
Despite much effort, the exact value of T (n,F(k), 1) is known for all n only when
k = 3 [14, 15] and k = 4 [3]. Even for k = 5, there are an infinite number of n for
which T (n,F(5), 1) is not yet determined. In this paper, we determine T (n,F(k), 2)
for all n when k = 3 and for all but 11 values of n when k = 4.

2. Design-theoretic preliminaries. Our determination of T (n,F(k), 2), k ∈
{3, 4}, makes extensive use of combinatorial designs. In this section, we review some
design-theoretic constructs and review some prior results that are needed in our
solution.

For positive integers i ≤ j, the set {i, i + 1, . . . , j} is denoted [i, j]. The set [1, j]
is further abbreviated as [j]. A k-graph (X,A) of order n is a packing of pairs by
k-tuples, or more commonly known as a 2-(n, k, 1) packing if every 2-subset of X is
contained in at most one block of A. The leave of (X,A) is the graph L = (X, E),
where E consists of all 2-subsets of X that are not contained in any blocks of A. We
also say that (X,A) is a 2-(n, k, 1) packing leaving L. Given a graph G, the maximum
size of a 2-(n, k, 1) packing whose leave contains G is denoted m(n, k,G). Note that
the maximum size of a 2-(n, k, 1) packing, D(n, k, 2), is the quantity m(n, k,G) when
G is the empty graph.

Theorem 2.1 (Schönheim [14], Spencer [15]). For all n ≥ 0, we have

D(n, 3, 2) =

{⌊
n
3

⌊
n−1

2

⌋⌋
− 1 if n ≡ 5 (mod 6),⌊

n
3

⌊
n−1

2

⌋⌋
otherwise.

Theorem 2.2 (Brouwer [3]). For all n ≥ 0, we have

D(n, 4, 2) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⌊
n
4

⌊
n−1

3

⌋⌋
− 1 if n ≡ 7 or 10 (mod 12) and n /∈ {10, 19},⌊

n
4

⌊
n−1

3

⌋⌋
− 1 if n ∈ {9, 17},⌊

n
4

⌊
n−1

3

⌋⌋
− 2 if n ∈ {8, 10, 11},⌊

n
4

⌊
n−1

3

⌋⌋
− 3 if n = 19,⌊

n
4

⌊
n−1

3

⌋⌋
otherwise.

A pairwise balanced design (PBD) is a set system (X,A) such that every 2-subset
of X is contained in exactly one block of A. If a PBD is of order n and has a set
of block sizes K, we denote it by PBD(n,K). If a member k ∈ K is superscripted
with a “�” (written “k�”), it means that the PBD has exactly one block of size k. We
require the following result on the existence of PBDs.

Theorem 2.3 (Fort and Hedlund [5]). There exists a PBD(n, {3, 5�}) if and only
if n ≡ 5 (mod 6).

Theorem 2.4 (Rees and Stinson [13]). There exists a PBD(n, {4, f�}) if and
only if n ≥ 3f + 1, and

(i) n ≡ 1 or 4 (mod 12) and f ≡ 1 or 4 (mod 12) or
(ii) n ≡ 7 or 10 (mod 12) and f ≡ 7 or 10 (mod 12).
Let (X,A) be a set system, and let G = {G1, . . . , Gs} be a partition of X into

subsets, called groups. The triple (X,G,A) is a group divisible design (GDD) when
every 2-subset of X not contained in a group appears in exactly one block, and
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|A ∩ G| ≤ 1 for all A ∈ A and G ∈ G. We denote a GDD (X,G,A) by K-GDD if
K is a set of block sizes for (X,A). The type of a GDD (X,G,A) is the multiset
[|G| : G ∈ G]. When more convenient, we use the exponentiation notation to describe
the type of a GDD: A GDD of type gt11 . . . gtss is a GDD where there are exactly ti
groups of size gi, i ∈ [s]. The following results on the existence of {4}-GDDs are useful.

Theorem 2.5 (Hanani [7]). There exists a {3}-GDD of type gt if and only if
t ≥ 3, g2

(
t
2

)
≡ 0 (mod 3), and g(t− 1) ≡ 0 (mod 2).

Theorem 2.6 (Brouwer, Schrijver, and Hanani [4]). There exists a {4}-GDD of
type gt if and only if t ≥ 4 and

(i) g ≡ 1 or 5 (mod 6) and t ≡ 1 or 4 (mod 12) or
(ii) g ≡ 2 or 4 (mod 6) and t ≡ 1 (mod 3) or
(iii) g ≡ 3 (mod 6) and t ≡ 0 or 1 (mod 4) or
(iv) g ≡ 0 (mod 6),

with the two exceptions of types 24 and 64, for which {4}-GDDs do not exist.
Theorem 2.7 (Brouwer [3]). A {4}-GDD of type 2u51 exists if and only if u = 0,

or u ≡ 0 (mod 3) and u ≥ 9.
Theorem 2.8 (see [9]). There exists a {4}-GDD of type 3tu1 if and only if t = 0,

or t ≥ (2u + 3)/3 and
(i) t ≡ 0 or 1 (mod 4) and u ≡ 0 or 6 (mod 12) or
(ii) t ≡ 0 or 3 (mod 4) and u ≡ 3 or 9 (mod 12).
Theorem 2.9 (Ge and Ling [6]). There exists a {4}-GDD of type 2tu1 for t = 0

and for each t ≥ 6 with t ≡ 0 (mod 3), u ≡ 2 (mod 3), and 2 ≤ u ≤ t − 1, except
for (t, u) = (6, 5) and except possibly for (t, u) ∈ {(21, 17), (33, 23), (33, 29), (39, 35),
(57, 44)}.

Theorem 2.10 (Ge and Ling [6]). There exists a {4}-GDD of type 12tu1 for
t = 0 and for each t ≥ 4 and u ≡ 0 (mod 4) such that 0 ≤ u ≤ 6(t− 1).

An incomplete transversal design of group size n, block size k, and hole size h is
a quadruple (X,G, H,A) such that

(i) (X,A) is a k-graph of order nk;
(ii) G is a partition of X into k subsets (called groups), each of cardinality n;
(iii) H ⊆ X, with the property that, for each G ∈ G, |G ∩H| = h; and
(iv) every 2-subset of X is

• contained in the hole H and not contained in any blocks or
• contained in a group and not contained in any blocks or
• contained in neither a hole nor a group and contained in exactly one

block of A.
Such an incomplete transversal design is denoted TD(k, n) − TD(k, h).

Theorem 2.11 (Heinrich and Zhu [8]). For n > h > 0, a TD(4, n) − TD(4, h)
exists if and only if n ≥ 3h and (n, h) �= (6, 1).

3. Packings with leaves containing specified graphs. In this section, we
relate the problem of determining T (n,F(k), 2) to that of determining m(n, k,G) for
G isomorphic to K4−e, K5−e, and 2◦K4 (edge-gluing of two K4’s) when k ∈ {3, 4}.
These graphs are shown in Figures 3.1–3.3, respectively.

Lemma 3.1. There exists a 3-graph of order n and size m containing exactly one
copy of an element of F(3) if and only if there exists a 2-(n, 3, 1) packing of size m−2
with a leave containing K4 − e as a subgraph.

Proof. F(3) contains only a single 3-graph, Λ(3, 2). Let (X,A) be a 3-graph of
order n and size m containing exactly one copy of Λ(3, 2). Then there exist exactly
two blocks A,B ∈ A, with |A ∩ B| = 2. Let P = (X,A \ {A,B}). Then P is a
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Fig. 3.1. K4 − e.

Fig. 3.2. K5 − e.

Fig. 3.3. 2 ◦K4.

2-(n, 3, 1) packing of size m−2 with a leave containing the 2-subsets in X that occurs
in A and B, which together form a K4 − e. This construction is reversible.

Corollary 3.2. The following holds:

T (n,F(3), 2) = max{T (n,F(3), 1),m(n, 3,K4 − e) + 2}.

Proof. If a 3-graph contains no two isomorphic copies of Λ(3, 2), then either it
contains no copies, in which case its maximum size is given by T (n,F(3), 1), or else
it contains exactly one copy, in which case its maximum size is given by m(n, 3,K4 −
e) + 2.

The proofs for the following two lemmas are similar to that for Lemma 3.1 and
are thus omitted.

Lemma 3.3. There exists a 4-graph of order n and size m containing exactly one
copy of Λ(4, 2) if and only if there exists a 2-(n, 4, 1) packing of size m − 2 with a
leave containing 2 ◦K4 as a subgraph.

Lemma 3.4. There exists a 4-graph of order n and size m containing exactly one
copy of Λ(4, 3) if and only if there exists a 2-(n, 4, 1) packing of size m − 2 with a
leave containing K5 − e as a subgraph.

Corollary 3.5. The following holds:

T (n,F(4), 2) = max{T (n,F(4), 1),m(n, 4, 2 ◦K4) + 2,m(n, 4,K5 − e) + 2}.

Proof. F(4) contains the graphs Λ(4, 2) and Λ(4, 3). So if a 4-graph contains no
two isomorphic copies of an element of F(4), then either it contains none of them,
in which case its maximum size is given by T (n,F(4), 1), or else it contains exactly
one of Λ(4, 2) or Λ(4, 3). In the former case, its maximum size is m(n, 4, 2 ◦ K4) +
2 by Lemma 3.3, and, in the latter case, its maximum size is m(n, 4,K5 − e) by
Lemma 3.4.
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4. Determining T (n,F(3), 2). When n ≡ 1 or 3 (mod 6), a 2-(n, 3, 1) packing
of size T (n,F(3), 1) has the property that every pair of distinct points is contained in
exactly one block. Such a 2-(n, 3, 1) packing is called a Steiner triple system of order
n and is denoted STS(n).

Let P = (X,A) be a 2-(n, 3, 1) packing. When n ≡ 1 or 3 (mod 6), the leave
L = (X, E) of P must satisfy:

(i) |E| ≡ 0 (mod 3), and
(ii) the degree of every vertex in L is even.

Any L containing K4 − e as a subgraph and satisfying conditions (i) and (ii) above
has at least nine edges. Hence, the maximum size of a 2-(n, 3, 1) packing with a leave
containing K4 − e is at most 1

3 (
(
n
2

)
− 9). We show below that there indeed exists such

a 2-(n, 3, 1) packing of size 1
3 (
(
n
2

)
− 9).

Lemma 4.1. There exists a 2-(n, 3, 1) packing of size 1
3 (
(
n
2

)
− 9), with a leave

containing K4 − e, for every n ≡ 1 or 3 (mod 6).
Proof. Let (X,A) be an STS(n). Suppose there exist three blocks in A of the form

{1, 2, 3}, {1, 4, 5}, and {3, 4, a}. Then deleting these three blocks gives a 2-(n, 3, 1)
packing of size 1

3 (
(
n
2

)
− 9) with a leave containing K4 − e. Hence, it suffices to show

that we can always find such a 3-block configuration in any STS(n). To see that this
is true, pick any two intersecting blocks in an STS(n), say, {1, 2, 3} and {1, 4, 5}. As
the third block, take the unique block containing the 2-subset {3, 4}.

Next, we consider n ≡ 5 (mod 6). In this case,
(
n
2

)
≡ 1 (mod 3). So if the leave

of a 2-(n, 3, 1) packing contains K4 − e, then it must contain at least seven edges.
Therefore, such a packing can have at most 1

3 (
(
n
2

)
− 7) blocks. We show below that

this upper bound can be met using pairwise balanced designs.
Lemma 4.2. There exists a 2-(n, 3, 1) packing of size 1

3 (
(
n
2

)
− 7), with a leave

containing K4 − e, for every n ≡ 5 (mod 6).
Proof. Let (X,A) be a PBD(n, {3, 5�}) with [5] as the block of size five. The ex-

istence of such a PBD is provided by Theorem 2.3. Deleting the block of size five from
this PBD and adding the block {1, 2, 3} yield the desired 2-(n, 3, 1)
packing.

For n ≡ 0, 2, or 4 (mod 6), every vertex in the leave L of a 2-(n, 3, 1) packing is
of odd degree. If L contains K4 − e, then L must have at least four vertices of degree
at least three. The minimum possible number of edges in L, if L contains K4 − e, is
therefore n/2 + 4. It follows that the number of blocks in a 2-(n, 3, 1) packing with a
leave containing K4 − e is at most

⌊
1
3 (
(
n
2

)
− n

2 − 4)
⌋
.

Lemma 4.3. There exists a 2-(n, 3, 1) packing of size 1
3 (
(
n
2

)
− n

2 −4), with a leave
containing K4 − e, for every n ≡ 4 (mod 6).

Proof. Let (X,A) be a PBD(n + 1, {3, 5�}) which exists by Theorem 2.3. Let x
be a point contained in the block of size five. Then (X \ {x},B), where

B = {A ∈ A : x �∈ A and |A| = 3}

is the desired 2-(n, 3, 1) packing.
Lemma 4.4. There exists a 2-(n, 3, 1) packing of size 1

3 (
(
n
2

)
− n

2 −6), with a leave
containing K4 − e, for every n ≡ 0 or 2 (mod 6).

Proof. Consider a {3}-GDD of type 2n/2, which exists whenever n ≡ 0 or 2 (mod
6) by Theorem 2.5. Without loss of generality, we may assume {1, 2} is a group
and {1, 3, 4} is a block in this GDD. There is a unique block of the form {2, 3, a}.
Deleting the blocks {1, 3, 4} and {2, 3, a} from this GDD gives a 2-(n, 3, 1) packing of
size 1

3 (
(
n
2

)
− n

2 − 6), with a leave containing K4 − e.
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This completes our determination of m(n, 3,K4 − e). We summarize our results
above as follows.

Theorem 4.5. For all n ≥ 0, we have m(n, 3,K4 − e) = 1
3 (
(
n
2

)
− f(n)), where

f(n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
n/2 + 6 if n ≡ 0 or 2 (mod 6),

9 if n ≡ 1 or 3 (mod 6),

n/2 + 4 if n ≡ 4 (mod 6),

7 if n ≡ 5 (mod 6).

5. Determining T (n,F(4), 2). We now determine T (n,F(4), 2).

5.1. The case n ≡ 1 or 4 (mod 12). The leave L = (X, E) of a 2-(n, 4, 1)
packing must satisfy:

(i) |E| ≡ 0 (mod 6), and
(ii) every vertex in L has degree ≡ 0 (mod 3).

Any leave of P containing K5−e or 2◦K4 as a subgraph and satisfying conditions (i)
and (ii) above has at least 18 edges. So m(n, 4, G) ≤ 1

6 (
(
n
2

)
− 18) for G ∈ {K5 − e, 2 ◦

K4}. We show below that this bound can be met with a finite number of possible
exceptions.

The cocktail party graph CP(n) is the unique (2n−2)-regular graph on 2n vertices.
We begin with an observation on CP(4) (shown in Figure 5.1).

Lemma 5.1. CP(4) contains an edge-disjoint union of a K5 − e and a K4.
Proof. Without loss of generality, we may take the vertex set and edge set of the

CP(4) as [8] and {A ⊂ [8] : |A| = 2} \ {{i, i + 4} : i ∈ [4]}, respectively. Consider
the subsets of edges E1 = {A ⊂ {1, 2, 3, 5, 8} : |A| = 2} \ {{1, 5}} and E2 = {A ⊂
{2, 4, 6, 7} : |A| = 2}. E1 is the edge set of a K5 − e, E2 is the edge set of a K4, and
they are disjoint.

Lemma 5.2. CP(4) contains an edge-disjoint union of a 2 ◦K4 and a K4.
Proof. Without loss of generality, we may take the vertex set and edge set of the

CP(4) as [8] and {A ⊂ [8] : |A| = 2} \ {{i, i + 4} : i ∈ [4]}, respectively. Consider the
subsets of edges E1 = {A ⊂ [4] : |A| = 2} ∪ ({A ⊂ [3, 6] : |A| = 2} \ {{3, 4}}) and
E2 = {A ⊂ {1, 6, 7, 8} : |A| = 2}. E1 is the edge set of a 2 ◦K4, E2 is the edge set of a
K4, and they are disjoint.

Lemma 5.3. Let G ∈ {K5 − e, 2 ◦ K4} and n ≡ 1 or 4 (mod 12). If there
exists a 2-(n, 4, 1) packing leaving CP(4), then there exists a 2-(n, 4, 1) packing of size
1
6 (
(
n
2

)
− 18) with a leave containing G.

Proof. A 2-(n, 4, 1) packing whose leave is CP(4) has size 1
6 (
(
n
2

)
− 24). We have

seen from Lemmas 5.1 and 5.2 that we can add one more block of size four to this
packing to give a 2-(n, 4, 1) packing with a leave containing G.

In view of the above lemma, we now focus on constructing 2-(n, 4, 1) packings
leaving CP(4).

Fig. 5.1. CP(4).
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Fig. 5.2. K3,4 + 3e.

Lemma 5.4. Let n ≥ 6. If there exists a PBD(n+ f, {4, f�}), then there exists a
2-(4n + f, 4, 1) packing leaving CP(4).

Proof. Take a TD(4, n)−TD(4, 2) (X,G, H,A), which exists by Theorem 2.11, and
for each G ∈ G, let (G∪F,AG) be a PBD(n+f, {4, f�}), where F is the block of size f
in the PBD. Consider the set system (Y,B), where Y = X∪F , and B = A∪(∪G∈GAG)
(note that the block of size F is included only once). (Y,B) is a 4-graph of order 4n+f
having the property that every 2-subset of X ∪ F is contained in exactly one block
of B, except for those 2-subsets {a, b}, with a ∈ G ∩ H and b ∈ G′ ∩ H for distinct
G,G′ ∈ G, which are not contained in any blocks of B. (Y,B) therefore gives the
required 2-(4n + f, 4, 1) packing leaving CP(4).

Lemma 5.5. Let n ≡ 1 or 4 (mod 12) such that n ≥ 40 and n �∈ {73, 76, 85}.
Then there exists a 2-(n, 4, 1) packing leaving CP(4).

Proof. Taking a PBD(n + f, {4, f�}), with (n, f) ∈ {(9,4), (12,1), (13,0), (15,1),
(16,0), (21,4), (24,1), (25,0), (27,1), (28,0)}, whose existence is provided by Theorem
2.4, and applying Lemma 5.4 give 2-(n, 4, 1) packings leaving CP(4) for n ∈ {40, 49,
52, 61, 64, 88, 97, 100, 109, 112}. By Theorem 2.4, there exists a PBD(n, {4, 40�})
for all n ≡ 1 or 4 (mod 12) and n ≥ 121. Break up the block of size 40 in this PBD
with the blocks of a 2-(40, 4, 1) packing leaving CP(4) to obtain a 2-(n, 4, 1) packing
leaving CP(4).

Corollary 5.6. Let n ≡ 1 or 4 (mod 12) such that n ≥ 40 and n �∈ {73, 76, 85}.
Then m(n, 4, G) = 1

6 (
(
n
2

)
− 18) for G ∈ {K5 − e, 2 ◦K4}.

5.2. The case n ≡ 7 or 10 (mod 12). The leave L = (X, E) must satisfy:
(i) |E| ≡ 3 (mod 6), and
(ii) every vertex in L has degree ≡ 0 (mod 3).
We first consider the case when L contains K5 − e. Any such L satisfying the

conditions (i) and (ii) above must have at least 15 edges. So m(n, 4,K5 − e) ≤
1
6 (
(
n
2

)
− 15).

When L contains 2 ◦K4, L must also have at least 15 edges. Suppose L contains
2 ◦K4 and has 15 edges. Then L must have at least two vertices, each of degree at
least six. Let a be the number of degree three vertices, and let b be the number of
vertices with degree greater than three in L. Then we have 3a + 6b ≤ 30 (counting
the edges), b ≥ 2 (considering the two vertices of degree five in 2 ◦K4), and a+ b ≥ 7
(considering the presence of vertices with degree at least six). These inequalities
imply that 2 ≤ b ≤ 3 and a + b ≤ 8. So the possible degree sequences for L are
D1 = (6, 6, 6, 3, 3, 3, 3) and D2 = (6, 6, 3, 3, 3, 3, 3, 3). Note that we suppress including
vertices of degree zero in the degree sequence of L. There is a unique graph with
degree sequence D1, namely, the graph in Figure 5.2, obtained by adding to K3,4

three edges connecting the vertices in the part of the bipartition with three vertices.
This graph does not contain 2 ◦K4. Hence, L cannot have degree sequence D1. If L
contains 2 ◦ K4 and has degree sequence D2, then since 2 ◦ K4 has degree sequence
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(5, 5, 3, 3, 3, 3), the two vertices of nonzero degree not in 2◦K4 cannot both be adjacent
to the two vertices of degree five in 2◦K4. But this prevents these two vertices having
degree three, a contradiction. Hence L cannot have degree sequence D2. It follows
that the leave of any 2-(n, 4, 1) packing containing 2◦K4 must have at least 21 edges,
and we have m(n, 4, 2 ◦K4) ≤ 1

6 (
(
n
2

)
− 21).

The following shows that these bounds can be met.
Lemma 5.7. K7 contains an edge-disjoint union of a K5 − e and a K4.
Proof. Take the vertex set of the K7 as [7]. Consider the subsets of edges E1 =

{A ⊂ [5] : |A| = 2} \ {{4, 5}} and E2 = {A ⊂ [4, 7] : |A| = 2}. Then E1 is the edge set
of a K5 − e, E2 is the edge set of a K4, and they are disjoint.

Lemma 5.8. Let n ≡ 7 or 10 (mod 12) such that n ≥ 7 and n �∈ {10, 19}. Then
m(n, 4,K5 − e) = 1

6 (
(
n
2

)
− 15).

Proof. Let (X,A) be a PBD(n, {4, 7�}) with F as the block of size seven, whose
existence is provided by Theorem 2.4, and let B be any 4-subset of F . Then (X, (A∪
{B})\{F}) is a 2-(n, 4, 1) packing of size 1

6 (
(
n
2

)
−15) leaving K7−K4, which contains

K5 − e by Lemma 5.7.
Lemma 5.9. Let n ≡ 7 or 10 (mod 12) such that n ≥ 7 and n �∈ {10, 19}. Then

m(n, 4, 2 ◦K4) = 1
6 (
(
n
2

)
− 21).

Proof. Observe that any 2-(n, 4, 1) packing leaving K7 has size 1
6 (
(
n
2

)
− 21). The

theorem now follows for n = 7 trivially and for n ≥ 22 from the existence of a
PBD(n, {4, 7�}) provided by Theorem 2.4.

5.3. The case n ≡ 2, 5, 8, or 11 (mod 12). The leave L = (X, E) must have
vertices all of degree 1 (mod 3). Furthermore, |E| ≡ 1 (mod 6) when n ≡ 2 or 11
(mod 12), and |E| ≡ 4 (mod 6) when n ≡ 5 or 8 (mod 12).

If L contains K5 − e, then L must have at least five vertices, each of degree at
least four and the remaining vertices each of degree at least one. Hence, L must have
at least 1

2 (n+15) edges when n ≡ 5 or 11 (mod 12) and at least 1
2 (n+24) edges when

n ≡ 2 or 8 (mod 12). Consequently,

m(n, 4,K5 − e) ≤
{

1
6 (
(
n
2

)
− n+15

2 ) if n ≡ 5 or 11 (mod 12),

1
6 (
(
n
2

)
− n+24

2 ) if n ≡ 2 or 8 (mod 12).

If L contains 2◦K4, then L must have at least two vertices, each of degree at least
seven, at least four vertices each of degree at least four, and the rest of the vertices
each of degree one. Hence, L must have at least 1

2 (n + 24) edges when n ≡ 2 or 8
(mod 12) and at least 1

2 (n + 27) edges when n ≡ 5 or 11 (mod 12). Consequently,

m(n, 4, 2 ◦K4) ≤
{

1
6 (
(
n
2

)
− n+24

2 ) if n ≡ 2 or 8 (mod 12),

1
6 (
(
n
2

)
− n+27

2 ) if n ≡ 5 or 11 (mod 12).

These bounds can be met with the following constructions.

5.3.1. The value of m(n, 4,K5 − e).
Lemma 5.10. Let n ≡ 5 or 11 (mod 12) such that n = 5 or n ≥ 23. Then we

have m(n, 4,K5 − e) = 1
6 (
(
n
2

)
− 1

2 (n + 15)).

Proof. Let (X,G,A) be a {4}-GDD of type 2(n−5)/251, which exists by Theorem
2.7. Then (X,A) is a 2-(n, 4, 1) packing of size 1

6 (
(
n
2

)
− 1

2 (n + 15)) with a leave
containing K5, and hence K5 − e.

Lemma 5.11. There exists a 2-(14, 4, 1) packing of size 12 having a leave con-
taining K5 − e.
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Proof. Let (X,A) be a maximum 2-(13, 4, 1) packing, which has size 13 by Theo-
rem 2.2. Let ∞ �∈ X and A ∈ A. Then (X ∪{∞},A\{A}) is a 2-(14, 4, 1) packing of
size 12 with a leave containing K5 (whose edges are the 2-subsets of A ∪ {∞}).

Lemma 5.12. Let n ≡ 2 or 8 (mod 12) such that n = 14 or n ≥ 44. Then we
have m(n, 4,K5 − e) = 1

6 (
(
n
2

)
− 1

2 (n + 24)).

Proof. Let (X,G,A) be a {4}-GDD of type 2(n−14)/2141, which exists by Theorem
2.9. Let G ∈ G be the group of cardinality 14, and let (G,B) be a 2-(14, 4, 1) packing
of size 12 having a leave containing K5 − e, whose existence is provided by Theorem
5.11. Then (X,A ∪ B) is a 2-(n, 4, 1) packing having a leave containing K5 − e. The
size of this packing is 1

6 (
(
n
2

)
− 1

2 (n− 14) −
(
14
2

)
) + 12 = 1

6 (
(
n
2

)
− 1

2 (n + 24)).

5.3.2. The value of m(n, 4, 2 ◦ K4).
Lemma 5.13. If there exists a {4}-GDD of type [g1, . . . , gs] with s ≥ 3 and a

{4}-GDD of type 2gi/2+1 for each i ∈ [s], then there exists a 2-(n, 4, 1) packing of size
1
6 (
(
n
2

)
− 1

2 (n + 24)) with a leave contaning 2 ◦K4, where n = 2 +
∑s

i=1 gi.
Proof. Suppose that (X,G,A) is a {4}-GDD of type [g1, . . . , gs], where G =

{G1, . . . , Gs} and |Gi| = gi for i ∈ [s]. Let Y = {∞1,∞2}, where ∞1,∞2 �∈ X, and
let (Gi ∪ Y,HGi

,AGi) be a {4}-GDD of type 2gi/2+1 such that{
Y ∈ HGi if i ∈ [s− 2],

Y is contained in a block AGi
∈ AGi

if i ∈ {s− 1, s}.

Construct a 4-graph (X ∪ Y,B) of order 2 +
∑s

i=1 gi, where

B = A ∪
(

s⋃
i=1

AGi

)
\ {AGs−1

, AGs
}.

It is easy to see that (X ∪ Y,B) is a 2-(2 +
∑s

i=1 gi, 4, 1) packing. Also, the 2-subsets
of AGs−1 and AGs are not contained in any blocks of B. So the leave of (X ∪ Y,B)
contains 2 ◦ K4 as a subgraph. It remains to compute the size of (X ∪ Y,B). The
2-subsets of X∪Y that are not contained in any blocks of B are precisely the elements
of HGi for i ∈ [s] and the 2-subsets of AGs−1 and AGs . Since Y appears precisely s
times among these 2-subsets, the total number of distinct 2-subsets of X ∪Y that are
not contained in any blocks of B is

∑s
i=1(gi/2 + 1) + 12 − (s− 1) = n/2 + 12, where

n = 2 +
∑s

i=1 gi. Hence |B| = 1
6 (
(
n
2

)
− 1

2 (n + 24)), as required.
Lemma 5.14. If there exists a {4}-GDD of type [g1, . . . , gs] with s ≥ 3, a {4}-

GDD of type 2gi/2+1 for each i ∈ [s − 1], and a {4}-GDD of type 2(gs−3)/251, then
there exists a 2-(n, 4, 1) packing of size 1

6 (
(
n
2

)
− 1

2 (n + 27)) with a leave containing
2 ◦K4, where n = 2 +

∑s
i=1 gi.

Proof. Suppose that (X,G,A) is a {4}-GDD of type [g1, . . . , gs], where G =
{G1, . . . , Gs} and |Gi| = gi for i ∈ [s]. Let Y = {∞1,∞2}, where ∞1,∞2 �∈ X, and
let (Gi ∪ Y,HGi ,AGi) be a {4}-GDD of type 2gi/2+1 such that{

Y ∈ HGi if i ∈ [s− 3],

Y is contained in a block AGi
∈ AGi

if i ∈ {s− 2, s− 1}.

Further, let (Gs ∪ Y,HGs ,AGs) be a {4}-GDD of type 2(gs−3)/251 such that Y is
contained in the group H ∈ HGs of cardinality five. Now form the 4-graph (X ∪Y,B)
of order 2 +

∑s
i=1 gi, where

B = A ∪
(

s⋃
i=1

AGi

)
∪ {H \ {∞1}} \ {AGs−2 , AGs−1}.



814 YEOW MENG CHEE AND ALAN C. H. LING

It is easy to see that (X ∪ Y,B) is a 2-(2 +
∑s

i=1 gi, 4, 1) packing. Also, the 2-subsets
of AGs−1 and AGs are not contained in any blocks of B. So the leave of (X ∪ Y,B)
contains 2 ◦ K4 as a subgraph. It remains to compute the size of (X ∪ Y,B). The
2-subsets of X∪Y that are not contained in any blocks of B are precisely the 2-subsets
of AGs−2 and AGs−1 and the 2-subsets of elements of HGi for i ∈ [s], except for the
2-subsets of H \ {∞1}. Since Y appears precisely s times among these 2-subsets, the
total number of distinct 2-subsets of X ∪ Y that are not contained in any blocks of
B is

∑s−1
i=1 (gi/2 + 1) + (gs − 3)/2 + (10 − 6) − 1 + 12 − (s − 1) = 1

2 (n + 27), where
n = 2 +

∑s
i=1 gi. Hence |B| = 1

6 (
(
n
2

)
− 1

2 (n + 27)), as required.
Corollary 5.15. For all n ≡ 2 (mod 12), n ≥ 50, there exists a 2-(n, 4, 1)

packing of size 1
6 (
(
n
2

)
− 1

2 (n + 24)) with a leave containing 2 ◦K4.

Proof. Apply Lemma 5.13 with {4}-GDDs of type 12(n−2)/12 and type 27, which
exist by Theorem 2.6.

Corollary 5.16. For n = 29 and for all n ≡ 5 (mod 12), n ≥ 101, there exists
a 2-(n, 4, 1) packing of size 1

6 (
(
n
2

)
− 1

2 (n + 27)) with a leave containing 2 ◦K4.

Proof. Apply Lemma 5.14 with {4}-GDDs of type 12(n−29)/12271, which exists
by Theorem 2.10, {4}-GDDs of type 27, which exists by Theorem 2.6, and {4}-GDDs
of type 21251, which exists by Theorem 2.7.

Corollary 5.17. For n = 20 and for all n ≡ 8 (mod 12), n ≥ 68, there exists
a 2-(n, 4, 1) packing of size 1

6 (
(
n
2

)
− 1

2 (n + 24)) with a leave containing 2 ◦K4.

Proof. Apply Lemma 5.13 with {4}-GDDs of type 12(n−20)/12181, which exists
by Theorem 2.10, and {4}-GDDs of types 27 and 210, which exists by
Theorem 2.6.

Corollary 5.18. For n = 23 and for all n ≡ 11 (mod 12), n ≥ 83, there exists
a 2-(n, 4, 1) packing of size 1

6 (
(
n
2

)
− 1

2 (n + 27)) with a leave containing 2 ◦K4.

Proof. Apply Lemma 5.14 with {4}-GDDs of type 12(n−23)/12211, which exists
by Theorem 2.10, {4}-GDDs of type 27, which exists by Theorem 2.6, and {4}-GDDs
of type 2951, which exists by Theorem 2.7.

5.4. The case n ≡ 0, 3, 6, or 9 (mod 12). The leave L = (X, E) must have
vertices all of degree 2 (mod 3). Furthermore, |E| ≡ 0 (mod 6) when n ≡ 0 or 9 (mod
12), and |E| ≡ 3 (mod 6) when n ≡ 3 or 6 (mod 12).

If L contains K5 − e or 2 ◦ K4, then L must have at least six vertices each of
degree at least five and the remaining vertices each of degree at least two. Hence, L
must have at least n + 9 edges when n ≡ 6 or 9 (mod 12) and at least n + 12 edges
when n ≡ 0 or 3 (mod 12). Consequently, for G ∈ {K5 − e, 2 ◦K4}, we have

m(n, 4, G) ≤

⎧⎨
⎩

1
6 (
(
n
2

)
− (n + 9)) if n ≡ 6 or 9 (mod 12),

1
6 (
(
n
2

)
− (n + 12)) if n ≡ 0 or 3 (mod 12).

These bounds can again be met with the following constructions.
Lemma 5.19. For n = 6 and for all n ≡ 6 or 9 (mod 12), n ≥ 21 there

exists a 2-(n, 4, 1) packing of size 1
6 (
(
n
2

)
− (n + 9)) with a leave containing G, where

G ∈ {K5 − e, 2 ◦K4}.
Proof. Let (X,G,A) be a {4}-GDD of type 3(n−6)/361, which exists by Theorem

2.8. Then (X,A) is a 2-(n, 4, 1) packing with a leave containing K6, and hence K5−e
and 2 ◦ K4. The size of (X,A) is easily verified: |A| = 1

6 (
(
n
2

)
− n−6

3

(
3
2

)
−

(
6
2

)
) =

1
6 (
(
n
2

)
− (n + 9)).

Lemma 5.20. There exists a 2-(15, 4, 1) packing of size 13 with a leave containing
G, where G ∈ {K5 − e, 2 ◦K4}.
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Proof. The 13 blocks of a 2-(15, 4, 1) packing with a leave containing K5 − e are

{2,6,13,14}, {3,6,9,10}, {4,7,9,13}, {4,5,6,12}, {1,6,11,15},
{3,7,11,14}, {2,7,8,15}, {1,8,9,14}, {3,12,13,15}, {2,9,11,12},
{1,7,10,12}, {5,10,14,15}, {5,8,11,13}.

The 13 blocks of a 2-(15, 4, 1) packing with a leave containing 2 ◦K4 are

{1,8,12,13}, {6,8,11,14}, {4,6,9,15}, {3,7,8,9}, {2,8,10,15},
{2,9,13,14}, {4,5,7,14}, {1,6,7,10}, {1,5,11,15}, {2,7,11,12},
{4,10,11,13}, {3,12,14,15}, {5,9,10,12}.

Lemma 5.21. For all n ≡ 0 or 3 (mod 12), n ≥ 48, there exists a 2-(n, 4, 1)
packing of size 1

6 (
(
n
2

)
−(n+12)) with a leave containing G, where G ∈ {K5−e, 2◦K4}.

Proof. Let (X,G,A) be a {4}-GDD of type 3(n−15)/3151, which exists by Theorem
2.8. Let Y be the group of cardinality 15 in G and (Y,B) be a 2-(15, 4, 1) packing of
size 13 with a leave containing G, which exists by Lemma 5.20. Then (X,A∪B) is a
2-(n, 4, 1) packing with a leave containing G. The size of (X,A∪B) is easily verified:
|A ∪ B| = 1

6 (
(
n
2

)
− n−12

3

(
3
2

)
− 2

(
6
2

)
) + 13 = 1

6 (
(
n
2

)
− (n + 12)).

5.5. Remaining small orders. The values of n for which m(n, 4,K5 − e) and
m(n, 4, 2 ◦K4) remain undetermined are as follows:

Unsettled n
m(n, 4,K5 − e) 8 9 10 11 12 13 16 17 18 19 20 24 25

26 27 28 32 36 37 38 39 73 76 85
m(n, 4, 2 ◦K4) 8 9 10 11 12 13 14 16 17 18 19 24 25

26 27 28 32 35 36 37 38 39 41 44 47 53
56 59 65 71 73 76 77 85 89

For n = 19, we have the following tighter upper bound.
Lemma 5.22. For G ∈ {K5 − e, 2 ◦K4}, we have m(19, 4, G) ≤ 24.
Proof. Suppose we have a 2-(19, 4, 1) packing of size 25 with a leave containing

G, and then we can add a K4 in G to this packing, giving a 2-(19, 4, 1) packing of size
26. This is a contradiction, since D(19, 4, 2) = 25.

For values of n < 16, it is possible to determine m(n, 4, G), G ∈ {K5 − e, 2 ◦K4},
via exhaustive search. Let H be a specific subgraph of Kn isomorphic to G. We form
a graph Γn whose vertex set is the set of all K4’s of Kn −H, and two vertices in Γn

are adjacent if and only if the corresponding K4’s are edge-disjoint. Then m(n, 4, G)
is equal to the size of a maximum clique in Γn. We used Cliquer, an implementation
of Österg̊ard’s exact algorithm for maximum cliques [12], to determine the size of
maximum cliques in Γn, for n ≤ 15.

When n ≥ 16, it is infeasible to use Cliquer, so we resort to a stochastic local
search heuristic to construct packings of the required size directly. The results of our
computation are summarized in Table 5.1, while the blocks of the actual packings are
listed in Appendices A and B.

5.6. Piecing things together. The results in previous subsections can be sum-
marized as follows.
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Table 5.1

Values of m(n, 4,K5−e) and m(n, 4, 2◦K4) for some small values of n. A blank entry indicates
an unknown value.

n
n 8 9 10 11 12 13 16 17 18 19 20 24 25

m(n, 4,K5 − e) 1 2 3 4 6 9 21 24 28 40
n 26 27 28 32 36 37 38 39 73 76 85

m(n, 4,K5 − e) 50 52 97

n 8 9 10 11 12 13 14 16 17 18 19 24 25
m(n, 4, 2 ◦K4) 1 2 3 4 6 9 11 21 24 40

n 26 27 28 32 35 36 37 38 39 41 44 47 53
m(n, 4, 2 ◦K4) 52

n 56 59 65 71 73 76 77 85 89
m(n, 4, 2 ◦K4)

Theorem 5.23. For all n ≥ 5, we have m(n, 4,K5 − e) = 1
6 (
(
n
2

)
− f(n)), where

f(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

18 if n ≡ 1 or 4 (mod 12), n �= 13,

15 if n ≡ 7 or 10 (mod 12), n �∈ {10, 19},
(n + 24)/2 if n ≡ 2 or 8 (mod 12), n �= 8,

(n + 15)/2 if n ≡ 5 or 11 (mod 12), n �= 11,

n + 9 if n ≡ 6 or 9 (mod 12), n �= 9,

n + 12 if n ≡ 0 or 3 (mod 12), n �= 12,

22 if n = 8,

24 if n = 9,

27 if n = 10,

31 if n = 11,

30 if n = 12,

24 if n = 13,

27 if n = 19,

except possibly for n ∈ {16, 17, 25, 28, 32, 37, 38, 39, 73, 76, 85}.
Theorem 5.24. For all n ≥ 6, we have m(n, 4, 2 ◦K4) = 1

6 (
(
n
2

)
− f(n)), where

f(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

18 if n ≡ 1 or 4 (mod 12), n �= 13,

21 if n ≡ 7 or 10 (mod 12), n �∈ {10, 19},
(n + 24)/2 if n ≡ 2 or 8 (mod 12), n �∈ {8, 14},
(n + 27)/2 if n ≡ 5 or 11 (mod 12), n �= 11,

n + 9 if n ≡ 6 or 9 (mod 12), n �= 9,

n + 12 if n ≡ 0 or 3 (mod 12), n �= 12,

22 if n = 8,

24 if n = 9,

27 if n = 10,

31 if n = 11,

30 if n = 12,

24 if n = 13,

25 if n = 14,

27 if n = 19,
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except possibly for n ∈ {16, 17, 25, 26, 28, 32, 35, 36, 37, 38, 39, 41, 44, 47, 53, 56,
59, 65, 71, 73, 76, 77, 85, 89}.

6. Conclusion. Theorems 4.5, 5.23, and 5.24 can be expressed more succinctly
in terms of D(n, 3, 2) and D(n, 4, 2) as follows.

Theorem 6.1. For all n ≥ 4,

m(n, 3,K4 − e) + 2 =

{
D(n, 3, 2) if n ≡ 0, 2, or 5 (mod 6),

D(n, 3, 2) − 1 if n ≡ 1, 3, or 4 (mod 6).

Theorem 6.2. For all n ≥ 5,

m(n, 4,K5 − e) + 2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D(n, 4, 2) + 1 if n ≡ 5, 6, 7, 9, 10, or 11 (mod 12),

n �∈ {9, 10, 11},
D(n, 4, 2) if n ≡ 0, 2, 3, or 8 (mod 12), n �∈ {8, 12},
D(n, 4, 2) − 1 if n ≡ 1 or 4 (mod 12), n �= 13,

n− 5 if n ∈ {8, 9, 10, 11},
8 if n = 12,

11 if n = 13,

except possibly for n ∈ {16, 17, 25, 28, 32, 37, 38, 39, 73, 76, 85}.
Theorem 6.3. For all n ≥ 6,

m(n, 4, 2 ◦K4) + 2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D(n, 4, 2) + 1 if n ≡ 6 or 9 (mod 12), n �= 9,

D(n, 4, 2) if n ≡ 0, 2, 3, 5, 7, 8, 10, or 11 (mod 12),

n �∈ {8, 10, 11, 12, 14},
D(n, 4, 2) − 1 if n ≡ 1 or 4 (mod 12), n �= 13,

n− 5 if n ∈ {8, 9, 10, 11},
8 if n = 12,

11 if n = 13,

13 if n = 14,

except possibly for n ∈ {16, 17, 25, 26, 28, 32, 35, 36, 37, 38, 39, 41, 44, 47, 53, 56,
59, 65, 71, 73, 76, 77, 85, 89}.

These have the following consequences.
Corollary 6.4. For all n ≥ 4, T (n,F(3), 2) = D(n, 3, 2).
Corollary 6.5. For all n ≥ 6,

T (n,F(4), 2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D(n, 4, 2) + 1 if n ≡ 5, 6, 7, 9, 10, or 11 (mod 12),

n �∈ {9, 10, 11},
D(n, 4, 2) if n ≡ 0, 1, 2, 3, 4, or 8 (mod 12),

n �∈ {8, 12, 13},
n− 5 if n ∈ {8, 9, 10, 11},
8 if n = 12,

11 if n = 13,

except possibly for n ∈ {16, 17, 25, 28, 32, 37, 38, 39, 73, 76, 85}.
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Appendix A. Some maximum 2-(n, 4, 1) packings with a leave contain-
ing K5 − e.

In each case, the edges of the K5 − e in the leave are
(
[5]
2

)
\ {{4, 5}}.

A.1. The blocks of a maximum 2-(10, 4, 1) packing with a leave con-
taining K5 − e. {4, 5, 6, 7}, {3, 7, 8, 9}, {1, 6, 8, 10}.

A.2. The blocks of a maximum 2-(18, 4, 1) packing with a leave con-
taining K5 − e.

{4,8,12,16}, {3,6,7,8}, {3,11,13,16}, {2,9,15,16}, {10,11,12,14},
{2,7,11,17}, {4,9,13,14}, {1,6,9,17}, {5,13,17,18}, {3,14,15,17},
{2,8,14,18}, {4,7,10,15}, {2,6,10,13}, {1,8,11,15}, {4,6,11,18},
{5,8,9,10}, {1,10,16,18}, {5,7,14,16}, {3,9,12,18}, {1,7,12,13},
{5,6,12,15}.

A.3. The blocks of a maximum 2-(19, 4, 1) packing with a leave con-
taining K5 − e.

{8,14,17,18}, {2,9,13,14}, {3,7,12,14}, {1,10,14,19}, {4,5,10,18},
{4,6,14,16}, {6,11,18,19}, {4,11,13,17}, {3,8,15,19}, {5,12,13,19},
{1,9,12,18}, {3,13,16,18}, {2,7,15,18}, {3,9,10,17}, {4,7,9,19},
{2,16,17,19}, {5,6,7,17}, {2,6,8,12}, {10,12,15,16}, {7,8,10,13},
{5,8,9,16}, {5,11,14,15}, {1,7,11,16}, {1,6,13,15}.

A.4. The blocks of a maximum 2-(20, 4, 1) packing with a leave con-
taining K5 − e.

{4,6,16,18}, {3,12,16,20}, {1,10,11,15}, {9,12,14,19}, {2,7,10,12},
{6,7,15,19}, {9,10,17,18}, {4,9,11,13}, {4,12,15,17}, {4,5,10,19},
{1,8,12,18}, {3,13,18,19}, {5,8,14,17}, {1,16,17,19}, {1,7,13,14},
{2,6,13,17}, {11,14,18,20}, {2,8,11,19}, {5,6,11,12}, {5,13,15,20},
{3,8,9,15}, {8,10,13,16}, {3,7,11,17}, {2,14,15,16}, {3,6,10,14},
{5,7,9,16}, {4,7,8,20}, {1,6,9,20}.

A.5. The blocks of a maximum 2-(24, 4, 1) packing with a leave con-
taining K5 − e.

{12,14,15,18}, {3,6,16,18}, {6,9,10,13}, {5,9,15,22}, {3,9,11,21},
{4,8,15,19}, {1,18,21,22}, {12,16,17,19}, {11,12,22,23}, {4,9,23,24},
{4,5,6,12}, {3,10,12,24}, {5,8,21,24}, {6,14,17,21}, {1,8,12,13},

{6,19,22,24}, {4,16,20,21}, {2,18,19,23}, {1,7,17,23}, {3,17,20,22},
{1,11,16,24}, {2,13,14,16}, {2,7,10,21}, {5,7,14,20}, {8,10,17,18},
{13,18,20,24}, {2,9,12,20}, {7,8,16,22}, {3,7,13,19}, {2,15,17,24},
{5,11,13,17}, {13,15,21,23}, {10,11,19,20}, {1,9,14,19}, {4,7,11,18},
{1,6,15,20}, {3,8,14,23}, {2,6,8,11}, {5,10,16,23}, {4,10,14,22}.
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A.6. The blocks of a maximum 2-(26, 4, 1) packing with a leave con-
taining K5 − e.

{4,17,22,24}, {3,11,17,20}, {5,7,18,22}, {4,16,18,23}, {1,7,19,25},
{14,21,22,23}, {1,10,18,26}, {2,11,21,26}, {3,6,7,23}, {11,14,16,19},
{12,20,24,26}, {4,7,14,26}, {3,9,16,22}, {6,10,15,16}, {3,10,12,19},
{7,8,15,17}, {4,9,13,19}, {5,12,13,21}, {15,19,22,26}, {5,19,23,24},
{4,12,15,25}, {3,15,18,21}, {8,9,21,25}, {6,12,17,18}, {5,8,16,26},
{2,7,9,12}, {9,17,23,26}, {1,8,20,22}, {5,9,11,15}, {7,10,21,24},

{1,13,14,15}, {6,19,20,21}, {7,13,16,20}, {10,11,22,25}, {2,6,13,22},
{2,16,24,25}, {9,14,18,20}, {2,8,18,19}, {1,6,9,24}, {4,6,8,11},
{5,6,14,25}, {8,10,13,23}, {11,13,18,24}, {2,10,14,17}, {3,13,25,26},
{3,8,14,24}, {2,15,20,23}, {1,11,12,23}, {4,5,10,20}, {1,16,17,21}.

A.7. The blocks of a maximum 2-(27, 4, 1) packing with a leave con-
taining K5 − e.

{2,7,16,21}, {7,20,26,27}, {5,17,25,27}, {5,15,21,23}, {5,6,11,22},
{13,21,22,27}, {3,8,11,26}, {6,15,17,24}, {4,5,7,19}, {1,6,18,27},
{3,18,21,24}, {2,11,12,13}, {9,13,16,23}, {10,11,14,15}, {3,14,23,27},
{4,8,15,18}, {14,19,22,24}, {1,10,19,23}, {3,12,16,20}, {2,8,23,24},
{5,8,9,20}, {4,12,14,21}, {4,9,11,27}, {3,6,10,25}, {8,14,16,17},
{2,15,19,27}, {9,12,15,22}, {3,7,13,15}, {1,8,12,25}, {3,9,17,19},
{19,20,21,25}, {2,6,14,20}, {6,8,13,19}, {7,11,24,25}, {1,11,17,21},
{4,10,17,20}, {9,10,21,26}, {10,16,24,27}, {4,16,22,25}, {7,12,17,18},
{1,7,9,14}, {2,17,22,26}, {11,16,18,19}, {5,12,24,26}, {1,15,16,26},

{5,10,13,18}, {1,13,20,24}, {18,20,22,23}, {2,9,18,25}, {4,6,23,26},
{13,14,25,26}, {7,8,10,22}.

A.8. The blocks of a maximum 2-(36, 4, 1) packing with a leave con-
taining K5 − e.

{7,10,17,35}, {11,15,26,36}, {6,16,25,29}, {1,12,24,28}, {3,13,34,35},
{30,31,35,36}, {21,23,28,34}, {1,14,19,35}, {8,9,28,32}, {15,18,21,25},
{3,18,26,27}, {1,8,25,30}, {3,10,23,29}, {6,28,30,33}, {15,19,23,24},
{4,14,17,34}, {7,13,26,28}, {10,19,22,36}, {6,11,12,34}, {1,7,11,29},
{5,13,17,25}, {14,24,26,31}, {13,19,27,29}, {1,20,23,26}, {2,22,31,34},
{14,23,25,36}, {5,16,24,33}, {4,18,29,33}, {4,21,26,32}, {8,22,26,29},
{9,11,22,25}, {12,18,20,32}, {2,11,20,21}, {11,13,31,32}, {10,14,30,32},
{3,9,33,36}, {3,11,24,30}, {24,29,32,36}, {7,18,24,34}, {7,19,21,31},
{3,7,12,25}, {2,8,13,24}, {2,7,14,16}, {5,7,8,20}, {10,11,16,28},
{5,6,18,31}, {8,11,14,18}, {3,17,19,32}, {10,20,25,31}, {4,5,11,19},
{16,18,19,30}, {16,20,34,36}, {3,6,15,20}, {4,8,10,12}, {6,9,13,14},
{9,17,20,24}, {13,20,22,33}, {4,6,7,36}, {1,13,18,36}, {5,26,30,34},
{1,6,22,32}, {16,21,27,35}, {12,13,21,30}, {2,9,18,35}, {12,17,29,31},
{8,17,21,36}, {7,9,23,30}, {20,28,29,35}, {2,15,29,30}, {4,20,27,30},
{1,15,16,17}, {1,9,27,31}, {4,15,28,31}, {12,14,15,33}, {9,12,19,26},
{25,26,33,35}, {6,10,24,27}, {3,14,21,22}, {2,23,32,33}, {5,14,27,28},
{5,12,22,23}, {25,27,32,34}, {3,8,16,31}, {4,13,16,23}, {8,19,33,34},
{2,6,17,26}, {5,15,32,35}, {2,19,25,28}, {9,10,15,34}, {6,8,23,35},
{1,10,21,33}, {7,15,22,27}, {4,22,24,35}, {11,17,27,33}, {2,12,27,36},
{5,9,21,29}, {17,18,22,28}.
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Appendix B. Some maximum 2-(n, 4, 1) packings with a leave contain-
ing 2 ◦ K4.

B.1. The blocks of a maximum 2-(18, 4, 1) packing with a leave con-
taining 2 ◦ K4.

{3,9,10,12}, {1,7,9,16}, {4,7,17,18}, {1,5,13,17}, {5,9,11,14},
{1,6,14,18}, {4,6,8,9}, {2,7,10,14}, {3,14,16,17}, {5,8,10,18},
{1,8,12,15}, {6,10,15,17}, {3,7,8,13}, {3,11,15,18}, {6,7,11,12},
{2,12,16,18}, {10,11,13,16}, {2,8,11,17}, {2,9,13,15}, {4,5,15,16},
{4,12,13,14}.

B.2. The blocks of a maximum 2-(19, 4, 1) packing with a leave con-
taining 2 ◦ K4.

{3,8,9,16}, {5,12,16,18}, {11,13,15,16}, {1,12,13,19}, {6,8,10,11},
{1,10,14,16}, {6,12,15,17}, {6,7,9,13}, {4,13,14,18}, {1,9,15,18},
{5,9,14,19}, {4,6,16,19}, {4,7,8,12}, {5,8,13,17}, {2,8,14,15},
{3,10,17,18}, {4,5,10,15}, {2,9,10,12}, {1,5,7,11}, {2,7,16,17},
{4,9,11,17}, {3,7,15,19}, {3,11,12,14}, {2,11,18,19}.

B.3. The blocks of a maximum 2-(24, 4, 1) packing with a leave con-
taining 2 ◦ K4.

{4,13,14,21}, {3,12,16,20}, {3,15,21,22}, {3,17,18,23}, {7,13,15,23},
{4,12,19,22}, {1,9,15,19}, {4,7,8,18}, {6,10,15,18}, {9,11,17,21},
{3,10,11,13}, {5,9,14,22}, {1,11,14,18}, {1,6,8,21}, {6,7,14,20},
{2,13,19,24}, {10,19,20,21}, {5,11,12,15}, {8,11,16,24}, {2,8,10,17},
{2,16,21,23}, {5,8,13,20}, {4,6,9,16}, {1,7,10,16}, {2,7,11,22},
{2,9,18,20}, {14,15,16,17}, {8,9,12,23}, {10,12,14,24}, {3,7,9,24},

{13,16,18,22}, {6,17,22,24}, {1,12,13,17}, {5,7,17,19}, {3,8,14,19},
{4,15,20,24}, {1,20,22,23}, {4,5,10,23}, {6,11,19,23}, {5,18,21,24}.

B.4. The blocks of a maximum 2-(27, 4, 1) packing with a leave con-
taining 2 ◦ K4.

{6,12,17,21}, {1,5,10,19}, {4,8,10,27}, {4,14,21,22}, {19,21,24,25},
{2,11,23,26}, {3,10,20,24}, {3,9,15,21}, {12,20,26,27}, {8,11,12,25},
{10,15,18,26}, {3,8,19,26}, {4,11,13,20}, {9,22,24,26}, {3,7,22,27},
{1,15,22,23}, {5,14,24,27}, {3,12,14,23}, {9,12,13,19}, {2,9,17,27},
{3,13,18,25}, {4,7,12,15}, {6,14,16,20}, {5,7,9,11}, {6,15,25,27},
{10,17,22,25}, {5,20,23,25}, {2,10,12,16}, {4,6,18,19}, {5,12,18,22},
{3,11,16,17}, {6,8,13,22}, {1,13,16,27}, {2,13,15,24}, {5,8,15,17},
{5,16,21,26}, {13,14,17,26}, {7,10,13,21}, {2,19,20,22}, {1,6,11,24},
{7,17,18,20}, {1,8,20,21}, {1,7,25,26}, {11,14,15,19}, {4,9,16,25},
{7,16,19,23}, {8,16,18,24}, {11,18,21,27}, {4,17,23,24}, {1,9,14,18},
{2,7,8,14}, {6,9,10,23}.
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JEAN-CLAUDE BERMOND† , AFONSO FERREIRA† , STÉPHANE PÉRENNES† , AND
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Abstract. In the broadcasting problem, one node needs to broadcast a message to all other
nodes in a network. If nodes can only communicate with one neighbor at a time, broadcasting takes
at least �log2 N� rounds in a network of N nodes. In the neighborhood broadcasting problem, the
node that is broadcasting needs to inform only its neighbors. In a binary hypercube with N nodes,
each node has log2 N neighbors, so neighborhood broadcasting takes at least �log2 log2(N + 1)�
rounds. In this paper, we present asymptotically optimal neighborhood broadcast protocols for
binary hypercubes.

Key words. broadcasting, hypercubes, neighborhood communication
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1. Introduction. In the broadcasting problem, a single originator is required
to disseminate a piece of information to all other nodes of a network (modelled as
a graph) as quickly as possible. In the unit-cost single-port communication model,
each message transmission requires one time unit or round, and each node can com-
municate with at most one adjacent node (neighbor) at any given time. It is well
known that broadcasting in an n-dimensional binary hypercube, or n-cube, under this
model requires n = log2 N rounds of communication to inform all N = 2n nodes
and that this is optimal. In this paper, we address a variant of this problem called
neighborhood broadcasting in which the originator needs to inform only its n neigh-
bors in a hypercube. We show that this can be accomplished exponentially faster
than normal (complete) broadcasting. A lower bound on the number of rounds for
a neighborhood broadcast is �log2(n + 1)� = �log2 log2(N + 1)�. We present two
neighborhood broadcast protocols and prove that the second protocol achieves the
lower bound asymptotically. More precisely, we prove that a neighborhood broadcast
can be completed in at most log2n +

⌈√
2log2n

⌉
rounds (so the ratio of the upper

bound for the second protocol and the lower bound tends to 1 as n tends to infinity).
The exact analyses of our protocols are difficult, so, for each protocol, we introduce
a sequence of truncated protocols and prove that their performances approach the
lower bound.

The neighborhood broadcasting problem was introduced by Cosnard and Ferreira
[3] who outlined a simple O(log2 n) protocol. They proved that the number of neigh-
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bors of the originator informed by their protocol after t rounds satisfies a Fibonacci
recurrence and is proportional to (1.618)t. Thus, the number of rounds to complete
a neighborhood broadcast using their protocol is proportional to 1.4404 log2 n. In
section 2, we generalize the protocol from [3] to obtain the first of our new protocols
called Protocol A. We were unable to find a closed form expression for the perfor-
mance of Protocol A, but we can give generalized Fibonacci recurrence relations for
truncated versions of Protocol A. The truncated protocol Ak, k ≥ 2 is obtained from
Protocol A by discarding all communications that involve a node at a distance greater
than k from the originator. Protocol A2 is the protocol from [3]. For Protocol A3,
the number of neighbors of the originator informed after t rounds is proportional to
(1.839)t, for Protocol A4 it is proportional to (1.913)t, and for Protocol A12 it is
(1.991)t.

In section 3, we describe and analyze a more sophisticated, and more efficient,
protocol called Protocol B. We show that for any fixed ε > 0 and sufficiently large
t, the number of neighbors of the originator informed after t rounds of Protocol B is
at least (2 − ε)t. We also derive recurrence relations for the truncated protocols Bk,
k ≥ 2. For example, the number of neighbors of the originator informed after t
rounds of Protocol B5 is proportional to (1.999)t. We think that Protocol B is not
just asymptotically optimal, but that it is optimal or near-optimal in the sense that
no protocol can inform the neighbors of the originator faster. Unfortunately, our
attempts to significantly improve the lower bound have not succeeded, so improving
the lower bound and determining the optimal performance exactly remain as open
problems.

The protocol in section 2 was first presented at a workshop in 1991 [2], including
the closed form solution for a truncated version of the protocol and empirical evidence
that the (untruncated) protocol is asymptotically optimal. An incomplete manuscript
[1] of the present paper, including the protocols in sections 2 and 3 and parts of
the analysis, has been in circulation since 1998. The workshop presentation and
the manuscript have stimulated considerable interest in neighborhood communication
problems [5, 6, 10, 11, 12, 13, 16, 19, 20].

Hypercubes are Cayley graphs and many of the ideas in this paper can be modified
or extended to other classes of Cayley graphs such as star graphs, which are Cayley
graphs on permutation groups. The first bounds for broadcasting in star graphs
appeared in [10]. The bounds were improved in [19], and an alternative protocol
(with a weaker bound) was presented in [20]. The best current upper bounds for
neighborhood broadcasting in star graphs are 1.3125 log2 n + O(log2 log2 n) [12] and
log2 n + O(

√
log2 n) [11]. A larger class of Cayley graphs on permutation groups is

studied in [16].

Neighborhood gossiping in hypercubes was studied in [13]. In the neighborhood
gossiping problem, each node starts with a unique piece of information and must
learn the information of all of its neighbors. Normal (complete) gossiping in an n-
cube takes at least 1.44n + O(1) rounds [4, 18] and at most 1.88n + O(1) rounds
[17] using half-duplex links, and exactly n rounds using full-duplex (i.e., bidirectional)
links (see [14]). The bounds in [13] on the numbers of rounds, h1(n) and h2(n), for
half-duplex and full-duplex neighborhood gossiping in an n-cube, respectively, are
2.88 log2 n + O(1) ≤ h1(n) ≤ 3.76 log2 n + O(1) and h2(n) = 2 log2 n + O(1). The
ideas in [13] were extended to star graphs in [10]. Note that while the distinction
between the half-duplex and full-duplex links is important for gossiping problems, it
can be ignored for broadcasting problems because the (single) message in a broadcast
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protocol never needs to traverse any link in both directions.

In k-neighborhood communication problems, nodes that are at distance at most
k are required to communicate. The neighborhood broadcasting and gossiping prob-
lems are examples of 1-neighborhood communication. Bounds for k-neighborhood
broadcasting and gossiping in paths, trees, 2-dimensional grids, 2-dimensional tori,
and cycles were derived in [5, 6]. The results are optimal in most cases and within an
additive constant of optimal in the other cases.

There are many papers describing protocols that minimize the time for a normal
(complete) broadcast on various interconnection networks such as hypercubes and
meshes. See [15] for a discussion of models and results for broadcasting and gossiping
with unit-cost models and [9, 14] for comprehensive surveys.

2. A simple protocol. In Cosnard and Ferreira’s neighborhood broadcast pro-
tocol [3], the originator in a hypercube sends its message to a new neighbor during
each round. Each informed neighbor of the originator broadcasts to its neighbors
(except the originator, of course). These neighbors of the neighbors do not need to
know the message, but each of them can inform one new neighbor of the originator. It
is not difficult to show directly that this protocol takes O(log2 n) rounds to inform all
neighbors of the originator in an n-cube, but we will take the opportunity to introduce
some notation that we will use to analyze our new protocols.

We will identify each vertex in an n-cube by a binary string of length n. Without
loss of generality, the originator is labelled with a string of n 0s: 00 · · · 00. Each
neighbor of the originator has exactly one 1 in its label. Each neighbor of a neighbor
of the originator (except the originator) has two 1s in its label. In general, a node
at (Hamming) distance k from the originator has exactly k 1s in its label. We will
say that nodes at distance k from the originator are at level k. In the neighborhood
broadcasting problem, all level 1 nodes must be informed, and we want to do this as
quickly as possible.

It will often be convenient to have a compact way to write node labels. When we
write δ1δ2δ3δ4, δ1 < δ2 < δ3 < δ4, we mean that the label contains 1s in the indicated
positions and 0s in all other positions, so this is a level 4 node. The label δ1δ̄2δ3 has
1s in positions δ1 and δ3, a 0 in position δ2, and 0s elsewhere, so this is a level 2 node.
We will sometimes insert commas into labels to avoid ambiguity. For example, 1,4,21
is the level 3 node shown in Figure 1 with 1s in positions 1, 4, and 21.

In our figures, we will draw the originator on the left and Hamming distance from
the originator will increase from left to right. When we say that a node is informed
from the left or from the right, we are referring to this left to right arrangement of
increasing levels.

To analyze our protocols, we use the following notation:
Lt
k(P): maximum number of level k nodes informed by level

k − 1 nodes (i.e., from the left) during round t of
Protocol P

Rt
k(P): maximum number of level k nodes informed by level

k + 1 nodes (i.e., from the right) during round t of
Protocol P

N t
k(P) = Lt

k(P) + Rt
k(P): maximum total number of level k nodes informed

during round t of Protocol P

T t
k(P) =

∑t
i=1 N

i
k(P): maximum total number of level k nodes informed

during the first t rounds of Protocol P
We will often omit the name of the protocol to simplify the notation when the

protocol P is clear from the context.
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Fig. 1. Node labels during the first six rounds of Protocols A2, A3, and A.

In the analyses of our protocols, we will show several things. For each protocol P,
we will develop recurrence relations for T t

k(P). The value of T t
k(P) is an upper bound

on the number of informed level k nodes after t rounds of Protocol P. To prove that
Protocol P achieves these bounds, we need to show that it informs exactly T t

k(P)
level k nodes during the first t rounds. We do this by showing that all newly informed
nodes are distinct and that all level 1 nodes are eventually informed. We will then
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determine the rate at which Protocol P informs level 1 nodes as a function of t. We
do this by determining the value of the largest root ak of the associated polynomial of
the recurrence relation T t

1(P). The number of level 1 nodes informed by Protocol P
is proportional to atk.

We will begin by considering the protocol from [3]. We will call this Protocol A2

because it is a truncated version of Protocol A, the first of our new protocols which
we will introduce later in this section. If x is a node that is informed during round t
of Protocol A2, then x informs uninformed nodes as follows:

Protocol A2 [3]
(i) If x is the originator, inform type L1 nodes during rounds t + 1, t + 2, . . . .
(ii) If x is a level 1 node, inform type L2 nodes during rounds t + 1, t + 2, . . . .
(iii) If x is a level 2 node, inform a type R1 node during round t + 1.

The next theorem and corollary from [3] are restated using our notation.

Theorem 1 (see [3]). T t
1(A2) = T t−1

1 (A2) + T t−2
1 (A2) + 1.

Proof. First, we get Lt
1 = 1, t ≥ 1, because the originator informs one neighbor

during each round. We also have Lt
2 = T t−1

1 , t ≥ 2, because each level 1 node that
was informed during the first t− 1 rounds can potentially inform a new level 2 node
during round t. Finally, Rt

1 = Lt−1
2 , t ≥ 3, because each informed level 2 node can

potentially inform one new neighbor of the originator immediately after it receives
the message. Thus, Rt

1 = T t−2
1 , and for t ≥ 3, we can write T t

1 = T t−1
1 + N t

1 =
T t−1

1 + Lt
1 + Rt

1 = T t−1
1 + T t−2

1 + 1.

Corollary 1 (see [3]). T t
1(A2) ∼ 1.618t.

Proof. Since T 1
1 = 1 and T 2

1 = 2, we get T t
1 = Ft+2 − 1, where Fi is the ith

Fibonacci number (with starting values F1 = F2 = 1). The associated polynomial

of T t
1 is x2 − x − 1 = 0 and its largest root is a2 = 1+

√
5

2 . It follows that the
potential number of informed neighbors of the originator after t rounds is proportional

to ( 1+
√

5
2 )t ∼ 1.618t.

To show that the bound of Theorem 1 can be attained, we need to show that every
level 1 node is informed and that no nodes are informed more than once. To do this,
we have to specify which nodes are informed during each round. We use the following
method: During round t, the originator (which we will refer to as node 0) will inform
node T t−1

1 + 1 at level 1 (i.e., the node whose label has a 1 in position T t−1
1 + 1), and

any level 1 node δ, 1 ≤ δ ≤ T t−1
1 , that was informed during the first t− 1 rounds will

inform node δ, δ + T t
1 + 1 at level 2 if δ + T t

1 + 1 ≤ n. If δ + T t
1 + 1 > n, then we

can assume that node δ is idle because communications to the right will not result in
any more informed level 1 nodes before the end of the protocol. Then, during round
t + 1, each level 2 node δ, δ + T t

1 + 1 that was informed during round t will inform
node δ + T t

1 + 1 at level 1. Figure 1 shows how this can be done for n ≤ T 6
1 = 20.

(In Figure 1, the three bold arcs and the nodes with 21 in their labels are not part of
Protocol A2 and should be ignored at this point.) The following lemma establishes
the correctness of this pattern.

Lemma 1. All level 1 nodes δ with 1 ≤ δ ≤ min(n,T t
1(A2)) are informed in t

rounds.

Proof. The proof is by induction. The claim is true for t = 1 and t = 2. Now,
suppose that the claim is true after round t. If n ≤ T t

1 , we are done. If n > T t
1 ,

then the new level 1 nodes informed during round t + 1 are node T t
1 + 1, which is

informed by node 0, and all nodes δ with T t
1 + 2 ≤ δ ≤ min(n,T t

1 + T t−1
1 + 1), which

are informed by the level 2 nodes δ, δ + T t
1 + 1 with 1 ≤ δ ≤ T t−1

1 . By Theorem 1,
T t+1

1 = T t
1 + T t−1

1 + 1, so the new level 1 nodes informed during round t + 1 are all
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nodes δ with T t
1 + 1 ≤ δ ≤ min(n,T t+1

1 ).
The first of our new protocols is a natural generalization of the protocol from [3].

Each node x that is informed during round t informs the following uninformed nodes:
Protocol A

(i) If x is the originator, inform type L1 nodes during rounds t + 1, t + 2, . . . .
(ii) If x is a level 1 node, inform type L2 nodes during rounds t + 1, t + 2, . . . .
(iii) If x is a level k ≥ 2 node, inform a type Rk−1 node during round t + 1 and

type Lk+1 nodes during rounds t + 2, t + 3, . . . .
In Protocol A, each newly informed node at level k ≥ 2 immediately informs

one level k − 1 node and then informs level k + 1 nodes until the protocol termi-
nates. The intuition is that each communication to the right can introduce a new
dimension, which can eventually result in a new level 1 node being informed. So, in
Protocol A, a node that has been informed from the left immediately initiates a path
of communications going back to the level 1 node with the new dimension. Newly
informed nodes that have received the message from the right continue to forward
the message left towards the level 1 node. Additional communications to the left will
not lead directly to more informed nodes at level 1 because no new dimensions are
being introduced. (We will see later in Protocol B how more new dimensions can be
introduced indirectly.)

Protocol A informs level 1 nodes faster than Protocol A2. Figure 1 shows that
Protocol A can inform 21 level 1 nodes during the first six rounds while Protocol A2

can inform at most 20. The third protocol, A3, shown in Figure 1 will be described
later. Protocol A3 can inform the same number of level 1 nodes as Protocol A during
the first six rounds, but eventually (when the number of rounds is nine or greater)
Protocol A informs level 1 nodes faster than Protocol A3.

The recurrence equations for Protocol A are as follows:

Lt
1(A) = 1 t ≥ 1

L1
2(A) = 0

Lt
2(A) =

t−1∑
i=1

(Li
1(A) + Ri

1(A)) = T t−1
1 (A) t ≥ 2(1)

Lt
k(A) = 0 t ≤ 2k − 3, k ≥ 2

Lt
k(A) =

t−2∑
i=1

(Li
k−1(A) + Ri

k−1(A)) t ≥ 2k − 2, k ≥ 3(2)

Rt
k(A) = 0 t ≤ 2k, k ≥ 1

Rt
k(A) = Lt−1

k+1(A) + Rt−1
k+1(A) t ≥ 2k + 1, k ≥ 1(3)

N t
k(A) = Lt

k(A) + Rt
k(A) t ≥ 1, k ≥ 1(4)

T t
k(A) =

t∑
i=1

N i
k(A) =

t∑
i=1

(Li
k(A) + Ri

k(A)) t ≥ 1, k ≥ 1.
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We begin our analysis of Protocol A by simplifying the expression for T t
1(A). We

can express N t
1(A) as a function of the Lt

k(A) by using (3) repeatedly:

(5) N t
1 = Lt

1 +Rt
1 = 1+Lt−1

2 +Rt−1
2 = 1+Lt−1

2 +Lt−2
3 +Lt−3

4 + · · ·+Lt−k+1
k + · · · .

Then we use T t
1 = T t−1

1 + N t
1, (5), and Lt−1

2 = T t−2
1 (from (1)) to obtain

(6) T t
1 = T t−1

1 + T t−2
1 + 1 +

∑
i≥3

Lt−i+1
i .

To show that this bound for T t
1(A) is attained by Protocol A, we have to specify

which nodes are informed during each round. We also have to show that no nodes are
informed more than once and that every neighbor of the originator is informed.

During round t, node 0 (the originator) will inform node T t−1
1 +1 at level 1. Each

level 1 node δ, 1 ≤ δ ≤ T t−1
1 , that was informed during the first t − 1 rounds will

inform node δ, δ + T t
1 + 1 if δ + T t

1 + 1 ≤ n and will be idle if δ + T t
1 + 1 > n. Once a

node becomes idle, it remains idle until the end of the protocol.
To describe the behavior of the level 2 nodes during round t, let us rank the

nodes δ1δ2, δ1 < δ2, that are informed during the first t−2 rounds in increasing order
according to the value of δ2. (We will prove below that there are exactly T t−2

2 = Lt
3

such nodes and that they all have different values of δ2.) If δ1δ2 is the jth node in
this ranking, it will inform the level 3 node δ1δ2δ3, where δ3 = T t+1

1 + 1 + Lt+1
2 + j,

if δ3 ≤ n and will be idle otherwise.
To describe the pattern by which level k − 1 nodes inform level k nodes during

round t (and the way that new dimensions are introduced), let us rank the level k− 1
nodes δ1δ2 · · · δk−1, δ1 < δ2 < · · · < δk−1, that are informed during the first t − 2
rounds in increasing order according to the value of δk−1. (We will prove below that
there are exactly T t−2

k−1 = Lt
k such nodes and that they all have different values of

δk−1.) Then, if δ1δ2 · · · δk−1 is the jth node in this ranking, it will inform the level k
node δ1δ2 · · · δk−1δk, where δk = T t+k−2

1 + 1 + Lt+k−2
2 + Lt+k−3

3 + · · · + Lt+1
k−1 + j, if

δk ≤ n and will be idle otherwise.
Finally, each level k ≥ 2 node δ1δ2 · · · δk, δ1 < δ2 < · · · < δk, that is informed

during round t− 1 will inform the level k − 1 node ρ1ρ2 · · · ρk−1 = δ2δ3 · · · δk during
round t (i.e., we always delete the leftmost index from the label of the level k node to
obtain the label of the level k − 1 node).

Claim 1. During round t, the nodes informed by Protocol A are as follows:
(i) all level 1 nodes δ1 such that δ1 = T t−1

1 (A) + j, where 1 ≤ j ≤ N t
1(A);

(ii) all level 2 nodes δ1δ2, δ1 < δ2 such that δ2 = T t
1(A) + 1 + j, where 1 ≤ j ≤

N t
2(A);

(iii) all level k nodes δ1δ2 · · · δk, δ1 < δ2 < · · · < δk such that δk = T t+k−2
1 (A) +

1 + Lt+k−2
2 (A) + Lt+k−3

3 (A) + · · · + Lt+1
k−1(A) + j, where 1 ≤ j ≤ N t

k(A).
Proof. First, let us prove that if the claim is true, then the level k nodes informed

during round t have a different rightmost index than the nodes informed during the
first t − 1 rounds, so T t

k =
∑

N t
k. For level 1, it is clear that δ1 > T t−1

1 . The
level 2 nodes informed before round t have δ2 ≤ T t−1

1 + 1 + N t−1
2 and the nodes

informed during round t have δ2 ≥ T t
1 + 2 = T t−1

1 + N t
1 + 2 = T t−1

1 + Rt
1 + 3 =

T t−1
1 +N t−1

2 + 3. The level k nodes informed before round t have δk ≤ T t+k−3
1 + 1 +

Lt+k−3
2 + · · · + Lt

k−1 + N t−1
k ≤ T t+k−2

1 and the nodes informed during round t have

δk ≥ T t+k−2
1 + 2 + Lt+k−2

2 + · · · + Lt+1
k−1 > T t+k−2

1 .
Now suppose that the claim is true until round t − 1. We prove that the claim

is true for round t by induction on t. We showed above that T t−1
k =

∑
N t−1

k if the
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claim is true for round t− 1. The level 1 nodes that are informed during round t are
node T t−1

1 + 1, which is informed by the originator, and each node ρ1 = δ̄1δ2 such
that δ1δ2 is a level 2 node that was informed during round t − 1. By the induction
hypothesis, these nodes informed by level 2 nodes are of the form ρ1 = T t−1

1 + 1 + j,
where 1 ≤ j ≤ N t−1

2 . So, altogether, the level 1 nodes informed during round t are
the nodes T t−1

1 + j, where 1 ≤ j ≤ 1+N t−1
2 = N t

1. This last equation is true because
Lt

1 = 1 and N t−1
2 = Rt

1 by (3) and (4).
The level 2 nodes that are informed during round t are as follows:

(i) every node δ1δ2 informed by a level 1 node δ1 such that δ2 = T t
1 + 1 + j,

where 1 ≤ j ≤ T t−1
1 = Lt

2 (by (1));
(ii) every node ρ1ρ2 informed by a level 3 node δ1δ2δ3 which was informed during

round t − 1 such that ρ2 = δ3, where ρ2 = T t
1 + 1 + Lt

2 + j, 1 ≤ j ≤ N t−1
3 by the

induction hypothesis (at level 3).
Altogether, the level 2 nodes informed during round t are the nodes with rightmost
index T t

1 + 1 + j, where 1 ≤ j ≤ Lt
2 + N t−1

3 = N t
2. This last equation is true because

N t−1
3 = Rt

2 and Lt
2 + Rt

2 = N t
2 by (3) and (4).

The level k nodes that are informed during round t are as follows:
(i) every node δ1δ2 · · · δk informed by a level k − 1 node which was informed

during round t− 1 such that δk = T t+k−2
1 + 1 + Lj

2, where 1 ≤ j ≤ T t−1
1 = Lt+k−2

2 +
Lt+k−3

3 + · · · + Lt+1
k−1 + j, 1 ≤ j ≤ T t−2

k−1 = Lt
k (by (1));

(ii) every node ρ1ρ2 · · · ρk informed by a level k + 1 node δ1δ2 · · · δk+1 which
was informed during round t − 1 such that the rightmost index ρk = δk+1 satisfies
ρk = T t+k−2

1 + 1 +Lt+k−2
2 +Lt+k−3

3 + · · ·+Lt+1
k−1 + j, 1 ≤ j ≤ N t−1

k+1 by the induction
hypothesis.
Altogether, the level k nodes informed during round t are the nodes with rightmost
index T t+k−2

1 +1+Lt+k−2
2 +Lt+k−3

3 + · · ·+Lt+1
k−1 + j, where 1 ≤ j ≤ Lt

k +N t−1
k+1 = N t

k.

This last equation is true because N t−1
k+1 = Rt

k and Lt
k + Rt

k = N t
k by (3) and

(4).
If we truncate Protocol A at some level k, that is, we discard all parts of the

protocol involving levels greater than k, then we get a Protocol Ak that approximates
Protocol A. In fact, Protocol A2 is exactly the protocol from [3]. Figure 1 shows
the first six rounds of Protocol A3. Notice that Protocol A3 can inform one more
level 1 node than Protocol A2 in six rounds (using the bold arcs). The sequence
A2,A3,A4, . . . is a sequence of increasingly accurate approximations of Protocol A.
We will solve the recurrence equations for Protocol Ak, but, unfortunately, we have
not been able to solve the recurrence equations for Protocol A without truncation.

Now, let us show how to find an expression for T t
1(Ak) for the truncated protocol

Ak. First, note that for Protocol Ak we have to truncate (6) at level k. This is done
by deleting the terms Lt−i+1

i (A) for all i > k. Our aim will therefore be to express
T t

1(A) for any k as the sum of two functions, the first depending on the Lt−i+1
i (A)

for i ≤ k, and the second depending on the Lt−i+1
i (A) for i > k. Furthermore, we

will show how to express the first function as a polynomial in the T j
1 (A) for j ≤ t−1.

In summary, we want to obtain T t
1(A) = P t

k +gtk, where P t
k is a polynomial in the

T j
1 (A) with j ≤ t − 1 and gtk is a function of the Lt−i+1

i (A) with i > k. Therefore,
for Ak we will obtain T t

1(Ak) = Qt
k, where Qt

k is the polynomial obtained from P t
k by

replacing the T j
1 (A) by the T j

1 (Ak), j ≤ t−1. T t
1(Ak) satisfies a generalized Fibonacci

type of recurrence relation for which the asymptotic behavior is determined by the
largest root of the associated polynomial.

For k = 2, (6) gives P t
2 = T t−1

1 + T t−2
1 + 1 and gt2 =

∑
i≥3 L

t−i+1
i , so we obtain
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T t
1(A2) = T t−1

1 (A2) + T t−2
1 (A2) + 1, which is Theorem 1.

For k ≥ 3, we have to compute the Lt−i+1
i as functions of the T j

1 . This cannot
be done directly, but it can be done using differences. For this purpose, we introduce
a difference operator D such that for any function f(t), D[f(t)] = f(t) − f(t− 1).

Using T t
1 = T t−1

1 + D[T t
1 ], (6) becomes

(7) T t
1 = T t−1

1 + D[P t
2 ] +

∑
i≥3

D[Lt−i+1
i ].

Using D[P t
2 ] = T t−1

1 − T t−3
1 , we get T t

1 = P t
3 + gt3, where

(8) P t
3 = 2T t−1

1 − T t−3
1 + D[Lt−2

3 ] and gt3 =
∑
i≥4

D[Lt−i+1
i ].

By (2) and (3), D[Lt−2
3 ] = Lt−2

3 − Lt−3
3 = Lt−4

2 + Rt−4
2 = Rt−3

1 . By (4),

(9) D[Lt−2
3 ] = Rt−3

1 = N t−3
1 − Lt−3

1 = T t−3
1 − T t−4

1 − 1.

Using (9) in (8), we get P t
3 = 2T t−1

1 − T t−4
1 − 1. This gives the following result.

Theorem 2. T t
1(A3) = 2T t−1

1 (A3) − T t−4
1 (A3) − 1.

This is a generalized Fibonacci sequence. The largest root of the associated
polynomial x4 − 2x3 + 1 = 0 is a3 ≈ 1.839. Thus we have the following corollary.

Corollary 2. T t
1(A3) ∼ 1.839t.

We will compute the polynomials for k ≥ 4 using the following theorem.
Theorem 3. P t

k = T t−1
1 (A)+P t

k−1 −P t−1
k−1 +T t−3

1 (A)−T t−4
1 (A)−P t−3

k−2 +P t−4
k−2,

k ≥ 4.
Proof. First, we prove by induction that

(10) P t
k = T t−1

1 + D[P t
k−1] + Dk−2[Lt−k+1

k ] and gtk =
∑

i≥k+1

Dk−2[Lt−i+1
i ].

This is true for k = 2 by (1) and (6) and for k = 3 by (8). Suppose that it is true for
k. Then using T t

1 = T t−1
1 + D[T t

1 ], we obtain

T t
1 = T t−1

1 + D[P t
k] + Dk−1[Lt−k

k+1] +
∑

i≥k+2

Dk−1[Lt−i+1
i ],

so

P t
k+1 = T t−1

1 + D[P t
k] + Dk−1[Lt−k

k+1] and gtk+1 =
∑

i≥k+2

Dk−1[Lt−i+1
i ].

Note that the formula of the theorem can be rewritten as

(11) P t
k = T t−1

1 + D[P t
k−1] + D[T t−3

1 − P t−3
k−2].

So, using (10), the theorem can be proved by proving that

(12) Dk−2[Lt−k+1
k ] = D[T t−3

1 − P t−3
k−2].

For k ≥ 3, we can use (2) and (3) to obtain D[Lt
k] = Lt

k−Lt−1
k = Lt−2

k−1+Rt−2
k−1 = Rt−1

k−2.

So, for k ≥ 4 we can use D[Lt+1
k−1] = Lt−1

k−2 + Rt−1
k−2 to obtain

(13) D[Lt
k] = D[Lt+1

k−1] − Lt−1
k−2.
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By (13),

Dk−2[Lt−k+1
k ] = Dk−2[Lt−k+2

k−1 ] −Dk−3[Lt−k
k−2]

= D[Dk−3[Lt−k+2
k−1 ] −Dk−4[Lt−k

k−2]].(14)

By induction, (12) with k − 1 substituted for k gives

(15) Dk−3[Lt−k+2
k−1 ] = D[T t−3

1 − P t−3
k−3],

and (12) with k − 2 substituted for k and t− 3 substituted for t gives

(16) Dk−4[Lt−k
k−2] = D[T t−6

1 − P t−6
k−4].

Equation (11) with k − 2 substituted for k and t− 3 substituted for t gives

(17) P t−3
k−2 = T t−4

1 + D[P t−3
k−3] + D[T t−6

1 − P t−6
k−4].

Combining (15), (16), and (17), we obtain

Dk−3[Lt−k+2
k−1 ] − Dk−4[Lt−k

k−2]

= D[T t−3
1 − P t−3

k−3] − P t−3
k−2 + T t−4

1 + D[P t−3
k−3] = T t−3

1 − P t−3
k−2.

Using Theorem 3, we are able to compute all of the polynomials P t
k for k ≥ 4 and

therefore the recurrence relations for T k
1 (Ak). For example, we obtain the following

theorems.

Theorem 4. T t
1(A4) = 3T t−1

1 (A4) − 2T t−2
1 (A4) + T t−3

1 (A4) − 3T t−4
1 (A4) +

T t−5
1 (A4) + T t−6

1 (A4).

Theorem 5. T t
1(A5) = 4T t−1

1 (A5) − 5T t−2
1 (A5) + 4T t−3

1 (A5) − 7T t−4
1 (A5) +

6T t−5
1 (A5) − T t−8

1 (A5).

The following table, Table 1, shows the value of the largest root ak of the asso-
ciated polynomial of T t

1(Ak) for k ≤ 13. The number of level 1 nodes informed by
Protocol Ak is proportional to atk.

Table 1

Asymptotic values for Protocol Ak.

Protocol Largest root Protocol Largest root Protocol Largest root
A2 1.61803 A6 1.96277 A10 1.98703
A3 1.83929 A7 1.97297 A11 1.98933
A4 1.91286 A8 1.97948 A12 1.99107
A5 1.94552 A9 1.98390 A13 1.99241

3. A sophisticated protocol. In Protocol A, each newly informed node at
level k ≥ 3 informs only one level k − 1 node before broadcasting to the right. This
leaves some nodes at levels 2 through k − 1 uninformed. The idea of our second
protocol, Protocol B, is to inform as many nodes as possible at the lower levels,
because these nodes can introduce new dimensions by communicating to the right
and this will lead to new level 1 nodes. A new dimension introduced by a level k node
in a communication during round t can result in a newly informed node at level 1 as
early as round t + k.
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To describe Protocol B more precisely, we need to extend the notation used for
Protocol A. We will distinguish nodes informed from the right by a node x according
to the number of communications to the left that have been made by x. If x is a node
at level k, then the first node that it informs at level k− 1 is a type Rk−1,1 node, the
second node that it informs at level k−1 is a type Rk−1,2 node, and so on. This gives
the following notation:

Lt
k(P): maximum number of level k nodes informed by

level k − 1 nodes during round t of Protocol P
Rt

k,1(P): maximum number of level k nodes informed during

round t of Protocol P by level k + 1 nodes which
have not communicated to the left before round t

Rt
k,j(P): maximum number of level k nodes informed during

round t of Protocol P by level k + 1 nodes which
have informed exactly j − 1 level k nodes before
round t

Rt
k(P) =

∑k
j=1 R

t
k,j(P): maximum total number of level k nodes informed

by level k + 1 nodes during round t of Protocol P
N t

k(P) = Lt
k(P) + Rt

k(P): maximum total number of level k nodes informed
during round t of Protocol P

T t
k(P) =

∑t
i=1 N

i
k(P): maximum total number of level k nodes informed

during the first t rounds of Protocol P

Now we can describe Protocol B precisely. If x is a node that is informed during
round t, then x informs the following uninformed nodes:

Protocol B
(i) If x is the originator, inform type L1 nodes during rounds t + 1, t + 2, . . . .
(ii) If x is a level 1 node, inform type L2 nodes during rounds t + 1, t + 2, . . . .
(iii) If x is a type Lk node, k ≥ 2, inform a type Rk−1,1 node during round

t+ 1, a type Rk−1,2 node during round t+ 2, . . . , a type Rk−1,k−1 node during round
t + k − 1, and type Lk+1 nodes during rounds t + k, t + k + 1, . . . .

(iv) If x is a type Rk,j node, k ≥ 2, 1 ≤ j ≤ k, inform a type Rk−1,j node during
round t+1, a type Rk−1,j+1 node during round t+2, . . . , a type Rk−1,k−1 node during
round t + k − j, and type Lk+1 nodes during rounds t + k − j + 1, t + k − j + 2, . . . .

Before we analyze Protocol B, it will be helpful to look at an example of part
of the protocol. Figure 2 shows a path from the originator to a level 5 node labelled
δ1δ2δ3δ4α. The tree of all communications to the left from node δ1δ2δ3δ4α is also
shown, but all other communications have been omitted to keep the figure simple.
In our example, dimension α is introduced in the communication right from node
δ1δ2δ3δ4 to node δ1δ2δ3δ4α during round t. The rounds during which other nodes are
informed and the types of the nodes are indicated in the figure.

Figure 2 illustrates some properties that we will use in our analysis. First, con-
sider the path of type Lk nodes from the originator to node δ1δ2δ3δ4α along the top of
the diagram. Each of the communications to the right shown in the figure introduces
a new dimension, but the rounds during which these communications occur are not
consecutive because communications to the left by the type Lk nodes are done before
communications to the right. The type L2 node labelled δ1δ2 makes one communi-
cation to the left (to a type R1,1 node) before informing the type L3 node δ1δ2δ3,
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L5L3L2L1 L4Originator

Level 5Level 4Level 3Level 2Level 1Level 0

R3,3

R3,2

R2,1

R2,2

R2,2

R2,2

R1,1

δ1δ2δ3δ4δ1δ2δ3δ1δ2δ1000 . . . 0

t + 4 t + 3 t + 2

t + 1

t + 4

δ1δ2δ3δ4α

δ̄1δ̄2δ3δ4α

R3,1

R4,1

δ̄1δ2δ3δ4α
R3,2

δ̄1δ̄2δ3δ̄4α

δ̄1δ2δ̄3δ̄4α δ̄1δ2δ3δ̄4α

δ1δ̄2δ3δ4α

t + 2

R4,3

δ̄1δ̄2δ̄3δ4α

δ1δ̄2δ̄3δ̄4α

R4,4

δ1δ2δ3δ̄4α

t + 3

δ1δ2δ̄3δ4α

R4,2

t + 3t + 4

t + 4 t + 4

δ̄1δ2δ̄3δ4α

t + 4

δ1δ2δ̄3δ̄4α

R3,3

t + 3

δ1δ̄2δ̄3δ4α

t + 4

t + 4
R3,3

δ1δ̄2δ3δ̄4α

α = δ̄1δ̄2δ̄3δ̄4α

t − 9t − 10 t − 4t − 7 t

Fig. 2. The broadcast tree of Tδ1δ2δ3δ4α.

the type L3 node makes two communications to the left, and, in general, a type Lk

node, k ≥ 2, will make k− 1 communications to the left before communicating to the

right. So, a type Lk node will receive the message
∑k−1

i=1 i = k(k−1)
2 rounds after the

originator initiates the path to the right. Next, we can consider node δ1δ2δ3δ4α to be
the root of a broadcast tree, which we denote by Tδ1δ2δ3δ4α, going left and starting in
round t + 1. The tree Tδ1δ2δ3δ4α is a complete binomial tree of depth 4 and contains
all nodes at levels 1 through 5 with a 1 in position α. Notice that the number of
level i + 1 nodes in Tδ1δ2δ3δ4α is

(
4
i

)
, 1 ≤ i + 1 ≤ 5. In particular, Tδ1δ2δ3δ4α contains

one new level 1 node. Another useful property of Tδ1δ2δ3δ4α is that all
∑4

i=0

(
4
i

)
= 24

nodes, including δ1δ2δ3δ4α, finish their communications to the left during the same
round t+4, so they can all start communicating to the right simultaneously in round
t + 5. Each of these communications to the right introduces a new dimension, and
each node that receives the message from the left during round t + 5 is the root of a
broadcast tree going left that contains a new level 1 node. In general, the broadcast
tree of a type Lk node that is informed during round t contains 2k−1 nodes, including
one level 1 node that is informed during round t + k − 1, and all nodes of this tree
communicate to the right during round t + k introducing 2k−1 new dimensions.
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With this intuition, we can write the recurrence equations for Protocol B:

Lt
1(B) = 1 t ≥ 1

Lt
k(B) = 0 t ≤ k(k − 1)

2
, k ≥ 2

Lt
k(B) =

t−k+1∑
i=1

Li
k−1(B) +

k−1∑
j=1

t−k+j∑
i=1

Ri
k−1,j(B) t ≥ k(k − 1)

2
+ 1, k ≥ 2(18)

Rt
k,j(B) = 0 1 ≤ k < j

Rt
k,j(B) = 0 t ≤ k(k + 1)

2
+ j, 1 ≤ j ≤ k

Rt
k,j(B) = Lt−j

k+1(B) +

j∑
i=1

Rt−j+i−1
k+1,i (B) t ≥ k(k + 1)

2
+ j + 1,(19)

1 ≤ j ≤ k

Rt
k(B) = 0 t ≤ k(k + 1)

2
+ 1, k ≥ 1

Rt
k(B) =

k∑
j=1

Rt
k,j(B) t ≥ k(k + 1)

2
+ 2, k ≥ 1

N t
k(B) = Lt

k(B) + Rt
k(B) t ≥ 1, k ≥ 1

T t
k(B) =

t∑
i=1

N i
k(B) =

t∑
i=1

(Li
k(B) + Ri

k(B)) t ≥ 1, k ≥ 1.

Theorem 6. Protocol B informs 2t level 1 nodes no later than round t +

�
√

8t+1−1
2 �.
Proof. During each round of Protocol B, each informed node informs an unin-

formed neighbor, so the total number of informed nodes after t rounds is 2t. By (18),
the most distant informed node from the originator after t rounds is at level at most

kt, where t ≤ kt(kt+1)
2 . So, kt = �

√
8t+1−1

2 �.
From the discussion above, a type Lk node x that is informed during round t

is the root of a broadcast tree Tx with 2k nodes that are all informed during round
t + k − 1. In particular, Tx includes a level 1 node which we will call f1(x).

Now we will show that at time t+ kt there are at least 2t informed level 1 nodes.
To prove this, we will associate with each of the 2t nodes informed during the first t
rounds, a level 1 node that is informed no later than round t + kt.

If node x is of type Lt′

k , the associated level 1 node is f1(x) of the broadcast tree
Tx, and f1(x) is informed no later than round t′ + k − 1 ≤ t + kt − 1.

If node x is of type Rm, it belongs to the broadcast tree of a type Lt−h
k node r(x)

with k ≤ kt; therefore, m ≤ kt − 1.
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Case 1. If h ≥ k − 1, then all of the nodes of the broadcast tree of r(x) are
informed during round t. During round t + 1, x will inform a type Lt+1

m+1 node y,
which in turn informs the level 1 node f1(y) m rounds later, that is, during round
t + m + 1 ≤ t + kt.

Case 2. If h < k − 1, then only 2h − 1 nodes of the broadcast tree of r(x) are
informed during the first t rounds. We will show that we can associate at least 2h− 1
informed level 1 nodes with this broadcast tree. Indeed, all the nodes of the broadcast
tree of r(x) are informed during round t−h+k−1. During round t−h+k, any type
Rp node of the broadcast tree will inform a type Lp+1 node, which in turn informs a
level 1 node during round t−h+k+p. So, no later than round t+kt we have at least
as many informed level 1 nodes as the number of Rp nodes with p ≤ h. The number

of such Rp nodes is 1 +
(
k−1
1

)
+ · · · +

(
k−1
h−1

)
> 1 +

(
h
1

)
+ · · · +

(
h

h−1

)
= 2h − 1.

Corollary 3. In the hypercube with N = 2n nodes, neighborhood broadcasting
can be done in at most log2n +

⌈√
2log2n

⌉
rounds.

Corollary 4. For any fixed ε > 0 and sufficiently large t, the number of level 1
nodes informed by Protocol B in t rounds is at least (2 − ε)t.

Proof. After t = u+
√

2u + 1 rounds, we have 2u level 1 nodes informed. Solving
for u we get u = t+1−

√
2t + 1. So, at time t there are at least 2t+1−

√
2t+1 informed

level 1 nodes. For any fixed ε and sufficiently large t, 2t+1−
√

2t+1 ≥ (2 − ε)t.
We can truncate Protocol B at some level k ≥ 3, in the same way that we

truncated Protocol A, to get a sequence B3,B4,B5, . . . , of increasingly accurate ap-
proximations of Protocol B. Protocol B2 is exactly the same as Protocol A2. We
begin our analysis in the same way as we did for Protocol A (cf. (6)) by simplifying
the expression for T t

1(B):

T t
1 = T t−1

1 + N t
1 = T t−1

1 + 1 + Lt−1
2 + Lt−2

3 + · · · + Lt−k+1
k + · · · .

Noting that Lt−1
2 = T t−2

1 , we get

(20) T t
1 = T t−1

1 + T t−2
1 + 1 +

∑
i≥3

Lt−i+1
i .

Using the difference operator with (18), we get

D[Lt
k] = Lt−k+1

k−1 +

k−1∑
j=1

Rt−k+j
k−1,j .

By repeated use of (19), we get

D[Lt
3] = Lt−2

2 + 2Lt−3
3 + 3Lt−4

4 + · · · + (i− 1)Lt−i
i + · · · ,(21)

D[Lt
4] = Lt−3

3 + 3Lt−4
4 + 6Lt−5

5 + · · · +
(
i− 1

2

)
Lt−i
i + · · · ,(22)

and more generally

(23) D[Lt
k] =

∑
i≥k−1

(
i− 1

k − 2

)
Lt−i
i .

Theorem 7. T t
1(B3) = 2T t−1

1 (B3) + T t−3
1 (B3) − 2T t−4

1 (B3) − T t−5
1 (B3) − 2.
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Proof. Truncating (20) at level 3 gives

(24) T t
1 = T t−1

1 + T t−2
1 + 1 + Lt−2

3 .

Applying the difference operator to (24) we get

T t
1 = T t−1

1 + D[T t
1 ] = 2T t−1

1 − T t−3
1 + D[Lt−2

3 ].

By (21), D[Lt−2
3 ] = Lt−4

2 + 2Lt−5
3 = T t−5

1 + 2Lt−5
3 , so we get

(25) T t
1 = 2T t−1

1 − T t−3
1 + T t−5

1 + 2Lt−5
3 .

Substituting t − 3 for t in (24) gives Lt−5
3 = T t−3

1 − (T t−4
1 + T t−5

1 + 1) and so (25)
becomes T t

1 = 2T t−1
1 + T t−3

1 − 2T t−4
1 − T t−5

1 − 2.
Corollary 5. T t

1(B3) ∼ 1.913t.
It is interesting to note that T t

1(B3) = T t
1(A4) (compare Theorems 7 and 4) even

though the protocols are different. The originator and nodes of types L1 and L2

behave the same in the two protocols. In Protocol A4, each level 3 node informs a
type R2,1 node and then informs level 4 nodes until the end of the protocol. Each
level 4 node informs one level 3 node and then becomes idle. In Protocol B3, each
level 3 node informs a type R2,1 node and a type R2,2 node and then becomes idle.
The type R2,1 nodes behave the same in the two protocols. To see that the two
protocols inform the same level 1 nodes during each round, we will compare the parts
of the protocols that are different. Figure 3 shows parts of the broadcast trees rooted
at a level 3 node δ1δ2δ3. In both protocols, node δ1δ2δ3 informs the type R2,1 node
δ2δ3 during round t + 1. Node δ2δ3 behaves the same in both protocols, so it is not
shown. In Figure 3, communications that are in Protocol A4 are shown in normal
typeface and communications that are in Protocol B3 are shown in bold typeface.
Notice that the two protocols inform different level 3 nodes, but the same level 2
nodes are informed. In both protocols, node δ3α1 will inform the new level 1 node α1

during round t+5, node δ3α2 will inform the new level 1 node α2 during round t+6,
and so on.

The proofs of the next two theorems appear in the appendix.
Theorem 8.

T t
1(B4) = 3T t−1

1 (B4) − 2T t−2
1 (B4) + T t−3

1 (B4) − 5T t−5
1 (B4)

+T t−6
1 (B4) + 3T t−8

1 (B4) + T t−9
1 (B4) + 3.

Corollary 6. T t
1(B4) ∼ 1.9867t.

Theorem 9.

T t
1(B5) = 4T t−1

1 (B5) − 5T t−2
1 (B5) + 3T t−3

1 (B5) − T t−4
1 (B5)

−T t−5
1 (B5) − 6T t−6

1 (B5) + 7T t−7
1 (B5) − T t−8

1 (B5)

+4T t−9
1 (B5) + 7T t−10

1 (B5) − 4T t−11
1 (B5) − 2T t−12

1 (B5)

−4T t−13
1 (B5) − T t−14

1 (B5) − 4.

Corollary 7. T t
1(B5) ∼ 1.9989t.
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Level 2 Level 3 Level 4

δ1δ3

δ3α1

δ1δ2δ3α1

δ1δ2δ3α2

δ1δ2δ3α3

δ1δ2δ3α4

δ1δ2δ3αj+3

δ1δ3α1

δ2δ3α1

δ1δ3α2

δ2δ3α2

δ1δ3α3

δ2δ3α3

δ2δ3αj+2

R2,2

R2,1

R2,1

δ3α2

R2,1

δ3αj+1t + j + 4

t + 5

t + 4

t + 3

t + 2

t + 1

t

Round

δ1δ3αj+2

δ1δ2δ3 Normal arcs are in A4

Bold arcs are in B3

Fig. 3. Differences between Protocols A4 and B3.

4. Conclusions. Table 2 shows the numbers of informed level 1 nodes for several
protocols. These numbers were obtained using programs based on the recurrence
relations in this paper. The numbers for the truncated protocols can also be obtained
using the theorems in this paper. The protocols in Table 2 are ordered left to right
according to an increasing number of informed level 1 nodes. An entry shown in bold
font indicates the first round during which a protocol is better than the protocol on
its left.

It is interesting to examine the last row of Table 2 which shows the numbers
of informed nodes after 30 rounds. Protocol A3 nearly doubles the number of in-
formed nodes compared to Protocol A2, and Protocol A4 more than doubles it again.
Protocol B is so much better than Protocol A that even the truncated Protocol B4

outperforms the untruncated Protocol A. We know from Corollary 4 that Protocol B
is asymptotically optimal. The last two columns suggest that Protocol B4 is almost
as good as the untruncated Protocol B. To examine this further, we used programs
based on the recurrence relations to determine lower bounds on the rates that the
truncated protocols inform level 1 nodes. More precisely, the number of level 1 nodes
informed by each truncated Protocol Ak is proportional to atk, where ak is the largest
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Table 2

Level 1 nodes informed.

Round A2 = B2 A3 A4 = B3 A B4 B
1 1 1 1 1 1 1
2 2 2 2 2 2 2
3 4 4 4 4 4 4
4 7 7 7 7 7 7
5 12 12 12 12 12 12
6 20 21 21 21 21 21
7 33 37 37 37 37 37
8 54 66 66 66 66 66
9 88 119 120 120 120 120

10 143 216 221 221 222 222
11 232 394 411 411 416 416
12 376 721 771 772 788 788
13 609 1322 1455 1461 1507 1507
14 986 2427 2757 2780 2905 2905
15 1596 4459 5240 5316 5634 5635
20 17710 93723 132662 142644 163510 164203
25 196417 1972659 3392169 4013545 4958328 5039922
30 2178308 41523767 86856182 115996781 152476127 158120581

root of the associated polynomial of T t
1(Ak). Similarly, the performance of Proto-

col Bk is proportional to btk, where bk is the largest root of the associated polynomial
of T t

1(Bk). The results are shown in Figure 4. The lower curve shows the sequence
{ak}, k = 3, 4, 5, . . . , and the upper curve shows the sequence {bk}, k = 3, 4, 5, . . . .

(We have omitted the value a2 = b2 = 1+
√

5
2 ≈ 1.618 for Protocol A2 = Protocol B2

to reduce the range of the vertical scale of the graph.) The graph shows that the
sequence {bk} converges very quickly with increasing k towards the optimal value 2
(shown as a horizontal line at the top of the graph). The sequence {ak} converges
more slowly, but it is clear that it is also approaching the optimal value.

An alternative approach to solving the recurrence relations in this paper is to
use the matrix approach described in [7, 8]. We have applied this approach to the
protocols in this paper and obtained the same polynomials for the truncated protocols.

We note that the recurrence relations that we have presented in this paper apply
to k-neighborhood broadcasting for any k ≥ 1. It is possible to extend our analysis
to determine expressions for the truncated protocols for k > 1, but the derivations
might be quite long.

Finally, we reiterate that improvement of the lower bound for neighborhood
broadcasting or a proof that no protocol can inform the neighbors of the origina-
tor faster than Protocol B are open problems.

Appendix: Proofs of Theorems 8 and 9.

Theorem 8.

T t
1(B4) = 3T t−1

1 (B4) − 2T t−2
1 (B4) + T t−3

1 (B4) − 5T t−5
1 (B4)

+T t−6
1 (B4) + 3T t−8

1 (B4) + T t−9
1 (B4) + 3.

Proof. In this case, (20) becomes

(26) T t
1 = T t−1

1 + T t−2
1 + 1 + Lt−2

3 + Lt−3
4
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1.92

1.84

2.00

1.96

1.88

201284 16

Fig. 4. Asymptotic convergence of largest roots ak and bk for k ≥ 3.

and by difference

(27) T t
1 = T t−1

1 + D[T t
1 ] = 2T t−1

1 − T t−3
1 + D[Lt−2

3 ] + D[Lt−3
4 ].

Truncating (21) and (22) at level 4 and using the value Lt−3
3 +Lt−4

4 = T t−1
1 −T t−2

1 −
T t−3

1 − 1 deduced from (26) (with t− 1 substituted for t) gives

D[Lt
3] = T t−3

1 + 2Lt−3
3 + 3Lt−4

4 = 2T t−1
1 − 2T t−2

1 − T t−3
1 − 2 + Lt−4

4 ,(28)

D[Lt
4] = Lt−3

3 + 3Lt−4
4 = T t−1

1 − T t−2
1 − T t−3

1 − 1 + 2Lt−4
4 .(29)

Using (27), (28) with t− 2 substituted for t, and (29) with t− 3 substituted for t we
get

(30) T t
1 = 2T t−1

1 + T t−3
1 − T t−4

1 − 2T t−5
1 − T t−6

1 − 3 + Lt−6
4 + 2Lt−7

4 .

We can write (30) as T t
1 = P t + F t(L4), where

(31) P t = 2T t−1
1 + T t−3

1 − T t−4
1 − 2T t−5

1 − T t−6
1 − 3

and

(32) F t(L4) = Lt−6
4 + 2Lt−7

4 = T t
1 − P t.

Using the difference operator we get

(33) T t
1 = T t−1

1 + D[T t
1 ] = T t−1

1 + D[P t] + D[Lt−6
4 ] + 2D[Lt−7

4 ].
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By (29),

D[Lt−6
4 ] + 2D[Lt−7

4 ] = (T t−7
1 + T t−8

1 − 3T t−9
1 − 2T t−10

1 − 3) + 2Lt−10
4 + 4Lt−11

4

= (T t−7
1 + T t−8

1 − 3T t−9
1 − 2T t−10

1 − 3) + 2F t−4(L4).(34)

Using (33), (34), (32) with t− 4 substituted for t, and (31), we get

T t
1 = T t−1

1 + (P t − P t−1) + (T t−7
1 + T t−8

1 − 3T t−9
1 − 2T t−10

1 − 3) + 2(T t−4
1 − P t−4)

= 3T t−1
1 − 2T t−2

1 + T t−3
1 − 5T t−5

1 + T t−6
1 + 3T t−8

1 + T t−9
1 + 3.

Theorem 9.

T t
1(B5) = 4T t−1

1 (B5) − 5T t−2
1 (B5) + 3T t−3

1 (B5) − T t−4
1 (B5)

− T t−5
1 (B5) − 6T t−6

1 (B5) + 7T t−7
1 (B5) − T t−8

1 (B5)

+ 4T t−9
1 (B5) + 7T t−10

1 (B5) − 4T t−11
1 (B5) − 2T t−12

1 (B5)

− 4T t−13
1 (B5) − T t−14

1 (B5) − 4.

Proof. Truncating (20) at level 5 gives

(35) T t
1 = T t−1

1 + T t−2
1 + 1 + Lt−2

3 + Lt−3
4 + Lt−4

5 .

Using the value of Lt−3
3 + Lt−4

4 + Lt−5
5 deduced from (35) (with t− 1 substituted for

t) in (21), (22), and (23) gives

D[Lt
3] = Lt−2

2 + 2Lt−3
3 + 3Lt−4

4 + 4Lt−5
5 = 2T t−1

1 − 2T t−2
1 − T t−3

1 − 2 + Lt−4
4 + 2Lt−5

5 ,

(36)

D[Lt
4] = Lt−3

3 + 3Lt−4
4 + 6Lt−5

5 = T t−1
1 − T t−2

1 − T t−3
1 − 1 + 2Lt−4

4 + 5Lt−5
5 ,

(37)

D[Lt
5] = Lt−4

4 + 4Lt−5
5 .

(38)

By difference we get

T t
1 = T t−1

1 + D[T t
1 ] = 2T t−1

1 − T t−3
1 + D[Lt−2

3 ] + D[Lt−3
4 ] + D[Lt−4

5 ].

Using (36), (37), and (38) with t − 2, t − 3, and t − 4 substituted for t, respectively,
gives T t

1 = Qt + F t(L4,L5), where

Qt = 2T t−1
1 + T t−3

1 − T t−4
1 − 2T t−5

1 − T t−6
1 − 3 and(39)

F t(L4,L5) = Lt−6
4 + 2Lt−7

4 + Lt−8
4 + 2Lt−7

5 + 5Lt−8
5 + 4Lt−9

5 = T t
1 −Qt.(40)

By difference using t − 6, t − 7, t − 8 substituted for t in (37) and t − 7, t − 8, t − 9
substituted for t in (38), we get

T t
1 = T t−1

1 + (Qt −Qt−1) + (F t(L4,L5) − F t−1(L4,L5))(41)

= T t−1
1 + (Qt −Qt−1) + (T t−7

1 − T t−8
1 − T t−9

1 − 1)

+2(T t−8
1 − T t−9

1 − T t−10
1 − 1) + (T t−9

1 − T t−10
1 − T t−11

1 − 1)

+2Lt−10
4 + 6Lt−11

4 + 7Lt−12
4 + 4Lt−13

4

+5Lt−11
5 + 18Lt−12

5 + 25Lt−13
5 + 16Lt−14

5 .
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The last two lines of (41) involving terms in Lj
4 and Lj

5 can be written as

(42) 2F t−4(L4,L5) + 4F t−5(L4,L5) − 2Lt−11
4 − 3Lt−12

4 + Lt−11
5 − 3Lt−13

5 .

Using (40) to deduce the values of F t−4(L4,L5) and F t−5(L4,L5) in (42) (by sub-
stituting t − 4 and t − 5 for t, respectively), (41) becomes T t

1 = St + G(L4,L5),
where

St = 3T t−1
1 − 2T t−2

1 + T t−3
1 − T t−5

1 − 7T t−6
1 − T t−8

1 + 6T t−9
1 + 7T t−10

1 + 3T t−11
1 + 14

and G(L4,L5) = −2Lt−11
4 − 3Lt−12

4 + Lt−11
5 − 3Lt−13

5 .
By difference again, using t−11, t−12 substituted for t in (37), and t−11, t−13

substituted for t in (38), we get

T t
1 = T t−1

1 + (St − St−1)(43)

−2(T t−12
1 − T t−13

1 − T t−14
1 − 1) − 3(T t−13

1 − T t−14
1 − T t−15

1 − 1)

−3Lt−15
4 − 6Lt−16

4 − 3Lt−17
4 − 6Lt−16

5 − 15Lt−17
5 − 12Lt−18

5 .

The third line of (43) involving terms in Lj
4 and Lj

5 is exactly −3F t−9(L4,L5). Us-
ing (40) with t − 9 substituted for t to get an expression for −3F t−9(L4,L5), (43)
becomes

T t
1 = 4T t−1

1 − 5T t−2
1 + 3T t−3

1 − T t−4
1 − T t−5

1 − 6T t−6
1 + 7T t−7

1 − T t−8
1

+4T t−9
1 + 7T t−10

1 − 4T t−11
1 − 2T t−12

1 − 4T t−13
1 − T t−14

1 − 4.
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Abstract. In this paper, we establish an equivalence between the contractible graphs with
respect to the mod (2p + 1)-orientability and the graphs with K1,2p+1-decompositions. This is
applied to disprove a conjecture proposed by Barat and Thomassen that every 4-edge-connected
simple planar graph G with |E(G)| ≡ 0 (mod 3) has a claw decomposition.
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1. Introduction. Graphs in this paper are finite and loopless and may have
multiple edges. See [2] for undefined notations and terminologies. In particular,
κ′(G) denotes the edge connectivity of a graph G, and if X is an edge subset or a
vertex subset of a graph G, then G[X] denotes the subgraph of G induced by X. A
connected loopless graph with 3 edges and a vertex of degree 3 is called a generalized
claw. When restricted to simple graphs, a generalized claw must be isomorphic to a
K1,3. A graph G with |E(G)| ≡ 0 (mod 3) has a claw decomposition if E(G) can be
partitioned into disjoint unions E(G) = X1 ∪X2 ∪ · · · ∪Xk such that, for each i with
1 ≤ i ≤ k, G[Xi] is a generalized claw. Barat and Thomassen [1] showed that the
claw-decomposition problem is closely related to the nowhere zero 3-flow problem. In
particular, the following conjecture is proposed.

Conjecture 1.1 (Barat and Thomassen [1]). Every 4-edge-connected simple
planar graph G with |E(G)| ≡ 0 (mod 3) has a claw decomposition.

The purpose of this note is to disprove this conjecture. In section 2, we shall
introduce contractible graphs with respect to the mod (2p+1)-orientability and discuss
their properties and their relationship to the graphs with K1,2p+1-decompositions. In
section 3, we disprove the conjecture above.

2. Mo
2p+1 and K1,2p+1-decompositions. Throughout this section, p > 0 de-

notes an integer. We shall extend the definition of claw decomposition to K1,2p+1-
decomposition as follows. A connected loopless graph with 2p + 1 edges and a ver-
tex of degree 2p + 1 is called a generalized K1,2p+1. A graph G with |E(G)| ≡ 0
(mod 2p + 1) has a K1,2p+1-decomposition if E(G) can be partitioned into disjoint
unions E(G) = X1 ∪ X2 ∪ · · · ∪ Xk such that, for each i with 1 ≤ i ≤ k, G[Xi]
is a generalized K1,2p+1. In this case, we say that G has a K1,2p+1-decomposition
X = {X1, X2, . . . , Xk}.

Let D = D(G) be an orientation of an undirected graph G. If an edge e ∈ E(G)
is directed from a vertex u to a vertex v, then let tail(e) = u and head(e) = v. For a
vertex v ∈ V (G), let

E+
D(v) = {e ∈ E(D) : v = tail(e)} and E−

D(v) = {e ∈ E(D) : v = head(e)}.

∗Received by the editors December 6, 2006; accepted for publication (in revised form) August 3,
2007; published electronically November 7, 2007.
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We shall denote d+
D(v) = |E+

D(v)| (the out degree of v) and d−D(v) = |E−
D(v)| (the in

degree of v). The subscript D may be omitted when D(G) is understood from the
context. Let A be an (additive) Abelian group. If f : E(G) �→ A is a function, then
the boundary of f is a map ∂f : V (G) �→ A such that

∂f(v) =
∑

e∈E+
D

(v)

f(e) −
∑

e∈E−
D

(v)

f(e), ∀v ∈ V (G).

Let k > 0 be an integer, and assume that G has a fixed orientation D. A mod
k-orientation of G is a function f : E(G) �→ {1,−1} such that for all v ∈ V (G),
∂f(v) ≡ 0 (mod k). The collection of all graphs admitting a mod k-orientation is
denoted by Mk. Note that, by definition, K1 ∈ Mk. Jaeger has conjectured [7] that
every 4k-edge-connected graph is in M2k+1. This conjecture is still open.

Throughout this note, Z denotes the set of all integers. For integers a1, a2, . . . ak
such that not all of them are zero, let gcd(a1, a2, . . . , ak) denote the greatest common
divisor of a1, a2, . . . ak. For an m ∈ Z, Zm denotes the set of integers modulo m, as well
as the additive cyclic group on m elements. For a graph G, a function b : V (G) �→ Zm

is a zero sum function in Zm if
∑

v∈V (G) b(v) ≡ 0 (mod m). The set of all zero sum

functions in Zm of G is denoted by Z(G,Zm). When k = 2p+1 > 0 is an odd number,
we define Mo

2p+1 to be the collection of graphs such that G ∈ Mo
2p+1 if and only if for

all b ∈ Z(G,Z2p+1), ∃f : E(G) �→ {1,−1} such that for all v ∈ V (G), ∂f(v) ≡ b(v)
(mod 2p + 1).

Note that if a function f : E(G) �→ {1,−1} is given, then one can reverse the
orientation of e for each e ∈ E(G) with f(e) = −1 to obtain an orientation D′ of G
such that for all v ∈ V (G), d+

D′(v) − d−D′(v) = ∂f(v). Thus we have the following
proposition.

Proposition 2.1. G ∈ Mo
2p+1 if and only if for all b ∈ Z(G,Z2p+1), G has an or-

ientation D with the property that for all v ∈ V (G), d+
D(v)−d−D(v) ≡ b(v) (mod2p+1).

For a subgraph H of G, define the set of vertices of attachments of H in G to be
AG(H) = {v ∈ V (H) : v is adjacent to a vertex in G− V (H)}.

Proposition 2.2. For any integer p ≥ 1, Mo
2p+1 is a family of connected graphs

such that each of the following holds.
(C1) K1 ∈ Mo

2p+1.
(C2) If e ∈ E(G) and if G− e ∈ Mo

2p+1, then G ∈ Mo
2p+1.

(C3) If H is a subgraph of G, and if H,G/H ∈ Mo
2p+1, then G ∈ Mo

2p+1.
Proof. (C1) and (C2) are straightforward, and so we verify only (C3).
Suppose that G has a fixed orientation, H is a subgraph of G, and both H ∈ Mo

2p+1

and G/H ∈ Mo
2p+1. Thus the edges in both H and G/H are oriented by the orientation

of G. By (C2), we may assume that H is an induced subgraph of G, and so E(G)
is the disjoint union of E(H) and E(G/H). Note that H is connected, and so H
will be contracted to a vertex vH (say) in G/H. Let b : V (G) �→ Z2p+1 such that∑

v∈V (G) b(v) ≡ 0 (mod 2p+1), and let a0 =
∑

v∈V (H) b(v). Define b1 : V (G/H) → A

by setting b1(z) = b(z) if z �= vH , and b1(vH) = a0. Then
∑

z∈V (G/H) b1(z) =∑
z∈V (G) b(z) ≡ 0 (mod 2p + 1). Since G/H ∈ Mo

2p+1, there exists f1 : E(G/H) �→
{1,−1} such that ∂f1 = b1. For each z ∈ V (H), define

b2(z) =

{
b(z) +

∑
e∈E−

G/H
(vH)∩E−

G
(z) f1(e) −

∑
e∈E+

G/H
(vH)∩E+

G
(z) f1(e) if z ∈ AG(H),

b(z) otherwise.

Then
∑

z∈V (H) b2(z) ≡ 0 (mod 2p+1). Since H ∈ Mo
2p+1, there exists f2 : E(G/H) �→
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{1,−1} such that ∂f2 = b2. Now for each e ∈ E(G), define f(e) = f1(e) + f2(e). As
E(G) is a disjoint union of E(H) and E(G/H), it is routine to verify that ∂f(z) ≡ b(z)
(mod 2p + 1), and so G ∈ Mo

2p+1.
Catlin [3] (see also [4], [5]) called families of connected graphs satisfying (C1),

(C2), and (C3) complete families. Complete families seem to be useful in applying
certain reduction methods ([3], [4], [5]).

For a subgraph H of a graph G, define

∂(H) = {uv ∈ E(G) : u ∈ V (H), v ∈ V (G) − V (H)}.

Let D be an orientation of G. Let d+
D(H) denote the number of edges in ∂(H) that

are oriented in D from H to G− V (H), and d−D(H) = |∂(H)| − d+
D(H).

To demonstrate the relationship between Mo
2p+1 and all of the graphs with K1,2p+1-

decompositions, we make the following definitions.
(i) kc,2p+1 denotes the smallest integer k > 0 such that every k-edge-connected

graph G is in Mo
2p+1.

(ii) kc,2p+1 denotes the smallest integer k > 0 such that every k-edge-connected
graph G with |E(G)| ≡ 0 (mod 2p + 1) has a K1,2p+1-decomposition.

The main result of this section is the following relationship.
Theorem 2.3. For any positive integer p > 0, if one of kc,2p+1 and kc,2p+1 exists

as a finite number, then kc,2p+1 = kc,2p+1.
To prove this theorem, we need to establish some lemmas. In each of the following

lemmas, G is a graph and H is a subgraph of G. Suppose that G has a K1,2p+1-
decomposition X = {X1, X2, . . . , Xk}, where each G[Xi] is a generalized K1,2p+1 for
all i. For each G[Xi], we orient the edges from the vertex vi of degree 2p+ 1 in G[Xi]
to all other vertices of G[Xi]. This yields an orientation D = D(X ) induced by the
decomposition X . For each i, the vertex vi is called the center of the oriented Xi.

Lemma 2.4. Suppose that G has a K1,2p+1-decomposition X = {X1, X2, . . . , Xk},
and let D = D(X ). Then for any subgraph H of G,

|E(H)| + d+
D(H) ≡ 0 (mod 2p + 1).

Proof. Let [H,G − V (H)] denote the set of edges in ∂(H) that are oriented in
D(X ) from H to G− V (H). Then |[H,G− V (H)]| = d+

D(H).
By the definition of D(X ), the edge subset E(H) ∪ [H,G− V (H)] is the disjoint

union of the oriented Xi’s whose centers are in V (H). It follows that |E(H)|+d+
D(H) =

|E(H) ∪ [H,G− V (H)]| ≡ 0 (mod 2p + 1).
Lemma 2.5. Let b ∈ Z be a number, and let d = |∂(H)|. Suppose that G

has a K1,2p+1-decomposition X and that H is a subgraph of G. If 2|E(H)| ≡ −d −
b (mod 2p + 1), then, in the orientation D = D(X ),

d+
D(H) − d−D(H) ≡ b (mod 2p + 1).

Proof. Let d+ = d+
D(H) and d− = d−D(H). Then d = d+ + d−. By Lemma 2.4,

|E(H)| ≡ −d+ (mod 2p+1), and so b ≡ −d−2|E(H)| ≡ −d+2d+ ≡ (−d+d+)+d+ ≡
d+ − d− (mod 2p + 1).

The following below is well-known in number theory. For a reference, see Theorem
1.5 of [12].

Lemma 2.6. Let a1, a2, . . . , ak be integers, not all zero. Then gcd(a1, a2, . . . , ak) =
1 if and only if there exist integers x1, x2, . . . , xk such that a1x1+a2x2+· · ·+akxk = 1.

Lemma 2.7. Let k, l, p ∈ Z such that k > 0, p > 0, and 0 ≤ l ≤ 2p. Each of the
following holds.
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Fig. 1. I12(i) (isomorphic to icosahedron) with specified xi, yi, zi.

(i) There exists a planar graph H with κ′(H) ≥ k and 2|E(H)| ≡ l (mod 2p+ 1).
(ii) There exists a simple graph H with κ′(H) ≥ k and 2|E(H)| ≡ l (mod 2p+1).
(iii) If 2 ≤ k ≤ 5, then there exists a simple planar graph H with κ′(H) ≥ k and

2|E(H)| ≡ l (mod 2p + 1).
Proof. (i) For any integer n > 0, let nK2 denote the connected loopless graph with

two vertices and n multiple edges. Let s > 0 be an integer such that s(2p + 1) ≥ k.
Define the desired H as follows:

H =

{
(2ps + s + t)K2 if l = 2t is even,
((2p + 1)(s + 1) − (p− t))K2 if l = 2t + 1 is odd.

(ii) Take an integer m ≥ 4p + 2 + k, and let Hv = Km − W for some edge set
W ⊂ E(Km) such that |W | ≤ 4p + 1 and 2(|E(Km)| − |W |) ≡ l (mod 2p + 1).

(iii) Since gcd(10, 18, 2p + 1) = 1, by Lemma 2.6, there are integers a0, b0, c0
such that 10a0 + 18b0 + (2p + 1)c0 = 1. Choose x0 = la0 + l(|a0| + 1)(2p + 1) and
y0 = lb0 + l(|b0| + 1)(2p + 1). Then x0, y0 are positive integers such that

10x0 + 18y0 ≡ l mod (2p + 1)

holds. Let t = (2p + 1)(x0 + y0 + 1), and let I12(i), 1 ≤ i ≤ t− 1, be a graph isomor-
phic to icosahedron defined below (see Figure 1). Define H to be the graph obtained
from I12(1), I12(2), . . . , I12(t) by identifying zi and yi+1, 1 ≤ i ≤ t− 1, and by adding
x0 + 2y0 new vertices u1, u2, . . . , ux0 , v1, v2, . . . , vy0 , w1, w2, . . . , wy0 with N(uk) =
{x5k−4, x5k−3, x5k−2, x5k−1, x5k}, N(vk′) = {x5x0+8k′−7, x5x0+8k′−6, x5x0+8k′−5,
x5x0+8k′−4, wk′}, and N(wk′) = {x5x0+8k′−3, x5x0+8k′−2, x5x0+8k′−1, x5x0+8k′ , vk′},
where 1 ≤ k ≤ x0 and 1 ≤ k′ ≤ y0. So H is a simple planar graph with κ(H) ≥ k
and 2|E(H)| = 60t + 10x0 + 18y0 = 60(2p + 1)(x0 + y0 + 1) + 10x0 + 18y0 ≡
l mod (2p + 1).

Lemma 2.8. (i) Let k > 0 be an integer. If every k-edge-connected (simple)
graph G with |E(G)| ≡ 0 (mod 2p + 1) has a K1,2p+1-decomposition, then every k-
edge-connected (simple) graph L ∈ Mo

2p+1.
(ii) Let k > 0 be an integer. If every k-edge-connected planar graph G with

|E(G)| ≡ 0 (mod 2p + 1) has a K1,2p+1-decomposition, then every k-edge-connected
planar graph L ∈ Mo

2p+1.
(iii) Let 2 ≤ k ≤ 5. If every k-edge-connected simple planar graph G with

|E(G)| ≡ 0 (mod 2p + 1) has a K1,2p+1-decomposition, then every k-edge-connected
simple planar graph L ∈ Mo

2p+1.
Proof. We shall prove (i) and assume first that every k-edge-connected (simple)

graph G with |E(G)| ≡ 0 (mod 2p+1) has a K1,2p+1-decomposition. By contradiction,
we assume that there exists a k-edge-connected (simple) graph L such that L �∈ Mo

2p+1.
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Therefore, ∃b ∈ Z(L,Z2p+1) such that L does not have an orientation D satisfying
d+
D(v) − d−D(v) ≡ b(v) (mod 2p + 1) for all v ∈ V (L).

Let lv ∈ Z, with 0 ≤ lv ≤ 2p such that lv ≡ −b(v) − dL(v) (mod 2p + 1) for all
v ∈ V (L). By Lemma 2.7 (ii), there exists a simple graph Hv with 2|E(Hv)| ≡ lv ≡
−b(v)−dL(v) (mod 2p+1) such that Hv is also k-edge-connected. For each v ∈ V (L),
replace v by Hv in such a way that the resulting graph G is also a k-edge-connected
(simple) graph.

Since b ∈ Z(L,Z2p+1), 2|E(G)| =
∑

v∈V (L) 2|E(Hv)|+2|E(L)| = −
∑

v∈V (L) b(v)−∑
v∈V (L) dL(v)+2|E(L)| ≡ −

∑
v∈V (L) b(v) ≡ 0 (mod 2p + 1). By the fact that 2 and

2p+1 are relatively prime, |E(G)| ≡ 0 (mod 2p+1). By the assumption of this lemma,
G has a K1,2p+1-decomposition X . By the construction of G, |∂(Hv)| = dL(v). Since
2|E(Hv)| ≡ lv ≡ −b(v) − dL(v) (mod 2p + 1), it follows by Lemma 2.5 that, in the
orientation D = D(X ) for all v ∈ V (L), d+

D(Hv) − d−D(Hv) ≡ b(v) (mod 2p + 1),
contrary to the assumption that L is a counterexample.

The proofs for (ii) and (iii) are similar except that we shall use Lemma 2.7 (i)
and (iii) instead of Lemma 2.7 (ii). Thus we omit the detailed proofs.

Lemma 2.9. If G has an orientation D such that for all v ∈ V (G), d+
D(v) ≡

0 (mod 2p + 1), then G is K1,2p+1-decomposable.
Proof. Note that if D is an orientation of G, then E(G) = ∪v∈V (G)E

+
D(v) is a

disjoint union. As for all v ∈ V (G), d+
D(v) ≡ 0 (mod 2p+ 1), each E+

D(v) is a disjoint
union of generalized K1,2p+1’s, and so G is K1,2p+1-decomposable.

Lemma 2.10. Suppose that G ∈ Mo
2p+1. If |E(G)| ≡ 0 (mod 2p+ 1), then G has

a K1,2p+1-decomposition.
Proof. For all v ∈ V (G), pick an x(v) ∈ {0, 1, . . . , 2p} such that d(v) ≡ x(v) (mod

2p+ 1). Define b(v) = d(v)− 2x(v). First, we shall show that b ∈ Z(G,Z2p+1). Since
x(v) ≡ d(v) (mod 2p+1), we have d(v)− 2x(v) ≡ −x(v) ≡ −d(v) (mod 2p+1). Note
also that

∑
v∈V (G) d(v) = 2|E(G)| ≡ 0 (mod 2p + 1). Thus∑

v∈V (G)

b(v) =
∑

v∈V (G)

(d(v) − 2x(v)) = −
∑

v∈V (G)

d(v) ≡ 0 (mod 2p + 1).

Hence b ∈ Z(G,Z2p+1).
Since G ∈ Mo

2p+1, there exists an orientation D of G such that, under this ori-
entation, at each vertex v ∈ V (G), d+(v) − d−(v) = b(v) = d(v) − 2x(v). Since
d+(v) + d−(v) = d(v), we have 2d+(v) = 2d(v)− 2x(v) = 2(d(v)− x(v)). Since 2 and
2p + 1 are relatively prime, d+(v) ≡ d(v) − x(v) ≡ 0 (mod 2p + 1). Therefore, by
Lemma 2.9, G has a K1,2p+1-decomposition.

Now we can easily prove Theorem 2.3. By Lemma 2.8, kc,2p+1 ≤ kc,2p+1 and by
Lemma 2.10, kc,2p+1 ≥ kc,2p+1. Thus Theorem 2.3 follows.

By (ii) and (iii) of Lemma 2.8 and by Lemma 2.10, and noting that the edge
connectivity of a simple planar graph cannot exceed 5 (Corollary 9.5.3 of [2]), we also
have the following corollary.

Corollary 2.11. (i) Let k′ denote the smallest positive integer such that ev-
ery k′-edge-connected planar graph G with |E(G)| ≡ 0 (mod 2p + 1) has a K1,2p+1-
decomposition, and let k′′ denote the smallest positive integer such that every k′′-edge-
connected planar graph is in Mo

2p+1. Then k′ = k′′.
(ii) Let l′ denote the smallest positive integer such that every l′-edge-connected

simple planar graph G with |E(G)| ≡ 0 (mod 2p + 1) has a K1,2p+1-decomposition,
and let l′′ denote the smallest positive integer such that every l′′-edge-connected simple
planar graph is in Mo

2p+1. Then l′ = l′′.
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Fig. 3. The graph G = G(k).

3. Planar graphs. When p = 1, graphs in Mo
3 are also called Z3-connected

graphs [8], [10], [11]. The following has been recently proved.
Theorem 3.1 (Theorem 3 of [9]). There exists a family of 4-edge-connected

simple planar graphs that are not in Mo
3 .

In fact, the dual version of Theorem 3.1 is proved in [9]. The equivalence between
Theorem 3 of [9] and Theorem 3.1 here was pointed out without a proof in [8], and a
formal proof of this equivalence can be found in [6].

Corollary 3.2. There exists a 4-edge-connected simple planar graph G with
|E(G)| ≡ 0 (mod 3) which does not have a claw decomposition.

Proof. Suppose, to the contrary, that Conjecture 1.1 holds. Then by (ii) of
Corollary 2.11, every 4-edge-connected simple planar graph must be in Mo

3 , which
contradicts Theorem 3.1.

Corollary 3.2 disproves Conjecture 1.1. In fact, we can also directly construct an
infinite family of 4-edge-connected simple planar graphs G with |E(G)| ≡ 0 (mod 3)
which does not have a claw decomposition. We present the construction as follows.

Let k > 0 be an integer. For each i with 1 ≤ i ≤ 3k, define Hi to be the graph
depicted below. See Figure 2.

A graph G = G(k) can be constructed from the disjoint Hi’s by identifying yi
and xi+1, where x3k+1 = x1 and where i = 1, 2, . . . 3k.

Example 3.3. For each k > 0, G = G(k) defined in Figure 3 is a 4-regular and
4-edge-connected simple planar graph with |E(G)| ≡ 0 (mod 3), and G has no claw
decomposition.

Proof. Suppose G has a claw decomposition X = {X1, X2, . . . , Xm}, and let
D = D(X ). Since G is 4-regular, for all v ∈ V (G), |E+

D(v)| ∈ {0, 3}. Note that
|V (G)| = 24k and |E(G)| = 48k. Thus G has m = 48k/3 = 16k edge-disjoint
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claws. Let W denote the set of vertices v with |E+
D(v)| = 0. Then |W | = |V (G)| −

m = 24k − 16k = 8k. Note that no two vertices in W are adjacent in G, and so,
for each i = 1, 2, . . . , 3k (mod 3k), |W ∩ V (Hi ∪ Hi+1 − {yi+1})| ≤ 5. It follows

that 16k = 2|W | =
∑3k

i=1 |V (Hi ∪ Hi+1 − {yi+1}) ∩ W | ≤ 5 × 3k = 15k, a con-
tradiction.

It is an open problem whether kc,2p+1, or, equivalently, kc,2p+1, exists as a finite
number. We conjecture that it does. In view of Corollary 3.2 and Example 3.3, we
further conjecture that kc,2p+1 = 4p + 1.
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ON THE EXISTENCE OF (K5 \ e)-DESIGNS WITH APPLICATION
TO OPTICAL NETWORKS∗
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Abstract. Motivated by the connection between graph decompositions and traffic grooming in
optical networks, we continue the investigation of the existence problem for (K5 \ e)-designs of order
n. It is proved that the necessary conditions for the existence of such designs are also sufficient with
3 definite exceptions (n = 9, 10, 18) and 12 possible exceptions with n = 234 being the largest. This
gives a near solution for the long standing problem posed by Bermond et al. in [Ars Combin., 10
(1980), pp. 211–254]. As a consequence, we also give an optimal grooming on n nodes with C = 9
when such a (K5 \ e)-design of order n exists.
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1. Introduction and definitions. Let G = {G1, G2, . . . , Gt} and H be (finite,
simple, undirected) graphs. A G-decomposition of H is a partition of the edges of
H into classes so that the edges within each class form a graph isomorphic to Gi for
some i. When H is a complete graph of order n (denoted by Kn), the graphs in a
G-decomposition of H form a G-design of order n (and index one, since each edge of
H appears in exactly one of the graphs chosen). When G = {G}, we simply denote it
as G-design. A Kk-design of order n is just a Steiner system S(2, k, n).

We shall be interested not only in taking H to be complete, but also taking
H to be “nearly” complete. To this end, define a complete multipartite graph to
be of type gu1

1 gu2
2 · · · gus

s if it has exactly
∑s

i=1 ui classes in the multipartition, and
there are ui parts of size gi for i = 1, 2, . . . , s. A G-decomposition of the complete
multipartite graph of type gu1

1 gu2
2 · · · gus

s is termed as a G-group divisible design of
type gu1

1 gu2
2 · · · gus

s , and is often called a G-GDD for short. Again, if G = {G}, it is
called a G-GDD. The special case when a G-GDD has type 1mh1 is an incomplete
G-design of order m + h with a hole of size h; in graph-theoretic vernacular this is a
partition of the edges of Km+h \Kh into copies of G. Another special case is when
G = {Kk1 ,Kk2 , . . . ,Kkr}, then a G-design is simply denoted by {k1, k2, . . . , kr}-GDD.
Furthermore, if r = 1, then it is simply denoted by k1-GDD.

Let K5 \ e be a graph with 9 edges on 5 vertices. The problem of determining
the existence of (Kn,K5 \ e)-designs has been studied for a long time. The first result
on the problem was stated in [18], but the result is not in any of the references cited
there.

Theorem 1.1 (see [18]). If n ≡ 1 (mod 18) and n �= 37, 55, 73, 109, 397, 415,
469, 487, 505, 541, 613, 685, then there exists a (Kn,K5 \ e)-design.
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Recently, the problem has been considered in [21], where all possible exceptions
stated in the above theorem have been eliminated, leading to the following theorem.

Theorem 1.2 (see [21]). If n ≡ 1 (mod 18), then there exists a (K5 \ e)-design
of order n.

However, a simple computation shows that a necessary condition for the existence
of a (K5 \ e)-design of order n is n ≡ 0, 1 (mod 9). Therefore, the above theorem
leaves the cases n ≡ 0, 9, 10 (mod 18) wide open.

Another one of our motivations for this problem is the connection between graph
decompositions and grooming in optical networks which we briefly describe next.
Traffic grooming is the process of packing low-rate signals into higher-rate streams
which share a wavelength. In optical networks, particularly in SONET ring networks,
grooming has received much attention; surveys are given in [9, 11, 22, 24]. The setting
is a wavelength-division multiplexed (WDM) network; each wavelength is an optical
communication medium which connects all nodes in a circle and may be unidirectional
or bidirectional. An add-drop multiplexer (ADM) is required on each wavelength at
each node at which traffic is added or dropped. In general, there are two main goals
given a set of traffic requirements between nodes. The first is to minimize the number
of wavelengths employed, while the second is to minimize the total number of ADMs
(the drop cost).

A case of substantial interest (see [3, 4, 5, 6] and references therein) arises with
symmetric uniform traffic requirements on a unidirectional ring. In this scenario, for
every source node i and every target node j, the traffic requirement is for the fixed
fraction 1/C of a wavelength. The quantity C is the grooming ratio, because we can
“groom” C circles onto the same wavelength. Bermond and Coudert [5] establish that
minimizing drop cost (that is the total number of ADMs used, denoted A(C, n)) of
a grooming on n nodes with grooming ratio C can be expressed as an optimization
problem of graphs, as follows. Partition the edges of Kn into subgraphs G1, G2, . . . , Gt

so that each Gi contains at most C edges, and the sum of the numbers of vertices of
nonzero degree in the {Gi} is minimized. Such a partition of Kn is a C-grooming.

Optimal constructions for given grooming ratio C have been obtained using tools
of graph and design theory [10]. In particular, results are available for grooming ratio
C = 3 [2], C = 4 [19, 6], C = 5 [4], C = 6 [3], and C ≤ n(n− 1)/6 [6]. The problem is
also solved for large values of C [6]. Related problems have been studied both in the
context of variable traffic requirements [9, 12, 17, 25, 27] and the case of fixed traffic
requirements [2, 4, 5, 6, 11, 15, 16, 19, 20, 22, 26, 28].

Let ρ(G�) denote the ratio for the subgraph G�, ρ(G�) = |E(G�)|
|V (G�)| , and ρ(m) the

maximum ratio of a subgraph with m edges. Let ρmax(C) denote the maximum ratio
of subgraphs with m ≤ C edges. We have ρmax(C) = max {ρ(G�) | |E(G�)| ≤ C} =
maxm≤C ρ(m). For the sake of illustration, Table 1 gives the values of ρmax(C) for
small values of C. For example for C = 9, ρmax(9) = 9

5 , the bound being attained for
K5 \ e.

The grooming problem is closely connected to problems in combinatorial design
theory. Indeed an (n, k, 1)-design is exactly a partition of the edges of Kn into sub-
graphs isomorphic to Kk. That corresponds to requiring in our partitioning problem
that all the subgraphs G� be isomorphic to Kk. Our interest in the existence of a
G-design is shown by the following proposition.

Proposition 1.3. If there exists a G-design of order n, where G is a graph with

at most C edges and ratio ρmax(C), then A(C, n) = n(n−1)
2ρmax(C) .
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Table 1

Values of ρmax(C) for small C.

C 1 2 3 4 5 6 7 8 9 10

ρmax(C) 1
2

2
3

1 1 5
4

3
2

3
2

8
5

9
5

2

C 11 12 13 14 15 16 24 32 48 64

ρmax(C) 2 2 13
6

14
6

5
2

5
2

3 32
9

9
2

64
11

Necessary conditions 1.4 (existence of a G-design). If there exists a G-design,
then

(i) n(n−1)
2 is a multiple of E(G),

(ii) n−1 is a multiple of the greatest common divisor of the degrees of the vertices
of G.

The purpose of this paper is to obtain a strong existence result for (K5\e)-designs
of order n with n ≡ 0, 9, 10 (mod 18), thus settling a problem that was first considered
many years ago. The result in this paper also provides an optimal grooming on n nodes
with C = 9 when such a (K5 \ e)-design of order n exists.

2. Direct constructions. In this section, we present various direct construc-
tions that are useful in obtaining the main result. We use the representation [a, b, c, d, e]
to denote a K5 \ e on the vertices {a, b, c, d, e} with the edge {d, e} removed. Sim-
ilarly, we use [a, b, c, d] to denote a K4 \ e on the vertices {a, b, c, d} with the edge
{c, d} removed. In a G-design, a parallel class is a set of graphs in the G-design such
that each point appears exactly once in the “interested part” of the graph. Here, we
normally try to add a new point to each parallel class to form copies of K5 \ e. Take
a parallel class composed of copies of K4 as an example. We are only interested in
adding three edges to link the new point and three of the four vertices in the K4,
and the “interested part” of the K4 are the three distinguished vertices, not all four
vertices in the K4.

Lemma 2.1. There exists a (K5 \ e)-design of order n for each n ∈ {37, 55}.
Proof. For a given n, the desired design is constructed cyclically on V = Zn and

developed from the following base blocks:
n = 37: [1, 2, 4, 9, 16], [1, 5, 11, 22, 29],
n = 55: [1, 6, 17, 35, 44], [1, 2, 8, 21, 4], [1, 11, 33, 41, 42].
Lemma 2.2. There exists a (K5 \ e)-design of order 28.
Proof. Let the point set be Z28. Developing the following base blocks by +4

mod 28 gives the desired design:

[1, 5, 14, 28, 16], [1, 4, 11, 13, 6], [4, 7, 8, 24, 14],
[3, 9, 11, 27, 16], [1, 7, 21, 22, 18], [2, 3, 6, 12, 22].

Lemma 2.3. There exists a (K5 \ e)-design of order n for each n ∈ {46, 82}.
Proof. For a given n, the desired design is constructed on Zn with the subgroup

of order n
2 generated by the element 2 acting on the points. The base blocks are as

follows:
n = 46: [2, 3, 15, 44, 13], [1, 8, 10, 16, 17], [1, 5, 25, 26, 19], [2, 17, 25, 36, 30], [1, 18, 28,

44, 4].
n = 82: [1, 34, 44, 71, 52], [1, 16, 70, 77, 38], [1, 12, 42, 63, 18], [2, 36, 61, 80, 38], [2, 31,

44, 55, 70], [1, 15, 57, 64, 75], [1, 66, 81, 82, 4], [1, 33, 37, 67, 28], [1, 36, 39,
48, 11].
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Lemma 2.4. There exists a (K5 \ e)-design of order 45.
Proof. The design is constructed on Z44 ∪ {∞} with the subgroup of order 11

generated by the element 4 acting on the point set, where ∞ is a fixed point under
the group action. The base blocks are as follows:

[1, 17, 27, 30, 13], [2, 34, 37, 38, 32], [4, 5, 16, 35, 29], [1, 7, 26, 35, 9],
[2, 3, 15, 26, 7], [4, 11, 26, 33, 32], [3, 8, 12, 23, 29], [2, 16, 19, 25, 36],
[2, 4, 30, 41, 12], [∞, 3, 4, 10, 1].

Lemma 2.5. There exists a (K5 \ e)-GDD of type 144191.
Proof. Let V = (Z11 × {0, 1, 2, 3, x}) ∪ {∞0,∞1, . . . ,∞7}. The hole of size 19 is

(Z11 × {x}) ∪ {∞0, . . . ,∞7}. The desired graphs are as follows:
[(i, 0), (1 + i, 1), (i, 2), (i, x), (i− 1, x)], [(2 + i, 0), (4 + i, 1), (3 + i, 2), (i, x), (i− 2, x)],

[(7 + i, 0), (2 + i, 2), (9 + i, 3), (i, x), (i− 1, x)],
[(3 + i, 1), (9 + i, 2), (4 + i, 3), (8 + i, 0), (i, x)],
[(10 + i, 1), (8 + i, 2), (6 + i, 3), (0 + i, 1), (i, x)],
[(i, x), (7 + i, 1), (4 + i, 2), (10 + i, 0), (2 + i, 3)],
[(i, x), (3 + i, 0), (5 + i, 0), (6 + i, 0), (9 + i, 0)],

[(i, x), (i, 1), (9 + i, 1), (5 + i, 1), (8 + i, 1)],
[(i, x), (5 + i, 2), (10 + i, 2), (6 + i, 2), (7 + i, 2)],

[(i, x), (i, 3), (8 + i, 3), (2 + i, 3), (7 + i, 3)],
[∞0, (i, 1), (i, 3), (i, 2), (i, 0)], [∞1, (2 + i, 2), (3 + i, 3), (i, 0), (1 + i, 1)],

[∞2, (4 + i, 2), (6 + i, 3), (i, 0), (2 + i, 1)], [∞3, (3 + i, 1), (9 + i, 3), (i, 0), (6 + i, 2)],
[∞4, (4 + i, 1), (8 + i, 2), (i, 0), (1 + i, 3)], [∞5, (i, 0), (10 + i, 2), (5 + i, 1), (4 + i, 3)],
[∞6, (i, 0), (7 + i, 1), (3 + i, 2), (10 + i, 3)], [∞7, (i, 0), (8 + i, 3), (10 + i, 1), (9 + i, 2)],

for i ∈ Z11.
Lemma 2.6. There exists a (K5 \ e)-GDD of type gnh1 for each (g, n, h) ∈

{(1, 80, 19), (1, 80, 28), (1, 80, 37), (16, 5, 40), (1, 116, 37), (1, 116, 55), (1, 143, 37),
(1, 143, 46), (1, 152, 46), (1, 161, 46), (28, 8, 37), (1, 260, 46)}.

Proof. We apply the difference method on Zgn with the groups generated by
the cosets of the subgroup of order g. The base blocks for each design are listed in
Table 2. The table consists of three columns: the first column corresponds to the
parameters of the design, the second column is an integer u that divides gn, and the
elements of the corresponding base blocks in the third column are distinct modulo u
so that the base blocks, after applying the subgroup generated by u, form a “parallel
class” (or equivalently u points in the hole). When u is undefined, it corresponds to
a graph K5 \ e which will be simply developed over Zgn. Note that we have a total
of three types of graphs besides K5 \ e. The first type is a K4 \ e, where for the
new point in the hole and each vertex of the graph K4 \ e we add an edge between
them so as to form a K5 \ e. The second type is a K4, where we need to adjoin
the new point to only three of the four vertices (called the “interested part” of the
K4 at the beginning of this section) to form a K5 \ e. We label the three points by
underlying the three vertices in a K4. The final type is a K3, where we need to add
two vertices, both of them are in the hole, to form a K5\e. In our representation, there
will be two copies of the same K3, but with different translates over Zgn. We label
the two occurrences of the same K3 by the same superscript. The two occurrences
of the block of K3 indicate which two new points we are going to add to the K3.
Take the following type 180371 as an example. The two base blocks {37, 44, 72}1 and
{38, 45, 73}1 are given the same superscript 1, and we can translate the first block
to the second one by adding 1 modulo 80. This means we are going to add ∞0 and
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∞1 to the block {38, 45, 73}1, and ∞0 and ∞−1 ≡ ∞15 to the block {37, 44, 72}1. If
gn ≡ 0 (mod 2), then [0, gn

2 , a, a+ gn
2 ] generates only gn

2 blocks (short orbit) of K4 \e
when 4a �≡ 0 (mod gn). Furthermore, when 4 divides gn and a is odd, the short orbit
[0, gn

2 , a, a+ gn
2 ] generates two parallel classes on Zgn. We superscript the short orbit

with s to distinguish the blocks. This observation is very useful in constructing the
designs.

The required base blocks for the designs are presented in Table 2.
Lemma 2.7. There exists a (K5 \ e)-GDD of type 184271.
Proof. The design is constructed on Z72. Developing the following base blocks by

+1 mod 72 gives the desired design

[5, 39, 70, 72, 48], {1, 2, 12, 59}, {35, 52, 65}, {3, 9, 30}, {12, 58, 61}, {7, 26, 44}.
Here, the base block of size 4 (K4) would allow us to add three infinite points as the
three underlined points are distinct modulo 3. The points in all the base blocks of size
three are distinct modulo 12. These base blocks of size three can be used to generate
twelve parallel classes, each of which allows us to add two infinite points. Hence,
we can attach twenty-four infinite points to these twelve parallel classes and in total
twenty-seven infinite points to the design generated by the above base blocks.

Lemma 2.8. There exists a (K5\e)-GDD of type 18n451 for each n ∈ {4, 5, 6, 7, 8,
9}.

Proof. The designs are constructed on Z18n. Every block of size 4 (K4) would
allow us to add three infinite points as the three underlined points are distinct mod-
ulo 3. Each parallel class composed of blocks of size three allows us to add two infinite
points. The designs are given in Table 3. The table has three columns: the first col-
umn corresponds to the order of the design, the second column corresponds to u, a
divisor of 18n such that the set of blocks in the third column are distinct modulo u.
If the blocks in the third column are blocks of size three, we can attach 2u infinite
points to the u parallel classes generated by the blocks. If the block is a K4, the u
is going to be 3 in the second column, and hence, only three points can be added. If
the block is K5 \ e in the third column, the corresponding u is labeled by −, which
means we will not add any infinite point to the block.

Lemma 2.9. There exists a (K5 \ e)-GDD of type 49.
Proof. The construction is on Z32 ∪ {∞0,∞1,∞2,∞3}. The four infinite points

are attached to the four parallel classes generated by the following base block K4 \ e.
The required base blocks are

[1, 2, 4, 8, 13], [1, 6, 16, 19].

Lemma 2.10. There exists a (K5 \ e)-GDD of type 9n for each n ∈ {6, 10}.
Proof. For each given n, the desired design is constructed on V = Z9n. The groups

are generated by {0, n, 2n, . . . , 8n} and the design is generated from the following base
blocks with the subgroup of order n

2 generated by the element 2 as the automorphism
group:

n = 6: [2, 3, 19, 34, 6], [1, 5, 15, 26, 28], [1, 10, 36, 47, 2], [1, 30, 35, 40, 33], [2, 9, 16, 37,
54].

n = 10: [1, 33, 42, 77, 27], [2, 34, 47, 59, 9], [2, 4, 86, 89, 20], [1, 28, 72, 89, 87], [1, 29,
37, 90, 48], [1, 2, 38, 43, 25], [1, 23, 44, 82, 40], [2, 14, 36, 69, 78],[1, 8, 19, 35,
70].

Lemma 2.11. There exists a (K5 \ e)-GDD of type 9n for each n ∈ {5, 7, 9, 11,
13, 15, 17}.
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Table 2

(g, n, h) u Base blocks
(1, 80, 19) 5 [0, 40, 1, 41]s, {4, 58, 67, 64},

4 [11, 56, 69, 66],
10 {4, 37, 53, 41}, {2, 9, 68, 20}, [26, 45, 50, 11],
− [31, 33, 61, 69, 4].

(1, 80, 28) 2 [0, 40, 1, 41]s,
10 [4, 25, 71, 57], {9, 53, 78, 70}, {2, 40, 66, 35},
16 [16, 18, 46, 61], [5, 56, 76, 79], [35, 38, 42, 20], [1, 11, 23, 25].

(1, 80, 37) 5 [0, 40, 1, 41]s, {2, 58, 74, 60},
16 {37, 44, 72}1, {38, 45, 73}1, {17, 42, 63}2, {18, 43, 64}2,

[3, 20, 23, 30],
16 [12, 54, 63, 24], {34, 67, 71, 2}, {4, 9, 53, 27},

{45, 58, 64}3, {46, 59, 65}3.
(16, 5, 40) 40 [24, 5, 31, 3], [11, 42, 14, 25], [36, 74, 23, 80], [16, 4, 20, 62],

{9, 32, 33}1, {49, 72, 73}1, {7, 15, 48}2, {47, 55, 8}2,
{70, 1, 38}3, {30, 41, 78}3, {59, 6, 77}4, {19, 46, 37}4.

(1, 116, 37) 29 {37, 41, 109, 57}, {60, 84, 97, 42}, {52, 93, 98, 95}, {5, 56, 112, 22},
{24, 100, 108, 78}, {36, 72, 86, 107}, {9, 78, 106, 15},
{46, 61, 73}1, {47, 62, 74}1,

4 [16, 26, 109, 103],
4 [5, 83, 114, 16].

(1, 116, 55) 2 [0, 58, 1, 59]s,
29 {50, 55, 103}1, {52, 57, 105}1, {7, 15, 59}2, {9, 17, 61}2,

{4, 95, 107}3, {6, 97, 109}3, {25, 53, 71, 103},
[40, 60, 116, 56], [5, 14, 41, 106],

4 [61, 112, 115, 26],
4 [4, 75, 109, 14],
4 [27, 29, 50, 68],
4 [17, 90, 96, 43],
4 [42, 49, 116, 71],
4 [61, 75, 92, 42].

(1, 143, 37) 11 {23, 117, 130, 99}, [15, 21, 112, 137], [3, 99, 107, 116],
13 {29, 53, 93, 112}, {36, 39, 97, 77}, {34, 89, 126, 103}, [4, 72, 77, 70],
13 {82, 94, 104, 138}, {5, 119, 123, 91}, {1, 64, 99, 49}, [24, 113, 114, 124],
− [36, 45, 52, 78, 117].

(1, 143, 46) 11 {1, 38, 79, 117}, [29, 30, 105, 92], [33, 119, 131, 80],
11 {1, 108, 125, 26}, [6, 10, 79, 58], [29, 121, 129, 126],
11 {82, 91, 98, 131}, [34, 57, 88, 4], [28, 31, 41, 7],
13 {32, 43, 120, 61}, {5, 11, 126, 25}, {7, 65, 67, 33}, [8, 23, 79, 116].

(1, 152, 46) 38 {15, 19, 48, 45}, {52, 80, 131, 137}, {34, 54, 104, 15}, {6, 13, 60, 65},
{11, 59, 147, 105}, {20, 56, 100, 31}, {5, 123, 145, 67}, {74, 101, 111, 14},
{8, 23, 32, 152}, {12, 83, 151, 52}, [0, 76, 1, 77]s,
{2, 105, 140}1, {3, 106, 141}1,

4 [26, 69, 87, 28],
4 [2, 23, 109, 40].

(1, 161, 46) 23 {33, 40, 120, 79}, {85, 105, 113, 117}, {49, 65, 71, 12}, {12, 30, 116, 126},
{4, 9, 77, 60}, [14, 130, 149, 68], [43, 52, 161, 110],

23 {104, 106, 137, 107}, {27, 48, 159, 96}, {80, 144, 158, 10},
{39, 100, 115, 75}, {3, 41, 153, 130}, [9, 33, 93, 128], [7, 42, 97, 86].

(28, 8, 37) 7 [50, 65, 103, 220], {112, 174, 193, 60},
14 [118, 141, 217, 223], [67, 206, 208, 184], {61, 134, 185, 95}, {32, 65, 140, 18},
8 [23, 27, 64, 30], [2, 129, 213, 28],
8 [24, 51, 118, 7], [1, 50, 165, 196],
− [30, 51, 143, 188, 101], [22, 77, 183, 203, 16], [26, 96, 105, 191, 31],

[184, 209, 219, 220, 116], [73, 85, 131, 162, 103].
(1, 260, 46) 26 [0, 130, 1, 131]s, {32, 125, 147, 197}, {25, 60, 256, 220}, {111, 122, 245, 155},

{171, 205, 220, 139}, {106, 218, 258, 234}, {29, 72, 134, 12}, {92, 146, 149, 33},
{113, 117, 187, 26},

20 [89, 99, 191, 178], [83, 104, 201, 167], [6, 115, 142, 193], [136, 174, 188, 192],
[90, 137, 145, 60],

− [26, 122, 127, 210, 175], [111, 134, 205, 251, 136], [45, 87, 106, 191, 113],
[13, 64, 95, 170, 58], [72, 84, 225, 234, 205], [100, 139, 167, 225, 180].
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Table 3

Order u Base blocks

184451 3 {1, 2, 12, 51},
9 {6, 11, 57}, {34, 37, 71}, {4, 18, 59},
12 {45, 58, 64}, {14, 29, 59}, {6, 8, 15}, {13, 31, 60}.

185451 3 {37, 68, 75, 34},
9 {4, 20, 52}, {12, 78, 89}, {54, 73, 77},
9 {2, 14, 16}, {37, 58, 80}, {18, 51, 57},
3 {1, 2, 30},
− [3, 40, 49, 57, 57].

186451 3 {5, 18, 22, 68},
12 {2, 9, 28}, {47, 49, 108}, {67, 70, 90}, {3, 17, 56},
9 {2, 39, 72}, {34, 55, 98}, {5, 6, 85},
− [3, 38, 43, 54, 11], [9, 34, 86, 108, 19].

187451 3 {21, 106, 122, 54},
9 {33, 64, 111}, {2, 61, 126}, {44, 50, 94},
9 {40, 93, 104}, {8, 74, 96}, {19, 70, 99},
3 {1, 9, 35},
− [14, 15, 51, 54, 69], [38, 50, 65, 95, 33], [46, 65, 69, 89, 56].

188451 3 {26, 72, 109, 126},
9 {21, 64, 76}, {5, 71, 90}, {2, 52, 105},
12 {41, 48, 90}, {4, 25, 135}, {9, 115, 143}, {20, 22, 26},
− [19, 37, 105, 136, 106], [66, 96, 118, 129, 143], [75, 80, 89, 140, 60], [70, 73, 109, 144, 47].

189451 3 {61, 156, 161, 140},
9 {63, 78, 118}, {48, 49, 83}, {44, 115, 158},
9 {117, 119, 147}, {59, 106, 132}, {31, 80, 91},
3 {1, 51, 104},
− [11, 55, 156, 159, 17], [21, 45, 52, 127, 137], [47, 111, 131, 144, 123], [8, 45, 74, 113, 49],

[8, 50, 82, 101, 60].

Proof. Let V = Z9n. The groups are generated by {0, n, 2n, . . . , 8n}. The desired
designs are obtained by developing the following base blocks cyclically:

n = 5: [1, 2, 20, 34, 43], [1, 9, 18, 25, 7].

n = 7: [1, 6, 17, 47, 2], [1, 11, 35, 38, 55], [1, 7, 39, 52, 62].

n = 9: [1, 15, 41, 71, 48], [1, 30, 43, 58, 20], [1, 60, 65, 81, 62], [1, 13, 44, 50, 9].

n = 11: [1, 58, 68, 70, 8], [1, 6, 26, 49, 96], [1, 38, 53, 72, 32], [1, 4, 28, 86, 87], [1, 19, 54,
55, 92].

n = 13: [1, 10, 22, 110, 77], [1, 43, 71, 74, 3], [1, 47, 83, 108, 113], [1, 5, 24, 38, 98], [1,
12, 28, 46, 60], [1, 8, 65, 103, 2].

n = 15: [1, 69, 75, 77, 89], [1, 79, 92, 132, 80], [1, 37, 70, 86, 88], [1, 11, 33, 38, 8], [1, 24,
63, 94, 82], [1, 10, 81, 107, 102], [1, 12, 29, 53, 101].

n = 17: [1, 12, 14, 22, 85], [1, 26, 53, 57, 79], [1, 4, 51, 87, 142], [1, 36, 41, 117, 134],
[1, 29, 58, 88, 90], [1, 47, 96, 110, 80], [1, 7, 46, 55, 8], [1, 25, 113, 135, 136].

Lemma 2.12. There exists a (K5\e)-GDD of type 9n for each n ∈ {8, 12, 14, 16, 18,
20}.

Proof. The construction is on Z9(n−1) ∪ {∞0,∞1, . . . ,∞8}. The nine infinite
points are attached to either nine classes generated by three base blocks of K4, or
three classes generated by one base block of K3 together with three classes generated
by one base block of K4. Here, the nine underlined elements coming from the three
base blocks of size four are distinct modulo 9, and besides, the three elements in the
K3 and the three underlined elements in the unique K4 are both distinct modulo 3.
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The required base blocks are as follows:
n = 8: [6, 38, 56, 60, 4],

{25, 41, 42, 15}, {2, 8, 46, 41}, {3, 18, 58, 15}.
n = 12: [2, 31, 94, 96, 70], [45, 48, 60, 73, 44], [1, 9, 27, 44, 46], [7, 16, 37, 64, 83],

{16, 26, 66},
{1, 15, 53, 94}.

n = 14: [59, 74, 112, 117, 13], [6, 14, 74, 86, 95], [1, 2, 4, 8, 36], [11, 86, 95, 117, 66],
{17, 57, 104, 3}, {45, 55, 96, 72}, {2, 25, 94, 75}.

n = 16: [34, 39, 47, 83, 66], [39, 93, 109, 121, 5], [1, 2, 4, 8, 41], [12, 60, 69, 133, 89],
[37, 79, 96, 117, 61],
{58, 108, 119, 36}, {53, 86, 132, 63}, {1, 52, 93, 26}.

n = 18: [30, 50, 71, 80, 86], [5, 38, 101, 113, 93], [19, 85, 101, 128, 48], [1, 2, 4, 8, 50],
[39, 44, 57, 130, 116], [19, 41, 80, 120, 140],
{72, 119, 142, 100}, {32, 58, 96, 127}, {1, 12, 26, 36}.

n = 20: [9, 23, 119, 132, 107], [34, 43, 69, 101, 26], [42, 112, 122, 163, 73], [35, 69, 141,
159, 169],
[1, 2, 4, 8, 57], [2, 23, 46, 158, 128], [15, 39, 79, 156, 108],
{3, 14, 169, 77}, {45, 105, 130, 78}, {2, 44, 127, 24}.

Lemma 2.13. There exists a (K5 \ e)-GDD of type 919.
Proof. The design is constructed on Z19×Z9. The groups are {i}×Z9 for i ∈ Z19.

The blocks are [(4ij, k), (4ij, k+1), (4i(j+2), k+3), (4i(j+4), k+1), (4i(8+j), 5+k)]
for j ∈ Z19, k ∈ Z9 and i = 0, 1, 2, . . . , 8.

Lemma 2.14. There exists a (K5 \ e)-GDD of type 18n for each n ≥ 4.
Proof. By [7], we have a (K5 \ e)-GDD of type 64. We also have a (K5 \ e)-GDD

of type 67 which is constructed on V = Z42 with the groups being generated by the
subgroup {0, 7, 14, . . . , 35}. The blocks are obtained by developing the following base
blocks cyclically:

[1, 2, 4, 17, 35], [1, 7, 19, 24, 39].

By [13, Theorem 1.3], there exists a {4, 7}-GDD of type 3n for each n ≥ 4 and n �= 6.
Give weight 6 to each point of this GDD using (K5 \ e)-GDDs of types 64 and 67 as
input designs to obtain a (K5 \ e)-GDD of type 18n for each n ≥ 4 and n �= 6. This
leaves n = 6 to be considered, which is constructed on V = Z108 with the groups being
generated by the subgroup {0, 6, 12, . . . , 102}. The blocks are obtained by developing
the following base blocks cyclically:

[1, 41, 87, 92, 2], [1, 5, 20, 30, 36], [1, 14, 34, 77, 81], [1, 72, 98, 106, 45], [1, 8, 57, 95, 107].

Lemma 2.15. There exists a (K5 \ e)-GDD of type 9n181 for each n ∈ {4, 5, 6}.
Proof. When n = 4, the GDD is constructed on Z36 with eighteen infinite points

xi for i = 0, 1, . . . , 17. The groups of the GDD are {i, i+4, . . . , i+32} for i = 0, 1, 2, 3
and {x0, x1, . . . , x17}. The design is generated by the action of Z36 on the blocks.
Two classes of K4 \ e are generated by [0, 18, 1, 19]. Four additional classes of K4 \ e
are generated by [1, 14, 23, 8] by noting that the four points are distinct modulo 4. Six
parallel classes of K3 are generated by the base blocks {5, 8, 10} and {3, 13, 24} by
noting that these points are distinct modulo 6. We attach one infinite point to each
class of K4 \ e and two infinite points to each class of K3.

When n = 5, the GDD is constructed on Z45 with eighteen infinite points xi for
i = 0, 1, . . . , 17. A base block of K5 \ e is [2, 11, 30, 44, 3], and nine parallel classes of
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K3 are generated by {19, 26, 42}, {12, 23, 36}, {2, 4, 43}. The nine points are distinct
modulo 9, and we can attach eighteen infinite points to these nine parallel classes of
blocks of size three.

When n = 6, the GDD is constructed on Z54 with eighteen infinite points xi for
i = 0, 1, . . . , 17. The groups of the GDD are {i, i+6, . . . , i+48} for i = 0, 1, . . . , 5 and
{x0, x1, . . . , x17}. The design is generated from the base blocks as follows by adding
2 modulo 54: Three base blocks of K5 \ e are [17, 22, 45, 49, 12], [33, 35, 43, 44, 26],
[16, 37, 50, 54, 18]; the first three classes of K3 are generated by {6, 17, 20}, {10, 25, 45},
where the six points are distinct modulo 6; the second three classes of K3 are generated
by {8, 9, 16}, {18, 31, 47}, where the six points are distinct modulo 6; and the last three
classes of K3 are generated by {1, 16, 41}, {20, 48, 51}, where the six points are distinct
modulo 6.

3. Recursive constructions. In this section, we obtain the main result of this
paper. Before we prove the main theorem of the paper, we need to introduce some
tools.

A transversal design TD(k, n) is a k-GDD of type nk. The following theorems
about TDs can be found in [1].

Theorem 3.1. There exists a TD(p + 1, p) for any prime power p.
Theorem 3.2. There exists a TD(6, n) for any odd n ≥ 5.
Theorem 3.3. There exists a TD(6, n) for any n ≡ 0 (mod 4) and n ≥ 8.
Next, we need to state the main recursive constructions of the paper.
Construction 3.4 (Wilson’s fundamental construction [8]). Let (X,G,B) be a

GDD, and let w : X → Z+ ∪ {0} be a weight function on X. Suppose that for each
block B ∈ B, there exists a (K5 \ e)-GDD of type {w(x) : x ∈ B}. Then there is a
(K5 \ e)-GDD of type {

∑
x∈G w(x) : G ∈ G}.

Construction 3.5 (inflation [8]). If there exists a (K5 \ e)-design of type T ,
then there exists a (K5 \ e)-design of type mT if a TD(4,m) exists.

Lemma 3.6. There exists a (K5 \ e)-GDD of type 95361.
Proof. There exists a 3-RGDD of type 95 [23]. It has eighteen parallel classes,

and we add two infinite points for every class and the thirty-six new infinite points
form a new group.

We first give a simple proof of the result stated in [18, 21].
Lemma 3.7. There exists a (K5 \ e)-design of order n for any n ≡ 1 (mod 18),

n ≥ 19.
Proof. When n = 19, the design is constructed in [7]. When n = 37, 55, the

designs are constructed in Lemma 2.1. By Lemma 2.14, we have a (K5 \ e)-GDD of
type 18t for each t ≥ 4. Adjoining one infinite point and filling in the holes with a
(K5 \ e)-design of order 19, we obtain a (K5 \ e)-design of order 18t + 1. This settles
all n ≥ 73.

Before we proceed, we need to give a solution for (K5 \ e)-GDDs of type 9n.
Lemma 3.8. For every n ≥ 5, there exists a (K5 \ e)-GDD of type 9n.
Proof. When 5 ≤ n ≤ 20, the required designs are constructed in Lemmas

2.10–2.13. Take a TD(5, t) for t = 4, 5, give weight nine to points in the first four
groups, and weight nine or eighteen to points in the last group as both a (K5 \ e)-
GDD of type 95 and a (K5 \ e)-GDD of type 94181 (Lemma 2.15) exist. We obtain a
(K5\e)-GDD of type 364(36+9k)1 for each k = 0, 1, 2, 3, 4 and a (K5\e)-GDD of type
454(45 + 9m)1 for each m = 0, 1, 2, 3, 4, 5. Take the former GDD and add nine points
and fill in the groups with either a (K5 \ e)-GDD of type 95 or a (K5 \ e)-GDD of
type 95+k. We obtain a (K5 \ e)-GDD of type 921+k. This settles 21 ≤ n ≤ 25. Take
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the latter GDD, add nine infinite points, and fill in the groups with (K5 \ e)-GDDs of
types 96 and 96+m to obtain a (K5 \e)-GDD of type 926+m. This settles 26 ≤ n ≤ 31.

For the remaining values of n ≥ 32, take a TD(6, t) and remove a point to redefine
a {6, t}-GDD of type 5t(t − 1)1. Give weight nine to points in the first t groups of
size five, weight 0, 9, 18, 36 to points in the last group (the required input (K5 \ e)-
GDDs of types 95181 and 95361 exist by Lemmas 2.15 and 3.6). If there also exists
a (K5 \ e)-GDD of type 9t, then we obtain a (K5 \ e)-GDD of type 45t(9x)1 for each
x = 5, . . . , 4(t− 1) − 2. We obtain a (K5 \ e)-GDD of type 95t+x whenever (K5 \ e)-
GDDs of types 9t and 9x exist. Take all odd t ≥ 5 and use simple induction to
establish the result.

Lemma 3.9. For every n �= 0, 3, there exists a (K5 \e)-design of order 18n+10.

Proof. When n = 1, 2, 4, the designs are constructed in Lemmas 2.2 and 2.3.
When n = 5, we have a (K5 \ e)-GDD of type 184271 by Lemma 2.7. Add one infinite
point and fill in the holes with a (K5 \ e)-design of order 19 and a (K5 \ e)-design of
order 28 to obtain a (K5 \e)-design of order 100. Furthermore, there exists a (K5 \e)-
GDD of type 18t451 for each t = 4, 5, 6, 7, 8, 9 by Lemma 2.8. Add one infinite point
and fill in the holes with a (K5 \e)-design of order 19 and a (K5 \e)-design of order 46
to obtain a (K5 \ e)-design of order 18t+46. This settles n = 6, 7, 8, 9, 10, 11. Finally,
take a TD(6, t) and remove one point to redefine a {6, t}-GDD of type 5t(t−1)1. Give
weight nine to points in the first t groups of size five, weight 0, 9, 18, 36 to points in
the last group (the required input (K5 \ e)-GDDs exist by Lemmas 2.15, 3.6 and 3.8).
We obtain a (K5 \ e)-GDD of type 45t(18x)1 for each x = 1, 2, 3, . . . , 2(t − 1). Add
one point and fill in the holes with a (K5 \ e)-design of order 46 and a (K5 \ e)-design
of order 18x+ 1 to obtain a (K5 \ e)-design of order 45t+ 18x+ 1. Take odd t ≥ 5 to
prove the result.

Next, we consider the case when the order n ≡ 0 (mod 9). First, we need the
following result.

Lemma 3.10. There exists a (K5 \ e)-GDD of type 1n( 2(n−1)
5 )1 for each n ≡ 16

(mod 20) and n ≥ 16 except possibly for n = 116, 296.

Proof. Take a resolvable (K4−e)-design of order n from [14] and complete all the
parallel classes to obtain the designs as desired.

Lemma 3.11. There exists a (K5 \ e)-design of order 9n for each n ∈ {5, 7, 11,
12, 13, 14, 17, 19, 20, 21, 22, 23, 34}.

Proof. When n = 5, the design is constructed in Lemma 2.4. When n = 14,
take a (K5 \ e)-GDD of type 165401 (Lemma 2.6), add six infinite points, and fill in a
(K5 \e)-GDD of type 11661 (Lemma 3.10) and a (K5 \e)-GDD of type 146 to obtain a
(K5 \ e)-design of order 9× 14. For the remaining values of n, the desired designs are
obtained by taking the (K5\e)-GDDs of type 1mh1 constructed in Lemmas 2.5–2.6 and
filling in the holes with a (K5 \ e)-design of order h (such input (K5 \ e)-designs exist
by Lemmas 3.7 and 3.9). Here, the corresponding parameters are (m,h) ∈ {(44, 19),
(80, 19), (80, 28), (80, 37), (116, 37), (116, 55), (143, 37), (143, 46), (152, 46), (161, 46),
and (260, 46)}.

Lemma 3.12. There exists a (K5\e)-design of order 9n for each n ∈ {27, 28, 29, 31,
33, 41}.

Proof. For n = 27, we take a TD(5, 5). Give weight nine to points in the first
four groups. We give weight eighteen to two points in the last group and weight nine
to the remaining points. Since (K5 \ e)-GDDs of types 95 and 94181 exist (Lemmas
3.8 and 2.15), we obtain a (K5 \ e)-GDD of type 454631. Fill in the holes with a
(K5 \ e)-design of order 9t for t = 5, 7 to obtain the design as desired.
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For n = 28, inflate a (K5 \ e)-GDD of type 49 coming from Lemma 2.9 by seven
to obtain a (K5 \ e)-GDD of type 289. Filling in the holes with a (K5 \ e)-design of
order 28 gives the desired design. For n = 29, take a (K5 \ e)-GDD of type 288371

coming from Lemma 2.6 and fill in the holes with a (K5 \ e)-design of order 28 and a
(K5 \ e)-design of order 37 to obtain the design as desired.

For n = 31, we first consider a design on Z60 with base blocks

{27, 29, 56}, {42, 48, 59}, {7, 14, 33}, {1, 4, 22}, {1, 2, 15, 24}.

These five base blocks cover all differences except for the multiples of four and five.
So, it basically has two sets of holes that intersect on three points. Furthermore,
the twelve points in the four blocks of K3 are distinct modulo 12, and the three
special points in the K4 are distinct modulo 3. So, ignoring the holes, we can add
twenty-seven points to the design to obtain a (K5\e)-design with two sets of spanning
holes. This is essentially a (K5 \ e)-HGDD of type (35)4271, where we treat it as a
(K5 \ e)-GDD of type 154271 but with a set of five spanning holes, each is a 34 that
cuts across each group in three points. Now, we give weight three, the hole of size 34

will be inflated to become a hole of size 94, and we plug in a (K5 \ e)-GDD of type
94181 (Lemma 2.15) to obtain a (K5 \ e)-GDD of type 454991. Fill in the holes with
a (K5 \ e)-design of order 9k for k = 5, 11 to obtain a (K5 \ e)-design of order 9× 31.

For n = 33, we first consider a design on Z84 with four base blocks

[5, 14, 16, 31, 71], [1, 2, 52, 55, 47], {28, 41, 51}, {1, 20, 42, 79}.

These four base blocks cover all differences except for the multiples of four and seven.
So, it basically has two sets of holes that intersect on three points. Furthermore, the
three points in the unique block of K3 are distinct modulo 3, and the three special
points in the K4 are distinct modulo 3. So, ignoring the holes, we can add nine points
to the design to obtain a (K5 \ e)-design with two sets of spanning holes. This is
essentially a (K5 \ e)-HGDD of type (37)491. Now, we give weight three and the hole
of size 34 will be inflated to become a hole of size 94 and we plug in a (K5 \e)-GDD of
type 94181 (Lemma 2.15) to obtain a (K5 \ e)-GDD of type 634451. Fill in the holes
with a (K5 \ e)-design of order 9k for k = 5, 7 to obtain a (K5 \ e)-design of order
9 × 33.

For n = 41, take a TD(7, 7) and pick up two blocks that intersect in one point.
Remove all points in the two blocks except for the point of intersection. It becomes a
{5, 6, 7}-GDD of type 5671. Give weight nine to points in the six groups of size five,
and weight eighteen to four points in the last group and weight nine to the remaining
points. Since a (K5 \ e)-GDD of type 9t exists for any integer t ≥ 5 and a (K5 \ e)-
GDD of type 9i181 exists for i = 4, 5, 6 (Lemma 2.15), we have a (K5 \ e)-GDD of
type 456991. Fill in the holes to obtain the result.

Lemma 3.13. There exists a (K5\e)-design of order 9n for each n ∈ {37, 43, 44}.
Proof. If there exists a {5, 6, 7, 8}-GDD of type 7i5j , we can give weight nine with

a (K5 \ e)-GDD of type 9k for k = 5, 6, 7, 8 and fill in the holes with (K5 \ e)-designs
of orders 45 or 63 to obtain a (K5 \ e)-design of order 9 × (7i + 5j). Therefore, the
conclusion follows if we construct {5, 6, 7, 8}-GDDs of types 7156, 7453, and 7256.

To construct a GDD of type 7156, take a TD(7, 7) containing two disjoint blocks.
Remove the points in the two blocks except for the two points in the same group.
Every block has at least five points. This settles n = 37.
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To construct a GDD of type 7453, we again take a TD(7, 7). We first remove two
points from each of the two selected groups. This defines only four blocks of size five.
Then, we can pick two points in the third group so that they are disjoint from the
four blocks of size five and remove those two points. It gives a GDD of type 7453.

To construct a GDD of type 7256, we look at the construction of a TD(8, 7)
on Z7 × (Z7 ∪ {∞}). The groups are Z7 × {i} for i ∈ Z7 ∪ {∞}. The blocks are
{(i,∞), (j, 0), (i + j, 1), (i + 2j, 2), (i + 3j, 3), (i + 4j, 4), (i + 5j, 5), (i + 6j, 6)} for
i, j ∈ Z7. Consider the four blocks when (i, j) = (0, 0), (0, 1), (4, 1), (4, 0) and restrict
our attention to groups 0, 1, 2, 3, 4, 6. It is easy to check that if we remove the points
(0, 0), (0, 1), (0, 2) from the first block, (1, 0), (1, 1), (1, 2) from the second block,
(0, 3), (1, 4), (3, 6) from the third block, and (4, 3), (4, 4), (4, 6) from the last block,
then no block in the design would intersect these twelve points in four points. Hence,
by removing these twelve points, we obtain the desired GDD of type 7256.

Lemma 3.14. If n ≡ 0 (mod 5) and n �= 10, 15, then there exists a (K5\e)-design
of order 9n.

Proof. Take a (K5 \ e)-GDD of type 9t for t ≥ 5 by Lemma 3.8 and inflate
it with a TD(4, 5) to obtain a (K5 \ e)-GDD of type 45t. Fill in the holes with a
(K5 \e)-design of order 45. This settles n ≥ 25. When n = 20, the result follows from
Lemma 3.11.

Lemma 3.15. If n �≡ 0 (mod 5) and n �∈ {1, 6, 16, 26, 2, 3, 8, 18, 4, 9, 24}, then
there exists a (K5 \ e)-design of order 9n.

Proof. Take a TD(6, k) and remove one point to obtain a {6, k}-GDD of type
5k(k− 1)1. We note that the blocks of size k are disjoint from the group of size k− 1.
Give weight nine to points in the k groups of size five, and weight 0, 9, 18, 36 to points
in the last group (the input (K5 \ e)-GDDs exist by Lemmas 3.8, 2.15, and 3.6). This
gives a (K5 \ e)-GDD of type 45k(9m)1 for all 7 ≤ m ≤ 4k − 6. If there exists a
(K5 \ e)-design of order 9m, then we can obtain a (K5 \ e)-design of order 9(5k +m).

When n ≡ 1 (mod 5): When n = 11, 21, 31, 41, the required designs are solved
in Lemmas 3.11 and 3.12. We take k to be odd, k ≥ 5 and m = 11 to obtain all
n ≡ 6 (mod 10), and n ≥ 36. On the other hand, we take k ≡ 0 (mod 4), k ≥ 8 and
m = 11, 21 to solve n ≡ 1 (mod 10) and n ≥ 51.

When n ≡ 2 (mod 5): When n = 7, 12, 17, 22, 27, 37, the required designs are
solved in Lemmas 3.11, 3.12, and 3.13. When n ≡ 2 (mod 10), and n ≥ 32, take odd
k ≥ 5 and m = 7. When n ≡ 7 (mod 10) and n ≥ 47, take k ≡ 0 (mod 4), k ≥ 8 and
m = 7, 17.

When n ≡ 3 (mod 5) : When n = 13, 23, 28, 33, 43, the required designs are
constructed in Lemmas 3.11, 3.12, and 3.13. When n ≡ 8 (mod 10) and n ≥ 38, take
odd k ≥ 5 and m = 13. When n ≡ 3 (mod 10) and n ≥ 53, take k ≡ 0 (mod 4),
k ≥ 8 and m = 13, 23.

When n ≡ 4 (mod 5): When n = 14, 19, 29, 34, 44, the designs are obtained in
Lemmas 3.11, 3.12, and 3.13. When n ≡ 9 (mod 10) and n ≥ 39, take odd k ≥ 5
with m = 14 to obtain the result. When n ≡ 4 (mod 10) and n ≥ 54, take odd k ≥ 7
with m = 19 to obtain the result.

Theorem 3.16. Let A1 = {64}, A2 = {27, 36, 54, 72, 81, 90, 135, 144, 162, 216, 234},
and E = {9, 10, 18}. If n ≡ 0, 1 (mod 9) and n �∈ A1 ∪ A2 ∪ E, then there exists a
(K5 \ e)-design of order n. Furthermore, if n ∈ E, then no such design exists.

Proof. For the nonexistence of a (K5 \ e)-design of order n with n ∈ {9, 10, 18},
see [18]. The conclusion then follows by combining Lemmas 3.7, 3.9, 3.14, and
3.15.
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Abstract. For a prime power q, let αq be the standard function in the asymptotic theory of
codes, that is, αq(δ) is the largest asymptotic information rate that can be achieved for a given
asymptotic relative minimum distance δ of q-ary codes. In recent years the Tsfasman–Vlăduţ–Zink
lower bound on αq(δ) was improved by Elkies, Xing, Niederreiter and Özbudak, and Maharaj. In
this paper we show further improvements on these bounds by using distinguished divisors of global
function fields. We also show improved lower bounds on the corresponding function αlin

q for linear
codes.
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1. Introduction. Let Fq be the finite field of order q, where q is an arbitrary
prime power. For a code C over Fq (or in other words a q-ary code), we denote by
n(C) its length and by d(C) its minimum distance. We write |M | for the cardinality
of a finite set M .

For any prime power q, let αq and αlin
q denote the important functions in the

asymptotic theory of codes which are defined by

αq(δ) = sup {R ∈ [0, 1] : (δ,R) ∈ Uq} for 0 ≤ δ ≤ 1(1.1)

and

αlin
q (δ) = sup {R ∈ [0, 1] : (δ,R) ∈ U lin

q } for 0 ≤ δ ≤ 1.(1.2)

Here Uq (resp., U lin
q ) is the set of all ordered pairs (δ,R) ∈ [0, 1]2 for which there

exists a sequence {Ci}∞i=1 of not necessarily linear (resp., linear) codes over Fq such
that n(Ci) → ∞ as i → ∞ and

δ = lim
i→∞

d(Ci)

n(Ci)
, R = lim

i→∞

logq |Ci|
n(Ci)

,

where logq is the logarithm to the base q. We refer to [10, section 1.3.1] for some basic

properties of the functions αq and αlin
q . In particular, both functions are nonincreasing

on the interval [0, 1]. Furthermore, we have the known values αq(0) = αlin
q (0) = 1
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and αq(δ) = αlin
q (δ) = 0 for (q − 1)/q ≤ δ ≤ 1. It is trivial that αq(δ) ≥ αlin

q (δ) for
0 ≤ δ ≤ 1.

A central problem in the asymptotic theory of codes is to find lower bounds on
αq(δ) for 0 < δ < (q − 1)/q. A classical lower bound is the asymptotic Gilbert–
Varshamov bound, which says that

αlin
q (δ) ≥ RGV(δ) := 1 − δ logq(q − 1) + δ logq δ + (1 − δ) logq(1 − δ)(1.3)

for 0 < δ < (q − 1)/q. It is well known (see [6, section 6.2]) that for sufficiently large
composite q and for certain ranges of the parameter δ, one can beat the asymptotic
Gilbert–Varshamov bound by the Tsfasman–Vlăduţ–Zink bound [11]

αlin
q (δ) ≥ 1 − δ − 1

A(q)
for 0 ≤ δ ≤ 1.(1.4)

Here

A(q) := lim sup
g→∞

Nq(g)

g
,

where Nq(g) denotes the maximum number of rational places that a global function
field of genus g with full constant field Fq can have. We recall from [6, Chapter 5]
that A(q) > 0 for all q and that A(q) =

√
q − 1 if q is a square. For nonsquares q the

exact value of A(q) is not known, but we have lower and upper bounds on A(q) (see
again [6, Chapter 5]). We note, in particular, the recent bound in [1] which says that
for any cube q we have

A(q) ≥ 2(q2/3 − 1)

q1/3 + 2
.(1.5)

The bound (1.4) for αlin
q (δ) was improved, although not uniformly in δ, by

Vlăduţ [12] (see also [10, Chapter 3.4]) and Xing [13]. Elkies [2] and Xing [14] con-
sidered not necessarily linear codes and Xing [14] improved the bound (1.4) for αq(δ)

uniformly in δ. Shortly thereafter, Niederreiter and Özbudak [4, Corollary 5.4] im-
proved the bound in Xing [14] by showing that

αq(δ) ≥ 1 − δ − 1

A(q)
+ logq

(
1 +

1

q3

)
for 0 ≤ δ ≤ 1.(1.6)

Later, Stichtenoth and Xing [8] gave a simpler proof of (1.6) and Maharaj [3] refined
their approach.

Recently, Niederreiter and Özbudak [5] improved the bound (1.6) for certain
values of q and δ. In this paper we extensively refine and complement the methods
of [5] and we obtain further improvements on lower bounds for αq(δ) and αlin

q (δ) for
certain values of q and δ (see Theorem 6.3 and Corollary 6.4). In section 2 we present
our basic code construction. We obtain the cardinality of an important auxiliary set
in this construction in section 3. Asymptotic upper bounds on the cardinality of this
set are given in sections 4 and 5. We present our main results in section 6. Section 7
is devoted to some examples demonstrating the improvements obtained by the main
results. We conclude in section 8.
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2. The basic code construction. In this section we present our basic con-
struction of q-ary codes (see Theorem 2.9 and Corollary 2.10). First we give a short
overview of the contents of this section. In Theorem 2.9, we construct a q-ary code
as the image of a certain subset Nc (see (2.7)) of a suitable Riemann-Roch space of a
global function field under an Fq-linear map ψ (see (2.3)). In Corollary 2.10, we show
that such a q-ary code is linear over Fq in a special case. The existence of a suitable
Riemann-Roch space for Theorem 2.9 is guaranteed if the condition in (2.5) holds.
An appropriate existence result for distinguished divisors of global function fields is
proved in Proposition 2.4. The set in (2.5) is important and is introduced in a more
general form in Definition 2.3. We also introduce further notation in Definitions 2.1,
2.2, and 2.5, and we prove related results in Lemmas 2.6, 2.7, and 2.8, which are used
in the proof of Theorem 2.9.

Next we recall some definitions and explain the terminology that we use through-
out the paper. A global function field F over Fq is an extension field of Fq such that
there exists an element z ∈ F that is transcendental over Fq and for which F is a finite
extension of the rational function field Fq(z). Moreover, we call Fq the full constant
field of F if Fq is algebraically closed in F . A place of F is the maximal ideal of some
valuation ring of F . Let Z denote the set of integers. A normalized discrete valuation
of F is a surjective map ν : F → Z ∪ {∞} satisfying the following:

(i) ν(x) = ∞ ⇐⇒ x = 0;
(ii) ν(xy) = ν(x) + ν(y) for all x, y ∈ F ;
(iii) ν(x + y) ≥ min (ν(x), ν(y)) for all x, y ∈ F ;
(iv) ν(a) = 0 for all a ∈ Fq \ {0}.

There is a bijective correspondence between the places of F and the normalized dis-
crete valuations of F . Let vP be the normalized discrete valuation of F corresponding
to the place P of F . The valuation ring of P is

OP = {x ∈ F : vP (x) ≥ 0}

and the maximal ideal of OP is

MP = {x ∈ OP : vP (x) > 0}.

If Fq is the full constant field of F , then the residue class field OP /MP can be identified
with a finite extension of Fq. The degree of this extension is called the degree of the
place P . A place of degree 1 is called rational. For detailed background on global
function fields we refer to the book of Stichtenoth [7].

From now on we assume that F is a global function field with full constant field
Fq and with at least one rational place. Let n ≥ 1 be the number of rational places of
F and let P1, . . . , Pn be all rational places of F . Let h be the class number of F (see,
for example, [7, section V.1]). Let PF be the set of all places of F . For f ∈ F \ {0},

(f) =
∑

P∈PF

vP (f)P

denotes the principal divisor of f and

(f)0 =
∑
P∈PF

vP (f)≥1

vP (f)P
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denotes the zero divisor of f . For an arbitrary divisor

G =
∑

P∈PF

mPP

of F , we write vP (G) for the coefficient mP of P . We use the standard notation

L(G) = {f ∈ F : vP (f) ≥ −vP (G) for all P ∈ PF }

for the Riemann–Roch space of G. In this section and in section 3, all places and
divisors are from the given global function field F . We fix an integer m ≥ 1.

Definition 2.1. For a positive divisor D, let D be the divisor

D = a1P1 + · · · + anPn,

where ai = min(m + 1, vPi(D)) for 1 ≤ i ≤ n.
Definition 2.2. For a positive divisor D, let

j0(D) = |{i ∈ {1, . . . , n} : vPi(D) = m}| ,
j1(D) = |{i ∈ {1, . . . , n} : vPi

(D) = m− 1}| ,
...

jm(D) = |{i ∈ {1, . . . , n} : vPi(D) = 0}| .

Moreover, we define

Jm(D) = 2j1(D) + 3j2(D) + · · · + (m + 1)jm(D).(2.1)

Definition 2.3. For integers r ≥ s ≥ 0 and nonnegative integers X1, X2, . . . , Xm,
let Vm(r, s;X1, X2, . . . , Xm) be the set consisting of the positive divisors D of the global
function field F satisfying all of the following conditions:

• C1: deg(D) = r and deg
(
D
)
≥ s.

• C2:

jm(D) ≤ 2Xm,
jm−1(D) ≤ 2Xm−1 + Xm,
jm−2(D) ≤ 2Xm−2 + (Xm−1 + Xm) ,

...
j1(D) ≤ 2X1 + (X2 + X3 + · · · + Xm) .

• C3: Jm(D) ≤ 2 (2X1 + 3X2 + · · · + (m + 1)Xm).
Proposition 2.4. For integers r ≥ s ≥ 0 and nonnegative integers X1, . . . , Xm, if

|Vm(r, s;X1, . . . , Xm)| < h,

then there exists a divisor G of degree r such that supp(G) ∩ {P1, . . . , Pn} = ∅ and
for each f ∈ L(G) \ {0}, if E = (f)0 satisfies conditions C2 and C3 of Definition 2.3
with the given X1, . . . , Xm, then deg

(
E
)
≤ s− 1.

Proof. As |Vm(r, s;X1, . . . , Xm)| < h, there exists a degree r divisor G such that
G ∼ V for any V ∈ Vm(r, s;X1, . . . , Xm). Using the weak approximation theorem [7,
Theorem I.3.1], we can assume that supp(G) ∩ {P1, . . . , Pn} = ∅ without loss of
generality (compare with [5, Proof of Corollary 2.2]). Let f ∈ L(G)\{0}, D = G+(f),
and E = (f)0. Since supp(G) ∩ {P1, . . . , Pn} = ∅ and D is positive, we have D = E.
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Assume that conditions C2 and C3 of Definition 2.3 are satisfied by E. If deg
(
E
)
≥ s,

then D ∈ Vm(r, s;X1, . . . , Xm) and hence D ∼ G, which is a contradiction. Thus, we
must have deg

(
E
)
≤ s− 1.

Now give another definition related to our construction.

Definition 2.5. For α = (α
(1)
1 , . . . , α

(1)
m , α

(2)
1 , . . . , α

(2)
m , . . . . . . , α

(n)
1 , . . . , α

(n)
m ) ∈

F

mn
q , let Im(α), Im−1(α), . . . , I1(α) be the subsets of {1, . . . , n} defined by

Im(α) =
{
i ∈ {1, . . . , n} : α(i)

m = 0
}
,

Im−1(α) =
{
i ∈ {1, . . . , n} : α(i)

m = 0, α
(i)
m−1 = 0

}
,

...

I1(α) =
{
i ∈ {1, . . . , n} : α(i)

m = · · · = α
(i)
2 = 0, α

(i)
1 = 0

}
.

The following two lemmas are related to Definition 2.5 and important for our
construction.

Lemma 2.6. For α,β ∈ F

mn
q , we have

2 |I1(α− β)| + 3 |I2(α− β)| + · · · + (m + 1) |Im(α− β)|
≤ 2 |I1(α)| + 3 |I2(α)| + · · · + (m + 1) |Im(α)|

+ 2 |I1(β)| + 3 |I2(β)| + · · · + (m + 1) |Im(β)| .

Proof. Let α =
(
α

(1)
1 , . . . , α

(1)
m , . . . . . . , α

(n)
1 , . . . , α

(n)
m

)
and β =

(
β

(1)
1 , . . . , β

(1)
m , . . .

. . . , β
(n)
1 , . . . , β

(n)
m

)
. Let A ⊆ {1, . . . , n} be the set consisting of the i ∈ {1, . . . , n} such

that (α
(i)
1 , . . . , α

(i)
m ) = 0 or (β

(i)
1 , . . . , β

(i)
m ) = 0. If A = ∅, then α = β = α − β = 0

and the result follows immediately. If A = ∅, then for each i ∈ A, let 1 ≤ �i ≤ m be

the largest integer such that α
(i)
�i

= 0 or β
(i)
�i

= 0. For each i ∈ A, we have

i ∈
⋃

�i<j≤m

Ij(α− β),

and also i ∈ I�i(α) or i ∈ I�i(β). Hence for each i ∈ A we obtain

2 |{i} ∩ I1(α− β)| + 3 |{i} ∩ I2(α− β)| + · · · + (m + 1) |{i} ∩ Im(α− β)|
≤ 2 |{i} ∩ I1(α)| + 3 |{i} ∩ I2(α)| + · · · + (m + 1) |{i} ∩ Im(α)|

+ 2 |{i} ∩ I1(β)| + 3 |{i} ∩ I2(β)| + · · · + (m + 1) |{i} ∩ Im(β)| .

We complete the proof by summing over all i ∈ A.
Lemma 2.7. For α,β ∈ F

mn
q , we have the following containment relations:

Im(α− β) ⊆ Im(α) ∪ Im(β),

Im−1(α− β) ⊆ Im−1(α) ∪ Im−1(β) ∪ {Im(α) ∩ Im(β)} ,
Im−2(α− β) ⊆ Im−2(α) ∪ Im−2(β) ∪ {Im−1(α) ∩ Im−1(β)} ∪ {Im(α) ∩ Im(β)},

...

I1(α− β) ⊆ I1(α) ∪ I1(β) ∪
⋃

2≤ν≤m

{Iν(α) ∩ Iν(β)} .

Proof. First we consider the case of the subscript m and assume that i ∈ Im(α− β).

Then α
(i)
m = β

(i)
m and at least one of α

(i)
m and β

(i)
m is nonzero. Hence i ∈ Im(α)∪Im(β).
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Next we consider the case of the subscript m−1 and assume that i ∈ Im−1(α−β).

We have α
(i)
m = β

(i)
m and α

(i)
m−1 = β

(i)
m−1. If α

(i)
m = β

(i)
m = 0, then i ∈ Im(α) ∩ Im(β).

If α
(i)
m = β

(i)
m = 0, then since at least one of α

(i)
m−1 and β

(i)
m−1 is nonzero, we get

i ∈ Im−1(α) ∪ Im−1(β).
Now we consider the case of the subscript m− 2. Assume that i ∈ Im−2(α− β).

Then α
(i)
m = β

(i)
m , α

(i)
m−1 = β

(i)
m−1, and α

(i)
m−2 = β

(i)
m−2. If α

(i)
m = β

(i)
m = 0, then i ∈

Im(α)∩Im(β). If α
(i)
m = β

(i)
m = 0 and α

(i)
m−1 = β

(i)
m−1 = 0, then i ∈ Im−1(α)∩Im−1(β).

Finally, if α
(i)
m = β

(i)
m = 0 and α

(i)
m−1 = β

(i)
m−1 = 0, then since α

(i)
m−2 and β

(i)
m−2 are

distinct, we get i ∈ Im−2(α) or i ∈ Im−2(β). We complete the proof similarly for each
subscript 1 ≤ ν ≤
m.

For each i = 1, . . . , n, let ti be a local parameter of F at Pi. Assume that G
is a divisor with supp(G) ∩ {P1, . . . , Pn} = ∅ and dim (L(G)) ≥ 1. For f in the
Riemann–Roch space L(G), the local expansion of f at Pi has the form

f =

∞∑
l=0

f (l)(Pi)t
l
i

with f (l)(Pi) ∈ Fq for 1 ≤ i ≤ n and l ≥ 0. For each i = 1, . . . , n, let

φi : L(G) → F

m
q

f �→
(
f (m−1)(Pi), . . . , f

(1)(Pi), f
(0)(Pi)

)
.

Let Φ be the Fq-linear map defined by

Φ : L(G) → F

mn
q

f �→ (φ1(f), . . . , φn(f)) .(2.2)

Moreover, let ψ be the Fq-linear map

ψ : L(G) → F

n
q

f �→
(
f (m)(P1), . . . , f

(m)(Pn)
)
.(2.3)

Lemma 2.8. For a divisor G with supp(G)∩{P1, . . . , Pn} = ∅ and dim (L(G)) ≥
1, let f ∈ L(G) \ {0}. Moreover, let E = (f)0 be the zero divisor of f and α :=
Φ(f) ∈ F

mn
q . Then

j1(E) = |I1(α)|, j2(E) = |I2(α)|, . . . , jm(E) = |Im(α)|,

and

Jm(E) = 2 |I1(α)| + 3 |I2(α)| + · · · + (m + 1) |Im(α)| .

Proof. For each 1 ≤ i ≤ n and 1 ≤ � ≤ m, using Definition 2.5 we obtain that
i ∈ I�(α) ⇐⇒ vPi(E) = m− �. Hence by Definition 2.2 we have

jm(E) = |Im(α)|, jm−1(E) = |Im−1(α)|, . . . , j1(E) = |I1(α)|.

Using (2.1) we complete the proof.
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For c ∈ F

mn
q and nonnegative real numbers x1, . . . , xm with x1 + · · · + xm ≤ 1,

let M(x1, . . . , xm; c) be the subset of F

mn
q defined by

M(x1, . . . , xm; c) =
{
α ∈ F

mn
q : |I1(α− c)| ≤ �x1n�, . . . , |Im(α− c)| ≤ �xmn�

}
.

We have

|M(x1, . . . , xm; c)| = |M(x1, . . . , xm;0)|

≥ |{α ∈ Fqmn : |I1(α)| = �x1n�, . . . , |Im(α)| = �xmn�}|

=

(
n

�xmn�

)
(q − 1)	xmn
q(m−1)	xmn


×
(
n− �xmn�
�xm−1n�

)
(q − 1)	xm−1n
q(m−2)	xm−1n


× · · · ×
(
n− (�xmn� + �xm−1n� + · · · + �x2n�)

�x1n�

)
(q − 1)	x1n
.

(2.4)

Now we are ready to give our basic code construction. Assume that r ≥ s ≥ 0
are integers and x1, . . . , xm ≥ 0 are real numbers such that

|Vm (r, s; �x1n�, �x2n�, . . . , �xmn�)| < h.(2.5)

Let G be a divisor of degree r obtained using (2.5) and Proposition 2.4. Recall the
linear maps Φ and ψ defined in (2.2) and (2.3), respectively, using the chosen divisor
G. The map Φ is not necessarily surjective. If

|L(G)| · |M(x1, . . . , xm;0)| > qmn,(2.6)

then there exists c ∈ F

mn
q such that for the set

Nc := {f ∈ L(G) : Φ(f) ∈ M(x1, . . . , xm; c)}(2.7)

we have

|Nc| ≥
|L(G)| · |M(x1, . . . , xm;0)|

qmn
> 1.(2.8)

Theorem 2.9. Assume that r ≥ s ≥ 0 are integers and that x1, . . . , xm are
nonnegative real numbers with x1 + · · · + xm ≤ 1 satisfying (2.5). Let G be a divisor
of degree r obtained using (2.5) and Proposition 2.4. Assume also that (2.6) holds and
that

(m + 1)n ≥ s + 2
m∑
l=1

(l + 1)�xln�.(2.9)

Using the chosen divisor G and (2.6), let c ∈ F

mn
q be such that the set Nc satisfies

(2.8). Let C be the q-ary code of length n given by C = ψ (Nc). Then for the
cardinality |C| of C we have

|C| ≥
⌈
L(G) · |M(x1, . . . , xm;0)|

qmn

⌉
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and for the minimum distance d(C) of C we have

d(C) ≥ (m + 1)n + 1 − s− 2
m∑
l=1

(l + 1)�xln�.

Proof. Let f1, f2 ∈ Nc be such that f1 = f2 and put f = f1 − f2 ∈ L(G). Let E
be the zero divisor of f and

E = a1P1 + · · · + anPn

be the divisor defined in Definition 2.1. Let Φ(f1) = α and Φ(f2) = β. We have

Φ(f) = α− β.(2.10)

As α,β ∈ M(x1, . . . , xm; c), we also have

|Ii(α− c)| ≤ �xin� and |Ii(β − c)| ≤ �xin� for 1 ≤ i ≤ n.(2.11)

Using (2.10), (2.11), and Lemmas 2.8 and 2.6, we obtain that

Jm(E) = 2 |I1(α− β)| + 3 |I2(α− β)| + · · · + (m + 1) |Im(α− β)|
≤ 2 |I1(α− c)| + 3 |I2(α− c)| + · · · + (m + 1) |Im(α− c)|

+ 2 |I1(β − c)| + 3 |I2(β − c)| + · · · + (m + 1) |Im(β − c)|
≤ 2 (2�x1n� + 3�x2n� + · · · + (m + 1)�xmn�) .

Moreover, using (2.10), (2.11), and Lemmas 2.8 and 2.7, we further obtain that

jm(E) = |Im((α− c) − (β − c))| ≤ |Im(α− c)| + |Im(β − c)| ≤ 2�xmn�,
jm−1(E) = |Im−1((α− c) − (β − c))|

≤ |Im−1(α− c)| + |Im−1(β − c)| + |Im(α− c) ∩ Im(β − c)|
≤ 2�xm−1n� + �xmn�,
...

j1(E) = |I1((α− c) − (β − c))|

≤ |I1(α− c)| + |I1(β − c)| +
m∑

ν=2

|Iν(α− c) ∩ Iν(β − c)|

≤ 2�x1n� +

m∑
ν=2

�xνn�.

Hence by the choice of the divisor G (cf. Proposition 2.4), we have

deg
(
E
)
≤ s− 1.(2.12)

Moreover, we obtain

n∑
i=1

(m + 1 − ai) = (m + 1)n−
n∑

i=1

ai = (m + 1)n− deg
(
E
)
≥ (m + 1)n− s + 1,
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where we used (2.12). Let ||ψ(f)|| denote the Hamming weight of the vector ψ(f) ∈
F

n
q . Then using Definition 2.2 and (2.1), we have

n∑
i=1

(m + 1 − ai) =

n∑
i=1

0≤ai≤m

(m + 1 − ai) ≤ ||ψ(f)|| +
n∑

i=1
0≤ai≤m−1

(m + 1 − ai)

= ||ψ(f)|| + Jm(E).

Therefore we obtain

‖ψ(f)‖ ≥ (m + 1)n− s + 1 − Jm(E)

≥ (m + 1)n− s + 1 − 2 (2�x1n� + 3�x2n� + · · · + (m + 1)�xmn�) .

Using (2.9) we obtain that d(C) ≥ 1, and so the map ψ is one-to-one on Nc. Therefore
|C| = |Nc|, and hence the lower bound on |C| follows from (2.8). This completes the
proof.

In a special case related to Theorem 2.9, we make sure to construct linear codes.
Later in this paper, the following result will be used to obtain lower bounds on the
function αlin

q (δ), which is defined in (1.2).
Corollary 2.10. Assume that r ≥ s ≥ 0 are integers and that x1 = x2 =

· · · = xm = 0 satisfy (2.5). Let G be a divisor of degree r obtained using (2.5) and
Proposition 2.4. Assume also that

|L(G)| > qmn(2.13)

and that (m+1)n ≥ s. Using the chosen divisor G and the kernel of the corresponding
map Φ, put C = ψ (Ker Φ). Then C is a linear code over Fq of length n. Moreover,
for the dimension of C we have

dim(C) ≥ dim (L(G)) −mn

and for the minimum distance d(C) of C we have

d(C) ≥ (m + 1)n + 1 − s.

Proof. The kernel of Φ is an Fq-linear subspace of L(G) and is the Riemann–Roch
space given by

Ker Φ = L (G−m(P1 + · · · + Pn)) .

As dim (L (G−m(P1 + · · · + Pn))) ≥ dim (L(G)) −mn, using (2.13) we obtain that
Ker Φ = {0}. The maps Φ and ψ are Fq-linear, and hence C is a linear code over
Fq. We obtain the bounds on the dimension and the minimum distance of C using
similar methods as in the proof of Theorem 2.9.

Remark 2.11. For x1 = x2 = · · · = xm = 0, the conditions (2.6) and (2.13) are
equivalent.

3. The cardinality of Vm(r, s;X1, . . . , Xm). In this section we will compute
the cardinality of the set Vm(r, s;X1, . . . , Xm) for integers r ≥ s ≥ 0 and nonnegative
integers X1, . . . , Xm (see Definition 2.3 for the definition of this set). We introduce
a related set U(r, t; j1, . . . , jm) in Definition 3.2. Using Lemmas 3.1 and 3.3 and
Definition 3.4, we compute the cardinality of the set U(r, t; j1, . . . , jm) in Lemma 3.5.
Then the cardinality of Vm(r, s;X1, . . . , Xm) follows from (3.4) and Lemma 3.5.
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The notation we introduced in section 2 remains operative.
Lemma 3.1. For any positive divisor D, we have

deg
(
D
)

+ j0(D) + 2j1(D) + · · · + (m + 1)jm(D) = (m + 1)n.

Proof. For 0 ≤ � ≤ m, let S� =
{
P ∈ {P1, . . . , Pn} : vP (D) = m− �

}
. Note that

|S�| = j�(D) for each 0 ≤ � ≤ m. We have∑
P∈{P1,...,Pn}

(m + 1 − vP (D)) = (m + 1)n− deg
(
D
)

and also

∑
P∈{P1,...,Pn}

(
m + 1 − vP (D)

)
=

m∑
�=0

∑
P∈S�

(
m + 1 − vP (D)

)

=

m∑
�=0

∑
P∈S�

(� + 1) =

m∑
�=0

(� + 1)j�(D).

This completes the proof.
Definition 3.2. For integers r ≥ t ≥ 0 and j1, . . . , jm ≥ 0, let U(r, t; j1, . . . , jm)

be the set of positive divisors given by

U(r, t; j1, . . . , jm) =
{
D ≥ 0 : deg (D) = r, deg

(
D
)

= t, j1(D) = j1, . . . , jm(D) = jm
}
.

Lemma 3.3. For integers r ≥ t ≥ 0 and j1, . . . , jm ≥ 0, the set U(r, t; j1, . . . , jm)
is not empty if and only if

mn− (j1 + 2j2 + · · · + mjm) ≤ t ≤ (m + 1)n− (2j1 + 3j2 + · · · + (m + 1)jm)

holds and also provided that there exists a degree r − t positive divisor whose support
is disjoint from the set {P1, . . . , Pn} when mn = t+ j1 + 2j2 + · · ·+mjm and r > t.

Proof. Let D ∈ U(r, t; j1, . . . , jm). Using Lemma 3.1 we have

j0(D) = (m + 1)n− (2j1(D) + · · · + (m + 1)jm(D)) − t,(3.1)

and so, in particular,

t ≤ (m + 1)n− (2j1 + 3j2 + · · · + (m + 1)jm) .

Moreover, by the definition of D,

t ≥ jm−1(D) + 2jm−2(D) + · · · + mj0(D)

= jm−1(D) + 2jm−2(D) + · · · + (m− 1)j1(D)

+m(m + 1)n− (2mj1(D) + · · · + (m + 1)mjm(D)) −mt,

where we used (3.1) in the second step. Therefore

(m + 1)t ≥ (m + 1)mn

−
(
(m + 1)mjm(D) + (m2 − 1)jm−1(D) + ((m− 1)m− 2) jm−2(D)

+ · · · + (2m− (m− 1)) j1(D)
)

= (m + 1)mn− (m + 1) (mjm(D) + (m− 1)jm−1(D) + · · · + j1(D)) ,
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which means that

t ≥ mn− (j1 + 2j2 + · · · + mjm) .(3.2)

Also, if this is an equality, then the set {P ∈ {P1, . . . , Pn} : vP (D) ≥ m + 1} is empty.
Therefore, if the equality in (3.2) holds and r > t, then there exists a positive divisor
of degree r − t whose support is disjoint from {P1, . . . , Pn}.

Now we prove the converse. Let Sm = {1, . . . , jm}, Sm−1 = {jm + 1, . . . , jm +
jm−1}, . . .,and S1 = {(jm+ · · ·+j2)+1, . . . , (jm+ · · ·+j2)+j1}, where we put S� = ∅
whenever j� = 0 for some 1 ≤ � ≤ m. They are pairwise disjoint sets of natural
numbers. We note that for each 1 ≤ � ≤ m, we have |S�| = j�. Comparing both sides
of the inequalities for t given in the statement of the lemma, we obtain that

j1 + j2 + · · · + jm ≤ n.

Let

j0 = (m + 1)n− (2j1 + 3j2 + · · · + (m + 1)jm) − t.(3.3)

Using the upper bound on t in the statement of the lemma, we get j0 ≥ 0. Moreover,
using t ≥ mn− (j1 + 2j2 + · · · + mjm) we obtain

j0 + j1 + · · · + jm = (m + 1)n− (j1 + 2j2 + · · · + mjm) − t ≤ n.

For j0 = 0, let S0 = {(jm + · · · + j1) + 1, . . . , (jm + · · · + j1) + j0}. If j0 = 0, then
we put S0 = ∅. Note that S0, . . . , Sm are pairwise disjoint subsets of {1, . . . , n}. For
each i ∈ {1, . . . , n}, let

ai =

{
m− � if i ∈ S� for some 0 ≤ � ≤ m,
m + 1 otherwise.

Assume that jm + · · · + j1 + j0 < n and put

D = (r − t)Pn +

n∑
i=1

aiPi.

We claim that D ∈ U(r, t; j1, . . . , jm). Note that n ∈ ∪m
�=0S� by the assumption

jm + · · · + j1 + j0 < n. Hence we have vPn(D) = r − t + (m + 1) ≥ m + 1 and
vPn(D) = m + 1, where we used r ≥ t. Thus, for 1 ≤ i ≤ n we get vPi(D) = ai. This
implies that

deg
(
D
)

=

n∑
i=1

ai = (m + 1) (n− (j0 + · · · + jm)) +

m∑
�=0

(m− �)j�

= (m + 1)n +

m∑
�=0

(m− �−m− 1)j�

= (m + 1)n−
m∑
�=0

(� + 1)j� = t,

where we used (3.3). Moreover, deg(D) = deg
(
D
)
+ (r− t) = r, j�(D) = |S�| = j� for

each 1 ≤ � ≤ m, and hence D ∈ U(r, t; j1, . . . , jm).
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Next we consider the case jm + · · ·+j1 +j0 = n. This case implies that (cf. (3.3))

mn = t + j1 + 2j2 + · · · + mjm.

Therefore we construct D similarly and D using the existence of a degree r−t positive
divisor whose support is disjoint from the set {P1, . . . , Pn}.

Definition 3.4. For integers a ≥ b ≥ 0 with b ≤ n and a set {Q1, . . . , Qb} of
rational places, let Ca,b denote the cardinality of the set of positive divisors given by{

D ≥ 0 : deg(D) = a, supp
(
D
)

= {Q1, . . . , Qb}
}
.

Note that Ca,b is independent of the choice of the set {Q1, . . . , Qb}; only the cardinality
b of this set matters.

Lemma 3.5. For r ≥ t ≥ 0, j1, . . . , jm ≥ 0, and mn − (j1 + · · · + mjm) ≤ t ≤
(m + 1)n− (2j1 + · · · + (m + 1)jm) , the cardinality of U(r, t; j1, . . . , jm) is(

n

jm

)(
n− jm
jm−1

)
· · ·
(
n− (j2 + j3 + · · · + jm)

j1

)(
n− (j1 + j2 + · · · + jm)

t−mn + (j1 + 2j2 + · · · + mjm)

)

× Cr−mn+(j1+2j2+···+mjm),t−mn+(j1+2j2+···+mjm).

Proof. We prove the lemma for m = 2, and the general case is similar. Assume
first the degenerate subcase that mn = t + (j1 + 2j2 + · · · + mjm) and r > t. In this
degenerate subcase we have

Cr−mn+(j1+2j2+···+mjm),t−mn+(j1+2j2+···+mjm) = Cr−t,0,

and we note that Cr−t,0 is the number of positive divisors with degree r − t whose
support is disjoint from the set {P1, . . . , Pn}. By Lemma 3.3, in this degenerate
subcase, the set U(r, t; j1, j2) is empty if and only if Cr−t,0 = 0. Thus, the formula
in the current lemma holds if Cr−t,0 = 0. Therefore we can assume without loss
of generality that we are either not in the degenerate subcase, or if we are in the
degenerate subcase, then Cr−t,0 > 0. Hence, again by Lemma 3.3, we know that the
set U(r, t; j1, j2) is nonempty. For D ∈ U(r, t; j1, j2), let S2 =

{
P ∈ {P1, . . . , Pn} :

vP (D) = 0
}
, S1 =

{
P ∈ {P1, . . . , Pn} : vP (D) = 1

}
, S0 =

{
P ∈ {P1, . . . , Pn} :

vP (D) = 2
}
, and S =

{
P ∈ {P1, . . . , Pn} : vP (D) ≥ 3

}
. Note that |S2| = j2 and

|S1| = j1 and that by (3.1) we get |S0| = j0(D) = 3n− (2j1 + 3j2)− t. The choices of
S2, S1, and S0 determine S. We have |S| = n− (j1 + j2)− |S0| = t− 2n+ (j1 + 2j2).
Hence there are (

n

j2

)(
n− j2
j1

)(
n− (j1 + j2)

t− 2n + (j1 + 2j2)

)

choices for these subsets. Assume that the subsets S2, S1, S0, and S are determined.
For a corresponding D ∈ U(r, t; j1, j2), let D1 = b1P1 + · · · + bnPn, where

bi =

{
vPi(D) = vPi

(D) if Pi ∈ S2 ∪ S1 ∪ S0,
2 = vPi(D) − 1 if Pi ∈ S.

Moreover, let E = D−D1. Then E is a positive divisor and supp
(
E
)

= S. Note that

deg (D1) = t− |S|, deg(E) = deg(D) − deg (D1) = r − t + |S|.
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Hence

| supp
(
E
)
| = t− 2n + (j1 + 2j2), deg(E) = r − 2n + (j1 + 2j2).

Using Definition 3.4, we obtain that there are Cr−2n+(j1+2j2),t−2n+(j1+2j2) choices for
E, which completes the proof.

In the following, when two sets U1, U2 are disjoint and we would like to emphasize
that their union is the union of the disjoint subsets U1 and U2, then we use U1

⊔
U2 to

denote the disjoint union, and similarly for the disjoint union of finitely many pairwise
disjoint subsets.

Recall that for integers r ≥ s ≥ 0 and nonnegative integers X1, . . . , Xm, the set
Vm(r, s;X1, . . . , Xm) is defined in Definition 2.3. Using Definition 3.2 and Lemma 3.3,
we can write the set Vm(r, s;X1, . . . , Xm) as the disjoint union

Vm(r, s;X1, . . . , Xm) =
⊔
jm

⊔
jm−1

· · ·
⊔
j1

⊔
t

U(r, t; j1, . . . , jm),(3.4)

where the m-tuples (j1, . . . , jm) of indices run over the finite set of m-tuples of integers
satisfying

0 ≤ jm ≤ 2Xm, 0 ≤ jm−1 ≤ 2Xm−1 + Xm, . . . ,

0 ≤ j1 ≤ 2X1 +

m∑
ν=2

Xν ,

2j1 + 3j2 + · · · + (m + 1)jm ≤ 2(2X1 + 3X2 + · · · + (m + 1)Xm),

(3.5)

and for each m-tuple satisfying (3.5), the index t runs from max(s,mn−(j1+2j2+· · ·+
mjm)) to min(r, (m + 1)n− (2j1 + 3j2 + · · · + (m + 1)jm)).

Combining (3.4) and Lemma 3.5, we can compute the cardinality of the set
Vm(r, s;X1, . . . , Xm).

4. Asymptotic upper bound on the cardinality of V1(r, s;X1). In this
section we obtain an asymptotic upper bound on the cardinality of Vm(r, s;X1, . . . , Xm)
for the case m = 1 in a suitable sequence of global function fields (see Corollary 4.5).
The assumption m = 1 is made for simplicity and for the clarity of the exposition.
Later in section 5 we generalize this asymptotic upper bound to the case m ≥ 1.
The bound in Corollary 4.5 is given using a real-valued function S(σ, y, x, t1), which
is introduced in Definition 4.3. Corollary 4.5 is obtained under Assumption 1 given
below. In section 7 we will show that Assumption 1 holds in many cases of interest.
Under Assumption 1, we further define the real-valued function Iy,x1(σ) in Defini-
tion 4.6 and then we show that it is strictly increasing in σ. Moreover, we compute
Iy,x1(σ) under some conditions, and this result will also be generalized in section 5.

The asymptotic upper bound for the cardinality of Vm(r, s;X1, . . . , Xm) will be
used later to prove the existence of a sequence of distinguished divisors on the basis
of Proposition 2.4.

Definition 4.1. For any prime power q, let Eq be the real-valued function
defined on the interval [0, 1] as follows: for 0 < x < 1 we put Eq(x) = −x logq x −
(1 − x) logq(1 − x) and for x ∈ {0, 1} we put Eq(0) = Eq(1) = limx→0+ Eq(x) =
limx→1− Eq(x) = 0.

Using Stirling’s formula, we obtain the following well-known results. For any real
number 0 ≤ α ≤ 1, we have

lim
n→∞

logq
(

n
	αn


)
n

= Eq(α).(4.1)
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For any real numbers 0 ≤ α1 ≤ 1 and 0 ≤ α2 < 1 with α1 + α2 ≤ 1, we have

lim
n→∞

logq
(
n−	α2n

	α1n


)
n

= (1 − α2)Eq

(
α1

1 − α2

)
.(4.2)

Now we state an important assumption and introduce related notation.

Assumption 1. Assume that (Fi/Fq)
∞
i=1 is a sequence of global function fields

with full constant field Fq, with gi → ∞ as i → ∞, and with lim supi→∞
ni

gi
= γ > 0,

where ni and gi denote the number of rational places and the genus of Fi, respectively.
Using a suitable subsequence of (Fi/Fq)

∞
i=1, we may assume that limi→∞

ni

gi
= γ > 0.

We will use the following proposition in our upper bounds.

Proposition 4.2. Under Assumption 1, let (ai)
∞
i=1 and (bi)

∞
i=1 be sequences of

integers such that ai ≥ bi ≥ 0 and bi ≤ ni for all i ≥ 1. We also assume that there
exist the limits

lim
i→∞

ai
ni

= a, lim
i→∞

bi
ni

= b with 0 < b ≤ a < ∞.(4.3)

For each i ≥ 1, let C
(i)
ai,bi

denote the cardinality of the set of positive divisors given

in Definition 3.4 for a suitable set {Q(i)
1 , . . . , Q

(i)
bi
} of rational places of Fi. Then we

have

lim sup
i→∞

logq C
(i)
ai,bi

ni
≤
{

aEq

(
b
a

)
if b

a ≥ 1 − 1
q ,

a− b logq(q − 1) if b
a ≤ 1 − 1

q .

Proof. This follows from Definition 3.4 and the proof of [10, Lemma 3.4.10].

Let y, σ, x1 ≥ 0 be real numbers. Under Assumption 1, for each i ≥ 1 we define
the integers

ri =

⌊(
1 + y +

σ

γ

)
ni

⌋
, si = �(1 + y)ni�, X(i)

1 = �x1ni�.(4.4)

Let V(i)
1 (ri, si;X

(i)
1 ) be the set of positive divisors of degree ri of Fi, which is

defined using Definition 2.3. We note that for each real number 0 ≤ t1 ≤ 2x1 and
each integer i ≥ 1, we have

max{si, ni − �t1ni�} = si.

Moreover, if

1 + y +
σ

γ
< 2 − 4x1 or equivalently y + 4x1 +

σ

γ
< 1(4.5)

holds, then for each real number 0 ≤ t1 ≤ 2x1 and integer i ≥ 1 we also have

min{ri, 2ni − 2�t1ni�} = ri.
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Definition 4.3. For real numbers y > 0, x1, σ ≥ 0 satisfying (4.5) and real
numbers 0 ≤ t1 ≤ 2x1, 0 ≤ x ≤ σ

γ , let S(σ, y, x, t1) be the real-valued function

S(σ, y, x, t1) = Eq(t1) + (1 − t1)Eq

(
y + x + t1

1 − t1

)

+

⎧⎪⎪⎨
⎪⎪⎩

(
y + σ

γ + t1

)
Eq

(
y+x+t1
y+σ

γ +t1

)
if y+x+t1

y+σ
γ +t1

≥ 1 − 1
q ,

(
y + σ

γ + t1

)
− (y + x + t1) logq(q − 1) if y+x+t1

y+σ
γ +t1

≤ 1 − 1
q .

Note that by (4.5) we have 4x1 < 1 and hence t1 < 1
2 .

Proposition 4.4. Under Assumption 1, let y > 0 and x1, σ ≥ 0 be real numbers
satisfying (4.5). For each integer i ≥ 1 and real numbers 0 ≤ t1 ≤ 2x1, 0 ≤ x ≤ σ

γ ,

let U (i)(�(1 + y + σ
γ )ni�, �(1 + y + x)ni� ; �t1ni�) be the set of positive divisors of Fi

defined in Definition 3.2 for m = 1. Then for the cardinalities of these sets we have

lim sup
i→∞

logq

∣∣∣U (i)
(⌊

(1 + y + σ
γ )ni

⌋
, �(1 + y + x)ni� ; �t1ni�

)∣∣∣
ni

≤ S(σ, y, x, t1).

Proof. Note that ni − �t1ni� ≤ �(1 + y + x)ni� and using (4.5) we get �(1 + y +
x)ni� ≤ 2ni−2�t1ni� for each x and t1 in the range under consideration. Hence using
Lemma 3.5, we obtain∣∣∣U (i)

(⌊(
1 + y + σ

γ

)
ni

⌋
, �(1 + y + x)ni� ; �t1ni�

)∣∣∣
=
(

ni

	t1ni

)(

ni−	t1ni

	(1+y+x)ni
−ni+	t1ni


)
×C

(i)
	(1+y+σ

γ )ni
−ni+	t1ni
,	(1+y+x)ni
−ni+	t1ni
.

(4.6)

Using (4.1) and (4.2), we obtain

lim
i→∞

logq
(

ni

	t1ni

)

ni
= Eq(t1),

lim
i→∞

logq
(

ni−	t1ni

	(1+y+x)ni
−ni+	t1ni


)
ni

= (1 − t1)Eq

(
y + x + t1

1 − t1

)
.

(4.7)

Note that limi→∞
	(1+y+σ

γ )ni
−ni+	t1ni

ni

= y+σ
γ +t1 and limi→∞

	(1+y+x)ni
−ni+	t1ni

ni

= y + x + t1. Hence from Proposition 4.2 we get

lim sup
i→∞

logq C
(i)
	(1+y+σ

γ )ni
−ni+	t1ni
,	(1+y+x)ni
−ni+	t1ni


ni

≤

⎧⎨
⎩

(y + σ
γ + t1)Eq

(
y+x+t1
y+σ

γ +t1

)
if y+x+t1

y+σ
γ +t1

≥ 1 − 1
q ,

(y + σ
γ + t1) − (y + x + t1) logq(q − 1) if y+x+t1

y+σ
γ +t1

≤ 1 − 1
q .

(4.8)

Using (4.6), (4.7), (4.8), and Definition 4.3, we complete the proof.
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Corollary 4.5. Under Assumption 1, let y > 0 and x1, σ ≥ 0 be real numbers

satisfying (4.5). For each integer i ≥ 1, let ri, si, and X
(i)
1 be the integers defined in

(4.4), and let V(i)
1 (ri, si, X

(i)
1 ) be the set of positive divisors of Fi defined in Definition

2.3 for m = 1. Then for the cardinalities of these sets we have

lim sup
i→∞

logq |V
(i)
1 (ri, si;X

(i)
1 )|

ni
≤ max S(σ, y, x, t1),

where the maximum is over all real numbers x and t1 satisfying 0 ≤ x ≤ σ
γ and

0 ≤ t1 ≤ 2x1.

Proof. Using (3.4) and Lemma 3.5 for each i ≥ 1, we obtain that

|V(i)
1 (ri, si;X

(i)
1 )| =

2X
(i)
1∑

j1=0

∑
t

|U (i)(ri, t; j1)|,(4.9)

where t runs from max{si, ni − j1} to min{ri, 2ni − 2j1}. Note that si ≥ ni − j1 and

ri ≤ 2ni − 2j1 for each i ≥ 1 and 0 ≤ j1 ≤ 2X
(i)
1 . Moreover, for the number of terms

(2X
(i)
1 + 1) (ri − si + 1) in the summation in (4.9) we have

lim
i→∞

logq

((
2X

(i)
1 + 1

)
(ri − si + 1)

)
ni

= lim
i→∞

⎧⎨
⎩

logq (2x1 + 1/ni) + logq

(
σ
γ + 1/ni

)
ni

+ 2
logq ni

ni

⎫⎬
⎭ = 0.

(4.10)

Since the summands on the right-hand side of (4.9) are nonnegative, we get

|V(i)
1 (ri, si;X

(i)
1 )| ≤

(
2X

(i)
1 + 1

)
(ri − si + 1) max |U (i)(ri, t; j1)|,(4.11)

where max |U (i)(ri, t; j1)| is over the set of ordered pairs (t, j1) with si ≤ t ≤ ri and

0 ≤ j1 ≤ 2X
(i)
1 . Taking the logarithm of both sides of (4.11) and using (4.10) and

Proposition 4.4, we complete the proof.

Definition 4.6. Under Assumption 1, let y > 0 and x1 ≥ 0 be real numbers
such that y + 4x1 < 1. For σ ≥ 0 and y + 4x1 + σ

γ < 1, let Iy,x1(σ) be the real-valued
function of σ defined by

Iy,x1(σ) = max S(σ, y, x, t1),

where the maximum is over all real numbers x and t1 such that 0 ≤ t1 ≤ 2x1 and
0 ≤ x ≤ σ

γ .
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By straightforward manipulations, the expression for S(σ, y, x, t1) is simplified to

S(σ, y, x, t1)

= −t1 logq t1

− (y + x + t1) logq(y + x + t1)

− (1 − y − x− 2t1) logq(1 − y − x− 2t1)

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(y + x + t1) logq(y + x + t1) −
(
σ

γ
− x

)
logq

(
σ

γ
− x

)

+

(
y +

σ

γ
+ t1

)
logq

(
y +

σ

γ
+ t1

)
if

y + x + t1
y + σ

γ + t1
≥ 1 − 1

q
,

(
y +

σ

γ
+ t1

)
− (y + x + t1) logq(q − 1) if

y + x + t1
y + σ

γ + t1
≤ 1 − 1

q
.

(4.12)

We first show that Iy,x1(σ) is a strictly increasing function of σ.

Lemma 4.7. Under the assumptions of Definition 4.6, the real-valued function
Iy,x1(σ) is a strictly increasing function of σ on its domain of definition, which is the
interval of σ such that σ ≥ 0 and y + 4x1 + σ

γ < 1.

Proof. Using the expression (4.12), for the partial derivative of S(σ, y, x, t1) with
respect to σ we obtain

∂S

∂σ
(σ, y, x, t1) =

⎧⎨
⎩

1
γ logq

y+σ
γ +t1

σ
γ −x if y+x+t1

y+σ
γ +t1

≥ 1 − 1
q ,

1
γ if y+x+t1

y+σ
γ +t1

≤ 1 − 1
q .

Therefore ∂S
∂σ (σ, y, x, t1) > 0 for each 0 ≤ x < σ

γ and 0 ≤ t1 ≤ 2x1. Moreover,

limx→σ
γ

−
∂S
∂σ (σ, y, x, t1) = +∞ for 0 ≤ t1 ≤ 2x1. This completes the proof.

Lemma 4.8. Under the assumptions of Definition 4.6, for the partial derivatives
∂S
∂t1

(σ, y, x, t1) and ∂S
∂x (σ, y, x, t1) of S(σ, y, x, t1) with respect to t1 and x we obtain

∂S

∂t1
(σ, y, x, t1) = logq

(1 − y − x− 2t1)
2

t1(y + x + t1)
+

⎧⎨
⎩

logq
y+σ

γ +t1

y+x+t1
if y+x+t1

y+σ
γ +t1

≥ 1 − 1
q ,

logq
q

q−1 if y+x+t1
y+σ

γ +t1
≤ 1 − 1

q ,

and

∂S

∂x
(σ, y, x, t1) = logq

1 − y − x− 2t1
y + x + t1

+

⎧⎨
⎩

logq
σ
γ −x

y+x+t1
if y+x+t1

y+σ
γ +t1

≥ 1 − 1
q ,

− logq(q − 1) if y+x+t1
y+σ

γ +t1
≤ 1 − 1

q .

Proof. Let S1, T1, and T2 denote the following expressions from (4.12):

S1 = −t1 logq t1 − (y + x + t1) logq(y + x + t1)

− (1 − y − x− 2t1) logq(1 − y − x− 2t1),
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T1 = −(y + x + t1) logq(y + x + t1) −
(
σ

γ
− x

)
logq

(
σ

γ
− x

)

+

(
y +

σ

γ
+ t1

)
logq(y +

σ

γ
+ t1),

T2 =

(
y +

σ

γ
+ t1

)
− (y + x + t1) logq(q − 1).

For their partial derivatives with respect to t1 and x we obtain

∂S1

∂t1
= − logq t1 − logq(y + x + t1) + 2 logq(1 − y − x− 2t1),

∂T1

∂t1
= − logq(y + x + t1) + logq

(
y +

σ

γ
+ t1

)
,

∂T2

∂t1
= 1 − logq(q − 1) = logq

q

q − 1
,

and

∂S1

∂x
= − logq(y + x + t1) + logq(1 − y − x− 2t1),

∂T1

∂x
= − logq(y + x + t1) + logq

(
σ

γ
− x

)
,

∂T2

∂x
= − logq(q − 1).

Using (4.12) and combining the partial derivatives above, we get the desired for-
mulas.

Corollary 4.9. Under the assumptions of Definition 4.6, if all of the conditions

• C1: σ
γ ≤ y

q−1 ,

• C2: 2x1(y + σ
γ + 2x1)

2 < (1 − y − σ
γ − 4x1)

2(y + σ
γ ),

• C3: σ
γ (1 − y) < y2

hold, then we have

Iy,x1(σ) =S (σ, y, 0, 2x1)

=Eq(2x1) + (1 − 2x1)Eq

(
y+2x1

1−2x1

)
+
(
y + σ

γ + 2x1

)
Eq

(
y+2x1

y+σ
γ +2x1

)
.

Proof. Assume that 0 ≤ x ≤ σ
γ and 0 ≤ t1 ≤ 2x1. First we observe that

y + x + t1
y + σ

γ + t1
≥ y

y + σ
γ

.

Using condition C1 we obtain

y + x + t1
y + σ

γ + t1
≥ y

y + σ
γ

≥ 1 − 1

q
.(4.13)
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Moreover, using condition C2 we also get

t1(y + x + t1)
2 ≤ 2x1

(
y + σ

γ + 2x1

)2

<
(
y + σ

γ

)(
1 − y − σ

γ − 4x1

)2

≤
(
y + σ

γ + t1

)
(1 − y − x− 2t1)

2
.

Therefore by Lemma 4.8 and (4.13) we have ∂S
∂t1

(σ, y, x, t1) > 0. Similarly, condition
C3 implies (

σ

γ
− x

)
(1 − y − x− 2t1) ≤

σ

γ
(1 − y) < y2 ≤ (x + y + t1)

2,

and by Lemma 4.8 we also have ∂S
∂x (σ, y, x, t1) < 0. Hence we obtain Iy,x1(σ) =

S (σ, y, 0, 2x1). Using Definition 4.3 we complete the proof.

5. Asymptotic upper bound on the cardinality of Vm(r, s;X1, . . . , Xm)
for the general case m ≥ 1. In this section we obtain generalizations of the results
of section 4 to the general case m ≥ 1. In particular, we derive the asymptotic upper
bound on the cardinality of Vm(r, s;X1, . . . , Xm) in Proposition 5.7. The bound in
Proposition 5.7 uses a real-valued function S(σ, y, x, t1, t2, . . . , tm) that is introduced
in Definition 5.6, which generalizes Definition 4.3. The generalization Iy,x1,x2,...,xm

(σ)
of the real-valued function Iy,x1

(σ) of section 4 is given in Definition 5.8. Finally, we
compute Iy,x1,x2,...,xm(σ) under some conditions in Proposition 5.10 that will be used
in section 7.

For the clarity of exposition in this rather technical part, we begin with the case
m = 2 which corresponds to the two-variable case t1, t2.

Definition 5.1. Let γ > 0 be as in Assumption 1 (cf. section 4). Let y > 0,
x1, x2, σ ≥ 0 be real numbers satisfying

y + 2(2x1 + 3x2) +
σ

γ
< 1.(5.1)

For real numbers 0 ≤ x ≤ σ
γ and 0 ≤ t1, t2 satisfying t2 ≤ 2x2, t1 ≤ 2x1 + x2, and

2t1 + 3t2 ≤ 2(2x1 + 3x2), let S(σ, y, x, t1, t2) be the real-valued function

S(σ, y, x, t1, t2) = Eq(t2) + (1 − t2)Eq

(
t1

1 − t2

)

+ (1 − t1 − t2)Eq

(
y + x + t1 + 2t2

1 − t1 − t2

)

+

⎧⎪⎪⎨
⎪⎪⎩

(
y + σ

γ + t1 + 2t2

)
Eq

(
y+x+t1+2t2
y+σ

γ +t1+2t2

)
if y+x+t1+2t2

y+σ
γ +t1+2t2

≥ 1 − 1
q ,

(
y + σ

γ + t1 + 2t2

)
− (y + x + t1 + 2t2) logq(q − 1) if y+x+t1+2t2

y+σ
γ +t1+2t2

≤ 1 − 1
q .

Note that by (5.1) we have 2(2x1 + 3x2) < 1 and hence t1 + t2 ≤ t1 + 3
2 t2 < 1

2 .
Instead of stating a generalization of Proposition 4.4 explicitly, we prefer to give

a generalization of Corollary 4.5 directly in the following proposition, whose proof
includes a generalization of Proposition 4.4.
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Proposition 5.2. Under Assumption 1 (cf. section 4), let y > 0 and x1, x2, σ ≥
0 be real numbers satisfying (5.1). For each integer i ≥ 1, let ri = �(2 + y + σ

γ )ni�,
si = �(2 + y)ni� , X(i)

1 = �x1ni� , X(i)
2 = �x2ni� , and V(i)

2 (ri, si;X
(i)
1 , X

(i)
2 ) be the set

of positive divisors of Fi defined in Definition 2.3 for m = 2. Then for the cardinalities
of these sets we have

lim sup
i→∞

logq

∣∣∣V(i)
2 (ri, si;X

(i)
1 , X

(i)
2 )
∣∣∣

ni
≤ max S(σ, y, x, t1, t2),

where the maximum is over all real numbers x and t1, t2 satisfying 0 ≤ x ≤ σ
γ and

0 ≤ t2 ≤ 2x2, 0 ≤ t1 ≤ 2x1 + x2, and 2t1 + 3t2 ≤ 2(2x1 + 3x2).
Proof. We follow similar methods as in the proofs of Proposition 4.4 and Corol-

lary 4.5. First note that for each integer i ≥ 1 and real numbers 0 ≤ t1, t2 with
2t1 + 3t2 ≤ 2(2x1 + 3x2), using (5.1) we obtain ri ≤ 3ni − (2�t1ni� + 3�t2ni�).
Moreover, it is also clear that si ≥ 2ni − (�t1ni� + 2�t2ni�) for each integer i ≥ 1
and real numbers t1, t2 ≥ 0. Hence using (3.4) and Lemma 3.5 as in the proof of
Corollary 4.5, for integers i ≥ 1 and real numbers 0 ≤ x, t1, t2 such that x ≤ σ

γ ,

t2 ≤ 2x2, t1 ≤ 2x1 + x2, and 2t1 + 3t2 ≤ 2(2x1 + 3x2), we need to consider the
cardinality

∣∣U (i) (ri, �(2 + y + x)ni�; �t1ni�, �t2ni�)
∣∣ of the set of positive divisors of

Fi defined in Definition 3.2 for m = 2. By Lemma 3.5 we have∣∣U (i) (ri, �(2 + y + x)ni� ; �t1ni� , �t2ni�)
∣∣

=
(

ni

	t2ni

)(

ni−	t2ni

	t1ni


)(
ni−(	t1ni
+	t2ni
)

	(2+y+x)ni
−2ni+(	t1ni
+2	t2ni
)
)

×C
(i)
ri−2ni+	t1ni
+2	t2ni
,	(2+y+x)ni
−2ni+	t1ni
+2	t2ni
.

We complete the proof using similar arguments as in the proofs of Proposition 4.4
and Corollary 4.5.

Now we generalize Definition 4.6.
Definition 5.3. Under Assumption 1 (cf. section 4), let y > 0 and x1, x2 ≥ 0 be

real numbers such that y+2(2x1 +3x2) < 1. For σ ≥ 0 and y+2(2x1 +3x2)+ σ
γ < 1,

let Iy,x1,x2(σ) be the real-valued function of σ defined by

Iy,x1,x2(σ) = max S(σ, y, x, t1, t2),

where the maximum is over all real numbers x, t1, and t2 such that 0 ≤ x ≤ σ
γ and

0 ≤ t2 ≤ 2x2, 0 ≤ t1 ≤ 2x1 + x2, and 2t1 + 3t2 ≤ 2(2x1 + 3x2).
The following lemma generalizes Lemma 4.7.
Lemma 5.4. Under the assumptions of Definition 5.3, the real-valued function

Iy,x1,x2
(σ) is a strictly increasing function of σ on its domain of definition, which is

the interval of σ such that σ ≥ 0 and y + 2(2x1 + 3x2) + σ
γ < 1.

Proof. For the partial derivative of S(σ, y, x, t1, t2) with respect to σ we obtain

∂S

∂σ
(σ, y, x, t1, t2) =

⎧⎨
⎩

1
γ logq

(
y+σ

γ +t1+2t2
σ
γ −x

)
if y+x+t1+2t2

y+σ
γ +t1+2t2

≥ 1 − 1
q ,

1
γ if y+x+t1+2t2

y+σ
γ +t1+2t2

≤ 1 − 1
q .

Then the proof is similar to the proof of Lemma 4.7.
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Now we give a generalization of Corollary 4.9 in the following proposition.
Proposition 5.5. Under the assumptions of Definition 5.3, assume also that

all of the following conditions hold:
• C1: σ

γ ≤ y
q−1 ;

• C2.1:

(2x1 + x2)

(
y +

σ

γ
+ 2x1 + 4x2

)2

<

(
1 − y − σ

γ
− 2(2x1 + 3x2)

)2(
y +

σ

γ

)
;

• C2.2:

2x2

(
y +

σ

γ
+ 2x1 + 4x2

)4

<

(
1 − y − σ

γ
− 2(2x1 + 3x2)

)3(
y +

σ

γ

)2

;

• C3: σ
γ (1 − y) < y2;

• C4:

x2
2

(
y +

σ

γ
+ 2x1 + 4x2

)
≤ 2x3

1.

Then we have Iy,x1,x2(σ) = S(σ, y, 0, 2x1, 2x2).
Proof. As in the proof of Corollary 4.9, we first observe that for 0 ≤ x ≤ σ

γ and

0 ≤ t1, t2 with t2 ≤ 2x2, t1 ≤ 2x1 + x2, and 2t1 + 3t2 ≤ 2(2x1 + 3x2), using condition
C1 we obtain

y + x + t1 + 2t2
y + σ

γ + t1 + 2t2
≥ y

y + σ
γ

≥ 1 − 1

q
.(5.2)

For the partial derivative ∂S
∂x (σ, y, x, t1, t2) of S(σ, y, x, t1, t2) with respect to x,

by using (5.2) and some straightforward manipulations we get

∂S

∂x
(σ, y, x, t1, t2) = logq

(1 − y − x− 2t1 − 3t2)
(

σ
γ − x

)
(y + x + t1 + 2t2)2

.

By condition C3 we have(
σ

γ
− x

)
(1 − y − x− 2t1 − 3t2) ≤

σ

γ
(1 − y) < y2 ≤ (y + x + t1 + 2t2)

2,

and hence

∂S

∂x
(σ, y, x, t1, t2) ≤ logq

σ
γ (1 − y)

y2
< 0

for 0 < x < σ
γ and 0 ≤ t1, t2 with t2 ≤ 2x2, t1 ≤ 2x1+x2, and 2t1+3t2 ≤ 2(2x1+3x2).

Now we assume that

x1 > 0 and x2 > 0.(5.3)

For the partial derivatives ∂S
∂t1

(σ, y, x, t1, t2) and ∂S
∂t2

(σ, y, x, t1, t2) of S(σ, y, x, t1, t2)
with respect to t1 and t2, again using (5.2) and some straightforward manipulations
we get

∂S

∂t1
= logq

(1 − y − x− 2t1 − 3t2)
2
(
y + σ

γ + t1 + 2t2

)
(y + x + t1 + 2t2)2t1
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Fig. 1.

and

∂S

∂t2
= logq

(1 − y − x− 2t1 − 3t2)
3
(
y + σ

γ + t1 + 2t2

)2

(y + x + t1 + 2t2)4t2
.

Note that t1 + 2t2 assumes its maximum over the region

0 ≤ t2 ≤ 2x2, 0 ≤ t1 ≤ 2x1 + x2, and 2t1 + 3t2 ≤ 2(2x1 + 3x2)(5.4)

when t1 = 2x1 and t2 = 2x2 (see Figure 1). Therefore we have

t1 + 2t2 ≤ 2x1 + 4x2(5.5)

over the region (5.4).
Using (5.5) and condition C2.1, we obtain

t1(y + x + t1 + 2t2)
2 ≤ (2x1 + x2)

(
y +

σ

γ
+ 2x1 + 4x2

)2

<

(
y +

σ

γ

)(
1 − y − σ

γ
− 2(2x1 + 3x2)

)2

≤
(
y +

σ

γ
+ t1 + 2t2

)
(1 − y − x− 2t1 − 3t2)

2
.

Similarly, using (5.5) and condition C2.2, we obtain

t2(y + x + t1 + 2t2)
4 ≤ 2x2

(
y +

σ

γ
+ 2x1 + 4x2

)4

<

(
y +

σ

γ

)2(
1 − y − σ

γ
− 2(2x1 + 3x2)

)3

≤
(
y +

σ

γ
+ t1 + 2t2

)2

(1 − y − x− 2t1 − 3t2)
3
.

Hence we have

∂S

∂t1
≥ logq

(
1 − y − σ

γ − 2(2x1 + 3x2)
)2 (

y + σ
γ

)
(2x1 + x2)

(
y + σ

γ + 2x1 + 4x2

)2 > 0
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and

∂S

∂t2
≥ logq

(
1 − y − σ

γ − 2(2x1 + 3x2)
)3 (

y + σ
γ

)2

2x2

(
y + σ

γ + 2x1 + 4x2

)4 > 0

for 0 ≤ x ≤ σ
γ and 0 < t1, t2 with t2 ≤ 2x2, t1 ≤ 2x1+x2, and 2t1+3t2 ≤ 2(2x1+3x2).

Then for fixed σ, y, and 0 ≤ x ≤ σ
γ , the function S(σ, y, x, t1, t2) assumes its

maximum over the region (5.4) on the part of the boundary formed by the closed line
connecting the two points (see Figure 1)

A1 = (2x1, 2x2) and A2 =

(
2x1 + x2,

4

3
x2

)
.

The direction vector
−−−→
A2A1 from A2 to A1 is parallel to the vector (−3, 2). Hence for

fixed σ, y, and 0 ≤ x ≤ σ
γ , the function S(σ, y, x, t1, t2) is nondecreasing on the closed

line from A2 to A1 if

−3
∂S

∂t1
(σ, y, x, t1, t2) + 2

∂S

∂t2
(σ, y, x, t1, t2) ≥ 0(5.6)

holds for fixed σ, y, and 0 ≤ x ≤ σ
γ and for each point (t1, t2) on the closed line from

A2 to A1. By straightforward manipulations, we obtain that (5.6) is equivalent to

t31

(
y +

σ

γ
+ t1 + 2t2

)
≥ t22(y + x + t1 + 2t2)

2.(5.7)

We have t1 ≥ 2x1, t2 ≤ 2x2, and t1 + 2t2 ≤ 2x1 + 4x2 on the closed line from
A2 to A1. Therefore using y + σ

γ + t1 + 2t2 ≥ y + x + t1 + 2t2 and condition C4,

we see that (5.7) holds. Hence S(y, σ, x, t1, t2) assumes its maximum at x = 0 and
(t1, t2) = A1 = (2x1, 2x2). It is easy to check that if the assumption (5.3) does not
hold, but the assumptions of the proposition do hold, then similar methods also apply
and we again have It,x1,x2(σ) = S(σ, y, 0, 2x1, 2x2). This completes the proof.

Now that we have dealt with the cases m = 1 and m = 2, we present the gener-
alizations for any m ≥ 1.

Definition 5.6. Under Assumption 1 (cf. section 4), let y > 0, x1, x2, . . . , xm,
σ ≥ 0 be real numbers satisfying

y + 2(2x1 + 3x2 + · · · + (m + 1)xm) +
σ

γ
< 1.(5.8)

For real numbers 0 ≤ x ≤ σ
γ and t1, t2, . . . , tm satisfying

0 ≤ tm ≤ 2xm, 0 ≤ tm−1 ≤ 2xm−1 + xm, . . . ,

0 ≤ t1 ≤ 2x1 + (x2 + x3 + · · · + xm),
(5.9)

and

2t1 + 3t2 + · · · + (m + 1)tm ≤ 2(2x1 + 3x2 + · · · + (m + 1)xm),(5.10)
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let S(σ, y, x, t1, t2, . . . , tm) be the real-valued function

S(σ, y, x, t1, t2, . . . , tm)

= Eq(tm) + (1 − tm)Eq

(
tm−1

1−tm

)
+ · · · + (1 − (t2 + · · · + tm))Eq

(
t1

1−(t2+···+tm)

)

+ (1 − (t1 + t2 + · · · + tm))Eq

(
y + x + (t1 + 2t2 + · · · + mtm)

1 − (t1 + t2 + · · · + tm)

)

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
y + σ

γ + (t1 + 2t2 + · · · + mtm)
)
Eq

(
y+x+(t1+2t2+···+mtm)
y+σ

γ +(t1+2t2+···+mtm)

)

if y+x+(t1+2t2+···+mtm)
y+σ

γ +(t1+2t2+···+mtm) ≥ 1 − 1
q ,

(
y + σ

γ + (t1 + 2t2 + · · · + mtm)
)
− (y + x + (t1 + 2t2 + · · · + mtm)) logq(q − 1)

if y+x+(t1+2t2+···+mtm)
y+σ

γ +(t1+2t2+···+mtm) ≤ 1 − 1
q .

Note that by (5.8) we have 2 (2x1 + 3x2 + · · · (m + 1)xm) < 1, and hence using (5.10)
we obtain t1 + t2 + · · · + tm ≤ t1 + 3

2 t2 + · · · + m+1
2 tm < 1

2 .
We state the generalization of Proposition 5.2, whose proof is similar.
Proposition 5.7. Under Assumption 1 (cf. section 4), let y > 0 and x1, x2, . . . ,

xm, σ ≥ 0 be real numbers satisfying (5.8). For each integer i ≥ 1, let ri =

�(m+y+ σ
γ )ni�, si = �(m + y)ni� , X(i)

1 = �x1ni� , X(i)
2 = �x2ni� , . . . , X(i)

m = �xmni� ,
and V(i)

m (ri, si;X
(i)
1 , X

(i)
2 , . . . , X

(i)
m ) be the set of positive divisors of Fi defined in Def-

inition 2.3. Then for the cardinalities of these sets we have

lim sup
i→∞

logq

∣∣∣V(i)
m (ri, si;X

(i)
1 , X

(i)
2 , . . . , X

(i)
m )
∣∣∣

ni
≤ max S(σ, y, x, t1, t2, . . . , tm),

where the maximum is over all real numbers x and t1, t2, . . . , tm satisfying 0 ≤ x ≤ σ
γ

and the conditions in (5.9) and (5.10).
Now we generalize Definition 5.3.
Definition 5.8. Under Assumption 1 (cf. section 4), let y > 0 and x1, x2, . . . ,

xm ≥ 0 be real numbers such that y+2 (2x1 + 3x2 + · · · + (m + 1)xm) < 1. For σ ≥ 0
and y+2 (2x1 + 3x2 + · · · + (m + 1)xm)+ σ

γ < 1, let Iy,x1,x2,...,xm(σ) be the real-valued
function of σ defined by

Iy,x1,x2,...,xm(σ) = max S(σ, y, x, t1, t2, . . . , tm),

where the maximum is over all real numbers x, t1, t2, . . . , tm with 0 ≤ x ≤ σ
γ and

t1, t2, . . . , tm satisfying conditions (5.9) and (5.10).
The proof of the next lemma generalizing Lemma 5.4 is also similar.
Lemma 5.9. Under the assumptions of Definition 5.8, the real-valued function

Iy,x1,x2,...,xm(σ) is a strictly increasing function of σ on its domain of definition, which
is the interval of σ such that σ ≥ 0 and y+2 (2x1 + 3x2 + · · · + (m + 1)xm)+ σ

γ < 1.

Now we are ready to compute Iy,x1,x2,...,xm
(σ) for general m under some condi-

tions. We note that since the region defined by the conditions (5.9) and (5.10) is more
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complicated in the general case than the one in the case m = 2, we need to define
new parameters in the following proposition in order to state the result.

Proposition 5.10. Under the assumptions of Definition 5.8, let

t̄m = 2xm and t̄� = 2x� +

m∑
ν=�+1

xν for 1 ≤ � ≤ m− 1.

Let t∗1 be the real number defined by

2t∗1 +

m∑
�=2

(� + 1)t̄� = 2

m∑
�=1

(� + 1)x�,

and for each 2 ≤ � ≤ m, let t∗� be the real number defined inductively using t∗�−1 by

(� + 1)t∗� − (� + 1)t̄� = �t∗�−1 − �t̄�−1.(5.11)

Moreover, let u be the real number depending on x1, . . . , xm defined by

u = t∗1 +

m∑
�=2

�t̄�.

Assume also that all of the following conditions hold:
• C1: σ

γ ≤ y
q−1 ;

• C2: for each 1 ≤ � ≤ m,

t̄�

(
y +

σ

γ
+ u

)2�

<

(
1 − y − σ

γ
− 2

m∑
ν=1

(ν + 1)xν

)�+1(
y +

σ

γ

)�

;

• C3: σ
γ (1 − y) < y2;

• C4: for each 1 ≤ � ≤ m− 1,

(t̄�+1)
�+1

(
y +

σ

γ
+ u

)
≤ (t∗� )

�+2
.

Then we have Iy,x1,x2,x3,...,xm(σ) = S(σ, y, 0, t∗1, t̄2, t̄3, . . . , t̄m).
Proof. By condition C1 we have

y + x + t1 + 2t2 + · · · + mtm
y + σ

γ + t1 + 2t2 + · · · + mtm
≥ y

y + σ
γ

≥ 1 − 1

q
.(5.12)

The following identities for partial derivatives hold:

∂

∂x

{
(1 − t1 − t2 − · · · − tm)Eq

(
y + x + t1 + 2t2 + · · · + mtm

1 − t1 − t2 − · · · − tm

)}

= logq
1 − y − x− 2t1 − 3t2 − · · · − (m + 1)tm

y + x + t1 + 2t2 + · · · + mtm

and

∂

∂x

{(
y +

σ

γ
+ t1 + 2t2 + · · · + mtm

)
Eq

(
y + x + t1 + 2t2 + · · · + mtm
y + σ

γ + t1 + 2t2 + · · · + mtm

)}

= logq

σ
γ − x

y + x + t1 + 2t2 + · · · + mtm
.
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Hence using Definition 5.6 and (5.12), we obtain that

∂S

∂x
= logq

(1 − y − x− 2t1 − 3t2 − · · · − (m + 1)tm)
(

σ
γ − x

)
(y + x + t1 + 2t2 + · · · + mtm)2

.

Therefore if conditions C1 and C3 hold, then

∂S

∂x
(σ, y, x, t1, t2, . . . , tm) < 0(5.13)

for each 0 < x < σ
γ and t1, . . . , tm in the region defined by (5.9) and (5.10).

Now we further assume that

x1 > 0, x2 > 0, . . . , xm > 0.(5.14)

For 1 ≤ � ≤ m, by straightforward manipulations we also obtain the following identi-
ties for partial derivatives:

∂

∂t�

{
Eq(tm) + (1 − tm)Eq

(
tm−1

1 − tm

)
+ · · · + (1 − t2 − · · · − tm)

×Eq

(
t1

1 − t2 − · · · − tm

)}
= logq(1 − t1 − t2 − · · · − tm) − logq(t�),

∂

∂t�

{
(1 − t1 − t2 − · · · − tm)Eq

(
y + x + t1 + 2t2 + · · · + mtm

1 − t1 − t2 − · · · − tm

)}
= (� + 1) logq (1 − y − x− 2t1 − 3t2 − · · · − (m + 1)tm)

− logq(1 − t1 − t2 − · · · − tm) − � logq(y + x + t1 + 2t2 + · · · + mtm),

and

∂

∂t�

{(
y + σ

γ + t1 + 2t2 + · · · + mtm

)
Eq

(
y + x + t1 + 2t2 + · · · + mtm
y + σ

γ + t1 + 2t2 + · · · + mtm

)}

= � logq

(
y +

σ

γ
+ t1 + 2t2 + · · · + mtm

)
− � logq(y + x + t1 + 2t2 + · · · + mtm).

Hence using Definition 5.6 and (5.12), for 1 ≤ � ≤ m we obtain that

∂S

∂t�
= logq(1 − y − x− 2t1 − 3t2 − · · · − (m + 1)tm)�+1

+ logq

(
y +

σ

γ
+ t1 + 2t2 + · · · + mtm

)�

− logq(y + x + t1 + 2t2 + · · · + mtm)2� − logq t�.

(5.15)

Now we also assume that for the real number u defined in the statement of the
proposition we have

u = max (t1 + 2t2 + · · · + mtm) ,(5.16)

where the maximum is over the region defined by the conditions (5.9) and (5.10).
Later in this proof, we will show that the assumption (5.16) holds.
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Using (5.12), (5.15), (5.16), and condition C2, as in the proof of Proposition 5.5,
we obtain that for each 1 ≤ � ≤ m,

∂S

∂t�
(σ, y, x, t1, . . . , tm) > 0

holds for 0 ≤ x ≤ σ
γ and the real numbers 0 < t1, . . . , tm satisfying the conditions

(5.9) and (5.10). This implies that for each 0 ≤ x ≤ σ
γ , S(σ, y, x, t1, . . . , tm) assumes

its maximum over the region defined by (5.9) and (5.10) on the closed set, forming a
part of the boundary of the region, defined by the conditions

0 ≤ t� ≤ t̄� for 1 ≤ � ≤ m(5.17)

and

m∑
�=1

(� + 1)t� = 2

m∑
�=1

(� + 1)x�,(5.18)

where t̄� is defined in the statement of the proposition.
For each 1 ≤ � ≤ m, it follows from the definition of t∗� in the statement of the

proposition that t∗� is the smallest value of the parameter t� over the closed set defined
by the conditions (5.17) and (5.18). For each 1 ≤ � ≤ m, let A� be the point of the
(t1, . . . , tm)-space given by

A� = (t1, . . . , tm), where t� = t∗� and tν = t̄ν for ν ∈ {1, . . . ,m} \ {�}.

We observe that the points A1, A2, . . . , Am are the corners of the closed set given by
(5.17) and (5.18).

For each 1 ≤ � ≤ m − 1, the direction vector
−−−−−→
A�+1A� from A�+1 to A� in the

(t1, . . . , tm)-space is

−−−−−→
A�+1A� =

⎛
⎜⎝ 0, . . . , 0︸ ︷︷ ︸

�−1 times

, t∗� − t̄�, t̄�+1 − t∗�+1, 0, . . . , 0︸ ︷︷ ︸
m−�−1 times

⎞
⎟⎠ .

Using (5.11) we observe that for each 1 ≤ � ≤ m − 1, the direction vector
−−−−−→
A�+1A� is

parallel to the vector ⎛
⎜⎝ 0, . . . , 0︸ ︷︷ ︸

�−1 times

,−(� + 2), � + 1, 0, . . . , 0︸ ︷︷ ︸
m−�−1 times

⎞
⎟⎠(5.19)

in the (t1, . . . , tm)-space.
If for each 1 ≤ � ≤ m− 1 the inequality

−−−−−→
A�+ 1A� ·

(
∂S

∂t1
, . . . ,

∂S

∂tm

)
(σ, y, x, t1, . . . , tm) ≥ 0(5.20)

for the standard inner product of vectors in the (t1, . . . , tm)-space holds for each
0 ≤ x ≤ σ

γ and t1, . . . , tm satisfying (5.17) and (5.18), then S(σ, y, x, t1, . . . , tm) is non-
decreasing in the directions from Am to Am−1, from Am−1 to Am−2, . . . , and from A2
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to A1. This implies that if (5.20) holds, then for each 0 ≤ x ≤ σ
γ , S(σ, y, x, t1, . . . , tm)

assumes its maximum at A1. Using (5.19), we obtain that (5.20) is equivalent to

(� + 1)
∂S

∂t�+1
(σ, y, x, t1, . . . , tm) ≥ (� + 2)

∂S

∂t�
(σ, y, x, t1, . . . , tm).(5.21)

Using (5.15), (5.21), and some straightforward manipulations, we observe that (5.20)
holds if

(t�)
�+2
(
y + σ

γ + t1 + 2t2 + · · · + mtm

)

≥ (t�+1)
�+1

(y + x + t1 + 2t2 + · · · + mtm)2.

(5.22)

Using the fact that y + σ
γ + t1 + 2t2 + · · · + mtm ≥ y + x + t1 + 2t2 + · · · + mtm,

the assumption (5.16), and the condition C4, as in the proof of Proposition 5.5, we
obtain that (5.22) holds, and hence for each 0 ≤ x ≤ σ

γ , S(σ, y, x, t1, . . . , tm) assumes
its maximum at A1.

Next we prove the claim (5.16). Note that the gradient of the m-variable function
f(t1, t2, . . . , tm) = t1 +2t2 + · · ·+mtm is (1, 2, . . . ,m) at any point of the (t1, . . . , tm)-
space. For each 1 ≤ � ≤ m − 1, from the standard inner product with the vector in
(5.19) we obtain

(1, 2, . . . ,m) ·

⎛
⎜⎝ 0, . . . , 0︸ ︷︷ ︸

�−1 times

,−(� + 2), � + 1, 0, . . . , 0︸ ︷︷ ︸
m−�−1 times

⎞
⎟⎠

= −(� + 2)� + (� + 1)2 = 1 > 0.

Then, as the function S(σ, y, x, t1, . . . , tm), the function f(t1, . . . , tm) assumes its max-
imum at A1 and hence the claim (5.16) holds. Finally, using (5.13) we complete the
proof under the assumption (5.14). As in the proof of Proposition 5.5, we observe
that if the assumption (5.14) does not hold, but the assumptions of the proposition
do hold, then similar methods also apply and we again have Iy,x1,x2,x3,...,xm(σ) =
S(σ, y, 0, t∗1, t̄2, t̄3, . . . , t̄m). This completes the proof.

Remark 5.11. We note that Proposition 5.10 reduces to Proposition 5.5 and
Corollary 4.9 if m = 2 and m = 1, respectively.

6. Asymptotic bounds for codes. In this section we prove our main results
(Theorem 6.3 and Corollary 6.4) which establish improved lower bounds on αq(δ)
and αlin

q (δ). We use a (nonnegative) real-valued function Ψ(y, x1, . . . , xm) given in
Definition 6.2. Moreover, a well-known result stated in Proposition 6.1 is used in the
proof of Theorem 6.3 for the existence of a sequence of distinguished divisors on the
basis of Proposition 2.4.

We first state our main assumption, which is like Assumption 1 in section 4, but
introduces more notation.

Assumption 1′. Assume that (Fi/Fq)
∞
i=1 is a sequence of global function fields

with full constant field Fq, with gi → ∞ as i → ∞, and with lim supi→∞
ni

gi
= γ > 0,

where ni and gi denote the number of rational places and the genus of Fi, respectively.
For each l ≥ 1, let γl ≥ 0 be a real number with lim infi→∞

Bi,l

gi
≥ γl, where Bi,l is

the number of degree l places of Fi. Using a suitable subsequence of (Fi/Fq)
∞
i=1, we

can take γ1 = γ.



IMPROVED ASYMPTOTIC BOUNDS FOR CODES 893

The following well-known result will be useful.

Proposition 6.1. Under Assumption 1′ we have

lim inf
i→∞

logq hi

ni
≥ 1

γ

[
1 +

∞∑
l=1

γl logq
ql

ql − 1

]
,

where hi is the class number of Fi.

Proof. This follows from [9, Corollary 2] (see also [10, Exercise 2.3.27]).

Now we introduce an important function based on the function Iy,x1,...,xm
(σ)

defined in Definition 5.8. In the next definition we use the fact that Iy,x1,...,xm
(σ) is

an increasing function on its domain of definition; see Lemma 5.9.

Definition 6.2. Under Assumption 1′ and for real numbers y > 0 and x1, . . . ,
xm ≥ 0 with y + 2(2x1 + 3x2 + · · · + (m + 1)xm) < 1, let Ψ(y, x1, . . . , xm) be the
real-valued function of y, x1, . . . , xm defined by

Ψ(y, x1, . . . , xm) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

I−1
y,x1,...,xm

(
1

γ

[
1 +

∞∑
l=1

γl logq
ql

ql − 1

])

if lim
σ→θ−

Iy,x1,...,xm(σ) >
1

γ

[
1 +

∞∑
l=1

γl logq
ql

ql − 1

]
,

0 otherwise,

where θ = γ (1 − y − 2(2x1 + 3x2 + · · · + (m + 1)xm)).

Now we are ready to establish our main results. We recall that the functions
αq(δ) and αlin

q (δ) are defined in (1.1) and (1.2), respectively.

Theorem 6.3. Under Assumption 1′, let x1, . . . , xm ≥ 0 be real numbers with
2(2x1 + 3x2 + · · ·+ (m+ 1)xm) < 1. For each real number 0 < δ < 1− 2(2x1 + 3x2 +
· · · + (m + 1)xm) we have

αq(δ) ≥ R{γl},x1,...,xm
(δ) := 1 − δ − 1

γ
+ (x1 + · · · + xm) logq(q − 1)

−(x1 logq x1 + · · · + xm logq xm) − (1 − (x1 + · · · + xm)) logq (1 − (x1 + · · · + xm))

− (4x1 + 5x2 + · · · + (m + 3)xm)

+
1

γ
Ψ
(
1 − δ − 2(2x1 + 3x2 + · · · + (m + 1)xm), x1, x2, . . . , xm

)
.

Proof. Let y = 1− δ − 2(2x1 + 3x2 + · · ·+ (m+ 1)xm) and σ = Ψ(y, x1, . . . , xm).
If R{γl},x1,...,xm

(δ) ≤ 0, then the statement of the theorem is trivial. If σ = 0 and
R{γl},x1,...,xm

(δ) > 0, then the theorem follows from [4, Theorem 5.1]. Indeed, in this
case let ri = �(m + y)ni� for i ≥ 1. As R{γl},x1,...,xm

(δ) > 0, the conditions of [4,
Theorem 5.1] are satisfied. Then using [4, Theorem 5.1] for sufficiently large i with a
divisor of degree ri of Fi, we obtain a sequence of q-ary codes proving the theorem in
this case. The computation of the parameters is similar to the case where σ > 0 and
R{γl},x1,...,xm

(δ) > 0, which is explained in detail below.

Now we consider the remaining case where σ > 0 and R{γl},x1,...,xm
(δ) > 0. Let
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0 < ε < σ be a real number satisfying

y + (x1 + · · · + xm) logq(q − 1) − (x1 logq x1 + · · · + xm logq xm)

− (1 − (x1 + · · · + xm)) logq (1 − (x1 + · · · + xm))

+(x2 + 2x3 + · · · + (m− 1)xm)

>
1 − (σ − ε)

γ
.

(6.1)

For i ≥ 1, let

ri =
⌊(

m + y + σ−ε
γ

)
ni

⌋
, si = �(m + y)ni� ,

X
(i)
1 = �x1ni�, X(i)

2 = �x2ni�, . . . , X(i)
m = �xmni�.

(6.2)

For sufficiently large i, by Propositions 5.7 and 6.1, the hypotheses of Proposition 2.4

for the global function field Fi with ri, si, and X
(i)
1 , . . . , X

(i)
m as in (6.2) are satis-

fied. Let Gi be the divisor of Fi given by Proposition 2.4 with these parameters for
sufficiently large i.

Note that

lim inf
i→∞

logq |M(x1, . . . , xm;0)|
ni

≥ (x1 + · · · + xm) logq(q − 1) − (x1 logq x1 + · · · + xm logq xm)

− (1 − (x1 + · · · + xm)) logq (1 − (x1 + · · · + xm))

+ (x2 + 2x3 + · · · + (m− 1)xm)

(6.3)

(see [4, section 4]). Since we have (6.1), using the divisor Gi of the global function
field Fi for sufficiently large i, Theorem 2.9, and (6.3), we obtain a sequence of q-
ary codes {Ci}∞i=1 of lengths {ni}∞i=1, respectively, such that ni → ∞ as i → ∞ by
Assumption 1′ as well as

lim inf
i→∞

logq |Ci|
ni

≥ y +
σ − ε

γ
− 1

γ

+ (x1 + · · · + xm) logq(q − 1) − (x1 logq x1 + · · · + xm logq xm)

− (1 − (x1 + · · · + xm)) logq (1 − (x1 + · · · + xm))

+ (x2 + 2x3 + · · · + (m− 1)xm)

= 1 − δ − 2(2x1 + 3x2 + · · · + (m + 1)xm) +
σ − ε

γ
− 1

γ

+ (x1 + · · · + xm) logq(q − 1) − (x1 logq x1 + · · · + xm logq xm)

− (1 − (x1 + · · · + xm)) logq (1 − (x1 + · · · + xm))

+ (x2 + 2x3 + · · · + (m− 1)xm)

= R{γl},x1,...,xm
(δ) − ε

γ

and

lim inf
i→∞

d(Ci)

ni
≥ δ.
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Using the fact that αq(δ) is a nonincreasing function of δ, we get

αq(δ) ≥ R{γl},x1,...,xm
(δ) − ε

γ
.

Letting ε → 0+ completes the proof.

Corollary 6.4. Under Assumption 1′, for each real number 0 < δ < 1 we have

αlin
q (δ) ≥ Rlin

{γl}(δ) := 1 − δ − 1

γ
+

1

γ
Ψ(1 − δ, 0).

Proof. Taking m = 1 and using similar methods as in the proof of Theorem
6.3, but applying Corollary 2.10 instead of Theorem 2.9, we obtain the desired re-
sult.

7. Examples. In this section we demonstrate that Theorem 6.3 and Corol-
lary 6.4 yield improvements on the lower bounds for αq(δ) and αlin

q (δ) at least for
certain values of q and certain values of δ. In our examples we use well-known val-
ues for γ = γ1 and take γl = 0 for l ≥ 2 for the parameters defined in Assump-
tion 1′. Nevertheless, we note that there is a potential for the demonstration of
further improvements by Theorem 6.3 and Corollary 6.4 using γl > 0 for l = 1 and
some l ≥ 2 when q is not a square (the situation is different when q is a square; cf. [9,
Corollary 1]).

For simplicity of notation, for γ = γ1 and γl = 0 for l ≥ 2, we denote the lower
bounds of Theorem 6.3 and Corollary 6.4 by Rγ,x1,...,xm

(δ) and Rlin
γ (δ), respectively.

In the examples below, the required values of these two functions are computed by
using Definition 6.2 and Proposition 5.10.

Let RNO2,γ,x(δ) denote the lower bound in [5, Theorem 5.1]. Moreover, let
Rlin

X,γ(δ) denote Xing’s lower bound for αlin
q (δ) in [13] (see also [5, Theorem 4.6]).

Example 7.1. Let q = 26, γ = γ1 =
√
q − 1, γl = 0 for l ≥ 2, and

δ =
13763868443250238929521503984833381597731412559044

46065097831342932365531985486767649347321318605709

= 0.29879169026501515839 . . . .

In [5, Example 5.2], using x = 10−13 it has been obtained that

αq(δ) ≥ RNO2,γ,x(δ) = 0.55835371587781529071 . . . ,

and has been demonstrated that RNO2,γ,x(δ) −Rlin
X,γ(δ) ≥ 7.3387 · 10−15.

By Corollary 6.4 we obtain that

αlin
q (δ) ≥ Rlin

γ (δ) = 0.55835395724081743804 . . . .

Note that Rlin
γ (δ)−RNO2,γ,x(δ) ≥ 2.4136300214732 · 10−7, and Rlin

γ (δ) is better than

Rlin
X,γ(δ). Hence we have an improvement on the lower bound for αlin

q (δ) compared to
Xing’s bound in [13].
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By Theorem 6.3 with x1 = 3.41 ·10−16, x2 = 1.0634 ·10−23, and x3 = 1.93 ·10−31,
we obtain αq(δ) ≥ Rγ,x1,x2,x3

(δ), where

Rγ,x1,x2,x3(δ) −Rlin
γ (δ) ≥ 2.711029 · 10−17.

Hence Rγ,x1,x2,x3
(δ) gives a further improvement on the lower bound for αq(δ). Note

that Rγ,x1,x2,x3
(δ) yields an improvement on RNO2,γ,x(δ) of the order 10−7, whereas

Maharaj [3] obtained only an improvement of the order 10−15.
Now let

δ =
32301229388092693436010481501934267749589906046665

46065097831342932365531985486767649347321318605709

= 0.70120830973498484160 . . . .

In [5, Example 5.2], using x = 10−13 it has been obtained that

αq(δ) ≥ RNO2,γ,x(δ) = 0.15593709640785805503 . . . ,

and has been demonstrated that RNO2,γ,x(δ) −Rlin
X,γ(δ) ≥ 1.97862 · 10−14.

By Corollary 6.4 we obtain that

αlin
q (δ) ≥ Rlin

γ (δ) = 0.15593754394482448829 . . . .

Note that Rlin
γ (δ)−RNO2,γ,x(δ) ≥ 4.4753696643325 ·10−7, hence Rlin

γ (δ) is better than

Rlin
X,γ(δ). Hence we have an improvement on the lower bound for αlin

q (δ) compared to
Xing’s bound in [13].

By Theorem 6.3 with x1 = 3.89 · 10−18, x2 = 1.98 · 10−26, and x3 = 5.87 · 10−35,
we obtain αq(δ) ≥ Rγ,x1,x2,x3(δ), where

Rγ,x1,x2,x3(δ) −Rlin
γ (δ) ≥ 2.592642 · 10−19.

Hence Rγ,x1,x2,x3(δ) gives a further improvement on the lower bound for αq(δ). Note
that Rγ,x1,x2,x3(δ) yields again an improvement on RNO2,γ,x(δ) of the order 10−7,
whereas Maharaj [3] obtained only an improvement of the order 10−14.

Example 7.2. Let q = 72, γ = γ1 =
√
q − 1, γl = 0 for l ≥ 2, and

δ =
7334559589562321721169749749908497945081695123431

18755194537338788993696079784908084949457099261873

= 0.39106816913897159912 . . . .

In [5, Example 5.3], using x = 10−13 it has been obtained that

αq(δ) ≥ RNO2,γ,x(δ) = 0.44226734872224546020 . . . ,

and has been demonstrated that RNO2,γ,x(δ) −Rlin
X,γ(δ) ≥ 6.57561 · 10−14.

By Corollary 6.4 we obtain that

αlin
q (δ) ≥ Rlin

γ (δ) = 0.44226758374884970747 . . . .

Note that Rlin
γ (δ)−RNO2,γ,x(δ) ≥ 2.3502660424726 · 10−7, and Rlin

γ (δ) is better than

Rlin
X,γ(δ). Hence we have an improvement on the lower bound for αlin

q (δ) compared to
Xing’s bound in [13].
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By Theorem 6.3 with x1 = 1.93 · 10−13, x2 = 1.53 · 10−19, and x3 = 7.08 · 10−26,
we obtain αq(δ) ≥ Rγ,x1,x2,x3

(δ), where

Rγ,x1,x2,x3
(δ) −Rlin

γ (δ) ≥ 1.857062 · 10−14.

Hence Rγ,x1,x2,x3
(δ) gives a further improvement on the lower bound for αq(δ). Note

that Rγ,x1,x2,x3
(δ) yields an improvement on RNO2,γ,x(δ) of the order 10−7, whereas

Maharaj [3] obtained only an improvement of the order 10−12.
Now let

δ =
11420634947776467272526330034999587004375404138442

18755194537338788993696079784908084949457099261873

= 0.60893183086102840087 . . . .

In [5, Example 5.3], using x = 10−13 it has been obtained that

αq(δ) ≥ RNO2,γ,x(δ) = 0.22440368700019503856 . . . ,

and has been demonstrated that RNO2,γ,x(δ) −Rlin
X,γ(δ) ≥ 7.21362 · 10−14.

By Corollary 6.4 we obtain that

αlin
q (δ) ≥ Rlin

γ (δ) = 0.22440401150099750683 . . . .

Note that Rlin
γ (δ)−RNO2,γ,x(δ) ≥ 3.2450080246826 · 10−7, and Rlin

γ (δ) is better than

Rlin
X,γ(δ). Hence we have an improvement on the lower bound for αlin

q (δ) compared to
Xing’s bound in [13].

By Theorem 6.3 with x1 = 5.86 · 10−14, x2 = 3.207 · 10−20, and x3 = 1.02 · 10−26,
we obtain αq(δ) ≥ Rγ,x1,x2,x3

(δ), where

Rγ,x1,x2,x3(δ) −Rlin
γ (δ) ≥ 5.258306 · 10−15.

Hence Rγ,x1,x2,x3(δ) gives a further improvement on the lower bound for αq(δ). Note
that Rγ,x1,x2,x3

(δ) yields again an improvement on RNO2,γ,x(δ) of the order 10−7,
whereas Maharaj [3] obtained only an improvement of the order 10−12.

Example 7.3. Let q = 221, γ = γ1 = 2(q2/3−1)
q1/3+2

(see (1.5)), γl = 0 for l ≥ 2, and

δ =
1034323484865452473463726110309814032498446010098

99621193732964014413326435515634059733734238550355

= 0.01038256465424386359 . . . .

In [5, Example 5.4], using x = 10−60 it has been obtained that

αq(δ) ≥ RNO2,γ,x(δ) = 0.98564990803085654665 . . . ,

and has been demonstrated that RNO2,γ,x(δ) −Rlin
X,γ(δ) ≥ 2.1335699248 · 10−61.

By Corollary 6.4 we obtain that

αlin
q (δ) ≥ Rlin

γ (δ) = 0.98564990803085654673 . . . .

Note that Rlin
γ (δ)−RNO2,γ,x(δ) ≥ 7 ·10−20, and Rlin

γ (δ) is better than Rlin
X,γ(δ). Hence

we have an improvement on the lower bound for αlin
q (δ) compared to Xing’s bound

in [13].
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By Theorem 6.3 with x1 = 6.29 · 10−65 and x2 = 7.09 · 10−97, we obtain αq(δ) ≥
Rγ,x1,x2

(δ), where

Rγ,x1,x2(δ) −Rlin
γ (δ) ≥ 1.261672 · 10−66.

Hence Rγ,x1,x2(δ) gives a further improvement on the lower bound for αq(δ).
Now let

δ =
98586870248098561939862709405324245701235792540257

99621193732964014413326435515634059733734238550355

= 0.98961743534575613640 . . . .

In [5, Example 5.4], using x = 10−60 it has been obtained that

αq(δ) ≥ RNO2,γ,x(δ) = 0.00641503733934427385 . . . ,

and has been demonstrated that RNO2,γ,x(δ) −Rlin
X,γ(δ) ≥ 4.2225689802 · 10−61.

By Corollary 6.4 we obtain that

αlin
q (δ) ≥ Rlin

γ (δ) = 0.00641503733934427410 . . . .

Note that Rlin
γ (δ) − RNO2,γ,x(δ) ≥ 2.4 · 10−19, and Rlin

γ (δ) is better than Rlin
X,γ(δ).

Hence we have an improvement on the lower bound for αlin
q (δ) compared to Xing’s

bound in [13].
By Theorem 6.3 with x1 = 6.5 · 10−86 and x2 = 2.4 · 10−127, we obtain αq(δ) ≥

Rγ,x1,x2
(δ), where

Rγ,x1,x2(δ) −Rlin
γ (δ) ≥ 9.103449 · 10−88.

Hence Rγ,x1,x2(δ) gives a further improvement on the lower bound for αq(δ).

8. Conclusions. In this paper we improved on various lower bounds for αq(δ)
and αlin

q (δ) that were established by several authors in recent years. These improve-
ments were obtained by combining, for the first time, three important methods in
the area: (i) distinguished divisors of global function fields (see Proposition 2.4); (ii)
local expansions of arbitrary length for elements of global function fields (see (2.2)
and (2.3)); (iii) averaging arguments such as those leading to (2.8). This has come
at the cost of considerable complications in the analysis. To get the most out of
this combination of methods, several technical innovations had to be introduced (see
sections 3, 4, and 5).

Since we tried our best to optimize the combination of the three methods above,
we tend to believe that further progress along these lines will have to be based on
completely new ideas. Stichtenoth and Xing [8] introduced a different approach that
led to an alternative proof of (1.6) and Maharaj [3] pursued this approach further.
However, for all the examples in [3] the bounds in the present paper are better (see
section 7). It remains to be seen whether the approach in [8] and [3], if refined further,
has the potential to improve the bounds in the present paper.

Acknowledgments. The authors would like to thank the anonymous referees for
their useful suggestions. The second author would like to thank Temesek Laboratories
and the Department of Mathematics at the National University of Singapore for their
hospitality during the writing of this paper.
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THE COMPLEXITY OF THE LIST PARTITION
PROBLEM FOR GRAPHS∗
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Abstract. The k-partition problem is as follows: Given a graph G and a positive integer k,
partition the vertices of G into at most k parts A1, A2, . . . , Ak, where it may be specified that Ai

induces a stable set, a clique, or an arbitrary subgraph, and pairs Ai, Aj (i �= j) be completely
nonadjacent, completely adjacent, or arbitrarily adjacent. The list k-partition problem generalizes
the k-partition problem by specifying for each vertex x, a list L(x) of parts in which it is allowed to
be placed. Many well-known graph problems can be formulated as list k-partition problems: e.g.,
3-colorability, clique cutset, stable cutset, homogeneous set, skew partition, and 2-clique cutset. We
classify, with the exception of two polynomially equivalent problems, each list 4-partition problem
as either solvable in polynomial time or NP-complete. In doing so, we provide polynomial-time
algorithms for many problems whose polynomial-time solvability was open, including the list 2-
clique cutset problem. This also allows us to classify each list generalized 2-clique cutset problem
and list generalized skew partition problem as solvable in polynomial time or NP-complete.

Key words. graph partition, list partition, complexity, algorithm
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1. Introduction. The problem of partitioning the vertex-set of a graph subject
to a given set of constraints on adjacencies between vertices in two distinct parts,
or among vertices within a part, is fundamental and ubiquitous in algorithmic graph
theory. For example, the problem of testing whether graph G is bipartite is equivalent
to testing whether the vertex-set of G can be partitioned into parts A1 and A2 such
that each Ai is a stable set; here we have no constraint on the adjacencies between
vertices in A1 and vertices in A2. A graph is a split graph [28] if its vertex-set can
be partitioned into a clique and a stable set. As the definition itself suggests, testing
whether graph G is a split graph is another partition problem where we do not restrict
the adjacencies between vertices placed in different parts of the partition. On the other
hand, testing whether graph G is a complete tripartite graph is equivalent to testing
whether the vertex-set of G can be partitioned into parts A1, A2, and A3 such that
each Ai induces a stable set, and between vertices in parts Ai, Aj , i �= j, we have
all possible edges; hence, the relationship between vertices placed in distinct parts is
relevant here.
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1.1. The problem. In general, we can ask whether the vertex-set of a graph
can be partitioned into at most k parts, A1, A2, . . . , Ak, subject to constraints that
require “no edges,” “all edges,” or “no restriction” between vertices placed in parts
Ai and Aj ; when i = j, the resulting constraint is on the subgraph induced by Ai.
We can specify the required constraints on the partition via a symmetric k×k matrix
M over {0, 1, ∗}. The natural interpretation is as follows: for i �= j, if Mi,j = 0
(resp., 1, *), then we require “no edges” (resp., “all edges”, “no restriction”) between
vertices placed in part Ai and vertices placed in part Aj ; if Mi,i = 0 (resp., 1, *), then
we require Ai to be a stable set (resp., clique, arbitrary subgraph). An M-partition
of graph G then is a partition of the vertex-set of G into at most k parts so that
all the constraints specified by M are respected. The M-partition problem asks the
following: “Given G and a symmetric k× k matrix M over {0, 1, ∗}, does G admit an
M -partition?”. Many well-known graph theoretic problems are specific instances of
the M -partition problem. For example, the 3-colorability problem is an M -partition
problem where M is a 3 × 3 matrix with zeros on the main diagonal and asterisks
everywhere else. Testing whether a graph is a split graph is asking whether the graph
has an M -partition where M is a 2 × 2 matrix with a zero and one on the diagonal
and asterisks everywhere else.

Feder et al. [22] introduced the M -partition problem and also generalized it to
the list M-partition problem. In the list M -partition problem, in addition to being
given graph G and a symmetric k× k matrix M over {0, 1, ∗}, for each vertex v of G,
we are given a list L(v) that is a nonempty subset of {A1, A2, . . . , Ak}. The problem
asks the following: “Does G admit an M -partition in which each vertex v of G is
assigned to a part in L(v)?”.

Many well-known graph problems can be formulated as list M -partition problems:
e.g., list k-coloring, clique cutset, stable cutset, homogeneous set, skew partition, and
2-clique cutset. We study the list M -partition problems when M has dimension 4
with the goal of classifying them according to their complexity. Figure 1.1 illustrates
the matrices corresponding to some of the problems we discuss.

1.2. Main results. In the following discussion, we use A,B,C,D to denote the
parts of the M -partition problem. Let the stubborn problem be the list M -partition
problem where MA,A = 0, MB,B = 0, MD,D = 1, MA,C = MC,A = 0, and all
other entries are asterisks (see Figure 1.1). The complement problem is obtained by
interchanging the zeros and ones in the matrix. When M has dimension 4, we classify,
with the sole exception of the stubborn problem and its complement, each list M -
partition problem as either solvable in polynomial time or NP-complete. In doing so,
we provide polynomial-time algorithms for many problems whose polynomial-time
solvability was open. For example, we settle the open problem posed by Feder et al.
[22] as to the existence of a polynomial-time algorithm to find a 2-clique cutset in a
graph by providing a polynomial-time algorithm for the list 2-clique cutset problem.
A 2-clique cutset is a cutset that induces the union of two cliques (or, equivalently,
induces a bipartite graph in the complement).

Suppose P is an M -partition problem. A generalized P problem is an M ′-partition
problem where M ′ is obtained from M by changing some asterisks to either 0 or
1. Among other results, we prove that any list generalized 2-clique cutset problem
(i.e., M ′

A,A = 1, M ′
B,B = 1, M ′

C,D = M ′
D,C = 0, and the other entries are 0, 1,

or ∗) is solvable in polynomial time, unless it contains the complement of the 3-
colorability problem, in which case it is NP-complete. This implies that the list
strict 2-clique cutset problem is polynomial-time solvable, and via this we provide
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[
0 ∗
∗ 1

] ⎡
⎣ 0 ∗ ∗

∗ 0 ∗
∗ ∗ 0

⎤
⎦

⎡
⎣ ∗ 0 ∗

0 ∗ ∗
∗ ∗ 1

⎤
⎦

⎡
⎣ ∗ 0 ∗

0 ∗ ∗
∗ ∗ 0

⎤
⎦

⎡
⎣ ∗ ∗ 1

∗ ∗ 0
1 0 ∗

⎤
⎦

split graph 3-colorability clique cutset stable cutset homogeneous set

⎡
⎢⎢⎣

∗ ∗ 0 0
∗ 0 ∗ 0
0 ∗ 0 ∗
0 0 ∗ ∗

⎤
⎥⎥⎦

⎡
⎢⎢⎣

∗ 1 ∗ ∗
1 ∗ ∗ ∗
∗ ∗ ∗ 1
∗ ∗ 1 ∗

⎤
⎥⎥⎦

⎡
⎢⎢⎣

∗ 1 ∗ ∗
1 ∗ ∗ ∗
∗ ∗ ∗ 0
∗ ∗ 0 ∗

⎤
⎥⎥⎦

stable cutset pair 2K2 skew partition

⎡
⎢⎢⎣

1 0 ∗ ∗
0 1 ∗ ∗
∗ ∗ ∗ 0
∗ ∗ 0 ∗

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 ∗ ∗ ∗
∗ 1 ∗ ∗
∗ ∗ ∗ 0
∗ ∗ 0 ∗

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0 ∗ 0 ∗
∗ 0 ∗ ∗
0 ∗ ∗ ∗
∗ ∗ ∗ 1

⎤
⎥⎥⎦

strict 2-clique cutset stubborn
2-clique cutset problem

Fig. 1.1. Some M-partition problems.

a polynomial-time algorithm to find a strict 2-clique cutset. A strict 2-clique cutset
is a cutset that induces the disjoint union of two cliques (or, equivalently, induces a
complete bipartite graph in the complement). We also classify each list generalized
skew partition problem as solvable in polynomial time or NP-complete.

1.3. Significance. Many important graph decomposition problems can be for-
mulated as M -partition problems with additional constraints imposed on the parts.
Indeed, the eventual resolution of the Strong Perfect Graph Conjecture by Chud-
novsky et al. [5] relies in part on three types of decompositions (a type of skew cutset
partition and two generalizations of the homogeneous set partition) that can be for-
mulated as M -partition problems with constraints. Such extra constraints typically
are that certain parts be nonempty, have at least a given number of vertices, induce
subgraphs that have at least one edge, etc. As discussed later, an instance of the M -
partition problem with additional constraints can be reduced to a set of instances of
the list M -partition problem. Thus, the list M -partition problem provides a flexible
model to capture extra constraints placed on the required partition.

Every list M -partition problem with M of dimension 4 was classified by Feder
et al. [22] as either ‘solvable in quasi-polynomial time’ or NP-complete. Here, quasi-

polynomial time is complexity of O(nc logtn), where t and c are positive constants and n
is the number of vertices in the input graph. Complete classification into polynomial-
time solvable and NP-complete problems has been obtained for the list M -partition
problem under several restrictions on M : when M is a matrix over {0, ∗}, {1, ∗}, or
{0, 1} [16, 19, 20, 22], has dimension 4 and does not contain an asterisk on the main
diagonal [22], is the matrix for skew partition [15], has dimension 3 [22], and, trivially,
when M has dimension 2. We complete this dichotomy classification (polynomial-
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time solvable and NP-complete) for all problems when M has dimension 4, with the
exception of the stubborn problem (see Figure 1.1) and its complement. Further, when
M has dimension 4, we give polynomial-time algorithms for many list M -partition
problems that were previously not known to be solvable in polynomial time [22]. The
techniques we employ, obtained by strengthening the techniques used in [15], are
general enough that they may prove useful in solving other decomposition problems.
For instance, we develop tools that are applicable to list M -partition problems of any
dimension.

In general, such dichotomy (into polynomial-time solvable and NP-complete prob-
lems) results are uncommon. However, Feder and Vardi [26] have made a dichotomy
conjecture in the context of constraint-satisfaction problems which has generated con-
siderable interest and has been proven in several special cases [17]. It is noted in
[17, 22] that general list M -partition problems are similar to, but not exactly the
same as, list constraint-satisfaction problems. It was conjectured in [22] that every
list M -partition problem (with no restriction on dimension of M) is either solvable
in quasi-polynomial time or NP-complete. This “quasi-dichotomy” has since been
established by Feder and Hell [17].

We show that all the quasi-polynomial-time cases of the Feder et al. [22] quasi-
dichotomy result for the list M -partition problem when M has dimension 4 are ac-
tually polynomial-time solvable, with the single exception of the stubborn problem
(and its complement), for which the best known complexity remains quasi-polynomial
time. There is no NP-complete problem that is known to have a quasi-polynomial-
time solution, and it is generally believed that problems solvable in quasi-polynomial
time are unlikely to be NP-complete. A polynomial-time solution for the stubborn
problem, if one exists, appears to be difficult and to require methods different from
those presented here and those in [17, 22].

Next, we remark on the attention that the stubborn problem has received subse-
quent to the appearance of a preliminary version of this paper in [4]. Feder and Hell
have independently identified the so-called “edge-free three-coloring problem” (see
[17]), in their attempt to classify certain list partition and list constraint satisfaction
problems, whose complexity has also eluded classification. Further, it is shown in [17]
that the two problems are closely related and also that the latter problem is at least
as hard as the stubborn problem. Finally, in a recent work in [24], it was shown that

each of these two problems can be solved in O(nO( log n
log log n )) time, thus improving the

bound of O(nO(log n)) established in [22]. This remains the current best complexity
for solving the stubborn problem.

1.4. Background and previous work. Feder et al. [22] introduced the M -
partition problem and, motivated by the need to capture additional restrictions on
the contents of individual parts or the connections between parts, generalized it to
the list M -partition problem. Lists also facilitate solving problems by recursing to
subproblems with modified lists. We use this technique, which was also employed in
the algorithms of [15, 22]. The list M -partition problem generalizes the M -partition,
list k-coloring, and list homomorphism (cf. below) problems. An instance of the M -
partition problem with certain additional constraints (that certain parts be nonempty,
have at least a given number of vertices, induce subgraphs that have at least one
edge, etc.) can be reduced to a set of instances of the list M -partition problem. In
this manner, the list M -partition problem provides a flexible model to capture extra
constraints on the required partition. Many well-known graph theoretic problems
correspond to M -partitions with additional constraints. We elaborate on this notion
next.
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A clique cutset in a graph is a cutset that induces a clique. It is easy to see that
a connected graph has a clique cutset if and only if its vertex-set can be partitioned
into parts A, B, and C, such that C is a clique, there are no edges between parts A
and B, and, further, each part is nonempty. For a graph G on n vertices, the clique
cutset problem can be reduced to O(n3) instances of the list M -partition problem,
where M is the matrix corresponding to the clique cutset problem, as follows: in order
to handle the restriction that each of the parts A, B, and C be nonempty, for each
triple x, y, z of vertices, we construct an instance with L(x) = {A}, L(y) = {B},
L(z) = {C}, and the list for any other vertex is {A,B,C}. G has a clique cutset if and
only if some such instance has a valid list M -partition. We note that finding a clique
cutset and decomposing a graph via clique cutsets have applications in algorithmic
graph theory [7, 28], and efficient algorithms exist for these problems [28, 33, 35, 36].

A 2-clique cutset is a cutset that is the union of two cliques (equivalently, the set
of vertices in the cutset induces a bipartite graph in the complement). As illustrated
in Figure 1.1, if parts A and B correspond to the two cliques whose union disconnects
part C from part D, then whether a graph admits a 2-clique cutset is again an
instance of the M -partition problem with the extra stipulation that each part be
nonempty. Hayward and Reed [29] conjectured that every (even hole)-free graph (a
graph that does not contain any induced cycle on an even number of vertices ≥ 4) that
is not a complete graph contains a vertex whose neighborhood can be partitioned into
two cliques. This conjecture implies that an (even hole)-free graph G has chromatic
number at most 2ω(G), where ω(G) is the clique number of G. Hoàng [31] proposed
the weaker conjecture that (even hole)-free graphs different from a clique have a
2-clique cutset. Feder et al. [22] provided the first subexponential-time (but, not
polynomial-time) algorithm to solve the list M -partition problem where M is the
matrix for a 2-clique cutset, and hence, they also solved the 2-clique cutset problem
in subexponential time. They posed the question [22] of the existence of a polynomial-
time algorithm for the problem, which is answered in the affirmative here. We note
that (even hole)-free graphs can be recognized in polynomial time [8, 9].

Analogous to a clique cutset, if we require the cutset to induce a stable set, then we
get the stable cutset problem. A skew partition of a graph is a partition of its vertex-
set into nonempty parts A, B, C, and D such that there are all possible edges between
parts A and B and there are no edges between parts C and D. These problems are M -
partition problems with the added constraint that each part be nonempty. Both the
stable cutset and skew partition problems play prominent roles in the area of perfect
graph theory. The interest in the stable cutset problem was motivated by Tucker’s
result [34] that a minimal imperfect graph, other than a chordless odd cycle, cannot
contain a stable cutset. Chvátal conjectured [6] that a minimal imperfect graph does
not admit a skew partition. Skew partitions played an important role in the proof
of the Strong Perfect Graph Conjecture by Chudnovsky et al. [5]; this work also
proved Chvátal’s conjecture. Testing whether a graph has a stable cutset is known
to be NP-complete [14]. However, Feder et al. [22] gave the first subexponential-time
algorithm for the (list) skew partition problem. A polynomial-time algorithm for the
(list) skew partition problem was developed subsequently by de Figueiredo et al. [15].

In certain other M -partition problems, there are constraints that there be at least
a certain number of vertices in some parts. A homogeneous set or module in a graph
is a set C of vertices such that C has at least two, but not all, of the vertices of the
graph, and every vertex not in C is either adjacent to all the vertices in C, or none
of the vertices in C. Among vertices not in C, if A is the set of vertices that are
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adjacent to all the vertices in C, and B is the set of vertices that are adjacent to
none of the vertices in C, then testing for the presence of module is an M -partition
problem with the additional requirements that |C| ≥ 2 and A ∪ B is nonempty.
We can reduce the homogeneous set problem for a graph G on n vertices to O(n3)
instances of the list M -partition problem, where M is the matrix corresponding to
the homogeneous set problem, as follows: for each triple x, y, z of vertices, we set
L(x) = {C}, L(y) = {C}, and L(z) = {A,B}, the list of any other vertex to {A,B,C},
and check if any such instance has a valid list M -partition. Testing for the presence
of modules and decomposition of a graph via modules have important applications in
algorithmic graph theory, and efficient algorithms exist for these problems [10, 28, 32].

Feder et al. [22] studied the list M -partition problem with the goal of classifying
matrices M into those for which the problem is efficiently solvable and those for which
an efficient solution is perhaps unlikely. Next, we present results known on restricted
versions of the list M -partition problem and then results known on the general list
M -partition problem.

A k-coloring of graph G is the same as an M -partition of G where M (with
dimension k) has zeros along the main diagonal and all other entries are asterisks.
Therefore, the k-colorability problem is an M -partition problem where M is obtained
from the 0-1 adjacency matrix of a complete (loopless) graph on k vertices by replacing
every 1 with an asterisk. The more general H-coloring problem [30] is derived when
M is obtained from the adjacency matrix of an arbitrary graph in the same way. More
precisely, in the H-coloring problem [30], also called the homomorphism problem, given
graph G and a specific graph H (possibly containing loops), we are asked whether it
is possible to partition V (G) into parts Au, u ∈ V (H), such that Au is a stable set
when u does not have a loop in H, and there are no edges between parts Ax and Ay

whenever xy /∈ E(H). The H-coloring problem is solvable in polynomial time when
H is bipartite or when H contains a loop, and is NP-complete otherwise [30].

The list H-coloring problem [16, 19, 20] is the list version of the H-coloring
problem where, in addition to being given G and H, for each vertex v of G we are
given a list, L(v) which is a subset of V (H). The problem then asks whether there is
an H-coloring subject to the additional restriction that each vertex v of G is placed
in a part Ay such that y ∈ L(v). Just as the list coloring is a special case of list
H-coloring (when H is a complete graph with no loops), list H-coloring is a special
case of list M -partition where the matrix M is obtained from the adjacency matrix
of the graph H by replacing every 1 with an asterisk.

In a sequence of papers [16, 19, 20], it was established that every list H-coloring
problem (namely, every list M -partition problem where M is a matrix over {0, ∗}) is
either solvable in polynomial time or NP-complete. The complement M of a matrix
M over {0, 1, ∗} is obtained from M by interchanging the zeros and ones and leaving
the asterisks unchanged. Since the list M -partition problem for G, where M is a
matrix over {1, ∗}, is essentially the same as the list M -partition problem for the
complement of G, it follows that every list M -partition problem, where M is a matrix
over {1, ∗}, is also either solvable in polynomial time or NP-complete. See Figure 1.1
for definitions of the problems in the following theorems.

Theorem 1.1 (see [16, 19, 20]). If M is a matrix over {0, ∗} or {1, ∗}, then the
list M-partition problem is either solvable in polynomial time or NP-complete.

The following corollary can be derived from [16, 19, 20].

Corollary 1.2 (see [16, 19, 20, 21]). If M is a matrix over {0, ∗} or {1, ∗}
and has dimension 4, then the list M -partition problem is solvable in polynomial time,
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except when M contains the matrix for 3-coloring, stable cutset, or their complements,
or M is the matrix for stable cutset pair, 2K2, or their complements, in which cases
the problem is NP-complete.

Feder et al. [22] proved the following three theorems.

Theorem 1.3 (see [22]). When M has dimension 3, the list M -partition problem
is solvable in polynomial time, except when M is the matrix for 3-coloring, stable
cutset, or their complements, in which cases the problem is NP-complete.

Theorem 1.4 (see [22]). When M has dimension 4 and does not contain a ∗ on
the main diagonal, the list M -partition problem is solvable in polynomial time, except
when M contains the matrix for 3-coloring, or its complement, in which cases the
problem is NP-complete.

Theorem 1.5 (see [22]). When M has dimension 4, the list M -partition problem
is solvable in quasi-polynomial time or NP-complete.

Feder et al. [22] also showed that if M is a matrix over {0, 1}, then the list M -
partition problem is polynomial-time solvable. When M has dimension 2, the problem
can be reduced to the 2-satisfiability problem and solved in polynomial time using
the algorithm of [1].

It was conjectured in [22] that every list M -partition problem (with no restriction
on dimension of M) is either solvable in quasi-polynomial time or NP-complete, and
this now has been shown to be the case by Feder and Hell [17]. In a recent work [17],
it has been shown that every list M -partition problem for directed graphs is either
solvable in quasi-polynomial time or NP-complete. Further, when M has dimension
at most 3, the quasi-polynomial cases of the list M -partition problem for directed
graphs are now known to be polynomial-time solvable [25].

We close this section by referring the reader to [22] for a fine exposition on other
graph theoretic problems that can be modeled as list M -partition problems.

2. Tools. We borrow some tools from [15] and [22]. For a vertex v of graph G,
N(v) denotes the set of vertices adjacent to v in G, i.e., N(v) is the set of neighbors
of v in G.

A basic strategy that we employ, much akin to [22] and [15], is replacing an
instance I of the list M -partition problem on graph G by a polynomially bounded
number of instances I1, I2, . . . , Ip such that

• The answer to I is “yes” if and only if the answer to some Ik is “yes.”

Moreover, each instance Ik satisfies at least one of the following:
• The longest list of I is missing in Ik.
• The number of distinct lists in Ik is fewer than the number of distinct lists

in I.
• Ik is an instance of the list M ′-partition problem for graph H where H is an

induced subgraph of G and M ′ is a principal submatrix of M .
• Ik is easy to resolve.

Next we reproduce and summarize the tools from [22] that we use in this regard.

Tool 1. An instance of the list M-partition problem in which the list for every
vertex of the input graph has size at most two, is solvable in polynomial time.

Justification. Such a problem can easily be modeled as an instance of the 2-
satisfiability problem (2-SAT) and solved using the algorithm in [1].

In the course of dealing with an instance of the list M -partition problem, our
methods might decide to place a particular vertex in a specific part of the partition
(either because the list of the vertex has size one, or this is one of the many possibilities
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that will be tried). The following tool addresses how the instance can then be “cleaned
up” to account for the placement of the vertex without altering the outcome.

Tool 2. Suppose we have an instance of the list M-partition problem on graph
G with lists L, and suppose we decide to place vertex v in part X. Let L′ be the lists
obtained from L as follows: for all parts Y such that MX,Y = 0, remove Y from the
lists of neighbors of v. For all parts Y such that MX,Y = 1, remove Y from the lists
of nonneighbors of v. Then there is a list M-partition of G with respect to lists L and
with v in X if and only if there is a list M-partition of G-v with respect to lists L′.

Tool 3. Suppose we have an instance of the list M-partition problem for a graph
on n vertices where MX,Y = 0 and MX,Z = 1. Then we can replace the instance with
a set of instances consisting of one instance in which no vertex has X in its list, and
at most n other instances in each of which no vertex has both Y and Z in its list such
that the original instance admits a list M-partition if and only if some new instance
does.

Justification. If the original instance were to admit a list M -partition, then the
possibilities are that either some vertex that had X in its list is placed in part X, or
no vertex that had X in its list is placed in part X. The latter case can be covered by
creating an instance by deleting X from every list. The former case can be covered
by creating, for each vertex v that has X in its list, an instance by placing v in X
and then applying Tool 2.

Following the terminology used in [22], we say part X dominates part Y in matrix
M , if for every part Z (including X and Y ), we have MX,Z = MY,Z or MX,Z = ∗.

Tool 4. Suppose we have an instance of the list M-partition problem on graph
G with lists L, and part X dominates part Y in M. Let L′ be the lists obtained from L
by removing Y from any list that also contains X. Then there is a list M-partition of
G with respect to lists L if and only if there is a list M-partition of G with respect to
lists L′.

Justification. If part X dominates part Y in matrix M , then in any list M -
partition of G, a vertex in part Y can also be placed in part X.

Again, following the terminology in [22], we say that a k × k matrix M contains
a p× p matrix M ′, p ≤ k, if M ′ is a principal submatrix of M .

Tool 5. If M contains M ′ and the list M ′-partition problem is NP-complete,
then the list M-partition problem is also NP-complete.

Justification. Clearly, any polynomial-time algorithm for the list M -partition
problem can be used, without any changes, to solve the list M ′-partition problem in
polynomial time.

Recall that the complement M of matrix M is obtained from M by replacing
every 0 with a 1, every 1 with a 0, and leaving the asterisks unchanged.

Tool 6. Graph G admits a list M-partition with respect to lists L if and only if
the complement of G admits a list M -partition with respect to the lists L.

The following lemmata can be extracted from the details in [15]; however, they
are not explicitly presented as lemmata there. We state them explicitly and present
their proofs in their entirety for the sake of completeness. For simplicity of exposition
(as was done in [15]) we use the constant 1/10 (and the related constants 7/10, 8/10,
and 9/10) in the following lemmata. However, this can be replaced by any constant
1/c (and the related constants replaced by (c− 3)/c, etc.) such that c ≥ 5.

With respect to graph G and vertex-subset O of G, O denotes the subgraph
induced by O in G, the complement of G.

Lemma 2.1 (see [15]). Let G be a graph on n vertices and W be the set of those
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vertices of G whose degree is more than 9n
10 . If |W | > 9n

10 , then there is a linear time
algorithm that

• either finds pairwise disjoint vertex subsets O, T , and NT of G such that
|O| + |NT | ≥ n

10 , |T | ≥ n
10 , O is connected, there are all possible edges

between O and T , and each vertex in NT is nonadjacent to a vertex of O,
• or finds disjoint vertex subsets O∗, T ∗ of G such that |O∗| ≥ n

10 , |T ∗| ≥ 7n
10 ,

and there are all possible edges between O∗ and T ∗.

Proof. Consider the following algorithm that partitions a subset W ′ of W into
sets O, T , and NT , where |W ′| > 8n

10 . The algorithm starts with a single vertex in
set O and attempts to grow the set.

Algorithm α.
Input:

W ′ ⊆ W such that |W ′| > 8n
10 .

pick vertex u ∈ W ′;
O = {u};
T = N(u) ∩W ′;
NT = W ′ − T − {u};
repeat

pick v ∈ NT ;
move v from NT to O;
move T\N(v) from T to NT

until (|O| + |NT | ≥ n
10 ) or (NT = ∅)

We first set W ′ = W and invoke Algorithm α. As u is nonadjacent to fewer
than n

10 vertices of G (hence, of W ′), initially |NT | < n
10 . Suppose the algorithm

stops with |O| + |NT | ≥ n
10 . As v is nonadjacent to fewer than n

10 vertices of G (and
hence, of W ′), fewer than n

10 new vertices were moved into O ∪NT during the final
iteration. Therefore, n

10 ≤ |O| + |NT | < 2n
10 and |T | ≥ (|W ′| − 2n

10 ) ≥ ( 8n
10 − 2n

10 ) ≥ n
10 .

Further, as any vertex v moved into O is nonadjacent to some vertex of O, O remains
connected. Clearly, there are all possible edges between O and T and every vertex in
NT is nonadjacent to some vertex in O. Therefore, the sets O, T , and NT meet the
conditions of the lemma.

On the other hand, suppose the algorithm stops with |O|+|NT | < n
10 and NT = ∅;

clearly, |O| < n
10 and W was partitioned into O and T , and there are all possible edges

between O and W\O. We then apply the following algorithm to find the desired sets.

Algorithm β
Input:

O ⊆ W such that |O| < n
10 and there are all possible edges between O

and W\O.

O∗ = O;
W ′ = W\O∗;
repeat

Apply Algorithm α to W ′ to partition it into sets O, T , and NT ;
if (|O| + |NT | ≥ n

10 ) then
stop /* O, T , and NT are as desired */
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else
{

O∗ = O∗ ∪O;
W ′ = W\O∗

}
until (|O∗| ≥ n

10 );
T ∗ = W\O∗

Note that as Algorithm β begins, |W ′| > 8n
10 ; also, there are all possible edges

between O∗ and W\O∗. If the algorithm stops with |O| + |NT | ≥ n
10 , then we have

found appropriate sets O, T , and NT . Otherwise, |O| < n
10 and W ′ is partitioned

into O and T . This implies that at the end of each iteration, there are all possible
edges between O∗ and W\O∗. If |O∗| < n

10 (and hence, the loop does not terminate),
then |W ′| > 8n

10 for the next iteration, satisfying the precondition for Algorithm α.
Suppose Algorithm β stops with |O∗| ≥ n

10 ; then, at the end of the penultimate
iteration, |O∗| < n

10 . Since the set O of vertices added to O∗ during the final iteration
has fewer than n

10 vertices, when the algorithm stops, |O∗| < 2n
10 . Taking T ∗ = W\O∗

then guarantees that |T ∗| ≥ (|W | − |O∗|) ≥ ( 9n
10 − 2n

10 ) ≥ 7n
10 and there are all possible

edges between O∗ and T ∗. Finally, the algorithms can easily be implemented to run
in linear time.

Lemma 2.2 (see [15]). Let G be a graph on n vertices with a partition of its
vertex set into sets S1, S2 with |S1| = n1 and |S2| = n2. Let X1 be the set of those
vertices in S1 each of which has fewer than n2

10 neighbors in S2. If |X1| ≥ n1

2 , then
there is a linear time algorithm that finds vertex subsets O, M , and NM of G such
that

1. O ⊆ X1,
2. S2 is partitioned into M and NM ,
3. there are no edges between O and M ,
4. every u ∈ NM has a neighbor u′ ∈ O, and
5. either 2n2

5 ≤ |M | ≤ n2

2 and |NM | ≥ n2

2 , or |O| ≥ n1

10 and |M | > n2

2 .

Proof. We apply the following linear time algorithm to grow the set O ⊆ X1

starting with a single vertex in O while partitioning S2 into sets M and NM .

Algorithm γ
Input:

Sets S1, S2, and X1 as specified in Lemma 2.2.

pick vertex u ∈ X1;
O = {u};
NM = N(u) ∩ S2;
M = S2\NM ;
repeat

pick v ∈ (X1\O);
move v to O;
move N(v) ∩M from M to NM

until (|M | ≤ n2

2 ) or (|O| ≥ n1

10 )

It is evident from Algorithm γ that there are no edges between O and M , and
every vertex in NM has a neighbor in O. As u is adjacent to fewer than n2

10 vertices
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of S2, initially |M | > 9n2

10 . Suppose |M | ≤ n2

2 when the algorithm stops. Since v is
adjacent to fewer than n2

10 vertices of S2 (hence, of M), fewer than n2

10 vertices were
moved from M to NM during the final iteration. Therefore, |M | > (n2

2 − n2

10 ), and we

have 2n2

5 ≤ |M | ≤ n2

2 . As M and NM partition the set S2, we also have |NM | ≥ n2

2 ,
as desired. On the other hand, suppose the algorithm stops with |M | > n2

2 and
|O| ≥ n1

10 . The conditions of the lemma are then trivially met.

Lemma 2.3 (see [15]). Let G be a graph on n vertices with a partition of its vertex
set into sets S1, S2 with |S1| = n1 and |S2| = n2. Let W1 be the set of those vertices
in S1 each of which has more than 9n1

10 neighbors in S1 and more than 9n2

10 neighbors

in S2. Let W2 be the set of those vertices in S2 each of which has more than 9n2

10

neighbors in S2 and more than 9n1

10 neighbors in S1. If |W1| > 9n1

10 and |W2| > 9n2

10 ,
then there is a linear time algorithm that

• either finds pairwise disjoint vertex subsets O, T , and NT of G such that
1. O is connected,
2. there are all possible edges between O and T ,
3. each vertex in NT is nonadjacent to a vertex in O,
4. |T ∩ S1| ≥ n1

10 ,
5. |T ∩ S2| ≥ n2

10 , and
6. either |O ∩ S1| + |NT ∩ S1| ≥ n1

10 , or |O ∩ S2| + |NT ∩ S2| ≥ n2

10 ,
• or finds disjoint vertex subsets O∗, T ∗ of G such that

1. either O∗ ⊆ S1 and |O∗| ≥ n1

10 , or O∗ ⊆ S2 and |O∗| ≥ n2

10 ,
2. |T ∗ ∩ S1| ≥ n1

10 ,
3. |T ∗ ∩ S2| ≥ n2

10 , and
4. there are all possible edges between O∗ and T ∗.

Proof. We begin by noting that the proof of Lemma 2.3 is similar in principle
to that of Lemma 2.1. Let W = (W1 ∪ W2), and therefore, |W ∩ S1| > 9n1

10 and

|W ∩ S2| > 9n2

10 .

Consider the following algorithm that partitions a subset W ′ of W into sets O,
T , and NT , where |W ′ ∩ S1| > 8n1

10 and |W ′ ∩ S2| > 8n2

10 . The algorithm starts with
a single vertex in set O and attempts to grow the set.

Algorithm δ
Input:

W ′ ⊆ W such that |W ′ ∩ S1| > 8n1

10 and |W ′ ∩ S2| > 8n2

10 .

pick vertex u ∈ W ′;
O = {u};
T = N(u) ∩W ′;
NT = W ′ − T − {u};
repeat

pick v ∈ NT ;
move v from NT to O;
move T\N(v) from T to NT

until (|O ∩ S1| + |NT ∩ S1| ≥ n1

10 ) or (|O ∩ S2| + |NT ∩ S2| ≥ n2

10 ) or (NT = ∅)

We first set W ′ = W and invoke Algorithm δ. As u is nonadjacent to fewer than
n1

10 vertices of S1 (hence, of W ′ ∩ S1) and fewer than n2

10 of vertices of S2 (hence, of
W ′ ∩ S2), initially |NT ∩ S1| < n1

10 and |NT ∩ S2| < n2

10 .

Suppose when the algorithm stops, ((|O∩S1|+|NT∩S1| ≥ n1

10 ) or (|O∩S2|+|NT∩
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S2| ≥ n2

10 )) is true; without loss of generality, assume that |O∩S1|+|NT∩S1| ≥ n1

10 . As
v is nonadjacent to fewer than n1

10 vertices of S1 (hence, of W ′∩S1), fewer than n1

10 new
vertices were moved into (O ∩ S1) ∪ (NT ∩ S1) during the final iteration. Therefore,
|O ∩ S1| + |NT ∩ S1| < 2n1

10 . For similar reasons, |O ∩ S2| + |NT ∩ S2| < 2n2

10 .

Hence, |T ∩ S1| ≥ (|W ′ ∩ S1| − (|O ∩ S1| + |NT ∩ S1|)) ≥ ( 8n1

10 − 2n1

10 ) ≥ n1

10 and

|T∩S2| ≥ (|W ′∩S2|−(|O∩S2|+|NT∩S2|)) ≥ ( 8n2

10 − 2n2

10 ) ≥ n2

10 . Further, as any vertex

v moved into O is nonadjacent to some vertex of O, O remains connected. Clearly,
there are all possible edges between O and T and every vertex in NT is nonadjacent
to some vertex in O. Therefore, the sets O, T , and NT meet the conditions of the
lemma.

On the other hand, suppose the algorithm stops with |O ∩ S1|+ |NT ∩ S1| < n1

10 ,
|O ∩ S2| + |NT ∩ S2| < n2

10 , and NT = ∅; clearly, |O ∩ S1| < n1

10 , |O ∩ S2| < n2

10 , W is
partitioned into O and T , and there are all possible edges between O and W\O. We
then apply the following algorithm to find the desired sets.

Algorithm ε
Input:

O ⊆ W such that |O ∩ S1| < n1

10 and |O ∩ S2| < n2

10
and there are all possible edges between O and W\O.

J∗ = O;
W ′ = W\J∗;
repeat

Apply Algorithm δ to W ′ to partition it into sets O, T , and NT ;
if (|O ∩ S1| + |NT ∩ S1| ≥ n1

10 ) or (|O ∩ S2| + |NT ∩ S2| ≥ n2

10 ) then
stop /* O, T , and NT are as desired */

else
{

J∗ = J∗ ∪O;
W ′ = W\J∗

}
until (|J∗ ∩ S1| ≥ n1

10 ) or (|J∗ ∩ S2| ≥ n2

10 );
if (|J∗ ∩ S1| ≥ n1

10 ) then
O∗ = J∗ ∩ S1

else
O∗ = J∗ ∩ S2;

T ∗ = W\J∗

Note that as Algorithm ε begins, |W ′∩S1| > 8n1

10 and |W ′∩S2| > 8n2

10 ; also, there
are all possible edges between J∗ and W\J∗. If the algorithm stops with ((|O∩S1|+
|NT ∩ S1| ≥ n1

10 ) or (|O ∩ S2| + |NT ∩ S2| ≥ n2

10 )) being true, then we have found
appropriate sets O, T , and NT . Otherwise, |O ∩ S1| < n1

10 , |O ∩ S2| < n2

10 , and W ′

is partitioned into O and T . This implies that at the end of each iteration, there are
all possible edges between J∗ and W\J∗. If |J∗ ∩ S1| < n1

10 and |J∗ ∩ S2| < n2

10 (and

hence, the loop does not terminate), then |W ′∩S1| > 8n1

10 and |W ′∩S2| > 8n2

10 for the
next iteration, satisfying the precondition for Algorithm δ. Without loss of generality,
suppose the loop in Algorithm ε terminates with |J∗ ∩ S1| ≥ n1

10 ; then, at the end
of the penultimate iteration, |J∗ ∩ S1| < n1

10 and |J∗ ∩ S2| < n2

10 . Since the set O of
vertices added to J∗ during the final iteration has fewer than ni

10 vertices of Si, i = 1, 2,
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|J∗ ∩ Si| < 2ni

10 for i = 1, 2. Taking T ∗ = W\J∗ and O∗ = (J∗ ∩ S1) then guarantees
that |T ∗ ∩S1| ≥ (|W ∩S1| − |J∗ ∩S1|) ≥ n1

10 , |T ∗ ∩S2| ≥ (|W ∩S2| − |J∗ ∩S2|) ≥ n2

10 ,
and there are all possible edges between O∗ and T ∗.

3. Three procedures. We assume the input is a graph G = (V,E) with the
adjacency requirements on the parts Ai and a set Φ of lists L(v). We consider the
instance Φ as a partition of V into at most 2k − 1 sets SL, indexed by the nonempty
subsets L of Z = {A1, A2, . . . , Ak}. That is, SL is the set of vertices with list L. For
example, if L(v) = {A1, A2}, then v ∈ S{A1,A2}. For simplicity we will drop the set
brackets in the subscript, i.e., SA1A2 = S{A1,A2}. SL(Φ) refers to the set SL defined by
Φ. When the context is clear, we write SL = SL(Φ). When we say Φ has a solution,
it is assumed the parts are A1, A2, . . . , Ak.

Throughout the algorithms used in the proof of the main theorem in section 4,
Properties 1 and 2 below are always satisfied by the partition of V according to the
sets SL.

Property 1. If the algorithm returns a partition and v is in SL, then the returned
part Ai containing v is a part in L.

Property 2. If v ∈ SL for some L, then for each Ai ∈ L and each SAj , v
is adjacent (resp., nonadjacent) to all vertices in SAj whenever MAi,Aj = 1 (resp.,
MAi,Aj

= 0). (It is possible that i = j.)
Often, we replace an instance Φ by a set of instances {Φ1,Φ2, . . . ,Φp} such that

Φ has a solution if and only if some Φi has a solution. In this case, we say the set of
instances {Φ1,Φ2, . . . ,Φp} is equivalent to Φ.

Let X ⊆ SL and Ai ∈ L. In creating a new instance Φj from Φ, we often say
X drops (part) Ai. By this we mean for each vertex v ∈ X, L(v) = L − {Ai}, and,
consequently, SL(Φj) = SL(Φ) −X,SL−{Ai}(Φj) = SL−{Ai}(Φ) ∪X and SL′(Φj) =
SL′(Φ) for all other subsets L′ of Z. When we say X gets the list Ai we mean X
drops all parts except Ai (i.e., X ⊆ SAi

(Φj)).
The reduction operation. Whenever a new instance Φj is created, a set

SAi
(Φj) may be a proper superset of SAi

(Φ), and in any solution of Φj we must
have SAi

(Φj) ⊆ Ai for all i. If some v ∈ SL(Φj), where Ai ∈ L, is not adjacent to all
vertices in SAj (Φj) and MAi,Aj = 1, then v cannot be in part Ai in any solution. So
we can reduce to a new problem where v drops the part Ai. In the case that L is a
singleton set, Φj has no solution. The case where MAi,Aj = 0 is handled in a similar
way. It is easy to see that after O(n) similar reductions, we obtain an equivalent
instance satisfying Property 2, or halt because Φj has no solution.

We refer to parts Ai, Aj such that MAi,Aj
= 1 (MAi,Aj

= 0) as true partners (false
partners). We use partner without qualification to refer to a true or false partner. Note
that a part can be its own partner.

The following two procedures (1 and 2) generalize two procedures in [15]. These
generalizations are necessary for the proof of our main result in section 4. Also,
these procedures are applicable to more general list partition problems than 4-part
problems.

Remark. As in the lemmata of section 2, we assume k ≤ 10 and use the cor-
responding constant 1/10 (and the related constants 7/10, 8/10, and 9/10) in the
following procedures. However, for arbitrary dimension k, the constant 1/10 can be
replaced by any constant 1/c (and the related constants replaced by (c − 3)/c, etc.)
such that c ≥ max{5, k}. Thus, these procedures are applicable to partition problems
of any dimension k. The procedures are applied recursively to a given instance Φ to
generate an equivalent set of instances (cf. Notes 1, 2, and 3). Taking c = max{5, k}
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minimizes the number of instances generated for any k.
Procedure 1.

Input: An instance Φ of the list M -partition problem with set Z of parts A1, A2, . . .,
Ak, and a set L ⊆ Z such that SL �= ∅ and the parts Ai ∈ L can be put into sets U
and F such that U �= ∅,F �= ∅, U ∪F = L, but U ∩F may or may not be empty, and
the following properties hold:

(a) Clique structure. U = {U1, U2, . . . , Uu}. If |U| = 1, then MU1,U1
= 1;

otherwise MUiUj = 1 for all i and j, i �= j, except possibly when i = u − 1
and j = u. If MUu−1,Uu �= 1, then MUu−1,Uu−1 = MUu,Uu = 1.

(b) F = {F1, . . . , Ff}. If |F| = 1, then MF1,F1 = 0; otherwise MFi,Fj = 0 for all
i, j, i �= j, except possibly when i = f − 1 and j = f . If MFf−1,Ff

�= 0, then
MFf−1,Ff−1

= MFf ,Ff
= 0.

As noted above, lists satisfying property (a) are said to have the clique structure.
Output: A set of at most k instances, {Φ1,Φ2, . . .}, that is equivalent to Φ, and such
that for each i, |SL(Φi)| ≤ 9

10 |SL(Φ)|, or a proof that Φ has no solution.
Note 1. Given an instance Φ, applying Procedure 1 to Φ produces at most k

instances Φi with |SL(Φi)| ≤ 9
10 |SL(Φ)|. Thus, given an instance Φ on a graph G with

n vertices (with k ≤ 10), recursively applying Procedure 1 produces a polynomial
number of instances Φ′ for which SL(Φ′) = ∅, and the set of instances produced
is equivalent to Φ. It is easy to see that the number of instances Φ′ is at most

k
log 10

9
n

= n
log 10

9
k
. We shall refer to this process as eliminating the set SL.

Details of Procedure 1. Let n = |SL(Φ)|. Any partner referred to here is a
partner in L.

Case 1. There is a vertex v in SL such that n
10 ≤ |SL ∩N(v)| ≤ 9n

10 .
To cover the possibility that v is placed in part Ai in the solution, we generate

instances Φi, i = 1, . . . , k, by setting SAi(Φi) = {v} ∪ SAi(Φ) and reducing so that
Property 2 holds. If Ai ∈ U , then the nonneighbors of v must drop the part p(Ai)
(hence, they cannot remain in SL) where p(Ai) is the true partner of Ai. Since there
are at least n

10 nonneighbors of v, |SL(Φi)| ≤ 9n
10 . Similarly, if Ai ∈ F , then the

neighbors of v must drop the part p(Ai) where p(Ai) is the false partner of Ai; hence,
|SL(Φi)| ≤ 9n

10 . Clearly, the set of instances {Φ1, . . . ,Φk} is equivalent to Φ.
We may now assume that every vertex in SL has more than 9n

10 neighbors or fewer
than n

10 neighbors in SL.
Let W = {v ∈ SL : |SL ∩N(v)| > 9n

10 } and X = {v ∈ SL : |SL ∩N(v)| < n
10}.

Case 2. |X| ≥ n
10 and |W | ≥ n

10 .
In any solution to Φ, |Ai ∩ SL(Φ)| ≥ n

k ≥ n
10 for some Ai; thus, we generate an

instance for each Ai to cover the possibility that Ai is such a part. If |Ai∩SL(Φ)| ≥ n
10

and Ai has a true (false) partner p(Ai), then p(Ai) ∩ X = ∅ (p(Ai) ∩ W = ∅).
Properties (a) and (b) ensure that each Ai has either a true or false partner p(Ai).
Thus, for i = 1, . . . , k, generate Φi in which X drops p(Ai), if p(Ai) is a true partner;
otherwise, generate Φi in which W drops p(Ai). For each i, |SL(Φi)| ≤ 9n

10 , and the
set of instances {Φ1, . . . ,Φk} is equivalent to Φ.

Case 3. |W | > 9n
10 .

By Lemma 2.1, we can either
(i) find pairwise disjoint subsets O, T,NT of SL such that O is connected,

|O| + |NT | ≥ n
10 , |T | ≥

n
10 , there are all possible edges between O and T , and each

vertex in NT is nonadjacent to some vertex in O, or
(ii) find disjoint subsets O∗ and T ∗ of SL such that |O∗| ≥ n

10 , |T ∗| ≥ 7n
10 , and

there are all possible edges between O∗ and T ∗.
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Case (i). We create an instance ΦAi
for each part Ai of L as follows. First, for

each Ai of F −U with false partner p(Ai), construct ΦAi by making T drop the part
p(Ai).

Now, we may assume that the remaining parts in L can be named U1, U2, . . . , Ul

so that they have the clique structure. We create instances as follows:

1. If l = 1, then MU1,U1
= 1. If |O| > 1, do not create a new instance. Otherwise,

create instance ΦU1 by placing the only vertex of O in part U1 and making
NT drop part U1.

2. If l ≥ 2 and MUi,Uj
= 1 for all j �= i, create, for each i, ΦUi

from Φ by making
O ∪NT drop every part Uj , j �= i.

3. If l ≥ 2 and MUiUj
�= 1 for some i, j, then we must have {i, j} = {l − 1, l}

and MUl−1,Ul−1
= MUl,Ul

= 1. Test whether O has a unique partition into
two cliques K1,K2. If not, do not create a new instance (see the explanation
below). Otherwise, create two instances Φ1, Φ2 as follows. In Φ1, K1 gets
the list Ul−1 (it drops all other parts) and K2 gets the list Ul; for each vertex
x in NT , x drops part Ul−1 if x is nonadjacent to some vertex in K1, or x
drops part Ul if x is nonadjacent to some vertex in K2. The instance Φ2 is
defined similarly with K1 getting list Ul and K2 getting list Ul−1.

We now show that the set of new instances is equivalent to Φ. Suppose there is a
solution A1, . . . , Ak to Φ. It must be the case that for some i, O ∩Ai �= ∅. If there is
an Ai in F − U with a false partner p(Ai) such that O ∩Ai �= ∅, then T ∩ p(Ai) = ∅;
this eventuality is covered by ΦAi

.

Now suppose there is no part in F − U that has nonempty intersection with O.
Let the parts not in F − U be U1, . . . , Ul (if they exist). These parts must have the
clique structure. If l = 1, then we have MU1,U1

= 1 and O ⊆ U1 in the solution. Since
O is connected, it follows that when |O| > 1, there is no solution. Otherwise, the only
vertex in O must go to part U1. As no vertex in NT can now be in part U1, NT must
drop the part U1; this eventuality is covered by the instance ΦU1 .

Now suppose l ≥ 2. For any Ui that is a true partner of all Uj with j different
from i, if O ∩ Ui �= ∅, then (as O is connected) O ⊆ Ui. Since no member of NT can
now be placed in a part that is a true partner of Ui, it follows that NT must drop all
parts Uj with i �= j; this eventuality is covered by ΦUi .

Last, we consider the case MUl−1,Ul−1
= MUl,U1 = 1 and every vertex in O belongs

to Ul−1 ∪ Ul. Since O is connected, O must be partitioned uniquely into two cliques
K1,K2; otherwise, there is no solution. We see that every vertex in NT must drop a
part (Ul−1 or Ul); this eventuality is covered by Φ1 and Φ2.

Case (ii). We construct two new instances from Φ as follows. Choose an Ai that
has a false partner p(Ai) and create Φ1 by making T ∗ drop p(Ai); then create Φ2

by making O∗ drop Ai. This can be justified as follows. In any solution to Φ, if
Ai ∩O∗ �= ∅, then T ∗ ∩ p(Ai) = ∅; otherwise, O∗ ∩Ai = ∅.

Case 4. |X| > 9n
10 .

This case is similar to Case 3 with G replaced by G and M replaced by M .

It is easily verified that in each instance Γ created, |SL(Γ)| ≤ 9
10 |SL(Φ)|. If no new

instances are produced by the above analysis, then Φ has no solution. This completes
the description of Procedure 1.

Procedure 2.

Input: Instance Φ of the list M -partition problem with set Z of parts A1, . . . , Ak, and
two sets L and R, which are subsets of Z, such that SL �= ∅, SR �= ∅, L �⊆ R, R �⊆ L,
and we can write L = {L1, L2, . . . Lp} (p ≥ 3) and R = {R1, R2, . . . , Rq} (q ≥ 3) so
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that
1. each Li has a partner in R,
2. each Ri has a partner in L,
3. some Li has a true partner in R (equivalently, some Ri has a true partner in

L),
4. some Li has a false partner in L ∪R,
5. some Rj has a false partner in L ∪R,
6. for each i, if Li has no false partner in R, then Li has a true partner in L,
7. for each i, if Ri has no false partner in L, then Ri has a true partner in R,
8. if the set F of parts in L that have no true partners in R is not empty, then

there is a part Rj that is a false partner of all parts in F ,
9. if the set H of parts in R that have no true partners in L is not empty, then

there is a part Li that is a false partner of all parts in H,
10. if the set U of parts of L∪R that have no false partners in L∪R is not empty,

then the parts in U must have the clique structure, each of them has a true
partner in L and in R, and the two parts in U that are not true partners (if
they exist) must belong to L ∩R.

Output: A set of at most 2k instances {Φ1,Φ2, . . .} that is equivalent to Φ, and
such that for each i, |SL(Φi)| |SR(Φi)| ≤ 9

10 |SL(Φ)| |SR(Φ)|, or a proof that Φ has no
solution.

Note 2. Given an instance Φ on a graph G with n vertices (with k ≤ 10) that
satisfies the conditions of Procedure 2, recursively applying Procedure 2 produces a
polynomial number of instances Φ′ for which SL(Φ′) = ∅ or SR(Φ′) = ∅, and the set
of instances produced is equivalent to Φ. It is easy to see that the number of instances

Φ′ is at most (2k)
log 10

9
n2

= n
2log 10

9
2k

.
Details of Procedure 2. Write S1 = SL, S2 = SR. Let n1 = |S1| and n2 = |S2|.

For a vertex v ∈ S1 ∪ S2, let di(v) = |N(v) ∩ Si|, i = 1,2.
Case 1. There is a vertex v in S1 with n2

10 ≤ d2(v) ≤ 9n2

10 .
For each Li ∈ L, let p(Li) be a partner of Li in R. For each Li ∈ L, construct an

instance Φi from Φ as follows. If Li is a true partner of p(Li), then S2 −N(v) drops
the part p(Li); otherwise, S2 ∩N(v) drops part p(Li). It is a routine matter to verify
that the set of new instances is equivalent to Φ.

Case 1′. There is a vertex v in S2 with n1

10 ≤ d1(v) ≤ 9n1

10 .
This case is symmetric to Case 1.
Case 2. Every vertex v in S1 satisfies d2(v) <

n2

10 or d2(v) >
9n2

10 . Every vertex v

in S2 satisfies d1(v) <
n1

10 or d1(v) >
9n1

10 .
Define four sets as follows:

X1 =

{
v ∈ S1|d2(v) <

n2

10

}
, X2 =

{
v ∈ S2|d1(v) <

n1

10

}
,

W1 =

{
v ∈ S1|d2(v) >

9n2

10

}
, W2 =

{
v ∈ S2|d1(v) >

9n1

10

}
.

There are three cases to consider.
Case 2.1. |X1|, |W1| ≥ n1

10 .
Create q new instances from Φ as follows. For each Rj ∈ R, let p(Rj) be a partner

of Rj in L. If p(Rj) is a true (resp., false) partner of Rj , then Φj is obtained from
Φ by making X1 (resp., W1) drop the part p(Rj). This is justified as follows. In any
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solution to Φ some Rj must have |Rj ∩ S2| ≥ n2

q ≥ n2

k ≥ n2

10 ; if MRj ,p(Rj) = 1 (resp.,

0), then X1 ∩ p(Rj) = ∅ (resp., W1 ∩ p(Rj) = ∅). Thus, the q new instances cover all
the eventualities.

Case 2.1′. |X2|, |W2| ≥ n2

10 .
This case is symmetric to Case 2.1.
Case 2.2. |X1| > 9n1

10 .
Find the sets O,M , and NM as defined by Lemma 2.2.
Suppose first that |O| ≥ n1

10 and |M | > n2

2 . Replace Φ by two new instances
Φ1,Φ2 as follows. Let Li be a part with a true partner p(Li) in R. Φ1 is obtained
from Φ by making M drop the part p(Li) and Φ2 is obtained from Φ by making O
drop the part Li. This can be justified as follows. Consider any solution of Φ. If
O ∩Li �= ∅, then no vertex of M can be in part p(Li); otherwise, no vertex of O is in
part Li. Thus, the two new instances Φ1,Φ2 cover all the eventualities.

Now, we may assume that 2n2

5 ≤ |M | ≤ n2

2 and |NM | ≥ n2

2 . Let L+ be the set
of parts in L that have a true partner p(Li) in R. Construct at most |L+| + 1 new
instances as follows. For each Li ∈ L+, construct ΦLi

from Φ by making M drop the
part p(Li). If L−L+ �= ∅, then there is a part Rj in R that is a false partner of each
part in L − L+; construct a new instance Φ′ from Φ by making NM drop the part
Rj . This can be justified as follows. Consider any solution of Φ. For any Li in L+, if
O ∩ Li �= ∅, then M ∩ p(Li) = ∅. If O ∩ Li = ∅ for all Li in L+, then the vertices of
O must be in parts in L − L+, so NM ∩Rj = ∅.

Case 2.2′. |X2| > 9n2

10 . This case is symmetric to Case 2.2.

Case 2.3. |W1| > 9n1

10 , |W2| > 9n2

10 .

Suppose there is a vertex v ∈ W1 with d1(v) ≤ 9n1

10 . Let L− be the set of parts
in L that have a false partner p(Li) in R. Note that each part Li ∈ L − L− has a
true partner p(Li) in L. Construct p new instances, corresponding to each of the p
parts of L that v can be placed in, as follows. For each Li ∈ L−, construct ΦLi from
Φ by making S2 ∩N(v) drop p(Li). For each Li ∈ L − L−, construct ΦLi from Φ by
making S1 −N(v) drop p(Li). A routine argument shows the set of p new instances
is equivalent to Φ.

A symmetrical argument settles the case in which there is a vertex v ∈ W2 with
d2(v) ≤ 9n2

10 .

Now, we may assume that each v ∈ Wi has di(v) > 9ni

10 , for i = 1, 2. By
Lemma 2.3, we can find either the sets (a) or the sets (b) as follows.

(a) Pairwise disjoint vertex subsets O, T , and NT of S1 ∪ S2 such that all the
following hold:
(a) O is connected.
(b) There are all possible edges between O and T .
(c) Each vertex in NT is nonadjacent to some vertex in O.
(d) |T ∩ S1| ≥ n1

10 .
(e) |T ∩ S2| ≥ n2

10 .
(f) Either |O ∩ S1| + |NT ∩ S1| ≥ n1

10 or |O ∩ S2| + |NT ∩ S2| ≥ n2

10 .
(b) Disjoint vertex subsets O∗, T ∗ of S1 ∪ S2 such that all the following hold:

(a) Either O∗ ⊆ S1 and |O∗| ≥ n1

10 , or O∗ ⊆ S2 and |O∗| ≥ n2

10 .
(b) |T ∗ ∩ S1| ≥ n1

10 .
(c) |T ∗ ∩ S2| ≥ n2

10 .
(d) There are all possible edges between O∗ and T ∗.

Case (a). Consider the case |O∩S1|+ |NT ∩S1| ≥ n1

10 . (The case |O∩S2|+ |NT ∩
S2| ≥ n2

10 is symmetric.) Construct at most p + q new instances from Φ as follows.
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For each part Ai in L∪R with a false partner p(Ai) in L∪R, create ΦAi
by making

T ∩ S1 drop the part p(Ai) if p(Ai) ∈ L, or T ∩ S2 drop part p(Ai) if p(Ai) ∈ R.

Now, the remaining parts of L ∪ R (if they exist) can be named U1, U2, . . . , Ul

such that condition 10 of Procedure 2 is satisfied. We create instances as follows:

1. If l = 1, then MU1,U1
= 1. If |O| > 1, do not create a new instance. Otherwise,

create instance Φ1 as follows. Let v be the single member of O. If v ∈ S1

and U1 ∈ L, then v gets label U1 and NT ∩ S1 drops part U1. If v ∈ S2 and
U1 ∈ R, then v gets label U1 and NT ∩ S1 drops a part Aj ∈ L such that
MU1,Aj = 1. If neither of these conditions are satisfied, do not create a new
instance.

2. If l ≥ 2 and MUi,Uj
= 1 for all j �= i, define ΦUi

from Φ as follows. First,
suppose Ui ∈ L. If Ui is also in R or if O∩S2 = ∅, then define ΦUi by making
O get the list Ui and NT ∩ S1 drop a part Aj ∈ S1 such that MUi,Aj =
1; otherwise, create no new instance (Φ would not have a solution in this
eventuality). Now, suppose Ui ∈ R − L. If O ∩ S1 = ∅, then make NT ∩ S1

drop a part Aj ∈ S1 such that MUi,Aj
= 1; otherwise, make no new instance

(Φ would not have a solution in this eventuality).
3. If l ≥ 2 and MUi,Uj �= 1 for some i, j, then we must have {i, j} = {l − 1, l},

MUl−1,Ul−1
= MUl,U1 = 1. Test whether O has a unique partition into two

cliques K1,K2 (if this is not the case then we do not create a new instance,
see the explanation below). We define two instances Φ1, Φ2 as follows. In Φ1,
K1 gets the list Ul−1 (it drops all other parts), K2 gets the list Ul; for each
vertex x in NT , x drops the part Ul−1 if x is nonadjacent to some vertex in
K1, or x drops the part Ul if x is nonadjacent to some vertex in K2. The
instance Φ2 is defined similarly with K1 getting list Ul and K2 getting list
Ul−1.

We now show that the set of new instances are equivalent to Φ. Suppose there is
a solution A1, . . . , Ak to Φ. It must be the case that for some i, O ∩Ai �= ∅. If there
is a part Ai ∈ L ∪ R with a false partner p(Ai) ∈ L ∪ R such that O ∩ Ai �= ∅, then
T ∩Sj ∩ p(Ai) = ∅, where j = 1 if p(Ai) ∈ L and j = 2 if p(Ai) ∈ R. This eventuality
is covered by ΦAi .

Now suppose there is no part with a false partner that has nonempty intersection
with O. Let U1, . . . , Ul be the parts of L∪R with no false partners in L∪R (if they
exist). These parts must have the clique structure. If l = 1, then we have MU1,U1 = 1
and O ⊆ U1 in the solution. Since O is connected, it follows that if |O| > 1, there is
no solution in this eventuality. Therefore, O has exactly one vertex v and it is in S1

or S2. If v ∈ S1, there is a solution only if U1 ∈ L and v is placed in U1. Then no
vertex of NT ∩ S1 can be in U1. If v ∈ S2, there is a solution only if U1 ∈ R and v is
placed in U1. Then no vertex of NT ∩ S1 can be in a part that is a true partner of
U1. In this case, since |O ∩ S1| = 0, we have |NT ∩ S1| ≥ n1

10 .

We can now assume l ≥ 2. Consider a Ui that is a true partner of all Uj with j
different from i. If O ∩ Ui �= ∅, then we have O ⊆ Ui. If Ui ∈ L, then for there to
be a solution with O ⊆ Ui, we must have either Ui ∈ R or O ∩ S2 = ∅ (or both). If
Ui ∈ R−L, then for there to be a solution with O ⊆ Ui, we need O ∩ S1 = ∅, and in
this case we have |NT ∩ S1| ≥ n1

10 . This eventuality is covered by ΦUi .

Last, we consider the case MUl−1,Ul−1
= MUl,U1 = 1 (both belong to L ∩ R by

condition 10 of Procedure 2) and every vertex in O belongs to Ul−1 ∪ Ul. Since O
is connected, there is a unique partition of O into two cliques K1,K2 (if this is not
the case, then this eventuality has no solution and so we do not need to create a new
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instance). Since every vertex x in NT is nonadjacent to some vertex in O, x must
drop part Ul−1 or Ul; it follows that this eventuality is covered by Φ1, Φ2.

Case (b). Consider the case O∗ ⊆ S1, |O∗| ≥ n1

10 . (The case O∗ ⊆ S2, |O∗| ≥ n2

10
is symmetric.) We construct two new instances from Φ as follows. Choose an Li ∈ L
that has a false partner p(Li) ∈ L∪R and create ΦLi by making T ∗∩S1 drop p(Li) if
p(Li) ∈ L, or by making T ∗ ∩ S2 drop p(Li) if p(Li) ∈ R. Then create Φ′ by making
O∗ drop Li. This can be justified as follows. In any solution to Φ, if for some Li ∈ L
we have Li ∩O∗ �= ∅, then T ∗ ∩ Sj ∩ p(Li) = ∅, where j = 1 if p(Li) ∈ L and j = 2 if
p(Li) ∈ R; otherwise, O∗ ∩ Li = ∅.

It is easily verified that in each instance Γ created, |SL(Γ)| |SR(Γ)| ≤
9
10 |SL(Φ)| |SR(Φ)|. If no new instances are produced by the above analysis, then Φ
has no solution. This completes the description of Procedure 2.

Procedure 3. We note that our Procedure 3, in principle, is the same as Proce-
dure 4 in [15].
Input: Instance Φ of the list M -partition problem with set Z of parts A1, . . . , Ak,
and two sets L and R, which are subsets of Z, such that SL �= ∅, SR �= ∅, L �⊆ R,
R �⊆ L, and we can write L = {L1, L2} and R = {R1, . . . , Rq} (q ≥ 2) so that L1 has
a false partner in R and L2 has a true partner in R.
Output: The set of instances {Φ1,Φ2} that is equivalent to Φ, and such that
|SL(Φi)| |SR(Φi)| ≤ 9

10 |SL(Φ)| |SR(Φ)|, or a proof that Φ has no solution.
Note 3. Given an instance Φ on a graph G with n vertices that satisfies the

conditions of Procedure 3, recursively applying Procedure 3 produces a polynomial
number of instances Φ′ for which SL(Φ′) = ∅ or SR(Φ′) = ∅, and the set of instances
Φ′ is equivalent to Φ. It is easy to see that the number of instances Φ′ is at most

(2)
log 10

9
n2

= n
2log 10

9
2
.

Details of Procedure 3. Write S1 = SL, S2 = SR. Let n1 = |S1| and n2 = |S2|.
For a vertex v ∈ S1 ∪ S2, let di(v) = |N(v) ∩ Si|, i = 1, 2. Let p(Li) ∈ R be the
partner of Li, i = 1, 2.

Case 1. There is a vertex v in S1 with n2

10 ≤ d2(v) ≤ 9n2

10 .
Construct two instances from Φ corresponding to v being placed in Li, i = 1, 2.

One instance is constructed by making S2 ∩N(v) drop the part p(L1) and another is
constructed by making S2−N(v) drop the part p(L2). It is a routine matter to verify
that the set of new instances is equivalent to Φ.

Case 2. Every vertex in SL satisfies d2(v) <
n2

10 or d2(v) >
9n2

10 .
Define two sets as follows:

X1 =

{
v ∈ S1|d2(v) <

n2

10

}
, W1 =

{
v ∈ S1|d2(v) >

9n2

10

}
.

There are two cases to consider.
Case 2.1. |X1| ≥ n1

2 .
Find the sets O,M , and NM as defined in Lemma 2.2.
Suppose first that |O| ≥ n1

10 and |M | > n2

2 . Replace Φ with two new instances
Φ1,Φ2 constructed as follows. Φ1 is obtained from Φ by making M drop the part
p(L2); Φ2 is obtained from Φ by making O drop the part L2. This can be justified
as follows. Consider any solution of Φ. If O ∩ L2 �= ∅, then no vertex in M can be in
part p(L2); otherwise, no vertex of O is in L2. Thus, the two new instances Φ1,Φ2

cover all the eventualities.
Now, we may assume that 2n2

5 ≤ |M | ≤ n2

2 and |NM | ≥ n2

2 . Replace Φ with
two new instances Φ1,Φ2 constructed as follows. Φ1 is obtained from Φ by making
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M drop the part p(L2) and Φ2 is obtained from Φ by making NM drop the part
p(L1). This can be justified as follows. Consider any solution of Φ. If O ∩ L2 �= ∅,
then no vertex in M can be in part p(L2). Otherwise, no vertex of O is in part L2;
hence, every vertex of O is placed in L1. Since every vertex in NM has a neighbor
in O, this implies NM ∩ p(L1) = ∅. Thus, the two new instances Φ1,Φ2 cover all the
eventualities.

Case 2.2. |X1| < n1

2 ; hence, |W1| ≥ n1

2 .
Observe that in this situation, with respect to the adjacencies in the complement

of the graph under consideration, we have |X1| ≥ n1

2 . Therefore, we can construct a
set of two instances equivalent to Φ in this case by using the logic for Case 2.1 in the
complement of the given graph using M and by simply reversing the roles played by
L1 and L2.

Finally, it can be easily verified that for each instance Γ created, |SL(Γ)| |SR(Γ)| ≤
9
10 |SL(Φ)| |SR(Φ)|. If no new instances are produced by the above analysis, then Φ
has no solution. This completes the description of Procedure 3.

4. The main theorem. In this section we focus on the main result of the paper
which concerns all list M -partition problems where M is a symmetric 4×4 matrix over
{0, 1, ∗}. In the following we will refer to the four parts of the partition as A,B,C, and
D. Recall from section 1 that the stubborn problem is the list M -partition problem
where MA,A = 0, MB,B = 0, MD,D = 1, MA,C = MC,A = 0, and all other entries are
asterisks (see Figure 1.1). The stubborn problem has been shown to be solvable in
quasi-polynomial time in [22]; hence, it is unlikely to be NP-complete.

Theorem 4.1. Suppose M with dimension 4 is neither the matrix for the stub-
born problem nor its complement. Then the list M-partition problem is solvable in
polynomial time or NP-complete. In particular, the list M -partition problem is solv-
able in polynomial time, except when M contains the matrix for 3-colorability, stable
cutset, or their complements, or M is the matrix for stable cutset pair, 2K2, or their
complements, in which cases the problem is NP-complete.

In proving Theorem 4.1 we employ the tools and procedures described in the
previous sections. Given an instance I of the list M -partition problem, Procedures 1,
2, and 3 are recursively applied to create a polynomial number of new instances Ii that
together are equivalent to the given instance. The resulting instances Ii are each such
that there is a list L for which the set of vertices SL(Ii) with list L is empty, whereas
SL(I) was not empty. Care must be taken in applying the procedures and tools not
to recreate vertices with list L and thus, reintroduce SL into subsequent instances
of the problem. This can happen as a result of the procedures and tools themselves
or the reduction operation that is applied whenever a new instance is created. If
any list is (re-)introduced, this list will be a proper subset of a list involved in the
operation. This can be easily verified by examining the details of the procedures and
the reduction operation.

For simplicity, we write L (without set brackets) for SL; for example, ABC =
SABC . Theorem 4.1 will be proved via a sequence of lemmata, similar to the treatment
in [22].

Proof of Theorem 4.1. If M is a matrix over {0, ∗} or {1, ∗}, the result follows from
Corollary 1.2 [16, 19, 20, 21]. We can therefore assume that M has at least one 0 and
at least one 1. By Theorem 1.3, the only 3-part subproblems that are NP-complete
are the stable cutset problem, the 3-colorability problem and their complements, and
all others are solvable in polynomial time. By Tool 5, if M contains the matrix for
any of these NP-complete subproblems, then the problem is NP-complete. Otherwise,
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the following lemmata show that the problem can be reduced to a polynomial number
of instances that are together equivalent to the given instance, and such that each
instance can be solved in polynomial time. The NP-completeness results we employ
are well known [14, 27].

The next two lemmata cover the cases when M has an off-diagonal 0 and an
off-diagonal 1.

Lemma 4.2. Suppose MA,B = 1 and MC,D = 0. Then the list M -partition
problem is solvable in polynomial time or NP-complete.

Proof. Recall Notes 1, 2, and 3. Given the original instance I, if ABCD is
not empty, we recursively apply Procedure 1 with L = {A,B,C,D}, U = {A,B},
and F = {C,D} to obtain a polynomial number of instances Ii that together are
equivalent to I such that, for each i, ABCD(Ii) = ∅. We now consider the instances
Ii.

For each instance Ii, first recursively apply Procedure 2 with L = {A,B,C} and
R = {A,B,D}, and then (working in G using M) recursively apply Procedure 2 to
the resulting instances with L = {A,C,D} and R = {B,C,D} to obtain a polynomial
number of instances Jj that together are equivalent to Ii and such that, for each j,
either ABC(Jj) = ∅ or ABD(Jj) = ∅, and either ACD(Jj) = ∅ or BCD(Jj) = ∅.

We now consider the resulting instances Jj . There are four types:
1. ABC,ACD �= ∅,
2. ABC,BCD �= ∅,
3. ABD,ACD �= ∅,
4. ABD,BCD �= ∅.

Since the four types are symmetric, we only need to consider instances Jj of type
1. In this case the possible remaining nonempty sets are ABC, ACD, AB, AC,
AD, BC, BD, CD. Recursively, apply Procedure 3 to each Jj and then to the
resulting instances with pairs L,R, in the following sequence: step (a) L = {B,D}
and R = {A,C,D}, step (b) L = {B,D} and R = {A,B,C}, step (c) L = {A,D}
and R = {A,B,C}, until one of the two sets involved is empty. This will produce
(and will be justified shortly) a polynomial number of instances Kk that together are
equivalent to Jj and such that each instance Kk has possible remaining nonempty
sets as in one of the following cases:

Case 1. AB, AC, AD, BC, BD, CD,
Case 2. ABC, AB, AC, BC, CD,
Case 3. ABC, ACD, AB, AC, AD, BC, CD.
After step (a), the new instances Kk either have BD = ∅ (Case 3) or ACD = ∅.

After step (b), we have either ABC = ∅ (Case 1) or BD = ∅ (Case 3 again). In the
latter case, we proceed to step (c), after which we have either AD = ∅ (Case 2) or
ABC = ∅ (Case 1). (Note that if there are vertices with lists of length 3, then the
reduction operation may produce a vertex with a list of length 1 or 2 that can be
derived from the length 3 list by dropping parts.)

Now we consider the instances Kk.
Case 1. This case can be formulated as a 2-satisfiability problem (2-SAT) and

solved in polynomial time (see Tool 1).
Case 2. In the case that MA,C = 1 or MB,C = 1, we recursively apply Procedure 3

with L = {C,D} and R = {A,B,C}. This will create instances in each of which either
ABC is empty or CD is empty. In the former case, the problem reduces to 2-SAT.
In the latter case, in every instance created there is no vertex with a list containing
part D. Thus, the problem is reduced to a 3-part list M -partition problem (3-part
problem).
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If MA,C = 0 (MB,C = 0), we recursively apply Procedure 1 with L = {A,B,C},
U = {A,B}, and F = {A,C} (L = {A,B,C}, U = {A,B}, and F = {B,C}). This
will create instances in which ABC is empty, and thus, the problem is reduced to
2-SAT.

Therefore, we can now assume that MA,C = MB,C = ∗.
If MC,C = 1, by Tool 3, we create one instance in which no vertex has part C in

its list, and at most n instances in each of which no vertex has both C and D in its
list. In these cases, the problem is reduced to a 3-part problem.

If MC,C = 0, then we recursively apply Procedure 1 with L = {A,B,C}, U =
{A,B}, and F = {C}. This will create instances which can be solved using 2-SAT.

Hence, we can now assume that MC,C = ∗.
If MA,A = 0 (MB,B = 0), by Tool 3, we create one instance in which no vertex

has part A (part B) in its list, and at most n instances in each of which no vertex has
both A and B in its list. In these cases, the problem is reduced to 2-SAT.

If MA,A = ∗, then as MC,C = MA,C = ∗, the instance can be solved trivially
by first placing the vertices whose lists contain A in part A, and then placing any
remaining vertices whose lists contain C in part C. Similarly, if MB,B = ∗, the
problem can be solved trivially.

So, we can now assume that MA,A = MB,B = 1.

If MB,D = 0 (MA,D = 0), then C dominates B (C dominates A). We can then
use Tool 4 to derive an equivalent instance where no vertex has the list ABC, and
hence can be solved using 2-SAT.

If MB,D = 1 (MA,D = 1), by Tool 3, we create one instance in which no vertex
has part D in its list, and at most n instances in each of which no vertex has both B
and C (both A and C) in its list. In these cases, we either have an instance that is a
3-part problem or can be solved using 2-SAT.

We finally can assume that MA,D = MB,D = ∗. Since B dominates A, we can
use Tool 4 to derive an equivalent instance where no vertex has the list ABC, and
hence, can be solved using 2-SAT.

Case 3. Suppose we are able to produce an equivalent set of instances in each of
which ACD = ∅, and hence, the possible nonempty sets are ABC, AB, AC, AD, BC,
CD. Then, recursively applying Procedure 3 with L = {A,D} and R = {A,B,C}
will produce instances each of which either can be solved using 2-SAT or has AD = ∅,
which is settled by Case 2. A similar analysis can be made when an equivalent set of
instances can be produced in each of which ABC = ∅. Suppose ABC = ∅, recursively
applying Procedure 3 with L = {B,C} and R = {A,C,D} will produce instances each
of which either can be solved using 2-SAT or has BC = ∅. The latter case is reduced
to Case 2 by working in G in place of G and using M in place of M . Therefore, we
aim to produce equivalent instances in each of which either ABC = ∅ or ACD = ∅.

If MA,C = 0, then the lists L = {A,B,C} and R = {A,C,D} fail to satisfy the
conditions for Procedure 2. However, with respect to G and M , they do satisfy the
conditions for Procedure 2. Hence, we recursively apply Procedure 2 with L and R
in G using M to create instances in each of which either ABC = ∅ or ACD = ∅.

If MA,C = 1, then recursively apply Procedure 2 with L = {A,B,C} and R =
{A,C,D} to create instances in each of which either ABC = ∅ or ACD = ∅.

We can therefore assume that MA,C = ∗.
If MA,A = 0 (MB,B = 0), using Tool 3, we create one instance in which no vertex

has part A (part B) in its list, and at most n instances in each of which no vertex has
both A and B in its list; hence, ABC = ∅.
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If MA,A = 1, recursively apply Procedure 1 with L = {A,C,D}, U = {A}, and
F = {C,D} to produce instances in each of which ACD = ∅.

Therefore, we can assume that MA,A = ∗.
If MC,C = 1, using Tool 3, we create one instance in which no vertex has part C

in its list, and at most n instances in each of which no vertex has both C and D in
its list; hence, ACD = ∅.

If MC,C = 0, recursively apply Procedure 1 with L = {A,B,C}, U = {A,B}, and
F = {C} to produce instances in each of which ABC = ∅.

Therefore, we can assume that MC,C = ∗.
We now have instances in which MA,A = MC,C = MA,C = ∗. Such an instance

can be solved trivially by first placing the vertices whose lists contain A in part A,
and then placing any remaining vertices whose lists contain C in part C.

Recall that the list generalized P problem is the list M ′-partition problem where
M ′ is obtained from the matrix M for list partition problem P by changing some
asterisks to either 0 or 1.

Corollary 4.3. Each list generalized skew partition problem is solvable in poly-
nomial time, except when it contains the stable cutset problem or its complement, in
which cases the problem is NP-complete.

Proof. Observe (via Theorem 1.3) that the only possible 3-part subproblems that
are NP-complete are the stable cutset problem and its complement, and all others
are solvable in polynomial time. By Tool 5, if M contains the matrix for the stable
cutset problem or its complement, then the problem is NP-complete. Otherwise, the
problem is polynomial-time solvable by Lemma 4.2.

From here on, we write the proofs in an abbreviated style. When Tool 3 is applied
an instance that is a 3-part problem is always created; this will now be assumed and
not explicitly stated. The full details can be written in the same manner as the proof
of Lemma 4.2.

Lemma 4.4. Suppose MA,B = 0 and MA,D = 1. Then the list M -partition
problem is solvable in polynomial time or NP-complete.

Proof. Using Tool 3, either the problem is reduced to a 3-part problem (no A), or
no list contains {B,D}. Assuming the latter, the possible nonempty sets are ABC,
ACD, AB, AC, AD, BC, CD. By Lemma 4.2 we may assume MC,D �= 1 and
MB,C �= 0.

Suppose MA,C = 1. Then no list contains {B,C} (using Tool 3). Apply Proce-
dure 3 to the pair AB,ACD. If AB becomes empty, then we have a 3-part problem
on {A,C,D}. Otherwise, the instance can be solved using 2-SAT.

Suppose MA,C = 0, and no list contains {C,D} (using Tool 3). Apply Procedure 3
to the pair AD,ABC to get either 3-part problems or instances solvable using 2-SAT.
Therefore, MA,C = ∗.

If MC,D = 0, then no list contains {A,C} (using Tool 3) and we get instances
solvable using 2-SAT. Therefore, MC,D = ∗.

If MB,C = 1, then no list contains {A,C} (using Tool 3) and we get instances
solvable using 2-SAT. Therefore, MB,C = ∗.

If MC,C = ∗, then C dominates parts A,B, and D, and we get an instance solvable
using 2-SAT.

If MC,C = 0, apply Procedure 1 to ACD so that ACD becomes empty. Then
apply Procedure 3 to the pair AD,ABC. If ABC becomes empty, we get instances
solvable using 2-SAT. Otherwise, now apply Procedure 3 to the pair CD,ABC to get
3-part problems or instances solvable using 2-SAT.
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Now we have MC,C = 1. Apply Procedure 1 to ABC so that ABC becomes
empty. Then apply Procedure 3 to the pair AB,ACD. If ACD becomes empty, we
get instances solvable using 2-SAT. Otherwise, now apply Procedure 3 to the pair
BC,ACD to get 3-part problems or instances solvable using 2-SAT.

Graphs for which the vertex-set can be partitioned into two stable sets and two
cliques are called (2,2)-graphs. Brandstädt [2, 3] introduced this class and gave the
first polynomial-time algorithm for recognition. Recognition of (2,2)-graphs is the
M -partition problem where MA,A = 1, MB,B = 1, MC,C = 0, and MD,D = 0, and
all other entries are asterisks. The following result was proved in [22]; we provide a
proof using different techniques.

Lemma 4.5. All list generalized (2,2)-graph recognition problems are solvable in
polynomial time.

Proof. Repeatedly apply Procedure 1 to the following sets to eliminate them, one
by one: ABCD, ABC, ABD, ACD, BCD. Then use 2-SAT.

Based on the previous lemmata and Tool 6, we can now assume that 1 occurs only
on the diagonal and that the off-diagonal entries are either 0 or ∗. We first consider
the case that there are at least two 1’s on the diagonal.

Lemma 4.6. Suppose there are at least two 1’s on the diagonal and all off-
diagonal entries are ∗. Then the list M -partition problem is solvable in polynomial
time or NP-complete.

Proof. If one of the diagonal entries, say MA,A, is ∗, A dominates the other parts;
hence, the problem can be reduced to a 3-part problem on {B,C,D}. On the other
hand, suppose none of the diagonal entries are ∗. When there are two 1’s and two
0’s on the diagonal we get a problem solvable in polynomial time (see Lemma 4.5).
Otherwise, the problem is NP-complete via the complement of 3-colorability and
Tool 5. (This subcase is also covered by Theorem 1.4.)

We can now assume that there is at least one off-diagonal entry that is 0. The
next three lemmata cover the possible position of the off-diagonal 0 with respect to
the two or more 1’s assumed to be on the diagonal.

Lemma 4.7. Suppose all off-diagonal entries are 0 or ∗, MB,B = MD,D = 1,
and MA,C = 0. Then the list M -partition problem is solvable in polynomial time or
NP-complete.

Proof. Apply Procedure 1 to eliminate set ABCD.

Apply Procedure 1 to eliminate set ABC.

Apply Procedure 1 to eliminate set ACD.

Apply Procedure 2 to the pair ABD,BCD so that one of the sets is eliminated.

Assume BCD = ∅. (The other case is similar.)

Apply Procedure 3 to the pair BC,ABD so that one of the sets is eliminated.

Apply Procedure 3 to the pair CD,ABD so that one of the sets is eliminated.

We now can assume that the remaining nonempty sets are ABD, AB, AC, AD,
BD; otherwise, we can use 2-SAT.

If MA,B = 0, then, using Tool 3, no list contains {A,B}; we can now use
2-SAT.

If MA,D = 0, then, using Tool 3, no list contains {A,D}; we can now use 2-SAT.

Otherwise, the hypothesis of the lemma implies MA,B = MA,D = ∗.
If MA,A = 0, then apply Procedure 1 to ABD; we can now use 2-SAT.

If MA,A = 1, then, by Tool 3, no list contains {A,C}; we get a 3-part problem.

Therefore, MA,A = ∗.
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If MB,C = 0, then A dominates B and no list contains {A,B}; we can now use
2-SAT.

If MC,D = 0, then A dominates D and no list contains {A,D}; we can now use
2-SAT.

Otherwise, the hypothesis of the lemma implies MB,C = MC,D = ∗.
If MC,C = 0, then A dominates C and no list contains {A,C}; we get a 3-part

problem.

If MC,C = 1, then, by Tool 3, no list contains {A,C}; we get a 3-part problem.

Therefore, MC,C = ∗.
Place vertices with list AC in the part A to get a 3-part problem on {A,B,D} in

which A dominates other parts; we can now use 2-SAT.

Corollary 4.8. The list 2-clique cutset problem is solvable in polynomial time.

Proof. Lemma 4.7 covers the list 2-clique cutset problem: MB,B = MD,D = 1,
MA,C = MC,A = 0, and all other entries are asterisks. It can be verified (via Theo-
rem 1.3) that every 3-part problem produced in that case in the proof of Lemma 4.7
is solvable in polynomial time.

Corollary 4.9. Each list generalized 2-clique cutset problem is solvable in poly-
nomial time, except when it contains the complement of the 3-colorability problem, in
which case it is NP-complete.

Proof. Observe (via Theorem 1.3) that in this case the only possible 3-part sub-
problem that is NP-complete is the complement of 3-colorability, and all others are
solvable in polynomial time. By Tool 5, if M contains the matrix for the comple-
ment of 3-colorability, then the problem is NP-complete. Otherwise, the problem is
polynomial-time solvable by Lemmata 4.2, 4.4, and 4.7.

Lemma 4.10. Suppose all off-diagonal entries are 0 or ∗, MA,A = MB,B = 1,
and MA,C = 0. Then the list M -partition problem is solvable in polynomial time or
NP-complete.

Proof. Using Tool 3, no list contains {A,C}. The possible nonempty sets are
ABD, BCD, AB, AD, BC, BD, CD.

By previous lemmata, MC,D = ∗ and MD,D �= 1.

If MD,D = 0, then apply Procedure 1 to ABD. Then, apply Procedure 3 to the
pair AB,BCD. If BCD is eliminated we can use 2-SAT; otherwise, apply Procedure 1
to AD to get a 3-part problem.

Therefore, MD,D = ∗.
If MA,D = 0, then, using Tool 3, no list contains {A,D}. Apply Procedure 3 to

the pair AB,BCD to get a 3-part problem or we can use 2-SAT.

Therefore, MA,D = ∗.
If MB,D = 0, then, using Tool 3, no list contains {B,D}; we can now use 2-SAT.

Therefore, MB,D = ∗.
Now, D dominates the other parts; we get a 3-part problem.

Lemma 4.11. Suppose all off-diagonal entries are 0 or ∗, MA,A = MC,C = 1,
and MA,C = 0. Then the list M -partition problem is solvable in polynomial time or
NP-complete.

Proof. From previous lemmata, MA,B = MA,D = MB,C = MB,D = MC,D = ∗,
MB,B �= 1, and MD,D �= 1. Using Tool 3, no list contains {A,C}.

If MB,B = ∗, then B dominates other parts; we get a 3-part problem.

If MD,D = ∗, then D dominates other parts; we get a 3-part problem.

Therefore, MB,B = MD,D = 0.
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Apply Procedure 1 to ABD. Then, apply Procedure 1 to BCD; we can now use
2-SAT.

In the remaining case M has exactly one 1 and it is on the diagonal; say MD,D = 1.
Following [22], we define a separating statement for X = A,B, or C to be “MX,D = 0
or MX,X = 0.” We divide the remaining cases based on the number of separating
statements that hold being three, two, or at most one. The following four lemmata
cover the cases when three separating statements hold.

Lemma 4.12. Suppose the only 1 is at MD,D. If MA,A = MB,B = MC,C = 0,
then the list M -partition problem is solvable in polynomial time or NP-complete.

Proof. If the subproblem on the parts {A,B,C} corresponds to 3-colorability, then
we have an NP-complete problem by Tool 5. Therefore, without loss of generality, we
can assume MA,B = 0.

If MB,C = 0, then the following reduces the instance to 3-part problems: Apply
Procedure 1 to ABCD, apply Procedure 1 to ABD, apply Procedure 1 to ACD,
apply Procedure 1 to BCD, apply Procedure 1 to AD, apply Procedure 1 to BD,
and then apply Procedure 1 to CD.

Therefore, MB,C = ∗. Similarly, MA,C = ∗.
As there is a single 1 in M , each of MA,D and MB,D is constrained to be 0 or

∗. In any such case, A dominates B or B dominates A, and no list contains {A,B}.
Apply Procedure 1 to ACD. Then, apply Procedure 1 to BCD. We can now use
2-SAT.

Lemma 4.13. Suppose the only 1 is at MD,D. If MB,B = MC,C = MA,D = 0,
then the list M -partition problem is solvable in polynomial time or NP-complete.

Proof. Using Tool 3, no list contains {A,D}. The following will then produce
3-part problems on {A,B,C}: apply Procedure 1 to BCD, apply Procedure 1 to BD,
and then apply Procedure 1 to CD.

Lemma 4.14. Suppose the only 1 is at MD,D. If MC,C = MA,D = MB,D = 0,
then the list M -partition problem is solvable in polynomial time or NP-complete.

Proof. Using Tool 3, no list contains {A,D} and also no list contains {B,D}.
Apply Procedure 1 to CD to get 3-part problems on {A,B,C}.

Lemma 4.15. Suppose the only 1 is at MD,D. If MA,D = MB,D = MC,D = 0,
then the list M -partition problem is solvable in polynomial time or NP-complete.

Proof. Using Tool 3, no list contains {A,D}, no list contains {B,D}, and also no
list contains {C,D}. We get 3-part problems on {A,B,C}.

The next three lemmata cover the cases when exactly two separating statements
hold, say for A and B.

Lemma 4.16. Suppose the only 1 is at MD,D. If MA,D = MB,D = 0 and
MC,C = MC,D = ∗, then the list M -partition problem is solvable in polynomial time
or NP-complete.

Proof. Using Tool 3, no list contains {A,D} and also no list contains {B,D}.
C dominates D and no list contains {C,D}. We get 3-part problems on
{A,B,C}.

Lemma 4.17. Suppose the only 1 is at MD,D. If MA,A = MB,B = 0, MC,C =
MC,D = ∗, and the list M -partition problem is different from the stubborn problem,
then it is solvable in polynomial time or NP-complete.

Proof. If MA,C = MB,C = ∗, then C dominates all other parts, so we obtain a
3-part problem. Therefore, without loss of generality, assume MA,C = 0.

Suppose MB,C = 0. Then we can apply Procedure 1 to eliminate the following
sets in sequence: ABCD,ABD,ACD,BCD,AD,BD. Let X = AB and Y be the
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union of sets ABC,AC,BC, and CD (i.e., X is the set of vertices with list {A,B}
and Y is the set of vertices with any of the possible remaining lists). Suppose we had
u ∈ X and v ∈ Y such that u and v are adjacent. Since MA,C = MB,C = 0, in any
solution to the problem, v cannot be placed in part C. Therefore, by making such
vertices v drop the part C from their lists (hence, leave the set Y ), we get instances
where there are no edges between vertices in X and vertices in Y . We can then
solve such an instance by placing every vertex in Y in part C and testing whether X
induces a bipartite graph. Therefore, we can assume that MB,C = ∗ (and MA,C = 0).
C dominates A, so no list contains {A,C}.

Apply Procedure 1 to ABD, then to AD, and then to BD. The possible remaining
nonempty sets are BCD, AB, BC, CD.

If MA,B = 0, then C dominates B, so no list contains {B,C}; we can now use
2-SAT.

If MA,D = 0, then C dominates D, so no list contains {C,D}; we can now use
2-SAT.

If MB,D = 0, then (using Tool 3) no list contains {B,D}; we can now use 2-SAT.

Therefore, MA,B = MA,D = MB,D = ∗ and we are left with the stubborn
problem.

We note that the proof of Lemma 4.17 shows that the stubborn problem can be
reduced to an equivalent set of instances where for each instance the only possible
lists are A,B,C,D,AB,BC,CD, and BCD.

Lemma 4.18. Suppose the only 1 is at MD,D. If MA,D = MB,B = 0, MA,A =
MB,D = ∗, and MC,C = MC,D = ∗, then the list M -partition problem is solvable in
polynomial time or NP-complete.

Proof. Using Tool 3, no list contains {A,D}. Therefore, the possible remaining
nonempty sets are ABC, BCD, AB, AC, BC, BD, CD.

If MA,C = ∗ or MA,B = 0, then C dominates B, so no list contains {B,C}, and
we can use 2-SAT. Therefore, MA,C = 0 and MA,B = ∗.

If MB,C = ∗, then the subproblem on {A,B,C} is the stable cutset problem.
Therefore, MB,C = 0.

Apply Procedure 1 to BCD and then to BD. Now the possible remaining
nonempty sets are ABC, AB, AC, BC, CD. Let X = AB and Y be the union
of sets ABC,AC,BC, and CD (i.e., X is the set of vertices with list {A,B} and Y is
the set of vertices with any of the possible remaining lists). Suppose we had u ∈ X
and v ∈ Y such that u and v are adjacent. Since MA,C = MB,C = 0, in any solution
to the problem, v cannot be placed in part C. Therefore, by making such vertices
v drop the part C from their lists (hence, leave the set Y ), we get instances where
there are no edges between vertices in X and vertices in Y . We can then solve such
an instance by placing every vertex in Y in part C, and placing every vertex in X in
part A.

The only remaining case is when the only 1 is at MD,D and at most one separating
statement holds, say, for part A.

Lemma 4.19. Suppose the only 1 is at MD,D. If MB,B = MB,D = MC,C =
MC,D = ∗, then the list M -partition problem is solvable in polynomial time or NP-
complete.

Proof. Suppose MB,C = ∗. If MA,B = ∗ (MA,C = ∗), then B (C) dominates all
the other parts to yield a 3-part problem. On the other hand, if MA,B = MA,C = 0,
then rows B and C in M are identical; hence, parts B and C can be identified.

Therefore, we can assume MB,C = 0. We divide the cases based on the value of
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the triple (MA,A, MA,B , MA,C).
Case (∗, ∗, ∗). If MA,D = ∗, then A dominates all other parts to yield a 3-part

problem. Hence, MA,D = 0, and by Tool 3, no list contains {A,D}.
Apply Procedure 1 to BCD. Apply Procedure 3 to the pair BD, CD. Solve the

problem as follows: Place vertices with lists {A,B,C}, {A,B}, or {A,C} in part A.
Then, if BD is empty, place vertices with lists {B,C} or {C,D} in part C, and if CD
is empty, place vertices with lists {B,C} or {B,D} in part B.

Case (∗, 0, ∗). If MA,D = ∗, then rows A and C in M are identical; hence, parts
A, C can be identified. Therefore, we can assume MA,D = 0. Then, by Tool 3,
no list contains {A,D}. Also, C dominates A and no list contains {A,C}. Apply
Procedure 1 to BCD and then use 2-SAT.

Case (0, 0, 0), (0, 0, ∗). C dominates A, so no list contains {A,C}. Apply Proce-
dure 1 to ABD, then to BCD, and use 2-SAT.

Case (0, ∗, ∗). This case contains the stable cutset problem; hence, by Tool 5, it
is NP-complete.

Case (∗, 0, 0). Apply Procedure 1 to the following sets one by one: ABCD, ABD,
ACD, and BCD. If we had u ∈ AB (BC, AC) and v ∈ ABC such that u and v are
adjacent, then v must drop C (A, B, respectively) and leave ABC. Therefore, there
are no edges between ABC and any of AB, BC, or AC. Now, apply Procedure 3 to
AD, CD, then to AD, BD, and finally to CD, BD. We can now assume that exactly
one of AD, BD, CD is nonempty.

Suppose AD is nonempty. If MA,D = 0, then use Tool 3 to eliminate the set AD
and obtain a 3-part problem. If MA,D = ∗, then place vertices with list ABC in part
A and solve using 2-SAT. If BD is nonempty, then place vertices with list {A,B,C}
in part B and solve using 2-SAT. If CD is nonempty, then place vertices with list
{A,B,C} in part C and solve using 2-SAT.

Case (0, ∗, 0), (∗, ∗, 0). B dominates A, so no list contains {A,B}. Apply Proce-
dure 1 to ACD, then to BCD, and solve using 2-SAT.

Thus, Theorem 4.1 is proved via the following cases.
1. M is a matrix over {0, ∗} or {1, ∗}: Corollary 1.2.
2. M has at least one 0 and at least one 1:

2.1 M has an off-diagonal 0 and an off-diagonal 1: Lemmata 4.2 and 4.4.
2.2 M has 1 (resp., 0) only on the diagonal and all off-diagonal entries are

either 0 or ∗ (resp., 1 or ∗):
2.2.1 M has at least two 1’s (resp., 0’s) on the diagonal:

2.2.1.1 all off-diagonal entries are ∗: Lemma 4.6.
2.2.1.2 at least one off-diagonal entry is 0 (resp., 1): Lemmata 4.7, 4.10,

and 4.11.
2.2.2 M has exactly one 1 (resp., 0) on the diagonal: Lemmata 4.12

through 4.19.
Note added in proof. In recent related work the list partition problem on some

special classes of graphs [18, 23] and some specific graph partition problems with all
parts nonempty [11, 12, 13] have been studied.
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Abstract. Given a metric space (X, dX), c ≥ 1, r > 0, and p, q ∈ [0, 1], a distribution over
mappings H : X → N is called a (r, cr, p, q)-sensitive hash family if any two points in X at distance
at most r are mapped by H to the same value with probability at least p, and any two points
at distance greater than cr are mapped by H to the same value with probability at most q. This
notion was introduced by Indyk and Motwani in 1998 as the basis for an efficient approximate nearest
neighbor search algorithm and has since been used extensively for this purpose. The performance

of these algorithms is governed by the parameter ρ = log(1/p)
log(1/q)

, and constructing hash families with

small ρ automatically yields improved nearest neighbor algorithms. Here we show that for X = �1 it
is impossible to achieve ρ ≤ 1

2c
. This almost matches the construction of Indyk and Motwani which

achieves ρ ≤ 1
c
.
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1. Introduction. In this note we study the complexity of finding the nearest
neighbor of a query point in certain high dimensional spaces using locality sensitive
hashing (LSH). The nearest neighbor problem is formulated as follows: Given a
database of n points in a metric space, preprocess it so that given a new query point
it is possible to quickly find the point closest to it in the data set. This fundamental
problem arises in numerous applications, including data mining, information retrieval,
and image search, where distinctive features of the objects are represented as points
in R

d. There is a vast amount of literature on this topic, which we shall not attempt
to discuss here. We refer the interested reader to the papers [6, 5, 4, 8], especially to
the references therein, for background on the nearest neighbor problem.

While the exact nearest neighbor problem seems to suffer from the “curse of di-
mensionality,” many efficient techniques have been devised for finding an approximate
solution whose distance from the query point is at most c times its distance from the
nearest neighbor. One of the most versatile and efficient methods for approximate
nearest neighbor search is based on LSH, as introduced by Indyk and Motwani in
1998 [6]. This method has been refined and improved in several papers—the most
recent algorithm can be found in [4]. We also refer the reader to the LSH website,
where more information on this algorithm can be found, including its implementation
and code—all of which can be found at http://web.mit.edu/andoni/www/LSH/index.
html. The LSH approach to the approximate nearest neighbor problem is based on
the following concept.

Definition 1.1. Let (X, dX) be a metric space, r,R > 0, and p, q ∈ [0, 1]. A
distribution over mappings H : X → N is called a (r,R, p, q)-sensitive hash family if
for any x, y ∈ X,

• dX(x, y) ≤ r =⇒ PrH [H (x) = H (y)] ≥ p,
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• dX(x, y) > R =⇒ PrH [H (x) = H (y)] ≤ q.

Given c ≥ 1 and q ∈ (0, 1), we define ρX(c, q) to be the smallest constant ρ > 0
such that for every r > 0 there exists p ∈ (0, 1) and a (r, cr, p, q)-sensitive hash family

H : X → N with log(1/p)
log(1/q) ≤ ρ. In other words

(1.1)

ρX(c, q) = sup
r>0

inf

{
log(1/p)

log(1/q)
: ∃(r, cr, p, q)-sensitive hash family H : X → N

}
.

Of particular interest is the case X = �ds , for some s > 0 and d ∈ N. Here, and in
what follows, �ds denotes the space R

d equipped with the �s norm ‖(x1, . . . , xd)‖s =

(|x1|s + · · · + |xd|s)1/s (this is only a quasi-norm when 0 < s < 1). In this case we
define

ρs(c) = sup
0<q<1

lim sup
d→∞

ρ�ds (c, q).

The importance of these parameters stems from the following application to ap-
proximate nearest neighbor search. It will be convenient to discuss it in the frame-
work of the following decision version of the c-approximate nearest neighbor problem:
Given a query point, find any element of the data set which is at distance at most
cr from it, provided that there is a data point at distance at most r from the query
point. This decision version is known as the (r, cr)-near neighbor problem. It is well
known that the reduction to the decision version adds only a logarithmic factor in the
time and space complexity [6, 5]. The following theorem was proved in [6]; the exact
formulation presented here is taken from [4].

Theorem 1.2. Let (X, dX) be a metric on a subset of R

d. Suppose that (X, dX)

admits a (r, cr, p, q)-sensitive hash family H , and write ρ = log(1/p)
log(1/q) . Then for any

n ≥ 1
q there exists a randomized algorithm for (r, cr)- near neighbor on n-point subsets

of X which uses O
(
dn + n1+ρ

)
space, with query time dominated by O (nρ) distance

computations and O
(
nρ log1/q n

)
evaluations of hash functions from H .

Thus, obtaining bounds on ρX(c) is of great algorithmic interest. It is proved in [6]
that ρ1(c) ≤ 1/c, and for small values of c, namely c ∈ [1, 10], is was shown in [4]
that this inequality is strict. We refer to [4] for numerical data on the best known
estimates for ρ1(c) for small c. For s = 2 a recent result of Andoni and Indyk [1]
shows that ρ2(c) ≤ 1/c2, and for general s ∈ (0, 2] the best known bounds [4] are
ρs(c) ≤ max{1/c, 1/cs}.

The main purpose of this note is to obtain lower bounds on ρ1(c) and ρ2(c), which
nearly match the bounds obtained from the constructions in [6, 4, 1]. Our main result
is as follows.

Theorem 1.3. For every c, s ≥ 1,

(1.2) ρs(c) ≥
e

1
cs − 1

e
1
cs + 1

≥ e− 1

e + 1
· 1

cs
≥ 0.462

cs
.

The second to last inequality in (1.2) follows from concavity of the function t 	→
et−1
et+1 on [0,∞). Observe also that as c → ∞, e1/c−1

e1/c+1
∼ 1

2c . It would be very interesting

to determine lim supc→∞ c · ρ1(c) exactly—due to Theorem 1.3 and the results of [6],
we currently know that this number is in the interval [1/2, 1].
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2. Proof of Theorem 1.3. The basic idea in the proof of Theorem 1.3 is simple.
Choose a random point x ∈ {0, 1}d and consider the random subset A of the cube
{0, 1}d consisting of points u for which H (u) = H (x). The second condition in
Definition 1.1 forces A to be small in expectation. But, when A is small we can
bound from above the probability that after r steps, the random walk starting at a
random point in A will end up in A. We obtain this upper bound using a Fourier
analytic argument, and in combination with the first condition in Definition 1.1 we
deduce the desired bound on ρ1(c).

Theorem 1.3 follows from the following result.
Proposition 2.1. Let H be a (r,R, p, q)-sensitive hash family on the Hamming

cube ({0, 1}d, ‖ · ‖1). Assume that r is an odd integer and that R < d
2 . Then

p ≤
(
q + e−

1
d ( d

2−R)
2) e2r/d−1

e2r/d+1
.

Choosing R ≈ d
2 −

√
d log d and r ≈ R/c in Proposition 2.1, and letting d → ∞,

yields Theorem 1.3 in the case s = 1. The case of general s ≥ 1 follows from the fact

that for x, y ∈ {0, 1}d, ‖x− y‖s = ‖x− y‖1/s
1 .

Remark 2.1. Proposition 2.1 implies nontrivial lower bounds on log(1/p)
log(1/q) for any

(r, cr, p, q)-sensitive hash family on ({0, 1}d, ‖ · ‖1) even if q is allowed to depend on
d. Observe that with the definition given in (1.1), Theorem 1.3 implies such a lower
bound only for constant q. But, Proposition 2.1 is much stronger and implies a bound
which asymptotically coincides with the lower bound in 1.3 for every q ≥ 2−o(d).

The proof of Proposition 2.1 will be broken into a few lemmas. We start by
bounding the expected size of the inverse images of H , i.e., the expected number of
points that are mapped by H to a fixed value.

Lemma 2.2. Let H be a (r,R, p, q)-sensitive hash family on the Hamming cube
({0, 1}d, ‖ · ‖1), and fix x ∈ {0, 1}d. Then

E

∣∣H −1 (H (x))
∣∣ ≤ �R�∑

k=0

(
d

k

)
+ q ·

d∑
k=�R�+1

(
d

k

)
.

Proof. We simply write

E

∣∣H −1 (H (x))
∣∣ =

∑
u∈{0,1}d

Pr[H (u) = H (x)]

≤
∣∣{u ∈ {0, 1}d : ‖u− x‖1 ≤ R}

∣∣ + q ·
∣∣{u ∈ {0, 1}d : ‖u− x‖1 > R}

∣∣
=

�R�∑
k=0

(
d

k

)
+ q ·

d∑
k=�R�+1

(
d

k

)
.

Corollary 2.3. Assume that R < d
2 . Then, using the notation of Lemma 2.2,

we have that

E

∣∣H −1 (H (x))
∣∣ ≤ 2d

(
q + e−

1
d ( d

2−R)
2)

.

Proof. This follows from Lemma 2.2 and the standard estimate
∑

k≤ d
2−a

(
d
k

)
≤

2d · e− a2

d .
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Our next lemma bounds the probability that a random walk of a given length
starting at a uniformly chosen point in a set B ⊆ {0, 1}d will land in B. The proof of
this lemma is a simple application of the Bonami–Beckner hypercontractive estimate
on {0, 1}d (see below). The connection between hypercontractivity and isoperimetric
estimates in the spirit of Lemma 2.4 is classical, but we did not find the statement
that we need in the literature. More recently, in the discrete setting, i.e., in the case
of the hypercube {0, 1}d, similar arguments have been used extensively in theoretical
computer science. In particular, Theorem 3.6 in [7] contains a reverse estimate to
that of Lemma 2.4, in the case of the lazy random walk.

Lemma 2.4 (random walk lemma). Let r be an odd integer. Given ∅ �= B ⊆
{0, 1}d, consider the random variable QB ∈ {0, 1}d defined as follows: Choose a point
z ∈ B uniformly at random, and perform r steps of the standard random walk on the
Hamming cube starting from z (i.e., in each step we pass to one of the d neighbors of
the vertex that we are currently occupying with probability 1/d). The point obtained
in this way will be denoted QB. Then

Pr[QB ∈ B] ≤
(
|B|
2d

) e2r/d−1

e2r/d+1

.

Proof. We begin by recalling some background and notation on Fourier analysis on
the Hamming cube. Given S ⊆ {1, . . . d}, the Walsh function WS : {0, 1}d → {−1, 1}
is defined by

WS(u) = (−1)
∑

j∈S uj .

For f : {0, 1}d → R we set

f̂(S) =
1

2d

∑
u∈{0,1}d

f(u)WS(u),

so that f can be decomposed as follows:

f =
∑

S⊆{1,...,d}
f̂(S)WS .

For every f, g : {0, 1}d → R we write

〈f, g〉 =
1

2d

∑
u∈{0,1}d

f(u)g(u).

By Parseval’s identity,

〈f, g〉 =
∑

S⊆{1,...,d}
f̂(S)ĝ(S).

For ε ∈ [0, 1] the Bonami–Beckner operator Tε is defined as

Tεf =
∑

S⊆{1,...,d}
ε|S|f̂(S)WS .
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The Bonami–Beckner inequality [3, 2] states that for every f : {0, 1}d → R,

∑
S⊆{1,...,d}

ε2|S|f̂(S)2 = ‖Tεf‖2
2 =

1

2d

∑
u∈{0,1}d

(Tεf(u))
2 ≤ ‖f‖2

1+ε2

=

⎛
⎝ 1

2d

∑
u∈{0,1}d

f(u)1+ε2

⎞
⎠

2
1+ε2

.

Specializing to the indicator of B ⊆ {0, 1}d we get that

(2.1)
∑

S⊆{1,...,d}
ε2|S|1̂B(S)2 ≤

(
|B|
2d

) 2
1+ε2

.

Now, let P be the transition matrix of the standard random walk on {0, 1}d, i.e.,
Puv = 1/d if u and v differ in exactly one coordinate; Puv = 0 otherwise. By a direct
computation we have that for every S ⊆ {1, . . . , d},

PWS =

(
1 − 2|S|

d

)
WS ,

i.e., WS is an eigenvector of P with eigenvalue 1 − 2|S|
d . The probability that the

random walk starting form a random point in B ends up in B after r steps equals

Pr[QB ∈ B] =
1

|B|
∑

a,b∈B

(P r)ab

=
2d

|B| 〈P
r1B ,1B〉

=
2d

|B|
∑

S⊆{1,...,d}
1̂B(S)2

(
1 − 2|S|

d

)r

≤ 2d

|B|
∑

S⊆{1,...,d}
|S|≤d/2

1̂B(S)2
(

1 − 2|S|
d

)r

,

where we used the fact that r is odd (i.e., we dropped negative terms).

Thus, using (2.1) we see that

Pr[QB ∈ B] ≤ 2d

|B|
∑

S⊆{1,...,d}
1̂B(S)2 · e−2r|S|/d ≤ 2d

|B| ·
(
|B|
2d

) 2

1+e−2r/d

=

(
|B|
2d

) 1−e−2r/d

1+e−2r/d

.

Proof of Proposition 2.1. Assume that r is an odd integer and R < d
2 . For

x ∈ {0, 1}d let Wr(x) ∈ {0, 1}d be the random point obtained by performing a
random walk for r steps starting at x. Since ‖x − Wr(x)‖1 ≤ r we know that
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Pr [H (Wr(x)) = H (x)] ≥ p. Taking expectation with respect to the uniform prob-
ability measure on {0, 1}d we deduce that

p ≤ Ex∈{0,1}n Pr [H (Wr(x)) = H (x)]

= EH Pr
[
x ∈ {0, 1}n : Wr(x) ∈ H −1 (H (x))

]
= EH

∑
k∈N

Pr
[
x ∈ {0, 1}n : Wr(x) ∈ H −1 (H (x)) ∧ H (x) = k

]

= EH

∑
k∈N

∣∣H −1(k)
∣∣

2d
Pr

[
QH −1(k) ∈ H −1(k)

]

≤ EH

∑
k∈N

∣∣H −1(k)
∣∣

2d
·
(∣∣H −1(k)

∣∣
2d

) e2r/d−1

e2r/d+1

(2.2)

= EH Ex∈{0,1}d

(∣∣H −1(H (x))
∣∣

2d

) e2r/d−1

e2r/d+1

≤ Ex∈{0,1}d

(
EH

∣∣H −1(H (x))
∣∣

2d

) e2r/d−1

e2r/d+1

(2.3)

≤
(
q + e−

1
d ( d

2−R)
2) e2r/d−1

e2r/d+1
,(2.4)

where in (2.2) we used Lemma 2.4, in (2.3) we used Jensen’s inequality, and in (2.4)
we used Corollary 2.3.

Acknowledgments. We are grateful to Piotr Indyk and Jirka Matoušek for
helpful suggestions.
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Abstract. It is open whether the minimal hitting sets of a hypergraph can be listed in time
polynomial in the input and output size. We show that a well-known sequential approach described
by Berge and studied since the 1950s is not polynomial in the above sense, even if we allow an optimal
ordering of the edges. This answers a question posed by H. Hirsh. The proof uses hypergraphs based
on read-once formulas. We also offer a generalization of this sequential approach.
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1. Introduction. Listing the minimal hitting sets of a hypergraph is a central
problem with many applications in combinatorics, logic, learning theory, and knowl-
edge discovery [1, 8, 10]. In this paper we discuss the complexity of a certain class of
algorithms used to list minimal hitting sets.

A hypergraph H is a set of subsets of a finite set. A hitting set is a set of
vertices which intersects every subset in H. Using Berge’s notation [4], the family of
minimal hitting sets of H is also called the transversal hypergraph of the hypergraph
and abbreviated as Tr(H).

Thus, given a hypergraph H, one can ask how difficult it is to list the sets in Tr(H).
The question whether Tr(H) can be listed in time polynomial in the input and output
size or under other criteria for efficient listing [15, 22, 34, 35] is a longstanding open
problem for enumeration algorithms. Furthermore, listing Tr(H) is equivalent to a
number of other problems discussed in Eiter and Gottlob [10]. Other recent work
shows how listing Tr(H) is related to problems in data mining (see [5, 7, 8, 14, 16, 19,
27, 33]). In logic, listing Tr(H) is equivalent to the monotone CNF/DNF dualization
problem (see [11, 12]), which is how Fredman and Khachiyan [13] discuss the problem.
We mention their algorithm as well as others below.

Paull and Unger [32] have shown that if H is a graph, then we can list the minimal
hitting sets in time polynomial in the input and output size. (Note that in their
original formulation, they listed the maximal independent sets. This is equivalent
to listing the minimal hitting sets since the complement of a minimal hitting set is
a maximal independent set.) Subsequent improvements have come from Tsukiyama
et al. [35], who used backtracking algorithms that built a backtracking tree in which
the nodes on level i of the tree are the maximal independent sets of the graph restricted
to vertices {1, . . . , i}. Using this technique, they were able to list the objects using
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polynomial space and with polynomial delay (i.e., a delay of at most O(nk) between
outputting one object and the next one, where n is the size of the input). Johnson,
Yannakakis, and Papadimitriou [22] then expanded on these techniques to list the
maximal independent sets in lexicographic order. However, as Johnson et al. note
in their paper, the same backtracking technique cannot be used to list the maximal
independent sets of a hypergraph with polynomial delay unless P=NP.

Most recently, Eiter, Gottlob, and Makino [12] have extended Johnson et al.’s
techniques to develop efficient listing algorithms for certain special cases of hyper-
graphs. Efficient algorithms for the minimal hitting set problem also exist for several
other special cases [6, 10, 28].

To list Tr(H), where H is an arbitrary hypergraph, there is a simple sequential
approach which accepts for an input an ordering of the hypergraph’s edges into a
sequence and then progressively finds the minimal hitting sets of the first i edges.
While the approach, which we will call the Sequential Method, is well known and
appears often in the literature (see, for example, [4, 10, 25, 26, 28, 30, 31]), there is
little theoretical information about its behavior. (See section 2.3 for more details.)

In comparison, Fredman and Khachiyan [13] developed an algorithm which has a
proven time bound. Their algorithm can list the minimal hitting sets of any hyper-
graph with quasi-polynomial time, where this is quasi-polynomial in the input and
output size. More specifically, the running time is quasi-polynomial in the input size
and the number of objects output thus far. Note also that the size of the output
could be exponentially larger than the size of the input. (Consider n

2 vertex-disjoint,

graph-type edges. Such a hypergraph would have 2n/2 minimal hitting sets. Thus,
an algorithm whose delay is quasi-polynomial in the input and output sizes may not
work in time polynomial in the input size alone.) More precisely, if V is the number
of edges of the hypergraph plus the number of minimal hitting sets output thus far,
then the time to list another minimal hitting set is O(V o(log V )).

In addition, it has been shown (see [7, 16, 27]) that many other seemingly more
general problems are no more difficult than listing Tr(H). This, along with the
fact that there have been no improvements on Fredman’s and Khachiyan’s quasi-
polynomial algorithm [13], suggests that the Sequential Method is unlikely to list
Tr(H) in time polynomial in the input and output size. Answering a question posed
by Hirsh [21], we show that this is the case in a rather strong sense, namely, that the
Sequential Method is inefficient no matter how the edges are ordered. The proof is
based on showing that a specific infinite family of hypergraphs also studied in [13] has
a certain combinatorial property (see Corollary 2). We also propose a generalization
of the Sequential Method for which no such negative results are known.

The paper is organized as follows. In section 2, we develop lemmas and construc-
tions which will be useful in describing the Sequential Method and in constructing an
infinite family of hypergraphs Hi (i ∈ N) (section 3) for which the Sequential Method
produces a superpolynomial blowup for any ordering of the edges. We propose a
generalization of the Sequential Method (section 4) and show that it lists Tr(Hi)
efficiently. We conclude (section 5) with some further comments and open problems.

2. Preliminaries. In this section, we provide formal definitions of some basic
terms used in this paper. Then we describe two binary operations ∨ and ∧ on any
hypergraphs A and B, producing two new hypergraphs A ∨ B and A ∧ B. These
constructions are used to build an infinite family of hypergraphs Hi (i ∈ N) for which
the Sequential Method requires a running time which is superpolynomial in the input
and output size.
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The lemmas about Tr(A∨B) and Tr(A∧B) will be useful in describing the Sequen-
tial Method and the generalized method in section 4. Furthermore, a corollary about
Tr(A∨B) and Tr(A∧B) in the specific case when A and B are vertex-disjoint will be
useful in calculating the running time of the Sequential Method and its generalization
when they list Tr(Hi).

2.1. Definitions. A hypergraph H is a pair (V, E) in which V is a finite set of
vertices {1, . . . , n} and E is a set of subsets {e1, . . . , em} from V . These subsets are
called edges of H. (For notational convenience, we will usually refer to a hypergraph
by its edge set whenever we can do so without ambiguity, and we will use lowercase
letters for edges. In addition, unless otherwise stated, |V | = n and |E| = m. The
space needed to represent H as a sequence of incidence vectors is O(|V | · |E|).) The
minimal edges in H are those that do not properly contain other edges in H, and we
use the notation min(H) to designate the hypergraph made of these minimal edges.
A hypergraph H is called simple iff no edge contains another (i.e., H = min(H)).

A set of vertices s is a hitting set of H if s ∩ e �= ∅ for all edges e ∈ H. The
family of all hitting sets of H is written as S(H). Thus, the minimal hitting sets of
H are min(S(H)). Using Berge’s terminology, we write this as Tr(H), the transversal
hypergraph of H. In addition, since Tr(H) = Tr(min(H)), it may be assumed for the
listing problem that all hypergraphs are simple.

2.2. Constructions. Let A and B be any two hypergraphs. Using A and B and
two binary operators ∨ and ∧, we can construct two new hypergraphs.

• A ∨ B is the hypergraph such that VA∨B = VA ∪ VB and EA∨B = EA ∪ EB.
• A ∧ B is the hypergraph such that VA∧B = VA ∪ VB and EA∧B = {a ∪ b :

a ∈ EA, b ∈ EB}.
The following standard lemma shows how the minimal hitting sets of A∨B and A∧B
are related to the families of minimal hitting sets of A and B.

Lemma 1. For any two hypergraphs, A and B,
1. Tr(A ∨ B) = min(Tr(A) ∧ Tr(B)), and
2. Tr(A ∧ B) = min(Tr(A) ∨ Tr(B)).

A proof, albeit with slightly different notation, can be found in Berge’s description
of the Sequential Method [4, pp. 52–53].

In the special case when A and B are vertex-disjoint, TrA∨TrB = min(Tr(A)∨
Tr(B)) and Tr(A) ∧ Tr(B) = min(Tr(A) ∧ Tr(B)). To see this, observe that every
set in Tr(A) is incomparable with every set in Tr(B). Also note that any two sets in
Tr(A) ∧ Tr(B) are incomparable. The equalities mentioned above yield the following
corollary.

Corollary 1. If A and B are vertex-disjoint, then
1. Tr(A ∨ B) = Tr(A) ∧ Tr(B), and |Tr(A ∨ B)| = |Tr(A)| · |Tr(B)|, and
2. Tr(A ∧ B) = Tr(A) ∨ Tr(B), and |Tr(A ∧ B)| = |Tr(A)| + |Tr(B)|.

2.3. The Sequential Method to list Tr(H). The Sequential Method takes
as input a hypergraph with its edges ordered into some sequence (e1, . . . , em), where
m is the number of edges in the hypergraph. Applying Lemma 1 to A = {e1, . . . , ei}
and B = {ei+1}, we get that for any i (1 ≤ i ≤ m− 1) it holds that

Tr({e1, . . . , ei+1}) = min(Tr({e1, . . . , ei}) ∧ Tr({ei+1})).

This gives an iterative procedure to find the minimal hitting sets of the subhypergraph
{e1, . . . , ei}, where 1 ≤ i ≤ m. Note that for any edge ei ∈ H the minimal hitting sets
of ei are the singleton vertices in the edge, i.e., for all ei ∈ H, Tr({ei}) = {{v} : v ∈ ei}.
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Thus, it is a simple matter both to initialize the algorithm and to compute Tr({ei+1})
during each iteration.

Algorithm 1.

Sequential((e1, . . . , em)) {

for i = 1 to m− 1 do {

Tr({e1, . . . , ei+1}) = min(Tr({e1, . . . , ei}) ∧ Tr({ei+1}))
}

}

Remark. The number of minimal hitting sets which the algorithm must compute
for the ith iteration is |Tr({e1, . . . , ei+1})|. Thus, given an initial ordering such as
(e1, . . . , em), the running time is at least Ω(maxi |Tr({e1, . . . , ei})|), where 1 ≤ i ≤ m.
Thus, we may compute a lower bound on the running time by determining the number
of minimal hitting sets produced in any intermediate stage.

Note that the Sequential Method is a class of algorithms rather than a single
algorithm since it does not specify how one should initially order the edges. There
are pathological orderings which create listing times exponential in the input and
output size [10, 28]. As an example, order the edges of the complete graph Kn so
that the first n

2 edges form a perfect matching. Although Kn has only
(
n
2

)
edges and

n minimal hitting sets, 2n/2 minimal hitting sets will be created when processing the
first n

2 edges of this subgraph.

There have been a number of proposed implementations of the method such as

• ordering the edges according to lexicographical order in which lexicographical
order is defined by representing the edges e, f ∈ H as {0, 1} vectors of length
n where e <lex f iff e as a number in base two is less than f as a number in
base two,

• ordering the edges so that, if possible, they always form a connected subhy-
pergraph,

• using the greedy method to select the next edge so that the next edge mini-
mizes the number of minimal hitting sets.

While these modifications work well for many hypergraphs, there have been no upper
bounds proven for the running time in general. Thus, Hirsh [21] has asked what the
worst-case running time of the Sequential Method is using an optimal edge ordering
in terms of the input and output size of the problem. In other words, the question is
whether there is a family of hypergraphs Hi (i ∈ N) such that for every polynomial p,
if i is sufficiently large, then for any ordering (e1, . . . , ej , . . . , em) of the edges of Hi

there is a j such that

|VHi | · |Tr({e1, . . . , ej})| > p (|VHi | · |Hi| + |VHi | · |Tr(Hi)|).

If, say, |Hi| + |Tr(Hi)| = Ω(|VHi |), then this is equivalent to

|Tr({e1, . . . , ej})| > p (|Hi| + |Tr(Hi)|)

holding for every p and for every i sufficiently large, and this is the form we are going
to use. In what follows we answer this question in the affirmative.

3. Lower bounds for running time. In this section, we prove the main result
by describing a family of hypergraphs and then applying it to show that the Sequential
Method is inefficient.
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3.1. A provably superpolynomial family of hypergraphs. Using the con-
structions in section 2, we define the infinite family of hypergraphs Hi (i ∈ N) recur-
sively as follows:

• H0 is the hypergraph consisting of one edge, which is a single vertex. (Thus,
VH0

= {1} and EH0
= {{1}}.)

• Hi = (A∨B)∧(C∨D), where A,B, C,D are all vertex-disjoint copies of Hi−1.
As an example, H1 is a cycle on four vertices with four edges, a C4. (We will return

often to this particular example.) Note that since A,B, C,D are all vertex-disjoint,
|VHi | = 4|VHi−1 |. Furthermore, using the hypergraph constructions involving ∨ and
∧, |Hi| = (|A|+ |B|)(|C|+ |D|), which is (2|Hi−1|)2. By applying Corollary 1, we know
that |Tr(Hi)| = |Tr(A)||Tr(B)| + |Tr(C)||Tr(D)|, which is 2|Tr(Hi−1)|2.

We can solve these recurrences by applying the fact that H1 = C4, which means
that |VH1

| = 4, |H1| = 4, and |Tr(H1)| = 2. From this, it follows that

|VHi | = 4i, |Hi| = 22(2i−1), |Tr(Hi)| = 22i−1.

This family of hypergraphs Hi (i ∈ N) can also be viewed in terms of monotone
Boolean functions. The edges of Hi correspond to the minimal truth assignments
of a certain function, fi, which can be represented by a read-once Boolean circuit
with a very specific structure, and in fact, this paraphrase is what has suggested the
terminology (∨ and ∧) and the constructions used in section 2. As a Boolean circuit,
the function can be described as a complete binary tree with ∧ at the root (level 1) and
all other nodes on odd levels except the leaf level, ∨ for all the nodes on even levels, and
variables at the leaf level. In addition, since the function is read-once, all the variables
are distinct. In the literature, this circuit is sometimes called an alternating tree. This
function appears in Fredman and Khachiyan [13] and in Gurvich and Khachiyan [18]
in a slightly different form. The alternating tree used by Fredman, Gurvich, and
Khachiyan starts with a ∨ in the root node and then alternates ∧ and ∨ on each level.
Because the alternating tree in [13, 18] is slightly different, their constructions for fi
and thus Hi are not exactly the same. The analogous equations in their paper reflect
this difference. For more on read-once functions and their combinatorial properties,
see [2, 17, 23, 29].

The family of functions fi (i ∈ N) has a recursive definition which is similar to
our definition for Hi. fi is a monotone Boolean function that takes as arguments the
variables in Xi, which we also define recursively below.

• X0 = {x1}, and f0(X0) = x1.
• Let A, B, C, and D be variable-disjoint copies of fi−1(Xi−1). Then Xi is

the list of variables in A followed by those in B, C, and D, and fi(Xi) =
(A ∨B) ∧ (C ∨D).

Thus, f1(x1, x2, x3, x4) = (x1 ∨ x2) ∧ (x3 ∨ x4). The minimal truth assignments
of f1 form the edges of a C4. The edges of this C4 in lexicographical order are
(e1, e2, e3, e4) = ({1, 3}, {2, 3}, {1, 4}, {2, 4}).

3.2. The Sequential Method always lists Tr(Hi) inefficiently. We now
proceed to the following lemma, which will be key in showing that the Sequential
Method runs slowly on the family of hypergraphs defined above no matter how the
edges are ordered. The basic idea is this: using the Sequential Method, we will always
have one last remaining edge to process. What we will show is that no matter what
this last edge is, the number of hitting sets just before we process that edge will be
superpolynomial in the final number of minimal hitting sets plus the original number
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of edges in the hypergraph for Hi (i ∈ N). In other words, the addition of this last
edge causes a superpolynomial decrease in the number of minimal hitting sets.

Lemma 2. Let H = (A ∨ B) ∧ (C ∨ D), where A,B, C,D are vertex-disjoint
hypergraphs, and without loss of generality, let us assume that the edge e which we
delete from H is (b ∪ d), where b ∈ EB and d ∈ ED. Then |Tr(H\{e})\Tr(H)| ≥
|Tr(A)| · |Tr(B\{b})\Tr(B)| · |Tr(C)| · |Tr(D\{d})\Tr(D)|.

Proof. Let s = hA∪hB− ∪hC ∪hD− , where hA ∈ Tr(A), hB− ∈ Tr(B\{b})\Tr(B),
hC ∈ Tr(C), hD− ∈ Tr(D\{d})\Tr(D). Note that hB− ∈ Tr(B\{b})\Tr(B) implies
that hB− hits every set in B different from B, but it does not hit B.

We claim that s ∈ Tr(H\{e})\Tr(H). First, observe that s /∈ Tr(H) because
there is an edge (b ∪ d) ∈ H which is not hit. Now we show that s ∈ Tr(H\{e}).
It hits any edge in H\{e} because it hits every edge in A, (B\{b}), C, and (D\{d})
and because of the way we construct H from A,B, C,D. To show that s is minimal,
consider any proper subset s′. There are four different cases to consider, but the
argument is basically the same in each case.

Assume that s′ ∩ hA � hA (the case of hC is analogous). Then there exists some
edge a ∈ A which s′ fails to hit. And thus, s′ fails to hit the edge (a ∪ d) ∈ H\{e}.

If s′ ∩ hB− � hB− , there are at least two edges in B which s′ fails to hit: b and
some other edge b′. Thus, s′ fails to hit the edge (b′∪d) ∈ H\{e}. The same argument
holds for hD− .

Using this lemma and the recurrences for |VHi
|, |Hi|, and |Tr(Hi)|, we have the

materials necessary for proving our main result.
Theorem 1. The running time of the Sequential Method on the family of hyper-

graphs Hi (i ∈ N) is superpolynomial in the size of the input and output no matter
how the edges are ordered.

Proof. Let

ai = min
e∈Hi

|Tr(Hi\{e})\Tr(Hi)|.

Lemma 2 yields the recurrence

ai ≥ |Tr(Hi−1)|2 · a2
i−1.

To start this recurrence, use the fact that |Tr(Hi)| = 22i−1 and note that since H1 is
a C4 and H1\{e} is always a P4, |Tr(H1\{e})| = 3 for any e ∈ H, and thus a1 = 1.
By induction on i, we can show that for i ≥ 2, it holds that

|Tr(Hi\{e})\Tr(Hi)| ≥ 2(i−2)2i+2.

To complete the theorem, we consider an arbitrary ordering of the edges of Hi and
compare M and m, where M represents the size of the largest intermediate result pro-
duced by the Sequential Method, and m is the size of the problem’s input and output,
that is, m = O(|VHi |(|Hi| + |Tr(Hi)|)). The running time of the Sequential Method
will be at least M ≥ |Tr(Hi\{e})| ≥ |Tr(Hi\{e})\Tr(Hi)|, where e ∈ Hi. The recur-
rences for |Hi|, |Tr(Hi)|, and |Tr(Hi\{e})\Tr(Hi)| show that M = mΩ(log logm).

This result can also be stated in combinatorial terms without respect to any
particular class of algorithms. We state this result in the following corollary, which
may be of interest in itself.

Corollary 2. |Tr(Hi\{e})| is superpolynomial in |Hi|+|Tr(Hi)| for any e ∈ Hi.
Furthermore, since listing Tr(H) is equivalent to the monotone CNF/DNF dual-

ization problem, we can also paraphrase the main result by saying that there exist
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monotone CNFs that, if we multiply them out in any order, will produce an interme-
diate result which is superpolynomial in the sum of the sizes of the input and output
formulas. These are the CNF representations of fi (i ∈ N).

4. Generalizing the Sequential Method. In this section, we propose a gener-
alization of the Sequential Method that can list Tr(Hi) efficiently. We will first explain
how one can generalize the Sequential Method, then describe this generalization in
terms of binary tree representations, and, finally, show that there exist binary trees
with a property (see Property 1) that we can use to list Tr(Hi) in time polynomial in
the input and output.

To see how one can generalize the Sequential Method, note how it uses a special
case of the first half of Lemma 1. For the Sequential Method, A = {e1, . . . , ei} and
B = {ei+1}. However, the lemma is valid for partitions of the edges in H into other
subhypergraphs A and B. We can represent such a partition by a binary tree with H
as the root and A and B as the left and right children, and overall, we can represent a
generalization of the Sequential Method with a binary tree representation, which we
define below.

Definition 1. A tree representation of a hypergraph (abbreviated as TH) is a
binary tree in which the leaves, l1, . . . , lm, are labeled with the edges of the hypergraph,
e1, . . . , em, and each internal node is labeled with the family of those edges that are in
descendants of that node.

Using such a tree representation, one can calculate Tr(H), first by calculating
the minimal hitting sets of the leaves and then by applying Lemma 1 to calculate
the minimal hitting sets of the internal nodes. We give a backtracking algorithm
below that does this by performing a depth-first traversal of TH. The initial call is
Evaluate(root), where root is the root of TH.

Algorithm 2.

Evaluate(node) {

if (node has children) {

L = Evaluate(left_child);

R = Evaluate(right_child);

return node = min(L ∧R);
}

else { // the node is a leaf
return node = {{v} : v ∈ ei}; // i.e., the min. hit. sets in the leaf

}

}

Note that as the algorithm proceeds on TH, it relabels each leaf ei with Tr({ei})
and also relabels each internal node as Tr(S), where S consists of those edges that
were in descendants of that internal node. When the algorithm terminates, the root
will contain Tr(H). For ease of discussion, we will refer to each node in the tree by
the minimal hitting sets of its family of edges.

Now let us consider H1 and a specific example of a binary tree TH1 .
Example. Consider H1 with (e1, e2, e3, e4) = ({1, 3}, {2, 3}, {1, 4}, {2, 4}). Now

consider (e1e2)(e3e4), which corresponds to evaluating Tr(H1) using the binary tree
in which the root is Tr(H1), the root’s left and right children are Tr({e1, e2}) and
Tr({e3, e4}), and the leaves are Tr({e1}), Tr({e2}), Tr({e3}), Tr({e4}).

Note that this tree representation cannot be expressed by any sequential ordering
since it does not leave one last edge to be processed (i.e., in the last step |B| > 1).
Thus, tree representations have the ability to process the edges of H in a way that no
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sequential ordering can. Furthermore, observe how (in comparison to any sequential
ordering) we can use this binary tree TH1 to avoid blowups in the intermediate steps
in which |Tr(A)| or |Tr(B)| exceed |Tr(H)|.

If we can avoid such blowups, then, as Theorem 2 shows, we can list Tr(Hi)
efficiently. To avoid any blowup, what we will want is a binary tree representation
TH with the following property.

Property 1. Every internal node of the binary tree contains at least as many
minimal hitting sets as either of its children. That is to say, if Tr(A ∨ B) is an
arbitrary internal node of the tree with children Tr(A) and Tr(B), then

|Tr(A ∨ B)| ≥ max(|Tr(A)|, |Tr(B)|).

To see a specific example, consider the binary tree for the example discussed
above. (This example will be used later as the basis step for an inductive argument.)

Example (continued). Consider the tree’s root Tr(H1). Since H1 = C4, |Tr(H1)| =
2. Furthermore, the root’s left and the right children are Tr({e1, e2}) and Tr({e3, e4}).
Both {e1, e2} and {e3, e4} are paths on three vertices P3 and thus have two minimal
hitting sets. Last, the leaves of the tree are Tr({ej}) (1 ≤ j ≤ 4). Since every edge in
H1 is a 2-set, |Tr({ej})| = 2. Thus, this tree representation TH1 has Property 1.

To see how one can construct a tree representation THi with Property 1 for all
Hi (i ∈ N), we note how Hi is built from copies of Hi−1 (i.e., Hi = (A∨B)∧ (C ∨D),
where A,B, C,D are all vertex disjoint copies of Hi−1), and we prove a more general
claim which shows how one can use binary tree THi−1

with Property 1 to construct
THi

with Property 1.
Lemma 3. Let A and B be vertex-disjoint hypergraphs which have binary tree

representations TA and TB with Property 1. Then one can construct binary trees
TA∨B and TA∧B for hypergraphs A ∨ B and A ∧ B which also have Property 1.

Proof. For the proof of the lemma, we provide constructions and then use Corol-
lary 1 from section 2 to prove the claim that every internal node of TA∨B and TA∧B
has Property 1. The constructions will rely on Lemma 1.

TA∨B. Construct a tree by defining a root node with TA and TB as left and right
subtrees. To see that the tree satisfies Property 1, the only node we need to check is
the root. The children of the root are Tr(A) and Tr(B), and the root is Tr(A ∨ B).
Using Corollary 1, we know that |Tr(A ∨ B)| = |Tr(A)| · |Tr(B)|. Thus, the root
contains at least as many minimal hitting sets as either of its children.

TA∧B. Construct TA∧B first by replacing every internal node Tr(S) in TB with
Tr(A ∧ S) and then by replacing every leaf node Tr({bj}) (where bj ∈ B) with the
root of a subtree TA∧{bj}, which is formed by replacing every node Tr(Z) in TA with
the node Tr(Z ∧{bj}). Since the leaf nodes of TA are Tr(Z), where Z is a single edge
ak ∈ A, the leaf nodes of this new tree will be Tr({ak} ∧ {bj}), and the new tree will
have |A||B| leaves. (Note that the new tree will have a shape which can be visualized
by taking a TB and replacing every leaf node by a subtree in the shape of a TA.)

To see that this construction is the tree representation for A ∧ B, we show how
the contents of any internal node may be computed from its left and right child. Given
an internal node Tr(S) in TB with children Tr(L) and Tr(R) (i.e., L∨R = S ⊆ B), we
replace these three nodes in TB with Tr(A∧S), Tr(A∧L), and Tr(A∧R), respectively.
Since (A ∧ L) ∨ (A ∧ R) = A ∧ S ⊆ A ∧ B, we can calculate Tr(A ∧ S) by applying
Lemma 1 to that node’s left and right children.

Furthermore, note that since TB has Property 1, we know that |Tr(S)| ≥
max(|Tr(L)|, |Tr(R)|). Because L,R,S are vertex-disjoint from A, we can apply
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Corollary 1 to Tr(A ∧ S), Tr(A ∧ L), and Tr(A ∧R) and show that

|Tr(A ∧ S)|︸ ︷︷ ︸
|Tr(A)|+|Tr(S)|

≥ max( |Tr(A ∧ L)|︸ ︷︷ ︸
|Tr(A)|+|Tr(L)|

, |Tr(A ∧R)|︸ ︷︷ ︸
|Tr(A)|+|Tr(R)|

).

To complete the proof that the rest of the nodes in TA∧B have the desired proper-
ties, we look at the subtrees rooted at Tr(A∧{bj}) and apply very similar arguments
to nodes Tr(Z ∧ {bj}), where Z ⊆ A and bj ∈ B. First, note how they are modified
from nodes in TA by replacing the node Tr(Z) with Tr(Z ∧ {bj}) (where Z = L ∨R
and L,R,Z ⊆ A) and then apply Corollary 1.

Using the above property and lemma, we may now state the following result about
the generalization of the Sequential Method. (Note that Theorem 2 applies only to the
infinite family of hypergraphs Hi (i ∈ N). A worst-case analysis of this generalization
remains an open problem.)

Theorem 2. There exists a tree representation THi such that, using this repre-
sentation, a generalization of the Sequential Method can list Tr(Hi) in time O(|VHi | ·
|Hi| · |Tr(Hi)|4).

Proof. First, we show the existence of a tree for Hi having Property 1 by induction
on i. The basis step for Hi is described in the example above. The induction step
follows by applying Lemma 3.

Second, we demonstrate the running time. To see how the stated running time
follows from the existence of such a tree, note how Algorithm 2 proceeds by performing
a depth-first traversal of the tree. The time it takes to determine the contents of any
internal node Tr(A ∨ B) is the time to compute Tr(A ∨ B) from Tr(A) and Tr(B).
Lemma 1 shows how this can be done by finding minimal sets in Tr(A) ∧ Tr(B).
Using Property 1, we know that |Tr(A)|, |Tr(B)|, and |Tr(A∨B)| are at most |Tr(H)|.
Therefore, |Tr(A) ∧ Tr(B)| ≤ |Tr(H)|2. One can compute min(Tr(A) ∧ Tr(B)) by
comparing every two sets and keeping only the minimal ones. This can be done in

O
(
|VHi |·

(|Tr(Hi)|2
2

))
time for every node. Since TH is a binary tree with |H| leaves and,

thus, |H|− 1 internal nodes, the time it will take to perform a depth-first traversal of
TH will be O(|VHi | · |Hi| · |Tr(Hi)|4).

5. Other remarks and further work. While the question which Hirsh orig-
inally posed has been resolved, its analogue for the generalized version still remains
unanswered. Does there exist a hypergraph whose minimal hitting sets cannot be
listed efficiently regardless of what tree representation we use to process the edges?
That is to say, while the generalized Sequential Method is able to process Hi efficiently,
does it fail on some other hypergraph?

It would also be interesting to improve the mΩ(log logm) lower bound of Theo-
rem 1 for the running time of the Sequential Method with the optimal ordering of
the edges. In particular, as this lower bound is smaller than the upper bound of the
Fredman–Khachiyan algorithm, it could still be the case that the edges can always be
ordered (perhaps even by an efficient algorithm) in such a way that using this ordering
the Sequential Method outperforms the Fredman–Khachiyan algorithm. Experiments
show that for the lexicographic ordering of the edges of Hi, the largest blowup occurs
before the penultimate step. Thus it may be possible to get some improvement from
considering Hi in more detail. This would also involve the question of whether the
lexicographic order is the best one for Hi. In addition, given the relevance of listing
Tr(H) to data mining, it would be useful to investigate implementations related to
the Sequential Method that have worked well on practically relevant data. Recent
results by Hagen [20] provide theoretical bounds for three such algorithms [3, 9, 24].
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Another area to study is the probabilistic analysis of the Sequential Method.
Experiments suggest that using lexicographical ordering performs well on random
hypergraphs. We also try to develop heuristics for the application of the generalization
of the Sequential Method.
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ON THE NUMBER OF FIXED PAIRS IN A RANDOM INSTANCE
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Abstract. Consider a group of n men and n women, each ranking the members of the opposite
sex as a potential marriage partner. A matching (marriage) of men and women is called stable if
there is no pair (man, woman) who are not matched but prefer each other to their partners in the
matching. It is known that, for every instance of the rankings, there is at least one stable matching
and that there are instances with exponentially many stable matchings. Assume that the instance is
chosen uniformly at random among all (n!)2n possibilities. In this case the likely number of stable
matchings is known to be n1/2−o(1), with high probability, and of order n lnn, with probability
0.84 at least. In this paper we show that the average number of fixed pairs (man, woman), i.e.,
pairs common to all stable matchings, is asymptotic to ln2 n. More generally, the average number of
women (men) with k stable husbands (wives) is asymptotic to (lnk+1 n)/(k − 1)!.
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1. Introduction and main result. In a group of n men and n women, each
person ranks the members of the opposite sex as a potential marriage partner. A
matching (marriage) M between the set of men and the set of women is called stable
if there is no pair (man, woman) who are not matched in M but prefer each other
to their partners in M. Back in 1962, Gale and Shapley [2] showed that, for any
given rankings instance, at least one stable matching exists always. They proved it
by developing a “proposal” algorithm which always finds a special stable matching
M1. In this algorithm men propose to women in rounds, with each woman resolving
“collisions” in favor of a currently best suitor and rejected men each proposing next
to the best woman among those who haven’t rejected him earlier. Furthermore, they
proved that in any other stable matching M, if any exists, no man (woman) has a
better wife (worse husband) than in M1. In 1971–1972, McVitie and Wilson [8, 11]
introduced a sequential version of the Gale–Shapley algorithm, in which proposals
are made one at a time. This algorithm delivers the same matching M1, and each
man makes the same proposals as in the proposals-by-rounds version, regardless of
the order in which the “free” men propose; cf. Gusfield and Irving [3].

By establishing a connection with a coupon collector problem, Wilson proved that
the expected running time (total number of proposals) is at most

n
n∑

j=1

1

j
∼ n lnn,

if the ranking instance is chosen uniformly at random among all (n!)2n instances. In
1976, Knuth [4] undertook a systematic study of the stable matchings. He found a
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lower bound for the expected running time which matched Wilson’s upper bound and
gave an example of the rankings with 2n/2 stable matchings. Years later, Gusfield
and Irving [3] proved that the largest number of stable matchings grows as 2n at least
and constructed an n-size instance (n being a power of 2), for which they expected
an even larger number of solutions. Knuth [5] used the recurrence from [3] to show
that, indeed, that number is of order 2.28n. He also found an integral formula for
the probability that a given matching is stable, suggesting a problem of estimating
this integral asymptotically [4]. Pittel [9] proved that the integral is asymptotic to
(n lnn)/(en!), so that the expected number of solutions is about e−1n lnn. Knuth,
Motwani, and Pittel [6] found an extension of the McVitie–Wilson algorithm that
delivers all of the stable husbands of any given woman and used this algorithm to show
that, with high probability (whp), the number of those stable husbands is between
(1/2 − ε) lnn and (1 + ε) lnn. Thus a likely number of stable matchings was shown
to grow with n as lnn at least. Later Pittel [10] proved that, in fact, this number
grows much faster, at least as n1/2−o(1). Recently Lennon and Pittel [7] extended
the techniques in [9, 10], based on Knuth-type integral formulas, to show that the
likely number of solutions is of order n lnn, with probability 0.84 at least. It is quite
plausible that this probability approaches 1; i.e., the likely values of the number of
solutions are on the order of its expected value.

Thus, typically the random rankings instance has plenty of stable matchings.
Surprisingly, whp, for every stable matching, the product of the total wives’ rank
and the total husbands’ rank is relatively asymptotic to the same quantity n3. Thus,
switching from one stable matching to another, what one side collectively gains is
what another side collectively loses.

In light of many stable matchings, what is then a likely number of the fixed pairs
(m, w), i.e., the pairs common to all stable matchings? It was proved in [10] that
whp the number of women whose husband in Gale–Shapley’s matching M1 is their
best choice is close to lnn. Clearly each of these women is matched with the same
man in every stable matching, implying that whp the number of fixed pairs grows as
lnn at least.

Our goal in this paper is to demonstrate that the expected number of the fixed
pairs is asymptotic to ln2 n and that, more generally, the expected number of women
(men) with k stable husbands (wives) is asymptotic to (lnk+1 n)/(k − 1)!, k ≥ 1. We
do this by using the probabilistic analysis of the extended proposal algorithm and
some estimates in [10].

We conjecture that, in fact, the distribution of the number of women (men)
with k stable husbands (wives) is concentrated around (lnk+1 n)/(k − 1)!. A proof
of this conjecture, if based on the second moment method, would almost certainly
depend on the availability of a sequential proposal algorithm which determines all
stable husbands of two women, and no such algorithm comes to mind at this moment.
We hasten to add that there is known an algorithm by Irving and Gusfield [3], that
determines all stable pairs in O(n2) steps, but a sharp probabilistic analysis of this
algorithm is not in sight.

2. Proofs. The argument is based on properties of a proposal algorithm that,
for a given rankings instance, determines all stable husbands of a particular woman
w1 [6].

(a) The first phase is the McVitie–Wilson proposal algorithm [8], which delivers
the stable matching M1, simultaneously male-optimal and female-pessimal. (Each
man’s wife (woman’s husband) in M1 is his best (her worst) partner he (she) can
have in any stable matching.)
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Here is how it works. The arbitrarily ordered men propose in turn to women.
Each man always proposes to a woman of his first choice among the women to whom
he has not proposed so far. The chosen woman accepts his proposal temporarily if
she does not hold a proposal already; if she does, then the collision is resolved in favor
of a man whom she likes better. Whoever is rejected goes back to the queue of free
men, and, when his turn comes, proposes to his next best choice. Once all of the
women have been proposed to, we have a complete matching, which turns out to be
M1, regardless of a queue discipline. Bearing in mind how the collisions are resolved,
and knowing that M1 is female-pessimal, we see that in this phase no woman has
been proposed to by a stable husband other than her worst stable husband in M1.
However, for every woman, he is still best among the men who have proposed to her
so far.

Let us look at this phase from a woman w1’s point of view. Suppose that by
some moment she has been proposed to by men m1, . . . ,mk, in that chronological
order. Let M =

{
mj : j ∈ [k]

}
. By the rule, she retains the best man, mi say, and

each of the men from the set M \ {mi} is matched in M1 with a woman below w1

on his preference list. w1 will receive no further proposals, and consequently w1 is
matched with mi in M1, iff every other man’s partner in M1 is higher than w1 on
his preference list. Thus, the chronological ordering of the set M is immaterial for
whether or not w1 will receive other proposals.

(b) The second phase begins with woman w1 rejecting her stable husband in
M1. He is forced to propose to a woman of his next best choice, thus triggering
a sequence of collisions always resolved in favor of a better suitor. If w1 receives a
proposal before one of the men runs out of his choices, we have a matching. w1 rejects
her latest proposer, his next proposal leads to another sequence of collisions, and so
on. By rejecting “blindly” all of the proposals she receives, w1 forces a sequence of
collisions to run until one of the men is rejected by a woman of his last (nth) choice, at
which moment the process stops. It was proven in [6] that all of the stable husbands
of w1, besides her worst stable husband in M1, are among the men who proposed to
her in the second phase. Specifically, a man who has proposed to w1 in the second
phase is her stable husband, and the resulting matching is stable, iff she prefers him to
all of the previous proposers and thus to all of the stable husbands determined so far.
So her best stable husband is the last proposer whom she likes more than all of the
previous proposers. A key feature of this phase is that w1 can postpone determination
of who those stable husbands are until the proposal process terminates. In particular,
w1’s stable husband from M1 is her only stable husband iff in phase 2 she does not
receive any better proposal.

We will refer to this algorithm as the extended proposal algorithm, EPA for
brevity.

Suppose that the rankings instance is chosen uniformly at random among all
(n!)2n possible instances. Let Xn = Xn(w1) denote the random number of stable
husbands of w1. (By symmetry, Xn(w1) equals Xn(w) in distribution, for any other
woman w.) A probabilistic study of the EPA showed that

P
{
(1/2 − ε) lnn ≤ Xn ≤ (1 + ε) lnn

}
→ 1, n → ∞,

for every fixed ε > 0 [6]. A follow-up analysis in [10] of this algorithm produced
a sharper result: Xn is asymptotically N (lnn, lnn), i.e., normal, with mean and
variance lnn. As an afterthought it was demonstrated there (section 6, note 2) that
Yn, the total number of women whose husband in M1 has rank 1, is also N (lnn, lnn),
asymptotically.
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Let Zn denote the total number of women each having exactly one stable husband.
Clearly Zn ≥ Yn, and a question raised in [10] was how large, typically, is Zn − Yn.

Theorem 2.1.

(2.1) lim
n→∞

E[Zn]

ln2 n
= 1.

More generally, denoting by Zn,m the total number of women, each having exactly m
stable husbands (Zn,1 = Zn),

(2.2) lim
n→∞

E[Zn,m]

lnm+1 n
=

1

(m− 1)!
, m ≥ 1.

Note. We conjecture that, in fact, the distribution of Zn,m is concentrated
around E[Zn,m]. A proof of this conjecture based on the second moment method
would almost certainly depend on the availability of a sequential proposal algorithm
which determines all stable husbands of two women, and no such an extension of
the EPA comes to mind at this moment. We hasten to add that there is known an
algorithm [3] that determines all stable pairs in O(n2) steps, but a sharp probabilistic
analysis of this algorithm is not in sight.

Proof. Step 1. Adopting a “principle of deferred decisions” [6], we postulate that
a man, whose turn it is to propose, proposes to a woman chosen uniformly at random
from among women he has not yet proposed to, independently of the past choices by
other players. Dually, if a chosen woman has already been proposed to by some k
men, then she ranks the current proposer, relative to those k men, as being jth best
with probability 1/(k+1), j = 1, . . . , k+1, independently of the past choices by other
players. In particular, if at some time t during phase 1 a certain woman, w1 say, has
received her vth proposal, her current suitor is rejected in favor of the vth proposer
with probability 1/v. Also, the total number of proposers put on temporary hold by
this woman up to and including time t is distributed as the number of left-record
values in the uniformly random permutation of the set [v] = {1, . . . , v}.

Introduce Vn,1 and Vn, the total number of proposals to w1 in phase 1 and in
both phases, respectively. From the key feautures of the EPA, namely irrelevance of
chronology of proposals to w1 in phase 1 and blind rejection by w1 of all proposals in
phase 2, it follows that, conditioned on (Vn,1, Vn), the ranking, by w1, of Vn proposals
is the uniformly random permutation of [Vn].

In particular, the conditional probability that w1 has a single stable husband, i.e.,
Xn = 1, is the probability that the entry 1 of the uniformly random permutation of
[Vn] is among its first Vn,1 entries, so that

(2.3) P{Xn = 1 | (Vn,1, Vn)} =
Vn,1

Vn
=⇒ P{Xn = 1} = E

[
Vn,1

Vn

]
.

So our task is to estimate sharply the last expectation, since

E[Zn] = nP{Xn = 1}.

To this end, introduce Un, the rank of the best stable husband of w1. By sym-
metry, Un coincides in distribution with the rank of the best wife of a man, and this
rank equals the number of proposals made by this man in phase 1. Since proposals
made are proposals received, we see that

(2.4) nE[Un] = nE[Vn,1] =⇒ E[Un] = E[Vn,1].
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Furthermore, Un−1 is the number of men out of n−Vn nonproposers to w1, who would
have been ranked by w1 higher than any proposer. That is, conditioned on (Vn,1, Vn),
Un has the same distribution as 1+ the occupancy number of a fixed box in the
uniformly random allocation scheme with Vn + 1 boxes and n− Vn indistinguishable
balls, i.e.,

(2.5)

P
{
Un > u | (Vn,1, Vn)

}
=

|{x ≥ 0 : x1 + · · · + xVn+1 = n− Vn, x1 ≥ u}|
|{x ≥ 0 : x1 + · · · + xVn+1 = n− Vn}|

=

(
n−u
Vn

)
(
n
Vn

) ≥ 1 − uv

n− v
(0 ≤ u ≤ n− Vn).

In particular,

E
[
Un | (Vn,1, Vn)

]
= 1 +

n− Vn

Vn + 1
=

n + 1

Vn + 1
,

so that

(2.6)
1

Vn + 1
=

1

n + 1
E[Un | (Vn,1, Vn)].

Since Vn is likely to be large, (2.6) is a key tool for estimating E[Vn,1/Vn].
Step 2. It was proven in [10] (estimates (7.5), (7.7)) that

(2.7) E[Vn,1] = lnn−O(n−1 ln3 n),

so, by (2.4),

(2.8) E[Un] = lnn−O
(
n−1 ln3 n

)
.

The bounds (2.5) and (2.8) lead (see the proof of Theorem 2.1 [10]) to

(2.9) P

{
Vn ≥ n

ln7 n

}
≥ 1 − ln−3 n.

Furthermore, by Theorem 6.1 (estimates (6.3)–(6.4) with a = 11) in [10],

(2.10) P{Un ≤ 13 ln2 n} ≥ 1 − n−3.

While (2.8)–(2.10) is all we will need to know about Un, Vn, it is critically important
that the distribution of Vn,1 is sharply concentrated around lnn. (Not that it matters,
but we suspect that there is no such concentration for Un.)

To prove concentration of Vn,1, we use the ingenious reduction of the phase 1
proposal algorithm, applied to the uniformly random instance, to the coupon collector
problem by Wilson [11]. He suggested that each man always proposed to a woman
chosen uniformly at random from among all women, with the natural proviso that
every proposal to a woman to whom the man had proposed before would be rejected.
This relaxed version will deliver the exact same stable matching M1, and the total
number of proposals in it is distributed as Nn, the number of coupon draws in the
n-coupon collector problem. Let Ṽn,1 denote the total number of proposals received
by woman w1; this number counts both initial (nonredundant) proposals and repeated
(redundant) proposals to w1 by men already rejected by her. Clearly the number of
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nonredundant proposals has the same distribution as Vn,1, so we have coupled Vn,1

and Ṽn,1 in such a way that Vn,1 ≤ Ṽn,1. Now

Nn =

n−1∑
j=0

Gj ,

where G0, . . . , Gn−1 are independent geometrics, with success probability
1, 1 − 1/n, . . . , 1 − (n− 1)/n, respectively. So

E[Ṽn,1] =
E[Nn]

n
=

n∑
j=1

1

j
= lnn + O(1),

and by combining this with (2.7) we obtain

(2.11) E
[
Ṽn,1 − Vn,1

]
= O

(
n−1 ln3 n

)
.

Let us show that Nn is concentrated around n lnn. First, given ε ∈ (0, 1), we have

{
Nn ≤ [(1 − ε)n lnn]

}
=

n⋂
j=1

{Oj > 0},

where O1, . . . , On are the occupancy numbers in the uniformly random allocation of
[(1 − ε)n lnn] distinguishable balls among n boxes. Then, since the events {Oj > 0},
j ∈ [n], are negatively correlated,

P{Nn ≤ [(1 − ε)n lnn]} ≤ Pn{O1 > 0}

=

(
1 −

(
1 − 1

n

)[(1−ε)n lnn]
)n

≤ exp

(
−n

(
1 − 1

n

)(1−ε)n lnn
)

= exp
(
−n exp

(
−(1 − ε) lnn + O(n−1 ln2 n)

))
= exp

(
−nε(1 + O(n−1 ln2 n))

)
≤ exp

(
−0.5nε

)
,

uniformly for ε. Picking ε = ln−2/3 n, we have then

P{Nn ≤ [n lnn− n ln1/3 n]} ≤ exp
(
−0.5 exp(ln1/3 n)

)
.

Second,

(2.12)
P{Nn ≥ [n lnn + n ln1/3 n]} = P

⎧⎨
⎩

n⋂
j=1

{Oj = 0}

⎫⎬
⎭

≤ nP{O1 = 0},

where O1, . . . , On are the occupancy numbers for the random allocation of [n(lnn +

n ln1/3 n)] balls. An easy computation shows then that

(2.13) P{Nn ≥ [n lnn + n ln1/3 n]} ≤ exp
(
−0.5 ln1/3 n

)
.

Thus

(2.14)
P (An) ≥ 1 − 2 exp

(
−0.5 ln1/3 n

)
,

An := {[n lnn− n ln1/3 n] ≤ Nn ≤ [n lnn + n ln1/3 n]}.
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Further, in the event An, Ṽn,1 is sandwiched, stochastically, between two binomials,

B1 := Bin
(
[n lnn− n ln1/3 n], p = 1/n

)
, B2 := Bin

(
[n lnn + n ln1/3 n], p = 1/n

)
.

Observe that

E[Bi] = lnn + O(ln1/3 n), Var[Bi] = lnn + O(ln1/3 n),

so that the standard deviation of Bi (∼ ln1/2 n) far exceeds
∣∣E[Bi] − lnn

∣∣. (That’s
the reason for our choice of ε !) Using the standard, Chernoff-type, bound for the tail
probabilities of a binomial random variable, we get that, for some absolute constant
c > 0,

(2.15) P{|Bi − lnn| ≥ ln2/3 n} ≤ exp

(
−c

(ln2/3 n)2

lnn

)
= exp

(
−c ln1/3 n

)
.

Combining (2.14) and (2.15), we conclude that

P{|Ṽn,1 − lnn| ≥ ln2/3 n} ≤ exp
(
−c∗ ln1/3 n

)
for some absolute constant c∗ > 0. Hence (see (2.11)),

(2.16) P{|Vn,1 − lnn| ≥ ln2/3 n} ≤ exp
(
−c0 ln1/3 n

)
, c0 < c∗;

that is, Vn,1 is concentrated around lnn with probability 1 − exp
(
−c∗ ln1/3 n

)
, at

least. In addition, with a considerably higher probability, Vn,1 is of order lnn, at
most. Indeed, analogously to (2.12)–(2.13),

P{Nn < [3n lnn]} ≥ 1 − 1

n2
,

and, using Chernoff’s inequality,

P{Bin(m, p) ≥ k} ≤ exp

[
m

(
k

m
ln

p

k/m
+

(
1 − k

m

)
ln

1 − p

1 − k/m

)]
(k ≥ pm),

we also have

P{Bin([3n lnn], p = 1/n) < 8 lnn} ≥ 1 − 1

n2
.

Therefore

P{Ṽn,1 < 8 lnn} ≥ 1 − 1

n2
,

whence, as Vn,1 ≤ Ṽn,1,

(2.17) P{Vn,1 < 8 lnn} ≥ 1 − 1

n2
,

as well.
Step 3. We are ready now for the asymptotic evaluation of E[Vn,1/Vn]. First of

all, using the notation

E[X;A] := E[X1A],
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we write

(2.18)
E

[
Vn,1

Vn

]
= E

[
Vn,1

Vn
; Vn ≥ n

ln7 n

]
+ E

[
Vn,1

Vn
; Vn <

n

ln7 n

]

= E
(0)
1 + E

(0)
2 .

Here, by (2.6), (2.9), (2.10), and (2.17),

E
(0)
2 ≤ 2E

[
Vn,1

Vn + 1
; Vn <

n

ln7 n

]
=

2

n + 1
E

[
Vn,1Un ; Vn <

n

ln7 n

]

≤ 2n2

n + 1
P
{
(Vn,1 ≥ 8 lnn) ∪ (Un ≥ 13 ln2 n)

}
+

208 ln3 n

n + 1
P

{
Vn <

n

ln7 n

}

≤ 4n2

n + 1
· n−2 +

208

n + 1
,

so that

(2.19) E
(0)
2 = O(n−1).

Next, within the factor 1 + O(n−1 ln7 n) coming from (2.6) and

Vn = (Vn + 1)
(
1 + O(n−1 ln7 n)

)
on

{
Vn ≥ n

ln7 n

}
,

we have

E
(0)
1 =

1

n
E

[
UnVn,1 ; Vn ≥ n

ln7 n

]

=
1

n
E

[
UnVn,1 ;

(
Vn ≥ n

ln7 n

)
∩
(
(Vn,1 < 8 lnn) ∩ (Un ≤ 13 ln2 n)

)]
(2.20)

+
1

n
E

[
UnVn,1 ;

(
Vn ≥ n

ln7 n

)
∩
(
(Vn,1 ≥ 8 lnn) ∪ (Un ≥ 13 ln2 n)

)]

= E
(1)
1 + E

(1)
2 .

Here

(2.21) E
(1)
2 ≤ nP

{
(Vn,1 ≥ 8 lnn) ∪ (Un ≥ 13 ln2 n)

}
= O(n−1),

and

(2.22)

E
(1)
1 =

1

n
E
[
UnVn,1 ; (Vn,1 < 8 lnn) ∩ (Un ≤ 13 ln2 n)

]
−O

(
n−1 ln3 nP{Vn < n/ ln7 n}

)
= E

(2)
1 −O(n−1),

the remainder estimate being based on (2.9). Further, by (2.16),

(2.23)

E
(2)
1 =

1

n
E
[
UnVn,1 ; (Vn,1 < 8 lnn) ∩ (Un ≤ 13 ln2 n) ∩ (|Vn,1 − lnn| < ln2/3 n)

]
−O

(
n−1 ln3 n exp(−c0 ln1/3 n)

)
= E

(3)
1 − o(n−1),



STABLE MATCHINGS 955

and

E
(3)
1 =

lnn

n
E
[
Un ; (Vn,1 < 8 lnn) ∩ (Un ≤ 13 ln2 n) ∩ (|Vn,1 − lnn| < ln2/3 n)

]
+O

(
n−1E[Un] ln2/3 n

)
=

lnn

n
E
[
Un ; (Vn,1 < 8 lnn) ∩ (Un ≤ 13 ln2 n)

]
(2.24)

+O
(
n−1 ln2 nP{|Vn,1 − lnn| > ln2/3 n}

)
+ O

(
n−1 ln5/3 n

)
= E

(4)
1 + O

(
n−1 ln5/3 n

)
,

the remainders estimates being based on (2.8) and (2.16). Finally, by (2.10), (2.17),
and (2.8),

(2.25) E
(4)
1 =

lnn

n
E[Un] −O(n−2 lnn) ∼ ln2 n

n
.

By combining the relations (2.18)–(2.25), we arrive at

P{Xn = 1} = E

[
Vn,1

Vn

]
∼ ln2 n

n
,

which proves (2.1).
Step 4. The proof of (2.2) runs parallel to the argument above, so we will con-

centrate on new technicalities. Let m ≥ 2. Observe that

(2.26) P{Xn = m | (Vn,1, Vn)} = P{ωv ∈ Av1,v}|v1=Vn,1,v=Vn
;

here ωv is the uniformly random permutation of [v], and Av1,v is the set of all permu-
tations ω = (ω1, . . . , ωv) of [v] such that the subsequence of (ωv1+1, . . . , ωv) consisting
of ωj ’s below min

{
ωj : j ∈ [v1]

}
has m− 1 left-record values. Clearly

P{ωv ∈ Av1,v} = 0 ∀ v − v1 < m− 1.

Let v − v1 ≥ m − 1, so v ≥ m, in particular. Interpreting the entries of ωv as the
absolute ranks of the v independent (0, 1)-uniforms, we have then

P{ωv ∈ Av1,v} =
∑

j≥m−1

Pj(m− 1) v1

(
v − v1

j

)∫ 1

0

xj(1 − x)v−j−1 dx,

where Pj(μ) is the probability that ωj , the uniformly random permutation of [j], has
μ left-record values. By performing the integration, we obtain

P{ωv ∈ Av1,v} =
v1

v

∑
j≥m−1

Pj(m− 1)
(v − v1)j
(v − 1)j

,(2.27)

≤ v1

v

v∑
j=m−1

Pj(m− 1).(2.28)

Notice that the number of left-record values of ωj is distributed as
∑j

r=1 Ir, where
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I1, . . . , Ij ∈ {0, 1} are independent, and P{Ir = 1} = 1/r. So

Pj(μ) =
∑

S⊆{2,...,j}
|S|=μ−1

∏
r∈S

1

r

∏
ρ∈{2,...,j}\S

(
1 − 1

ρ

)

≤
∏

ρ∈[j](1 − 1/ρ)∏μ
r=2(1 − 1/r)

·
∑
S⊆[j]

|S|=μ−1

∏
s∈S

1

s

(2.29)

≤ μ

j

∑
1≤r1,...,rμ−1≤j

μ−1∏
i=1

1

ri
=

μ

j

(
j∑

r=1

1

r

)μ−1

≤ μ

j
(ln j + 1)μ−1.

Then, by (2.28),

P{ωv ∈ Av1,v} ≤ m
v1

v
(ln v + 1)m−2

v∑
j=1

1

j

≤ c(m)
v1

v
lnm−1 v ≤ c(m)

v1

v
(lnn)m−1

for some constant c(m) > 0. This upper bound differs from the exact formula

P{ωv ∈ Av1,v} =
v1

v
, m = 1,

only by the deterministic factor c(m)(lnn)m−1. So, by doing the counterparts of the
estimates (2.18)–(2.23), we obtain

P{Xn = m} = E

[
P{ωv ∈ Av1,v}| v1=Vn,1

v=Vn

]
= E

[
P{ωv ∈ Av1,v}| v1=Vn,1

v=Vn

; (Vn ≥ n ln−7 n) ∩ (Vn,1 < 8 lnn)
(2.30)

∩(|Vn,1 − lnn| < ln2/3 n) ∩ (Un ≤ 13 ln2 n)
]
+ o

(
n−1 lnm+1 n

)
= Ê + o

(
n−1 lnm+1 n

)
.

The next step is to replace P{ωv ∈ Av1,v} with a simpler asymptotic approximation,
assuming that v1 and v meet the constraints imposed on Vn,1 and Vn in the expectation

Ê. Let j(v) = [v/ lnn]. By (2.29),

v1

v

v−v1∑
j=j(v)

Pj(m− 1)
(v − v1)j
(v − 1)j

≤ c1(m)
v1

v
(lnn)m−2

∑
j≥j(v)

1

j

(
v − v1

v − 1

)j

≤ c1(m)
v1

v
(lnn)m−2 1

j(v)

(
v − v1

v − 1

)j(v)
v − 1

v1 − 1

≤ c1(m)
v1

v
(lnn)m−2 ·

exp
(
−j(v) v1−1

v−1

)
j(v)v1−1

v−1

≤ c2(m)
v1

v
(lnn)m−2.
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This computation shows also that

v1

v

∞∑
j=j(v)

Pj(m− 1)

(
v − v1

v

)j

= O
(v1

v
(lnn)m−2

)
.

Furthermore, for j ≤ j(v),

(v − v1)j
(v − 1)j

=

v−1∏
i=v−v1+1

(
1 − j

i

)

= exp

[
−j

v−1∑
i=v−v1+1

1

i
+ O

(
j2

v−1∑
i=v−v1+1

1

i2

)]

= exp

(
−j

v−1∑
i=v−v1+1

1

i
+ O

(
j2(v)v1/v

2
))

= exp

(
−j

v−1∑
i=v−v1+1

1

i
+ O

(
ln−1 n

))

=

(
v − v1

v

)j (
1 + O(ln−1 n)

)
.

Therefore, “swapping the tails,”

v1

v

v−v1∑
j=m−1

Pj(m− 1)
(v − v1)j
(v − 1)j

=
(
1 + O(ln−1 n)

)v1

v

∞∑
j=m−1

Pj(m− 1)

(
v − v1

v

)j

+O
(v1

v
(lnn)m−2

)
.

The punchline is that, for μ ≥ 1,
∞∑
j=μ

Pj(μ)xj =
1

μ!
lnμ 1

1 − x
, |x| < 1.

This identity can be proved either from scratch by using the representation of the
number of record values in the random permutation ωj as the sum I1 + · · · + Ij of
independent indicators or by observing that Pj(μ) = C(j, μ)/j!, where C(j, μ) is the
Stirling number of the first kind, and using the classic exponential identity

∑
j,μ

C(j, μ)

j!
xjyμ = exp

⎛
⎝y

∞∑
j=1

xj

j

⎞
⎠ =

∑
μ≥0

yμ

μ!
lnμ 1

1 − x
, |x| < 1;

see Comtet [1, section 5.5], for example. Thus

P{ωv ∈ Av1,v} =
v1

v

v−v1∑
j=m−1

Pj(m− 1)
(v − v1)j
(v − 1)j

=
(
1 + O(ln−1 n)

)v1

v

lnm−1 v
v1

(m− 1)!
+ O

(v1

v
(lnn)m−2

)

=
v1

v

lnm−1 v
v1

(m− 1)!
+ O

(v1

v
(lnn)m−2

)

=
v1

v

lnm−1 n

(m− 1)!
+ O

(v1

v
(lnn)m−2 ln lnn

)
.
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By using this asymptotic formula P{ωv ∈ Av1,v} in the formula for Ê in (2.30) and
arguing as in Step 3, we obtain

P{Xn = m} = E

[
P{ωv ∈ Av1,v}| v1=Vn,1

v=Vn

]

∼ lnm+1 n

n(m− 1)!
,

which proves (2.2).

A final remark. So the expected number of fixed pairs grows as ln2 n. Let us
define a closed clique as a set of some ν men and ν women, ν < n, such that in
every stable matching these men and women are matched with each other only. If
there are at least two stable matchings, the men and the women in fixed pairs are
one such closed clique. It would be very interesting to determine a likely size of the
largest closed clique with at most n/2 men and n/2 women. How does it compare
with ln2 n? The question seems to be quite hard. It is not even clear how to estimate
the probability that some 2 men and 2 women form a fixed clique. (Our result means
that a man and a woman form a closed clique (fixed pair) with probability asymptotic

to ln2 n
n2 .)

Acknowledgement. We are grateful to a referee for his/her interest in this work
and thoughtful comments.
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CONSTANT WEIGHT CONFLICT-AVOIDING CODES∗
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Abstract. A conflict-avoiding code (CAC) C of length n with weight k is a family of binary
sequences of length n and weight k satisfying

∑
0≤t≤n−1 xitxj,t+s ≤ λ for any distinct codewords

xi = (xi0, xi1, . . . , xi,n−1) and xj = (xj0, xj1, . . . , xj,n−1) in C and for any integer s, where the
subscripts are taken modulo n. A CAC with maximum code size for given n and k is said to
be optimal. A CAC has been studied for sending messages correctly through a multiple-access
channel. The use of an optimal CAC enables the largest possible number of potential users to
transmit information efficiently and reliably. In this paper, the case λ = 1 is treated, and various
direct and recursive constructions of optimal CACs for weight k = 4 and 5 are obtained by providing
constructions of CACs for general weight k. In particular, the maximum code size of CACs satisfying
certain sufficient conditions is determined through number theoretical and combinatorial approaches.

Key words. conflict-avoiding codes, cyclotomic cosets, Kronecker density, recursive construc-
tions
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1. Introduction. Several authors in [14, 15, 16, 5, 13, 19, 10, 12, 11] have inves-
tigated protocol sequences for a multiple-access channel without feedback. In such a
multiple-access channel model, the time axis is partitioned into slots whose duration
corresponds to the transmission time for one packet and all users are supposed to
have slot synchronization, but no other synchronization is assumed. If more than one
user is sending packets in a particular slot simultaneously, then there is a conflict and
the channel output in that slot is the unreadable collision symbol, called an erasure.

If the binary protocol sequence xi = (xi0, xi1, . . . , xi,n−1) has Hamming weight
k, then user i sends k packets in each frame of n slots, where his or her protocol
sequence appears. When a user i is sending a message by using a protocol sequence
xi, a different message from the other user may be sent by a protocol sequence xj or its
cyclic shift since only slot synchronization is assumed. The set C = {x1, x2, . . . , xN}
of N binary sequences is called an (N,u, n, σ) protocol sequence set if any xi ∈ C is
of length n and has the property that at least σ successful packet transmissions in
a frame are guaranteed for each active user, provided that at most u users out of N
potential users are active. On the assumption that the number of collisions of any
two distinct sequences is at most λ, in order to guarantee each user that at least σ
packets in a frame survive from collision, the weight k of the (N,u, n, σ) protocol
sequence set satisfies k ≥ σ + λ(u − 1). If there is at least one packet that survives
from collision, then there may be a chance to use an inner code for erasure correction.
Let � be the bit length of each slot. An (n′ = k�, k′ = σ�, d′ = k�− σ�+ 1) shortened
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Reed–Solomon (RS) code over GF(q) can be used as a code for each user to decode
his or her σ survives packets into k transmitted packets, since a (k�, σ�, k�− σ� + 1)
shortened RS code can correct up to k�−σ� position erasures where the user’s packets
suffer from collision and then the k − σ erased packets are recovered by the σ alive
packets at the receiver. In order to use an inner code, every protocol sequence of
C should have constant weight k. Such an (N,u, n, σ) protocol sequence set is also
called a conflict-avoiding code (CAC) of length n with weight k. In this paper, it is
not our objective to discuss inner codes for erasure correction but rather to provide
an upper bound on the code size N of a CAC for given n and k in the case of λ = 1
and k = σ + u− 1, and to construct “optimal” CACs attaining the bound.

Let P(n, k) denote the set of all k-subsets of Zn = Z/nZ, the residue ring of
rational integers modulo n. Hereafter we denote each coset [i], 0 ≤ i ≤ n−1, in Zn by
i for simplicity. Each element x ∈ P(n, k) can be identified with a binary sequence in
{0, 1}n of Hamming weight k representing the indices of the nonzero positions. Given
a k-subset x ∈ P(n, k), we define the difference set of x by

Δ(x) =
{
j − i | i, j ∈ x, i �= j

}
.

Note that Δ(x) contains at most k(k − 1) differences. Furthermore, i ∈ Δ(x) implies
(n− i) ∈ Δ(x), i.e., Δ(x) is symmetric with respect to n/2. In a set notation, for the
case of λ = 1 a CAC of length n with weight k is a subset C ⊂ P(n, k) satisfying the
condition

(1.1) Δ(x) ∩ Δ(y) = ∅ for any x, y ∈ C with x �= y.

Each element x ∈ C is called a codeword of length n and weight k. Without loss of
generality, we can assume that any codeword contains the element 0. For given n and
k, let CAC(n, k) denote the class of all conflict-avoiding codes of length n with weight
k. The maximum size of some code in CAC(n, k) is denoted by M(n, k), i.e.,

M(n, k) = max{|C| |C ∈ CAC(n, k)}.

A code C ∈ CAC(n, k) is said to be optimal if |C| = M(n, k). The advantage of using
an optimal CAC is that it enables the largest number of potential users to transmit
packets efficiently and reliably in such a multiple-access channel model.

In the case of weight k = 3, Levenshtein and Tonchev [12] showed a construction
of optimal CACs of length n for every n ≡ 2 (mod 4) and for sufficiently large odd
prime n. Levenshtein [10] extended the result to the case of sufficiently large odd
integer n. Jimbo et al. [8] obtained a construction of an optimal CAC in the case
when n = 4m and m ≡ 2 (mod 4) for k = 3. In the case of general k, Levenshtein
[11] gave an infinite series of CACs with n = pr, k = (p + 1)/2, and code size
|C| = (n− 1)/(2(k − 1)) for any prime p ≥ 3 and integer r ≥ 2.

In the remainder of this paper, we will describe various direct and recursive con-
structions to obtain optimal CACs. In section 2, we show upper bounds on the code
size of CACs for weight k = 4 and 5. In sections 3 and 5, we give some direct con-
structions of CACs for general weight k and obtain new optimal CACs for k = 4 and
5. In particular, we obtain constructions of optimal codes:

(i) C ∈ CAC(n = p, 4) with |C| = n−1
6 for infinitely many primes p ≡ 1 (mod 6).

(ii) C ∈ CAC(n = 3p, 4) with |C| = n−3
6 for all primes p ≡ 7 (mod 8).

(iii) C ∈ CAC(n = 4p, 4) with |C| = n+2
6 for infinitely many primes p ≡ 13

(mod 24).



CONSTANT WEIGHT CONFLICT-AVOIDING CODES 961

(iv) C ∈ CAC(n = 2p, 5) with |C| = n−2
8 for all primes p ≡ 5 (mod 24).

(v) C ∈ CAC(n = 4p, 5) with |C| = n−4
8 for all primes p ≡ 11 (mod 12).

Furthermore, we investigate the Kronecker density of those primes by using the
Chevotarëv’s density theorem. In section 4, we see the asymptotic behavior of max-
imum code size of CACs of length n ≡ 0 (mod 3) and weight k = 4 by using the
Euler’s ϕ-function. Moreover, a recursive construction is given in section 6.

2. Equidifference CACs and upper bounds on code size. In order to find
codes of large size, the condition given in (1.1) suggests using many codewords that
possess a difference set of small size. This motivates the following definition. A
codeword x ∈ P(n, k) is called equidifference with generator i ∈ Zn \ {0} if it is of the
form

(2.1) x = xi = {0, i, 2i, . . . , (k − 1)i}.

Note that the assumption that x = xi is k-subset implies the condition ji �≡ 0 (mod n)
holds for every j, 1 ≤ j ≤ k − 1. Furthermore, for an equidifference codeword xi one
has Δ(xi) = {±ji | 1 ≤ j ≤ k − 1} and |Δ(xi)| ≤ 2(k − 1). A codeword with
|Δ(x)| < 2(k − 1) is said to be exceptional. It should be noted that there may
exist exceptional codewords which are not equidifference. A code C ∈ CAC(n, k) is
said to be equidifference if it consists entirely of equidifference codewords. The set
of generators of such a code will be denoted by Γ(C). Furthermore, the subclass
consisting of equidifference codes in CAC(n, k) will be denoted by CACe(n, k) and
the maximum size of some equidifference CACs by Me(n, k). Obviously, one has
Me(n, k) ≤ M(n, k).

Now we consider the case of equidifference conflict-avoiding codes of weight k = 4.
The equidifference codewords of weight k = 4 are of the form xi = {0, i, 2i, 3i} for
i ∈ Zn \ {0, n/2, n/3, 2n/3}, where the notation Zn \ {0, n/2, n/3, 2n/3} means that
n/2, n/3, and 2n/3 are removed from Zn only when 2|n, 3|n, or 3|2n. It is not hard to
see that for a general codeword x of weight four one has 3 ≤ |Δ(x)| ≤ 12.Furthermore,
for an exceptional codeword x one can tediously check that

|Δ(x)| =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3 iff x = {0, n/4, n/2, 3n/4},
4 iff x = {0, n/5, 2n/5, 3n/5},
5 iff x = {0, d, n/2, n/2 + d} or x = {0, d, n/2, n− d}

for any d ∈ Zn \ {0, n/4, n/2, 3n/4}.

(2.2)

Note that for given C ∈ CAC(n, 4), the difference sets Δ(x) for x ∈ C are pairwise
disjoint subsets of Zn. From this fact, one obtains the following upper bound on code
size.

Lemma 2.1. Let n = 2r5sm, where m is not divisible by 2 and 5. Then it holds
that

M(n, 4) ≤

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩


n/6� if r = 1, s = 0,


(n + 1)/6� if r = 0, s ≥ 1,


(n + 2)/6� if r ≥ 2, s = 0, or r = 1, s ≥ 1,


(n + 4)/6� if r ≥ 2, s ≥ 1,


(n− 1)/6� if r = s = 0.

For example, if r ≥ 2 and s ≥ 1, since some C ∈ CAC(n, 4) can contain the two
exceptional codewords xn/4 = {0, n/4, n/2, 3n/4} and xn/5 = {0, n/5, 2n/5, 3n/5},



962 K. MOMIHARA, M. MÜLLER, J. SATOH, AND M. JIMBO

then we have M(n, 4) ≤ 
(n− 1 − |Δ(xn/4)| − |Δ(xn/5)|)/6� + 2 = 
(n + 4)/6�. The
other cases are checked similarly.

Example 2.2. For n = 21 one has M(n, 4) ≤ 3 by Lemma 2.1. The difference sets
of the equidifference codewords x1, x4, and x5 are given by Δ(x1) = {1, 2, 3, 20, 19, 18},
Δ(x4) = {4, 8, 12, 17, 13, 9}, and Δ(x5) = {5, 10, 15, 16, 11, 6}, respectively. Thus, we
have {x1, x4, x5} ∈ CACe(21, 4) and M(n, 4) = Me(n, 4) = 3.

In the case of k = 5, for exceptional codewords we have

|Δ(x)| =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4 iff x = {0, n/5, 2n/5, 3n/5, 4n/5},
5 iff x = {0, n/6, n/3, n/2, 2n/3},
6 iff x = {0, n/7, 2n/7, 3n/7, 4n/7}, x = {0, n/7, 2n/7, 3n/7, 5n/7},

or x = {0, n/7, 2n/7, 4n/7, 5n/7},
7 iff x = {0, n/8, n/4, 3n/8, n/2}, x = {0, n/8, 2n/8, 3n/8, 5n/8},

x = {0, n/8, n/4, n/2, 5n/8}, x = {0, n/8, n/4, n/2, 3n/4},
or x = {0, n/8, 3n/8, n/2, 3n/4},

and obtain the following upper bound on code size, similar to the case k = 4.

Lemma 2.3. Let n = 2r3s5t7um, where m is not divisible by 2, 3, 5, and 7. Then
it holds that

M(n, 5) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩


n/8� if r ≥ 3, s = t = u = 0,


(n + 1)/8� if s ≥ 0, u ≥ 1, r = t = 0, or 1 ≤ r ≤ 2, u ≥ 1, s = t = 0,


(n + 2)/8� if r, s ≥ 1, t = u = 0, or r ≥ 3, u = 1, s = t = 0,


(n + 3)/8� if s ≥ 0, t ≥ 1, r = u = 0, or 1 ≤ r ≤ 2, t ≥ 1, s = u = 0,


(n + 4)/8� if r, s ≥ 1, t = 0, u ≥ 1, or r ≥ 3, t = 1, s = u = 0,


(n + 5)/8� if t, u ≥ 1, r = 0, s ≥ 0, or t, u ≥ 1, 1 ≤ r ≤ 2, s = 0,


(n + 6)/8� if r, s, t ≥ 1, u = 0, or t, u ≥ 1, r ≥ 3, s = 0,


(n + 8)/8� if r, s, t, u ≥ 1,


(n− 1)/8� if s ≥ 0, r = t = u = 0, or 0 ≤ r ≤ 2, s = t = u = 0.

Our aim is to give an explicit construction of codes C ∈ CACe(n, k) for certain
parameters n such that |C| attains the upper bound given in Lemmas 2.1 and 2.3
implying M(n, k) = Me(n, k) = |C|. However, note that the upper bounds on M(n, k)
for general weight k are not known.

3. Direct constructions of CACs from finite fields. In the rest of this
paper, we use the following notation. Given a prime p, a primitive element α ∈ Zp

and some divisor e|(p − 1), let γ = αe and denote the multiplicative subgroup with
generator γ by 〈γ〉. The cosets He

j (p) = αj〈γ〉, 0 ≤ j < e, are called the cyclotomic
cosets of Zp of index e, denoted by He(p). Given a list (i1, i2, . . . , ie) of elements in
Z

×
p , if each coset He

j (p), 0 ≤ j < e, contains exactly one element of the list, then
we say that the list forms a system of distinct representative of He(p), denoted by
SDR(He(p)). Let ζe be a primitive eth root of unity. We denote the eth power
residue symbol in Q(ζe) by (a

p
)e, where p is a prime ideal in Q(ζe) lying over (p) and

a is an ideal in Q(ζe) prime to p. (See [7, 6] for the definition and basic properties.)
Furthermore, if the integer ring of Q(ζe) is a principal ideal ring, we may denote an
ideal p in Q(ζe) by an algebraic number π generating p.
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We consider a code C ∈ CACe(n, k) of the form C = {xi1 , xi2 , . . . , xim} with
m equidifference codewords xij . To ease the notation, we will use the concept of
difference lists as defined, e.g., in [1, 20]. In this notation, the union of all differences
Δ(xij ) can be written as the following product of lists:

Δ(C) =
m⋃
j=1

Δ(xij ) = (i1, i2, . . . , im) · (1, 2, . . . , k − 1,−1,−2, . . . ,−(k − 1)).

If n = p = 2(k−1)m+1 is a prime, we have |Δ(xij )| = 2(k−1) and the list Δ(C) must
cover each element of Z

×
p exactly once in order that |C| = m. The following theorem

gives a sufficient condition to construct such equidifference CACs, and the technique
is similar to that of construction for difference families; see, e.g., [2, 3, 9, 20].

Theorem 3.1. Let n = p = 2(k − 1)m + 1 be a prime such that (1, 2, . . . , k − 1)
forms an SDR(Hk−1(p)). Then there exists a code C ∈ CACe(n = p, k) with |C| =
Me(n, k) = m.

Proof. Let p satisfy the condition of the theorem, and let γ = αk−1 for a primitive
element α ∈ Zp. Since (p − 1)/2 = (k − 1)m is a multiple of k − 1, we have −1 =
α(k−1)m = γm ∈ Hk−1

0 (p). Let Γ(C) = {1, γ, . . . , γm−1}; then the list of all differences
of C is given by

Δ(C) = (1, γ, . . . , γm−1) · (1, 2, . . . , k − 1,−1,−2, . . . ,−(k − 1))

= (1, γ, . . . , γm−1) · (1, γm) · (1, 2, . . . , k − 1)

= (1, γ, . . . , γ2m−1) · (1, 2, . . . , k − 1)

= Hk−1
0 (p) · (1, 2, . . . , k − 1)

= Z

×
p .

In other words, all elements of Z

×
p appear exactly once as differences in Δ(C), which

proves the theorem.
Note that equidifference CACs of k = 4 and 5 constructed by this theorem are

optimal by Lemmas 2.1 and 2.3 since n = p is a prime.
Example 3.2. Let p = 37 and k = 4; then α = 2 ∈ Z37 is a primitive element.

Since 1 ∈ H3(p), 2 = α ∈ H3
1 (p), and 3 = α26 ∈ H3

2 (p), (1, 2, 3) forms an SDR(H3(p)),
and p satisfies the condition of Theorem 3.1. Let γ = α3 = 8; then (1, γ, . . . , γ5) =
(1, 8, 27, 31, 26, 23) defines a list of generators for an optimal code C ∈ CACe(37, 4)
with |C| = M(37, 4) = 6.

Now the statements of Theorem 3.1 can be expressed in another way by the
following lemma.

Lemma 3.3. Let p be a rational prime and e a rational integer prime to p. Then
(i) a list (i1, i2, . . . , ie) of Z

×
p forms an SDR(He(p)) iff (ii)

( ij
p

)
e
, 1 ≤ j ≤ e, are

distinct from each other, where p is a prime ideal in Q(ζe) lying over (p).
Proof. Let i be a rational integer prime to p and α a primitive element of Zp. We

define xi, yi ∈ Z by

i ≡ αxi (mod p) and

(
i

p

)
e

= ζyi
e .

We note that xi and yi are uniquely determined by i modulo p−1 and e, respectively.

By the definition of the eth power residue symbol, that is,
(
i
p

)
e
≡ i

Np−1

e (mod p), we
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have

ζyi
e ≡ i

Np−1

e ≡ αxi
Np−1

e mod p),

where Np is the norm of p. In particular, if i = α, then xα ≡ 1 (mod p − 1) and

ζyα
e ≡ α

Np−1

e (mod p). Hence we have

(3.1) ζyi
e ≡ ζyαxi

e (mod p).

Since p and e are relatively prime, the equality holds for the congruence (3.1). Hence
we have yi ≡ yαxi (mod e).

((i)⇒(ii)) If (i1, i2, . . . , ie) forms an SDR(He(p)), then xij , 1 ≤ j ≤ e, are distinct
from each other modulo e and

(3.2) yij ≡ yαxij (mod e)

holds by the above argument. Furthermore, we have Np = p and ζyα
e ≡ α

p−1
e (p)

since obviously p ≡ 1 (mod e) by the definition of He(p). This implies (yα, e) = 1.

Therefore, yij ’s for 1 ≤ j ≤ e are distinct from each other modulo e, i.e.,
( ij

p

)
e
’s for

1 ≤ j ≤ e are distinct from each other.
((ii)⇒(i)) If

( ij
p

)
e
’s for 1 ≤ j ≤ e are distinct from each other, then we have

(yα, e) = 1 since (3.2) holds for any ij , 1 ≤ j ≤ e, and yij are distinct from each
other modulo e. This implies that xij ’s for 1 ≤ j ≤ e are distinct from each other
modulo e, i.e., (i1, i2, . . . , ie) forms an SDR(He(p)).

In the case of k = 4, we can obtain the following by using Lemma 3.3.
Corollary 3.4. Let p = 6m + 1 be a prime and π = a + bζ3 ∈ Z[ζ3] be a prime

element such that p = ππ̄ satisfying{
a ≡ 2 (mod 6)

b ≡ 3 (mod 18)
or

{
a ≡ 5 (mod 6),

b ≡ 15 (mod 18),

where π̄ means the complex conjugate of π. Then there exists an optimal code C ∈
CACe(n = p, 4) with |C| = M(n, 4) = Me(n, 4) = m.

Proof. By Lemma 3.3, it is enough to show that
(
i
π

)
3
’s for 1 ≤ i ≤ 3 are

distinct from each other iff π satisfies the condition of the corollary. Without loss of
generality, we can assume that a ≡ 2 (mod 3) and b ≡ 0 (mod 3) for a prime element
π = a + bζ3 ∈ Z[ζ3] satisfying p = ππ̄. It is obvious that

(
1
π

)
3

= 1. By the cubic
reciprocity law, we have

(
2

π

)
3

≡

⎧⎪⎨
⎪⎩

1 if (a, b) ≡ (1, 0) (mod (2, 2)),

ζ3 if (a, b) ≡ (0, 1) (mod (2, 2)),

ζ2
3 if (a, b) ≡ (1, 1) (mod (2, 2)),

since 2 is also a prime element of Z[ζ3] (see [7, 6]). Also we have(
3

π

)
3

≡ ζ
ab
3

3 (mod π)

by using 3 = −ζ2
3 (1 − ζ2

3 )2 and the supplement law of cubic reciprocity. Then one
can readily check that

(
2
π

)
3

= ζ3 and
(

3
π

)
3

= ζ2
3 iff (a, b) ≡ (2, 3) (mod (6, 18)), and(

2
π

)
3

= ζ2
3 and

(
3
π

)
3

= ζ3 iff (a, b) ≡ (5, 15) (mod (6, 18)).
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Let K be a Galois extension of an algebraic number field F and C the conjugate
class of σ ∈ G = Gal(K/F ), i.e., C = {γ−1σγ | γ ∈ G}. We define a set Mσ of prime
ideals in F for a fixed σ ∈ G as follows:

Mσ = {P ∩ F |P is a prime ideal in K such that σP = σ},

where σP is a Frobenius substitution with respect to P in K/F . If K/F is an abelian
extension, then σP depends on only the prime ideal p of F lying under P. So σP may

be denoted by the Artin symbol
(K/F

p

)
.

By utilizing the following proposition, we can show that primes satisfying the
condition of Corollary 3.4 exist infinitely many. The proposition is well known as
Chebotarëv’s density theorem [17].

Proposition 3.5. The Kronecker density δ(Mσ) of Mσ is equal to |C|
|G| , i.e.,

δ(Mσ) = lim
s→1+0

∑
p∈Mσ

1

(Np)s
/ log

1

s− 1
=

|C|
|G| .

If the extension K/F is also abelian, then there exists infinitely many prime ideals p

in F such that
(K/F

p

)
= σ for each σ ∈ Gal(K/F ), and the density of the set of all

those prime ideals is equal to 1
[K:F ] , where

(K/F
p

)
is the Artin symbol.

Then the following corollary can be shown by noting that

(3.3)

(
α

p

)
k

= 1 ⇐⇒
(

Q(ζk, k
√
α)/Q(ζk)

p

)
= 1.

Corollary 3.6. The Kronecker density of the set of all primes satisfying the
condition of Corollary 3.4 is equal to 1

9 = 0.11 . . ., and there exist infinitely many of
those primes.

Proof. By Lemma 3.3, (1, 2, 3) forms an SDR(H3(p)) iff

(3.4)

(
6

π

)
3

= 1 and

(
2

π

)
3

�= 1,

where p = (π) is a prime ideal in Q(ζ3) lying over (p). Let P be a prime ideal in
Q(ζ3,

3
√

6) lying over (p) and let

σ =

(
Q(ζ3,

3
√

2, 3
√

6)/Q(ζ3,
3
√

6)

P

)
.

Then, by (3.3), a necessary and sufficient condition for
(

2
π

)
3
�= 1 under

(
6
π

)
3

= 1

is σ �= 1. Now we apply Proposition 3.5 to the case of K = Q(ζ3,
3
√

2, 3
√

6), F =
Q(ζ3,

3
√

6), and σ = 1. Since Gal(Q(ζ3,
3
√

2, 3
√

6)/Q(ζ3,
3
√

6)) is cyclic, the density of
{P} in Q(ζ3,

3
√

6) for σ �= 1 is equal to

1 − δ(M1) = 1 − 1

[Q(ζ3,
3
√

2, 3
√

6) : Q(ζ3,
3
√

6)]
=

2

3
.

Furthermore, by a similar discussion, the density of {p} in Q(ζ3) is equal to

2

3

1

[Q(ζ3,
3
√

6) : Q(ζ3)]
=

2

9
.
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It follows that the Kronecker density of the set of all those primes is equal to

2

9

1

[Q(ζ3) : Q]
=

1

9
.

In fact, by computer search, the frequency ratio of those primes in the first 1, 000
primes is equal to 110

1000 � 1
9 . Table 7.1 in section 7 shows such 110 primes.

Note that when k = 5 and p = 8m + 1 is a prime, (1, 2, 3, 4) does not form
an SDR(H4(p)). The fact is easily seen. Since 2 is a square in Zp, we can obtain
2 ∈ H4

0 (p) ∪H4
2 (p). This implies that 4 = 22 ∈ H4

0 (p). Since we also have 1 ∈ H4
0 (p),

(1, 2, 3, 4) cannot form an SDR(H4(p)).
Now, we give a further direct construction.
Theorem 3.7. Let e ≥ 1 and s > 1 be integers, and let p = 2em + 1 be a

prime such that each of (i − es, i − (e − 1)s, . . . , i + (e − 1)s), 1 ≤ i ≤ s − 1, and
(±s,±2s, . . . ,±es) forms an SDR(H2e(p)). Then there exists a code C ∈ CACe(n =
sp, k = es + 1) with |C| = Me(n, k) = m, which satisfies Zn \ Δ(C) = pZn.

Proof. For e, s, and p satisfying the condition of the theorem, let γ = α2e for a
primitive element α ∈ Zp. Note that we can assume p > s. In fact, if p ≤ s, then we
have

0 ∈
⋃

1≤i≤s−1

{i− es, i− (e− 1)s, . . . , i + (e− 1)s},

i.e., there is a coset of H2e(p) which contains the element 0. Therefore, since p is a
prime and p > s, Zs × Zp can be identified with Zsp. Let Γ(C) = {1} ×H2e

0 (p) over
Zs × Zp. The differences arose from each codeword x(1,γj) with generator (1, γj) are

Δi(x(1,γj)) =

{
{0} × γj · {±s,±2s, . . . ,±es}, i = 0,

{i} × γj · {i− es, i− (e− 1)s, . . . , i + (e− 1)s}, 1 ≤ i ≤ s− 1,

where Δi(x(1,γj)) is the set of differences of the form (i,−) that arose from x(1,γj).
Then the list of all differences of C is given by

Δ(C) = ({1} ×H2e
0 (p)) · (1, 2, . . . , k − 1,−1,−2, . . . ,−(k − 1))

=

⎛
⎝ ⋃

1≤i≤s−1

({i} × (H2e
0 (p)) · (i− es, i− (e− 1)s, . . . , i + (e− 1)s))

⎞
⎠

∪
(
{0} × (H2e

0 (p)) · (±s,±2s, . . . ,±es)
)

=
⋃

0≤i≤s−1

({i} × Z

×
p ) = Zs × (Z×

p ).

In other words, all elements of Zs × (Z×
p ) appear exactly once as differences in Δ(C),

and (Zs × Zp) \ Δ(C) = Zs × {0} � pZsp holds, which proves the theorem.
Note that equidifference CACs of k = 4 and 5 constructed by this theorem are

optimal by Lemmas 2.1 and 2.3. In the case of k = 4 and 5, the statements of
Theorem 3.7 can be expressed in another way by using quadratic residue. In the case
of e = 1 and s = 3, we obtain the following infinite series of an optimal CAC for
k = 4.



CONSTANT WEIGHT CONFLICT-AVOIDING CODES 967

Corollary 3.8. Let p = 2m + 1 be a prime such that p ≡ 7 (mod 8). Then
there exists an optimal code C ∈ CACe(n = 3p, 4) with |C| = M(n, 4) = Me(n, 4) = m,
which satisfies Zn \ Δ(C) = pZn.

Proof. By Theorem 3.7 and Lemma 3.3, it is enough to show that
(
i
p

)
2

are distinct

for each of i ∈ {1,−1} and i ∈ {1,−2} iff p ≡ 7 (mod 8). Obviously
(

1
p

)
2

= 1, and(−1
p

)
2

= −1 iff p ≡ 3 (mod 4). By the supplement of quadratic reciprocity,

(
2

p

)
2

=

{
1 iff p ≡ 1, 7 (mod 8),

−1 iff p ≡ 3, 5 (mod 8),
(3.5)

holds. Hence,
(−1

p

)
2

=
(−2

p

)
2

= −1 iff p ≡ 7 (mod 8). Thus each of {1,−1} and

{1,−2} forms an SDR(H2(p)) iff p ≡ 7 (mod 8).
Example 3.9. Let p = 7, s = 3, and e = 1. Note that 3 is the primitive

elements of Z7 and H2
0 (7) = {1, 2, 4}. Then, ((1, 1), (1, 2), (1, 4)) over Z3 × Z7 (or

(1, 16, 4) over Z21) defines a list of generators for an optimal code C ∈ CACe(21, 4)
with |C| = M(21, 4) = 3.

In the case of e = 2 and s = 2, we can obtain an infinite series of optimal CACs
for k = 5 as follows.

Corollary 3.10. Let p = 4m + 1 be a prime such that p ≡ 5 (mod 24). Then
there exists an optimal code C ∈ CACe(n = 2p, 5) with |C| = M(n, 5) = Me(n, 5) = m,
which satisfies Zn \ Δ(C) = pZn.

Proof. By Theorem 3.7, we show that each of {2, 4,−2,−4} and {1, 3,−1,−3}
forms an SDR(H4(p)) iff p ≡ 5 (mod 24). Since −1 ∈ H4

2 (p) iff p ≡ 5 (mod 8),
it is enough to show that each of {2, 4} and {1, 3} forms an SDR(H2(p)), i.e,

(
i
p

)
2

are distinct for each of i ∈ {2, 4} and i ∈ {1, 3} iff p ≡ 5 (mod 24). Obviously(
1
p

)
2

=
(

4
p

)
2

= 1 holds. By (3.5),
(

2
p

)
2

= −1 iff p ≡ 3, 5 (mod 8). Furthermore, by
quadratic reciprocity, we have

(
3

p

)
2

=

{
1 iff p ≡ 1, 11 (mod 12),

−1 iff p ≡ 5, 7 (mod 12).
(3.6)

Hence each of {2, 4} and {1, 3} forms an SDR(H2(p)) iff p ≡ 5 (mod 24).
In the case of e = 1 and s = 4, we obtain the following result.
Corollary 3.11. Let p = 2m+ 1 be a prime such that p ≡ 11 (mod 12). Then

there exists an optimal C ∈ CACe(n = 4p, 5) with |C| = M(n, 5) = Me(n, 5) = m,
which satisfies Zn \ Δ(C) = pZn.

Proof. By Theorem 3.7 and Lemma 3.3, it is enough to show that
(
i
p

)
2

are distinct

for each of i ∈ {1,−1} and i ∈ {1,−3} iff p ≡ 11 (mod 12). Obviously
(

1
p

)
2

= 1, and(−1
p

)
2

= −1 iff p ≡ 3 (mod 4). Furthermore,
(

3
p

)
2

= 1 iff p ≡ 1, 11 (mod 12) by (3.6).

Thus each of {1,−1} and {1,−3} forms an SDR(H2(p)) iff p ≡ 11 (mod 12).
In the case of k ≥ 6, we can obtain some infinite series of CACs by similar

investigations; however, we cannot judge whether the resultant CACs are optimal or
not.

Remark 3.12. We denote the set Δ2(x) = Δ(x) ∩ {1, 2, . . . , �n/2�} for any code-
word x of a code C ∈ CACe(n, k). We note that in the case n = 6m + 1 and for an
optimal code C ∈ CACe(n, 4) with |C| = m, the sets Δ2(x) for x ∈ C, form a partition
of the set {1, 2, . . . , 3m} ⊂ Zn. Then, it follows that the triples Δ2(x) for x ∈ C, are a
solution to the first Heffter difference problem [4]. In the case n = 6m+ 3 and for an
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optimal equidifference code C ∈ CACe(n, 4) with |C| = m, the sets Δ2(x) for x ∈ C,
form a partition of the set {1, 2, . . . , 3m} \ {2m+1}. Again, it follows that the triples
Δ2(x) for x ∈ C, are a solution to the second Heffter difference problem [4]. The
notions of Heffter difference problems were introduced for generating Steiner triple
systems.

4. Asymptotic behavior of maximum code size. In the beginning of this
section, we introduce a general problem. For a given integer v and a collection A of
unordered pairs of Zv \{0}, if there exists an h-subset Sv, h ≤ v, of Zv \{0} such that

|Sv| = |xSv| = |ySv|, xSv ∩ ySv = ∅, and 0 /∈ xSv ∪ ySv

for every {x, y} ∈ A, then Sv is called a halving set of size h for A.
The following is a natural generalization of the case (e, s) = (1, k − 1) of Theo-

rem 3.7.
Lemma 4.1. Let v be an integer such that (v, k − 1) = 1 and let

Ak = {{k − 1,−(k − 1)}} ∪ {{i,−(k − 1 − i)} | 1 ≤ i ≤ k − 2}.

If there exists a halving set Sv of size h for Ak, then there exists a code C ∈ CACe(n =
(k − 1)v, k) with |C| = h.

Proof. Since (v, k − 1) = 1, Zk−1 × Zv can be identified with Z(k−1)v. Let
Γ(C) = {1} × Sv over Zk−1 × Zv; then it is easy to follow that Γ(C) defines a list
of generators of a code C ∈ CACe((k − 1)v, k) with |C| = h, similar to the case
(e, s) = (1, k − 1) of Theorem 3.7.

We are interested in the asymptotic behavior of the size of a halving set. We use
a graph theoretical approach to see the maximum size of a halving set for A4, in other
words, the maximum size of codewords of CACe(n = 3v, 4) constructed in Lemma 4.1.
The result in the following theorem implies M(n = 3v, 4) ∼ n

6 for sufficiently large v
such that (v, i) = 1 for i = 2 and 3. Note that the condition (v, i) = 1 for i = 2 and 3
implies that |Sv| = |xSv| = |ySv| for {x, y} ∈ A4. The similar technique in the proof
was used by Levenshtein in [10].

Let v be an odd integer such that (v, 3) = 1. A graph G(v) has a vertex set V = Zv

and an edge set E, where {a, b} ∈ E when a ≡ −2b (mod v), b ≡ −2a (mod v),
or a ≡ −b (mod v). Then the degree of each vertex of G(v) is exactly three and
the connected component containing a ∈ V of G(v) is either G1

a(v) = (V 1
a , E

1
a) or

G2
a(v) = (V 2

a , E
2
a) of Figure 4.1. Let

ra(v) = min{r > 0 | ((−2)r − 1)a ≡ 0 or ((−2)r + 1)a ≡ 0 (mod v)}

and

r(v) = min{r > 0 | (−2)r − 1 ≡ 0 or (−2)r + 1 ≡ 0 (mod v)}.

Theorem 4.2. Let v be an odd integer such that (v, 3) = 1. Then

M(3v, 4) ≥ Me(3v, 4) ≥ v

2
+ O

(
v

log2 v

)
.

Proof. By the definition of G(v), the maximum size of a halving set for A4 equals
the maximum size of an independent set of G(v). Now we construct a halving set Sv

by choosing an independent set with maximum size from each connected component
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-a

-2a

(-2)a

-(-2)a

(-2)a

-(-2)a -(-2)a

2

3

2 3

a

(-2)a4

-(-2)a
4

G (p)=(V ,E )1
a a a

11

-a

-2a

(-2)a

(-2)a -(-2)a

-(-2)a
3

a

-(-2)a
22

3

G (p)=(V ,E )2
a a a

22

Fig. 4.1. The connected component of G(v) = (V,E) containing a vertex a ∈ V is either
G1

a(v) = (V 1
a , E1

a) or G2
a(v) = (V 2

a , E2
a).

of G(v). Note that, by the definition of ra(v), ra(v) = |V 1
a |/2, i.e., (−2)ra(v)a′ ≡

a′ (mod v) for a, a′ ∈ V 1
a , and ra(v) = |V 2

a |/2, i.e., (−2)ra(v)a′ ≡ −a′ (mod v)
for a, a′ ∈ V 2

a . If |V 1
a | ≡ 0 (mod 4), then we can choose |V 1

a |/2 = ra(v) vertices
as an independent set of G1

a(v), e.g., {a, 2a, 22a, . . . , 2ra(v)−1a}; otherwise, we can
choose |V 1

a |/2 − 1 = ra(v) − 1 vertices, e.g., {a, 2a, 22a, . . . , 2ra(v)−2a}. Furthermore,
if |V 2

a | ≡ 0 (mod 4), then we can choose |V 2
a |/2 − 1 = ra(v) − 1 vertices as an

independent set of G2
a(v), e.g., {a, 2a, 22a, . . . , 2ra(v)−2a}; otherwise, we can choose

|V 2
a |/2 = ra(v) vertices, e.g., {a, 2a, 22a, . . . , 2ra(v)−1a}. In other words, we can choose

ra(v) vertices as an independent set of G1
a(v) or G2

a(v) depending on whether ra(v)
is even or odd iff (2ra(v) − 1)a ≡ 0 (mod 4), and we can choose ra(v) − 1 vertices as
an independent set of G1

a(v) or G2
a(v) depending on whether ra(v) is odd or even iff

(2ra(v) + 1)a ≡ 0 (mod v).
Here, let V (b) = {a ∈ V | (a, v) = b} for each divisor b, 1 ≤ b ≤ (v−1)/2, of v and

let d = v/b. For each integer h, 1 ≤ h < d/2, such that (h, d) = 1, hb and (d − h)b
belong to V (b). Therefore, |V (b)| = ϕ(d), where ϕ(d) is Euler’s ϕ-function. By the
definition of r(d), all vertices of V (b) are partitioned into some connected components
with same size 2r(d). Hence, we have

|Sv| =
∑

1<d|v; 2r(d)−1≡0 mod d

ϕ(d)

2r(d)
· r(d) +

∑
1<d|v; 2r(d)+1≡0 mod d

ϕ(d)

2r(d)
· (r(d) − 1)

=
1

2

∑
1<d|v

ϕ(d) −
∑

1<d|v; 2r(d)+1≡0 mod d

ϕ(d)

2r(d)
≥ v − 1

2
−

∑
1<d|v

ϕ(d)

2r(d)
.
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By applying Levenshtein’s results in [10], that is,

∑
1<d|v

ϕ(d)

2r(d)
<

2v

log2 v
+ v1/2vΘ(1),

we obtain the desired assertion.
We give a sufficient condition to construct optimal CACs of length n = 3p and

weight k = 4.
Corollary 4.3. Let p = 2m+1 (> 3) be a prime such that p ≡ 3, 5 (mod 8) and

2 is a primitive element of Zp. Then there exists an optimal code C ∈ CACe(n = 3p, 4)
with |C| = Me(n, 4) = M(n, 4) = m− 1.

Remark 4.4. We prove the corollary by noting the following. Let n be an integer
and x a codeword of a code C ∈ CAC(n, 4).

(i) In the case of |Δ(x)| = 6, it can be tediously checked that x = {0, n
7 ,

2n
7 , 4n

7 },
x = {0, n

7 ,
2n
7 , 5n

7 }, or x is an equidifference codeword. In the first and second
cases, x can be replaced by the equidifference codeword xn/7 since Δ(xn/7) =
Δ(x).

(ii) The number |Δ(x)| is odd iff 2|n and n/2 ∈ Δ(x). In particular, if 2|n, the
code C can contain only one of the codewords such that |Δ(x)| is odd.

Proof. Assume that p satisfies the condition of the corollary. Then p(= v) also
satisfies the condition of Theorem 4.2, and note that 2 ∈ H2

1 (p) iff p ≡ 3, 5 (mod 8).

Since 2 is a primitive element of Zp, 2
p−1
2 + 1 ≡ 0 (mod 8) and 2i + 1 �≡ 0 (mod p)

for any i, 1 ≤ i ≤ p−1
2 − 1. Here, by Theorem 4.2, there exists a halving set Sp of

maximum size

(4.1) |Sp| =
p− 1

2
−

∑
1<d|p; 2r(d)+1≡0 mod d

ϕ(d)

2r(d)
=

p− 1

2
− ϕ(p)

2r(p)
= m− 1.

This follows that there exists a code C ∈ CACe(3p, 4) with |C| = m − 1, and hence
it is enough to show that M(3p, 4) = m− 1. By Lemma 2.1 M(3p, 4) ≤ m holds, and
suppose that there is a code C∗ ∈ CAC(3p, 4) with |C∗| = m. Then, by the fact that
n is odd and by (2.2) and Remark 4.4, for p > 5, C∗ cannot contain any codeword
x with Δ(x) = 3, 5, or 7. Note that for p = 5 if a code C ∈ CAC(15, 4) contains a
codeword x with Δ(x) = {3, 6, 9, 12}, the code C cannot contain any other codeword
since Δ(y) ∩ Δ(x) �= ∅ for any y ∈ P(15, 4), which implies that C∗ cannot contain x
with Δ(x) = {3, 6, 9, 12}. It immediately follows that there are two possible cases.

(i) The code C∗ contains m equidifference codewords with |Δ(x)| = 6.
(ii) The code C∗ contains one nonequidifference codeword x with |Δ(x)| = 8 and

m− 1 equidifference codewords with |Δ(x)| = 6.
Now we derive a contradiction for each case.

Case (i). Each of the m equidifference codewords is generated by either of the
generators (0, a0), (1, a1), or (2, a2) for a0, a1, a2 ∈ Z

×
p since Z3p � Z3 × Zp. Note

that we can replace an equidifference codeword x(2,a2) by x(1,−a2) since Δ(x(2,a2)) =
Δ(x(1,−a2)). If C∗ has � > 0 codewords with generator (0, a0)’s for some a0 ∈ Z

×
p , then

C∗ can contain at most (2m− 6�)/2 equidifference codewords with generator (1, a1)’s
for some a1 ∈ Z

×
p since |Δ(x(0,a0))∩({0}×Z

×
p )| = 6 and |Δ(x(1,a1))∩({0}×Z

×
p )| = 2.

Then the total number of codewords is at most �+(2m−6�)/2 = m−2� < m−1, which
contradicts the assumption. Hence, we can assume that C∗ contains m equidifference
codewords with generator (1, a1)’s, a1 ∈ Z

×
p , i.e., the maximum size of halving sets

for A4 is equal to m, which also contradicts (4.1).
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Case (ii). Similar to Case (i), we can assume that C∗ contains m−1 equidifference
codewords with generator (1, a1)’s, a1 ∈ Z

×
p . Let E be the set of such m− 1 equidif-

ference codewords contained in C∗, and let A = ((Z3 × Zp) \ {(0, 0)}) \ Δ(E). Then
there exists an element a ∈ Z

×
p such that (1, a), (1,−a) �∈ Γ(E) since |E| = m − 1.

In particular, we can assume (1, a) �∈ Δ(E). In fact, if (1, a), (1,−a) ∈ Δ(E), there
must be two generators (1, b), (1, c) ∈ Γ(E) such that (1, a) ≡ (1,−2b) (mod (3, p))
and (1,−a) ≡ (1,−2c) (mod (3, p)), and then b ≡ −c (mod p) holds, which im-
plies that Δ(x(1,b)) ∩ Δ(x(1,c))) �= ∅. For such a ∈ Z

×
p , the set Δ(E) does not

contain (0, 3a) since (0, 3a) ∈ Δ(E) iff (1, a) ∈ Γ(E) or (1,−a) ∈ Γ(E). Further-
more, (1,−2a) ∈ Γ(E) since (1, (−2)−1a), (1, a), (1,−a) �∈ Γ(E) and |E| = m − 1,
which implies that (1, 2a) �∈ Γ(E). Then, by using (1,−a) �∈ Γ(E) again, we have
(1, 2a) �∈ Δ(E). Therefore, by t �∈ Δ(E) iff −t �∈ Δ(E) for any t ∈ Z3 × Zp, we have

(4.2) A = {(1, 0), (2, 0), (0, 3a), (0,−3a), (1, a), (2,−a), (1, 2a), (2,−2a)}

and x must cover the eight elements of A as differences. In order that A = Δ(x), for
every y ∈ A there must be at least one element of A, say y′ ∈ A, such that y+y′ ∈ A.
However, by the fact that p is a prime and a ∈ Z

×
p , it is easily checked that such

y′ does not exist in A for any y ∈ A \ {(1, 0), (2, 0)}. Hence A cannot be the set of
differences of x.

Small primes p < 1000 satisfying the condition of Corollary 4.3 are listed below:

p = 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83, 101, 107, 131, 139, 149, 163, 173, 179, 181,

197, 211, 227, 269, 293, 317, 347, 349, 373, 379, 389, 419, 421, 443, 461, 467, 491,

509, 523, 541, 547, 557, 563, 587, 613, 619, 653, 659, 661, 677, 701, 709, 757, 773,

787, 797, 821, 827, 829, 853, 859, 877, 883, 907, 941, 947.

5. Constructions of optimal CACs of length n = 4p with weight k = 4.
In this section, we obtain some sufficient conditions in order to obtain optimal CACs
of length n = 4p and weight k = 4. The following construction is an application of
halving sets. Let A′

k = Ak \ {{k − 1,−(k − 1)}}, where Ak was defined in section 4.

Theorem 5.1. Let v be an integer such that (v, k) = 1. If there exist a code
C ∈ CACe(v, k) with m1 = |C| and a halving set Sv of size m2 for A′

k+1, then there
exists a code C ′ ∈ CACe(n = kv, k) with |C ′| = m1 + m2 + 1.

Proof. Let v, k, C, and Sv satisfy the condition of the theorem. Since (v, k) = 1,
Zk × Zv can be identified with Zkv. Let

Γ(C ′) = ({0} × Γ(C)) ∪ ({1} × Sv) ∪ {(1, 0)}

over Zk×Zv. Note that the differences arose from each codeword x(1,a) with generator
(1, a) for a ∈ Sv are

Δi(x(1,a)) = {(i, ia), (i,−(k − i)a)}

for each i, 1 ≤ i ≤ k − 1. We show that Γ(C ′) forms a set of generators of C ′ ∈
CACe(kv, k) with |C ′| = m1 + m2 + 1. Obviously, |Γ(C ′)| = m1 + m2 + 1 holds. By
the assumption C ∈ CACe(v, k) and the definition of Sv, we have

({0} × Γ(C)) · (1, 2, . . . , k − 1,−1,−2, . . . ,−(k − 1)) ⊆ {0} × (Zv \ {0})
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and

({1} × Sv) · (1, 2, . . . , k − 1,−1,−2, . . . ,−(k − 1))

=
⋃

1≤i≤k−1

({i} × (Sv) · (i,−(k − i)))

⊆
⋃

1≤i≤k−1

({i} × (Zv \ {0})) = (Zk \ {0}) × (Zv \ {0}).

Finally, the differences of the form (�, 0) occur only in the codeword x(1,0) with gen-
erator (1, 0). Thus, all elements of (Zk−1 × Zv) \ {(0, 0)} appear at most once as
differences in Δ(C).

Now, we give two sufficient conditions to construct optimal CACs of length n = 4p
and weight k = 4. We use the quartic residue to give the first sufficient condition.
The following lemma is a preparation for the first assertion.

Lemma 5.2. Let p be a rational prime and ρ a prime element of Z[ζ4] lying over
(p). Then −1,−3 ∈ H4

2 (p) iff
(−1

ρ

)
4
≡ −1 and

(−3
ρ

)
4
≡ −1.

Proof. By the definition of the quartic residue symbol, we have

(
−1

ρ

)
4

≡ (−1)
Nρ−1

4 =

{
(−1)

p−1
4 iff p ≡ 1 (mod 4),

(−1)
p2−1

4 iff p ≡ 3 (mod 4).

Then one can check that
(−1

ρ

)
4
≡ −1 iff p ≡ 5 (mod 8). On the other hand, it is

obvious that −1 ∈ H4
2 (p) iff p ≡ 5 (mod 8). We define i ∈ Z by −3 ≡ αi (mod p),

where α is a primitive element of Zp. Then we have(
−3

ρ

)
4

≡ (−3)
Nρ−1

4 ≡ αi
Nρ−1

4 = α
i
2 ·

p−1
2 ≡ (−1)

i
2

≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 iff i ≡ 0 (mod 4),

ζ4 iff i ≡ 1 (mod 4),

−1 iff i ≡ 2 (mod 4),

−ζ4 iff i ≡ 3 (mod 4)

by using Nρ = p and α
p−1
2 ≡ −1 (mod ρ). Hence

(−1
ρ

)
4
≡ −1 and

(−3
ρ

)
4
≡ −1 iff

−1,−3 ∈ H4
2 (p).

Now, we give the first sufficient condition.
Corollary 5.3. Let p = 24m+ 13 be a prime satisfying the condition of Corol-

lary 3.4 and ρ = a + bζ4 ∈ Z[ζ4] a prime element such that p = ρρ̄ satisfying{
a ≡ 3 (mod 12)

b ≡ 2 (mod 12)
or

{
a ≡ 3 (mod 12),

b ≡ 10 (mod 12).

Then there exists an optimal code C ∈ CACe(n = 4p, 4) with |C| = Me(n, 4) =
M(n, 4) = 16m + 9.

Proof. By Lemma 5.2,
(−1

ρ

)
4
≡ −1 iff p ≡ 5 (mod 8). Without loss of generality,

we can assume that a ≡ 3 (mod 4) and b ≡ 2 (mod 4) for a prime element ρ =
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a + bζ4 ∈ Z[ζ4] which satisfies p = ρρ̄. By quartic reciprocity,

(
−3

ρ

)
4

≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if (a, b) ≡ (±1, 0) (mod (3, 3)),

ζ4 if (a, b) ≡ (±1,∓1) (mod (3, 3)).

−1 if (a, b) ≡ (0,±1) (mod (3, 3)),

−ζ4 if (a, b) ≡ (±1,±1) (mod (3, 3)).

Hence, −1,−3 ∈ H4
2 (p) iff (a, b) ≡ (3, 2) or (3, 10) (mod (12, 12)). Then Sp =

H4
0 (p) ∪ H4

1 (p) defines a halving set of size 12m + 6 for A′
5. In fact, since −Sp =

−H4
0 (p)∪−H4

1 (p) = H4
2 (p)∪H4

3 (p) and −3Sp = −3H4
0 (p)∪−3H4

1 (p) = H4
2 (p)∪H4

3 (p)
hold, we have Sp ∩ −Sp = ∅ and Sp ∩ −3Sp = ∅. By combining Corollary 3.4 and
Theorem 5.1, we have a code C ∈ CACe(4p, 4) with |C| = 16m + 9. By Lemma 2.1,
we also have M(4p, 4) = 16m + 9, i.e., the resultant CAC is optimal.

By utilizing Proposition 3.5, we can show that the primes satisfying the conditions
of Corollary 5.3 exist infinitely many as follows.

Corollary 5.4. The Kronecker density of the set of all primes satisfying the
condition of Corollary 5.3 is equal to 1

23·32 = 0.0138 · · · , and there exist infinitely
many of those primes.

Proof. By Lemmas 3.3 and 5.2, (1, 2, 3) forms an SDR(H3(p)) and −1,−3 ∈ H4
2 (p)

iff (
6

π

)
3

= 1,

(
3

ρ

)
4

= 1,(5.1)

(
2

π

)
3

�= 1, and

(
−1

ρ

)
4

= −1,(5.2)

where p = (π) is a prime ideal in Q(ζ3) lying over (p) and r = (ρ) is a prime ideal in
Q(ζ4) lying over (p). Let P be a prime ideal in Q(ζ4,

3
√

6, 4
√

3) lying over (p) and

σ =

(
Q(ζ8,

3
√

6, 3
√

2, 4
√

3)/Q(ζ4,
3
√

6, 4
√

3)

P

)
.

Note that ζ3 ∈ Q(ζ4,
4
√

3). Then a necessary and sufficient condition such that (5.2)
holds under (5.1) is

(5.3) σ(ζ8) �= ζ8 and σ(
3
√

2) �= 3
√

2.

Hence the density of prime ideals P satisfying (5.3) in Q(ζ4,
3
√

6, 4
√

3) is equal to 1
3

and the density of rational primes p satisfying the condition of the corollary is equal
to 1

23·32 .
By our computer search, the frequency ratio of those primes in the first 3,000,000

primes is equal to 41684
3,000,000 � 1

23·32 .
Next, we give the second sufficient condition.
Corollary 5.5. Let p = 12m + 7 be a prime satisfying the condition of Corol-

lary 3.4 such that 3 is a primitive element of Zp. Then there exists an optimal code
C ∈ CAC(n = 4p, 4) with |C| = Me(n, 4) = M(n, 4) = 8m + 4.

Proof. Let p satisfy the condition of the corollary, and let α = 3 ∈ Zp be a
primitive element. Then we can take a halving set of size 6m + 2 for A′

5, e.g., Sp =
{α0, α1, . . . , α6m+1}. In fact, since

−Sp = α
p−1
2 · Sp = {α6m+3, α6m+4, . . . , α12m+4}
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and

−3Sp = α
p+1
2 · Sp = {α6m+4, α6m+5, . . . , α12m+5},

we have Sp ∩ −Sp = ∅ and Sp ∩ −3Sp = ∅. Furthermore, since −3 ∈ H2
0 (p) and

p−1
2 is odd, the maximum size of halving sets for A′

5 is exactly 6m + 2. Now, by
combining Corollary 3.4 and Theorem 5.1, we obtain a code C ∈ CACe(n = 4p, 4) with
|C| = Me(n, 4) = 8m+4. Note that p = 12m+7 is a sufficient condition for 3 ∈ H2

1 (p).
Hence, it is enough to show that M(n, 4) = 8m+ 4. By Lemma 2.1 M(n, 4) ≤ 8m+ 5
holds, and suppose that there exists a code C∗ with |C∗| = 8m+5. Then, by (2.2) and
Remark 4.4, C∗ can contain only one codeword x with |Δ(x)| = 3, 5, and 7. On the
other hand, since n−1 = 6(8m+4)+3 and |C∗| = 8m+5, C∗ must contain a codeword
with |Δ(x)| = 3, which implies that the cases |Δ(x)| = 5 and 7 are impossible.
Therefore, we can assume that C∗ contains the exceptional codeword x(1,0) and 8m+4
equidifference codewords, which have generators of the form (0, a0), (1, a1), (2, a2),
or (3, a3) for some a0, a1, a2, a3 ∈ Z

×
p , since Z4p � Z4 × Zp. Here, an equidifference

codeword x(3,a3) can be replaced by x(1,−a3) since Δ(x(3,a3)) = Δ(x(1,−a3)). If C∗

has � > 0 codewords with generator (2, a2)’s for a2 ∈ Z

×
p , then C∗ contains at most

(12m+ 6− 4�)/2 equidifference codewords with generator (1, a1)’s for a1 ∈ Z

×
p , since

|Δ(x(2,a2)) ∩ ({2} × Z

×
p )| = 4 and |Δ(x(1,a1)) ∩ ({2} × Z

×
p )| = 2. Furthermore, C∗

contains at most (12m + 6 − 2�)/6 equidifference codewords with generator (0, a0)’s
for a0 ∈ Z

×
p , since |Δ(x(2,a2)) ∩ ({0} × Z

×
p )| = 2 and |Δ(x(0,a0)) ∩ ({0} × Z

×
p )| = 6.

Then we have

|C∗| ≤ � + (12m + 6 − 4�)/2 + (12m + 6 − 2�)/6 + 1 < 8m + 5,

which contradicts the assumption |C∗| = 8m + 5. Therefore, C∗ contains no equidif-
ference codewords with generator (2, a2)’s for a2 ∈ Z

×
p . Moreover, since the maximum

number of codewords with generator (0, a0)’s for a0 ∈ Z

×
p , is equal to 2m+1 by Corol-

lary 3.4, in order that |C∗| = 8m + 5, then the maximum number of codewords with
generator (1, a1)’s for a1 ∈ Z

×
p , must be equal to 6m + 3; i.e., the maximum size of

halving sets for A′
5 must be equal to 6m + 3. However, this also contradicts our first

argument. Thus M(n, 4) = 8m + 4 holds.
Small primes p satisfying the condition of Corollaries 5.3 and 5.5 are listed in

Table 7.1.
Example 5.6. Let p = 7 and k = 4, then 4p = 28. Note that 3 is a primitive ele-

ment of Z7 and Sp = {1, 3} is a halving set of size 2 for A′
5. Let C ∈ CACe(7, 4) which

has one generator 1. Then, ((0, 1), (1, 1), (1, 3), (1, 0)) over Z4×Z7 (or (1, 8, 17, 21) over
Z28) defines a list of generators for a code C ′ ∈ CACe(28, 4) with |C ′| = M(28, 4) = 4.

6. A recursive construction of equidifference CACs. In this section, we
give a recursive construction of equidifference CACs.

Theorem 6.1. Let k ≥ 3, and let n1, n2, and s be positive integers satisfying
s | n1 and (n2, �) = 1 for each �, 1 ≤ � ≤ k − 1. Let C1 ∈ CACe(n1, k) with t1 = |C1|
nonexceptional codewords satisfying

(6.1) Zn1 \ Δ(C1) ⊇ (n1/s) Zn1 ,

and let C2 ∈ CACe(sn2, k) with t2 = |C2| codewords. Then there exists a code C ∈
CACe(n1n2, k) with t = |C| = n2t1 + t2.

Proof. Let

Γ1 = {i + jn1 | i ∈ Γ(C1), 0 ≤ j ≤ n2 − 1} and Γ2 = {j(n1/s) | j ∈ Γ(C2)} ,
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where each element is reduced modulo n1n2. Then Γ(C) = Γ1 ∪ Γ2 defines a code C
consisting of n2t1 + t2 equidifference codewords. We prove that the difference sets of
any two codewords of C are disjoint. By (6.1) and the definition of Γ1, it holds that

Zn1n2 \
⋃

�∈±{1,2,...,k−1}
� · Γ1 ⊇ (n1/s) Zn1n2 .

Furthermore, since every element of Γ2 is a multiple of (n1/s), it is obvious that

⋃
�∈±{1,2,...,k−1}

� · Γ2 ⊆ (n1/s) Zn1n2

holds. These imply that⎛
⎝ ⋃

�∈±{1,2,...,k−1}
� · Γ1

⎞
⎠ ∩

⎛
⎝ ⋃

�∈±{1,2,...,k−1}
� · Γ2

⎞
⎠ = ∅.

Now we show that the difference sets of any two codewords with generators from Γ1 are
disjoint. Assume �(i+ jn1) ≡ �′(i′ + j′n1) (mod n1n2) for some �, �′ ∈ ±{1, 2, . . . , k−
1} and two generators i+ jn1 and i′ + j′n1 from Γ1. Then we need to show that i = i′

and j = j′. By the above assumption, since (�i− �′i′)+(�j− �′j′)n1 ≡ 0 (mod n1n2),
we then have �i ≡ �′i′ (mod n1). By the definition of C1, �i �= 0, �′i′ �= 0, and i = i′

hold. Furthermore, since C1 has no exceptional codewords, we also have � = �′ and
(�j − �j′)n1 ≡ 0 (mod n1n2), i.e., �(j − j′) ≡ 0 (mod n2). Then (n2, �) = 1 implies
j = j′. Similarly, the difference sets of any two codewords with generators from Γ2

are disjoint, since C2 ∈ CACe(sn2, k).
Corollary 6.2. M(35, 4) = 6, M(77, 4) = 12, and M(91, 4) = 14.
Proof. For n1 = 7 we have an equidifference CAC with Γ(C1) = {1} consisting of

one nonexceptional codeword x1. For n2 = 5, Γ(C2) = {1} defines an equidifference
CAC with an exceptional codeword. By Theorem 6.1, we obtain a code C for n = 35
with |C| = 6. Then Lemma 2.1 implies M(35, 4) = Me(35, 4) = 6.

Similarly, for n2 = 11 and Γ(C2) = {1}, we obtain an optimal code C for n = 77
with |C| = M(77, 4) = Me(77, 4) = 12.

For n2 = 13, we easily see that M(n2, 4) = 1. By using Γ(C2) = {1}, we obtain a
code C for n = 91 with |C| = 14. Note that M(91, 4) ≤ 15 by Lemma 2.1. Suppose
that there exists a code C ′ with |C ′| = 15. Since there are no exceptional codewords
for n = 91, C ′ must be an equidifference code. Now, for an equidifference codeword
xi of C ′, the difference set Δ(xi) intersects with 7Z91 \{0} � Z

×
13 iff i ∈ 7Z91 \{0}. In

other words, 7Z91 \ {0} is covered by differences iff Me(13, 4) = 2, which contradicts
Me(13, 4) = 1 (see Table 7.2). Hence it follows that M(91, 4) = 14 = |C|.

When p is an odd prime, 1 is a generator of a code C ∈ CACe(p, (p + 1)/2). By
applying Theorem 6.1 to C recursively, we obtain the following corollary.

Corollary 6.3 (Levenshtein [11]). Let p be an odd prime and r be a positive
integer. Then there exists an optimal code C ∈ CACe(n, k) with parameters n = pr,
k = p+1

2 , and |C| = n−1
2(k−1) .

Furthermore, some infinite series of optimal CACs are obtained.
Corollary 6.4. Let p1, p2, . . . , pr be primes such that pi ≡ 1 (mod 6) satisfying

the condition of Corollary 3.4 for each i, 1 ≤ i ≤ r. Then there exists an optimal code
C ∈ CACe(n =

∏
1≤i≤r pi, 4) with |C| = n−1

6 .
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Proof. Let Ci ∈ CACe(pi, 4) be an optimal code constructed in Corollary 3.4 for
each i, 1 ≤ i ≤ r. We have only to check the number of codewords for the code
given by the recursive construction in Theorem 6.1. Each code Ci has mi = pi−1

6
codewords, which attains the upper limit of Lemma 2.1. By applying the recursive
construction to C1 and C2, we have an equidifference code of length p1p2 = 6(6m1m2+
m1 + m2) + 1 with 6m1m2 + m1 + m2 codewords, which also attains the upper limit
of Lemma 2.1. By continuing this process, we have the desired optimal code C ∈
CACe(n =

∏
1≤i≤r pi, 4) with |C| = n−1

6 .
In the following corollaries, it is enough to check the case of r = 2 since the similar

process can be applied recursively.
Corollary 6.5. Let p1, p2, . . . , pr be primes such that pi ≡ 7 (mod 8) for each

i, 1 ≤ i ≤ r. Then there exists an optimal code C ∈ CACe(n = 3
∏

1≤i≤r pi, 4) with

|C| = n−3
6 .

Proof. Let Ci ∈ CACe(3pi, 4) be an optimal code constructed in Corollary 3.8 for
each i, 1 ≤ i ≤ r. Each code Ci has mi = 3pi−3

6 codewords, which attains the upper
limit of Lemma 2.1. The composed code of C1 and C2 is an equidifference code of
length 3p1p2 = 3(2(2m1m2 +m1 +m2)+1) with 2m1m2 +m1 +m2 codewords, which
also attains the upper limit of Lemma 2.1.

Corollary 6.6. Let p1, p2, . . . , pr be primes such that pi ≡ 13 (mod 24) satisfy-
ing the condition of Corollary 5.3 for each i, 1 ≤ i ≤ r. Then there exists an optimal
code C ∈ CACe(n = 4

∏
1≤i≤r pi, 4) with |C| = n+2

6 .
Proof. Let Ci ∈ CACe(4pi, 4) be an optimal code constructed in Corollary 5.3

for each i, 1 ≤ i ≤ r. Each code Ci has mi = 4pi+2
6 codewords, which attains the

upper limit of Lemma 2.1. Here, we can assume mi = 2�i + 1 for some � ∈ N since
pi ≡ 1 (mod 3). Let C ′

1 be a code derived by deleting an exceptional codeword with
generator p1 from C1. By composing C ′

1 and C2, we have an equidifference code of
length 4p1p2 = 4(3(3�1�2 + �1 + �2) + 1) with 2(3�1�2 + �1 + �2) + 1 codewords, which
also attains the upper limit of Lemma 2.1.

Corollary 6.7. Let p1, p2, . . . , pr be primes such that pi ≡ 5 (mod 24) for each
i, 1 ≤ i ≤ r. Then there exists an optimal code C ∈ CACe(n = 2

∏
1≤i≤r pi, 5) with

|C| = n−2
8 .

Proof. Let Ci ∈ CACe(2pi, 5) be an optimal code constructed in Corollary 3.10
for each i, 1 ≤ i ≤ r. Each code Ci has mi = 2pi−2

8 codewords, which attains the
upper limit of Lemma 2.3. By composing C1 and C2, we have an equidifference code
of length 2p1p2 = 2(4(4m1m2 + m1 + m2) + 1) with 4m1m2 + m1 + m2 codewords,
which also attains the upper limit of Lemma 2.3.

Corollary 6.8. Let p1, p2, . . . , pr be primes such that pi ≡ 11 (mod 12) for
each i, 1 ≤ i ≤ r. Then there exists an optimal code C ∈ CACe(n = 4

∏
1≤i≤r pi, 5)

with |C| = n−4
8 .

Proof. Let Ci ∈ CACe(4pi, 5) be an optimal code constructed in Corollary 3.11
for each i, 1 ≤ i ≤ r. Each code Ci has mi = 4pi−4

8 codewords, which attains the
upper limit of Lemma 2.3. By composing C1 and C2, we have an equidifference code
of length 4p1p2 = 4(2(2m1m2 + m1 + m2) + 1) with 2m1m2 + m1 + m2 codewords,
which also attains the upper limit of Lemma 2.3.

7. Tables. In this section, we give some tables for the existence of equidifference
CACs of small code length. Table 7.1 shows the first 110 primes satisfying the condi-
tion of Corollary 3.4. Table 7.2 shows the maximum size Me(n, 4) of an equidifference
CAC for each n, 4 ≤ n ≤ 100, and its corresponding generators. We also refer to [18]
for more tables of CACs for weight k = 3, 4, and 5.
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Table 7.1

The first 110 primes p = 6m + 1 satisfying the condition of Corollary 3.4. α ∈ Zp denotes
a primitive element and γ = α3. The code C ∈ CAC(n = p, 4) defined by the list of generators
(1, γ, . . . , γm−1) is optimal. The column c1 (or c2) indicates the length n = 4p if p satisfies the
condition of Corollary 5.3 (or Corollary 5.5, respectively).

p m α γ c1 c2
7 1 3 6 - 28
37 6 2 8 - -
139 23 2 8 - 556
163 27 2 8 - 652
181 30 2 8 724 -
241 40 7 102 - -
313 52 10 61 - -
337 56 10 326 - -
349 58 2 8 - -
379 63 2 8 - 1516
409 68 21 263 - -
421 70 2 8 1684 -
541 90 2 8 2164 -
571 95 3 27 - 2284
607 101 3 27 - 2428
631 105 3 27 - 2524
751 125 3 27 - 3004
859 143 2 8 - 3436
877 146 2 8 - -
937 156 5 125 - -
1033 172 5 125 - -
1087 181 3 27 - 4348
1123 187 2 8 - 4492
1171 195 2 8 - -
1291 215 2 8 - 5164
1297 216 10 1000 - -
1447 241 3 27 - 5788
1453 242 2 8 5812 -
1483 247 2 8 - 5932
1693 282 2 8 - -
1741 290 2 8 - -
1747 291 2 8 - 6988
2011 335 3 27 - 8044
2161 360 23 1362 - -
2239 373 3 27 - 8956
2311 385 3 27 - 9244
2371 395 2 8 - 9484
2473 412 5 125 - -
2539 423 2 8 - 10156
2647 441 3 27 - 10588
2677 446 2 8 10708 -
2707 451 2 8 - 10828
2719 453 3 27 - 10876
2857 476 11 1331 - -
3169 528 7 343 - -
3361 560 22 565 - -
3433 572 5 125 - -
3511 585 7 343 - -
3547 591 2 8 - 14188
3559 593 3 27 - 14236
3571 595 2 8 - 14284
3613 602 2 8 - -
3637 606 2 8 14548 -
3727 621 3 27 - 14908
3877 646 2 8 - -

p m α γ c1 c2
3919 653 3 27 - 15676
3931 655 2 8 - 15724
4003 667 2 8 - 16012
4021 670 2 8 16084 -
4111 685 12 1728 - -
4201 700 11 1331 - -
4219 703 2 8 - 16876
4261 710 2 8 - -
4297 716 5 125 - -
4357 726 2 8 - -
4363 727 2 8 - 17452
4441 740 21 379 - -
4507 751 2 8 - 18028
4561 760 11 1331 - -
4603 767 2 8 - 18412
4801 800 7 343 - -
4831 805 3 27 - 19324
4861 810 11 1331 19444 -
4903 817 3 27 - 19612
4987 831 2 8 - 19948
4999 833 3 27 - 19996
5023 837 3 27 - 20092
5107 851 2 8 - -
5119 853 3 27 - 20476
5431 905 3 27 - 21724
5479 913 3 27 - 21916
5563 927 2 8 - 22252
5683 947 2 8 - 22732
5689 948 11 1331 - -
5743 957 10 1000 - -
5749 958 2 8 22996 -
5827 971 2 8 - 23308
5857 976 7 343 - -
5869 978 2 8 23476 -
5881 980 316 386 - -
5923 987 2 8 - 23692
6073 1012 10 1000 - -
6343 1057 3 27 - 25372
6379 1063 2 8 - 25516
6397 1066 2 8 - -
6469 1078 2 8 25876 -
6571 1095 3 27 - 26284
6577 1096 5 125 - -
6733 1122 2 8 26932 -
6781 1130 2 8 27124 -
6823 1137 3 27 - 27292
6907 1151 2 8 - 27628
6949 1158 2 8 27796 -
7129 1188 7 343 - -
7159 1193 3 27 - 28636
7237 1206 2 8 28948 -
7243 1207 2 8 - 28972
7759 1293 3 27 - 31036
7789 1298 2 8 - -
7879 1313 3 27 - 31516
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Table 7.2

This table shows for each n, 4 ≤ n ≤ 100, with n = 6m + c, 0 ≤ c ≤ 5, the maximum
size t = Me(n, 4) of an equidifference CAC. Γ(C) is the set of generators of such a maximum
equidifference code C (the lexicographical smallest with respect to the generators).

n m c t Γ(C)
4 0 4 1 1
5 0 5 1 1
6 1 0 1 1
7 1 1 1 1
8 1 2 1 1
9 1 3 1 1
10 1 4 1 1
11 1 5 1 1
12 2 0 1 1
13 2 1 1 1
14 2 2 1 1
15 2 3 1 1
16 2 4 2 1, 4

17 2 5 2 1, 4

18 3 0 2 1, 4

19 3 1 2 1, 4

20 3 2 3 1, 4, 5

21 3 3 3 1, 4, 5

22 3 4 2 1, 4

23 3 5 2 1, 4

24 4 0 3 1, 4, 5

25 4 1 3 1, 4, 5

26 4 2 3 1, 4, 5

27 4 3 3 1, 4, 7

28 4 4 4 1, 4, 5, 7

29 4 5 3 1, 4, 5

30 5 0 4 1, 4, 5, 7

31 5 1 3 1, 4, 5

32 5 2 4 1, 4, 5, 7

33 5 3 4 1, 4, 5, 13

34 5 4 4 1, 4, 5, 7

35 5 5 6 1, 5, 6, 7, 8, 13

36 6 0 5 1, 4, 7, 9, 10

37 6 1 6 1, 6, 8, 10, 11, 14

38 6 2 5 1, 4, 5, 7, 9

39 6 3 5 1, 4, 5, 7, 11

40 6 4 6 1, 4, 5, 7, 9, 17

41 6 5 5 1, 4, 10, 16, 18

42 7 0 5 1, 4, 5, 7, 11

43 7 1 6 1, 5, 6, 7, 8, 13

44 7 2 7 1, 4, 5, 7, 9, 11, 19

45 7 3 6 1, 4, 5, 7, 9, 13

46 7 4 6 1, 4, 5, 7, 9, 11

47 7 5 6 1, 4, 11, 19, 20, 21

48 8 0 6 1, 5, 6, 7, 8, 13

49 8 1 8 1, 6, 7, 8, 13, 15, 20, 22

50 8 2 7 1, 4, 5, 7, 9, 13, 22

51 8 3 6 1, 4, 5, 7, 9, 19

52 8 4 8 1, 4, 5, 7, 9, 11, 13, 23

n m c t Γ(C)
53 8 5 7 1, 6, 7, 8, 10, 19, 22

54 9 0 7 1, 4, 7, 9, 10, 13, 16

55 9 1 7 1, 4, 5, 7, 9, 11, 13

56 9 2 8 1, 4, 5, 7, 9, 11, 13, 25

57 9 3 8 1, 4, 5, 7, 11, 13, 16, 17

58 9 4 8 1, 4, 5, 9, 11, 13, 14, 17

59 9 5 8 1, 4, 10, 14, 18, 22, 24, 25

60 10 0 7 1, 4, 5, 7, 11, 17, 18

61 10 1 8 1, 5, 6, 7, 8, 11, 19, 26

62 10 2 8 1, 4, 7, 9, 10, 11, 13, 19

63 10 3 8 1, 4, 5, 7, 9, 11, 13, 19

64 10 4 9 1, 4, 5, 7, 9, 11, 13, 16, 29

65 10 5 8 1, 4, 5, 7, 13, 16, 18, 28

66 11 0 9 1, 4, 5, 7, 11, 13, 16, 19, 30

67 11 1 9 1, 4, 5, 11, 14, 16, 18, 29, 30

68 11 2 10 1, 4, 5, 7, 9, 11, 13, 16, 17, 31

69 11 3 11 1, 4, 5, 11, 13, 14, 16, 17, 20, 25, 31

70 11 4 8 1, 4, 5, 7, 9, 11, 13, 17

71 11 5 10 1, 5, 6, 8, 13, 14, 17, 25, 30, 31

72 12 0 9 1, 4, 5, 9, 11, 14, 16, 17, 26

73 12 1 8 1, 4, 5, 7, 9, 11, 13, 16

74 12 2 9 1, 4, 5, 7, 9, 11, 13, 19, 34

75 12 3 10 1, 4, 5, 7, 11, 13, 16, 17, 19, 23

76 12 4 11 1, 4, 5, 7, 9, 11, 13, 16, 17, 19, 35

77 12 5 12 1, 6, 7, 8, 11, 13, 15, 20, 27, 29, 34, 36

78 13 0 10 1, 4, 5, 7, 11, 13, 16, 17, 18, 29

79 13 1 10 1, 4, 5, 7, 11, 16, 17, 18, 20, 35

80 13 2 12 1, 4, 5, 7, 9, 11, 13, 16, 17, 19, 20, 37

81 13 3 10 1, 4, 5, 7, 9, 11, 13, 17, 19, 25

82 13 4 10 1, 4, 7, 9, 10, 11, 13, 16, 19, 29

83 13 5 11 1, 4, 7, 15, 18, 20, 22, 24, 26, 32, 37

84 14 0 10 1, 4, 5, 7, 11, 13, 16, 19, 20, 25

85 14 1 13 1, 4, 5, 14, 17, 18, 20, 22, 23, 24, 26, 32, 38

86 14 2 11 1, 4, 7, 9, 13, 15, 22, 23, 25, 35, 38

87 14 3 13 1, 4, 5, 7, 11, 16, 17, 19, 20, 23, 26, 31, 37

88 14 4 13 1, 4, 7, 9, 11, 15, 16, 17, 23, 25, 31, 39, 41

89 14 5 12 1, 4, 5, 9, 14, 20, 22, 24, 26, 32, 34, 35

90 15 0 11 1, 4, 5, 7, 9, 13, 16, 19, 20, 22, 28

91 15 1 14 1, 6, 7, 8, 13, 15, 20, 22, 27, 29, 34, 36, 41, 43

92 15 2 14 1, 4, 7, 9, 11, 13, 15, 16, 19, 23, 25, 29, 41, 43

93 15 3 15 1, 4, 5, 7, 13, 16, 17, 19, 20, 22, 23, 25, 28, 29, 41

94 15 4 12 1, 4, 5, 9, 13, 16, 17, 19, 21, 22, 29, 35

95 15 5 13 1, 5, 6, 7, 8, 19, 20, 23, 33, 39, 41, 42, 43

96 16 0 11 1, 4, 5, 7, 11, 13, 16, 17, 18, 23, 29

97 16 1 12 1, 4, 5, 7, 9, 16, 17, 20, 22, 26, 28, 36

98 16 2 13 1, 4, 7, 9, 15, 17, 19, 22, 25, 26, 29, 31, 37

99 16 3 12 1, 4, 5, 7, 9, 11, 13, 16, 19, 23, 25, 31

100 16 4 14 1, 4, 5, 7, 9, 11, 13, 16, 17, 19, 20, 23, 25, 47
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Abstract. For two graphs H and G, the Ramsey number r(H,G) is the smallest positive integer
n such that every red-blue edge coloring of the complete graph Kn on n vertices contains either a
red copy of H or a blue copy of G. Motivated by questions posed by Erdős and Harary, in this note
we study how the Ramsey number r(Ks, G) depends on the size of the graph G. For s ≥ 3, we
prove that for every G with m edges, r(Ks, G) ≥ c(m/ logm)(s+1)/(s+3) for some positive constant
c depending only on s. This lower bound improves an earlier result of Erdős, Faudree, Rousseau,
and Schelp, and it is tight up to a polylogarithmic factor when s = 3. We also study the maximum
value of r(Ks, G) as a function of m.
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1. Introduction. For two graphs H and G, the Ramsey number r(H,G) is
the smallest positive integer n such that any red-blue coloring of the edges of the
complete graph Kn on n vertices contains either a red copy of H or a blue copy
of G. If H = G, we usually denote r(G,G) by r(G). The problem of determining
or accurately estimating Ramsey numbers is one of the central problems in modern
combinatorics, and it has received considerable attention; see, e.g., [10], [5]. In most
cases the Ramsey number is estimated in terms of the order (number of vertices) of
the graph. However, in the early 1980’s Erdős and Harary asked about the relation
between r(H,G) and the sizes (number of edges) of the graphs H and G.

The first partial answers to this general problem were obtained by Erdős et al. [8].
They determined up to a constant factor the minimum value of r(G) for all graphs
of size m and showed that the order of magnitude of this minimum is Θ(m/ logm).
They also proved that for fixed s ≥ 3 there exist constants c1, c2 such that

c1m
s

s+2 < min
e(G)=m

r(Ks, G) < c2 m
s−1
s .

This estimate is not sharp, and there is a large gap between the upper and lower
bounds even when the complete graph is a triangle (s = 3). In this case Erdős [6]
conjectured that the upper bound O(m2/3) is closer to the truth. Our first result
improves the bounds from [8] and confirms this conjecture.

Theorem 1.1. Let s ≥ 3 and let G be a graph with m edges. Then there exists
a constant c depending only on s such that

r(Ks, G) ≥ c
(
m/ logm

) s+1
s+3 .

On the other hand, there exists a graph G of size m such that r(Ks, G) ≤ O(m
s−1
s /

log
s−2
s m).
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In particular, when s = 3 this determines the minimum value of r(K3, G) for all
graphs G of size m up to a polylogarithmic factor and shows that

(1) Ω

(
m2/3

log2/3 m

)
< min

e(G)=m
r(K3, G) < O

(
m2/3

log1/3 m

)
.

Another specific question which is part of the general problem mentioned in the
first paragraph is how to bound the maximum value of r(H,G) when the graphs H
and G have a given size. One of the basic results in Ramsey theory is the fact that for
the complete graph G with m edges, r(G) = 2Θ(

√
m). A conjecture of Erdős [7] (see

also [5]) asserts that there is an absolute constant c such that for any graph G with m
edges, r(G) ≤ 2c

√
m. This conjecture is still open. For bipartite graphs it was proved

by Alon, Krivelevich, and Sudakov [3]. They also show that for general graphs G with
m edges, r(G) ≤ 2c

√
m logm for some absolute positive constant c. For the first off-

diagonal case, Harary conjectured and Sidorenko [15] proved that r(K3, G) ≤ 2m+ 1
for any graph G of size m without isolated vertices. This inequality is best possible,
since r(K3, G) = 2m+ 1 for any tree with m edges. Thus for s = 3 the graphs which
maximize r(K3, G) are very sparse. However, for s > 3 Erdős conjectured that exactly
the opposite is true and that to maximize r(Ks, G) over all graphs with m edges one
should make G as nearly complete as possible. Motivated by this question we obtain
the following general upper bound on r(Ks, G) for graphs G of size m.

Theorem 1.2. Let s ≥ 3 and let G be a graph with m edges and without isolated
vertices. Then there exists a constant c depending only on s such that

r(Ks, G) ≤ cm
s−1
2 / log

s−3
2 m.

When G is a clique with m edges it is known by the result of Ajtai, Komlós, and
Szemerédi [1] that r(Ks, G) ≤ O(m

s−1
2 / logs−2 m). Hence our estimate has, up to a

polylogarithmic factor, similar order of magnitude to the best known upper bound
for off-diagonal Ramsey numbers of cliques.

The rest of this short note is organized as follows. In the next section we present
proofs of our main results. The final section contains some concluding remarks and
open problems. Throughout the paper we make no attempts to optimize various
absolute constants. To simplify the presentation, we often omit floor and ceiling signs
whenever these are not crucial. All logarithms are in the natural base e.

2. Proofs. To prove Theorem 1.1 we use an approach developed by Krivelevich
[13], which is based on probabilistic arguments together with large deviation inequali-
ties. The first inequality we need is a standard bound of Chernoff (see Appendix A in
[2]) which states that if X is a binomially distributed random variable with parameters
m and p, then for every a > 0

P[X − pm < −a] ≤ e−
a2

2pm .

Another large deviation bound, which we use in the proof, was obtained by Erdős and
Tetali [9] (see also Chapter 8.4 in [2]).

Let Ω be a finite set (in our instance it is the set of edges of a complete graph) and
let R be a random subset of Ω such that P[ω ∈ R] = pω independently for all ω ∈ Ω.
Let Ci, i ∈ I, be subsets of Ω, where I is some finite index set. For every Ci we define
Ai to be the event that Ci ⊆ R. Let Xi be the indicator random variable of event
Ai and let X =

∑
i∈I Xi be the number of Ci ⊆ R. Finally, let X0 be the maximum
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number of pairwise disjoint subsets Ci which belong to R. Obviously, X0 ≤ X. Let
μ be the expectation of X; then Erdős and Tetali gave the following bound on the
possible size of X0:

P[X0 ≥ k] ≤ μk

k!
≤

(e μ
k

)k

.

Proof of Theorem 1.1. Let n = 1
3s3

(
m/ logm

) s+1
s+3 and consider coloring the edges

of the complete graph Kn such that each edge is colored randomly and independently

red with probability p = 1
3sn

− 2
s+1 and blue with probability 1 − p. Let G1, . . . , Gt

be all subgraphs of Kn which are isomorphic to G. The number of such subgraphs t
is clearly bounded by the number of injective functions from V (G) to Kn, which in
turn is at most the number of permutations on n elements. Thus t ≤ n!. For every
subgraph Gi, let Xi be the random variable that counts the number of red edges in
Gi. By definition, Xi is binomially distributed with parameters m and p. Hence, by
Chernoff’s inequality

P[Xi < mp/2] = P[Xi −mp < −mp/2] ≤ e−mp/8.

Also for every subgraph Gi define Yi to be the number of red cliques of order s
which share at least one edge with Gi. Since Gi has m edges, the number of s-cliques
sharing at least one edge with Gi is bounded by mns−2. The probability that an

s-clique is red is clearly p(
s
2). Therefore

E[Yi] ≤ mns−2p(
s
2) = mpns−2p

(s+1)(s−2)
2 =

(
1

3s

) (s+1)(s−2)
2

mp ≤ mp

9s2
.

Let Y ′
i be the maximum number of edge disjoint red s-cliques which share at least

one edge with Gi. Then by the Erdős–Tetali inequality we have that

P

[
Y ′
i ≥ mp/s2

]
≤

(
eE[Yi]

mp/s2

)mp/s2

≤
(e

9

)mp/s2

≤ e−mp/s2 .

By definition of n and p we have that mp = (3s3n)
s+3
s+1 p logm ≥ s2n log n > 8n log n.

Therefore the probability that for some index i either Xi < mp/2 or Y ′
i ≥ mp/s2

is bounded by t
(
e−mp/8 + e−mp/s2

)
≤ 2n!n−n = o(1). In particular there exists a

red-blue edge coloring of Kn such that for every 1 ≤ i ≤ t, subgraph Gi contains at
least mp/2 red edges and there are at most mp/s2 edge disjoint red s-cliques each
sharing at least one edge with Gi.

Fix such a coloring and let Γ be the subgraph of red edges in it. Also let C be
the maximum (under inclusion) collection of edge disjoint cliques of order s in Γ.
Recolor edges in all cliques from C by blue and denote the remaining red graph by Γ′.
Note that by recoloring we removed from Γ the maximum collection of edge disjoint
s-cliques. Thus Γ′ contains no clique of order s. On the other hand, in every subgraph
Gi we changed the color of at most

(
s
2

)
mp/s2 < mp/2 red edges. Since Gi originally

had at least mp/2 red edges, we obtain that every subgraph of Kn isomorphic to G
still has at least one red edge. This implies that new coloring contains no blue copy
of G and no red copy of Ks and completes the proof of the first statement of the
theorem.
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To prove the second part, let G be the union of 2m
k(k−1) vertex disjoint cliques

of order k = m1/s(logm)
s−2
s . By definition, the number of edges in G is at least

m. To estimate the Ramsey number r(Ks, G) we use the result of Ajtai, Komlós,
and Szemerédi [1] (see also Theorem 12.17 in [4]) which bounds off-diagonal Ramsey

numbers. They prove that there exists a constant c such that r(Ks,Kk) ≤ c ks−1

logs−2 k
.

Let

n = c
ks−1

logs−2 k
+

2m

k − 1
= O

(
m

s−1
s

log
s−2
s m

)

and consider any red-blue edge coloring of the complete graph Kn. We can assume
that there is no red s-clique, or else we are done. Then, since n ≥ r(Ks,Kk), we can
find a blue clique of order k. Delete it from the graph and continue this process. Note
that as long as we deleted less than 2m

k(k−1) cliques of order k the remaining number

of vertices is still larger than r(Ks,Kk) and we can find a new blue k-clique. In the
end we will find at least 2m

k(k−1) blue cliques of size k, i.e., a copy of G. This implies

that r(Ks, G) ≤ O(m
s−1
s / log

s−2
s m) and completes the proof.

Proof of Theorem 1.2. We prove the theorem by induction on s. Consider the case
s = 3. Although one can use results from [8] and [15] to show that r(K3, G) ≤ O(m),
we include here the simple proof that r(K3, G) ≤ 3m for the sake of completeness.
Clearly, we can assume that G is connected, since r(K3, G1 ∪ G2) ≤ r(K3, G1) +
r(K3, G2). Hence the number of vertices of G is at most m + 1. Let n = 3m and
suppose that the edges of Kn are red-blue colored with no red triangle. Pick the
vertex with maximum red degree in this coloring and let X, |X| = t, be the set of
its red neighbors. Note that all the edges inside X are blue, since there is no red
triangle. Partition the vertices of G into two sets V (G) = V ′ ∪ V ′′, where V ′ consists
of the t vertices with the highest degree. Since the sum of the degrees in G is 2m,
we have that all the vertices in V ′′ have degree at most 2m/(t+ 1). Now we will find
the blue copy of G as follows. Embed the vertices of V ′ into X arbitrarily, and then
embed the vertices of V ′′ one by one. Given a vertex v ∈ V ′′, let Y be the set of
vertices of Kn where we already embedded neighbors of v. Since the maximum red
degree in the coloring is t and |Y | ≤ d(v) ≤ 2m/(t + 1), we have that Kn contains at
least 3m− t|Y | ≥ m+ 1− |Y | vertices which are adjacent to all vertices in Y by blue
edges. As the total number of vertices of G is at most m + 1, one such vertex is still
unoccupied and can be used to embed v. Continuing this process we find a blue copy
of G.

Now suppose s > 3 and by induction we have that r(Ks−1, G) ≤ c1 m
s−2
2 / log

s−4
2 m.

Let n = c2m
s−1
2 / log

s−3
2 m, where c2 is a sufficiently large constant which depends

on c1 and which we fix later. Consider a red-blue coloring of the complete graph
Kn such that there is no red copy of Ks. If there is a vertex which has at least

d = c1 m
s−2
2 / log

s−4
2 m red neighbors, then this set cannot contain a red copy of

Ks−1. Therefore by the induction hypothesis it will contain a blue copy of G, and we
are done. Thus we can assume that the maximum degree in the red subgraph of Kn is

at most d. Set k =
√
m logm. It is easy to check that, by definition, n = Ω( ks−1

logs−2 k
).

Therefore, by choosing c2 large enough and using the result of Ajtai, Komlós, and
Szemerédi [1] on Ramsey numbers, we get that n ≥ r(Ks,Kk). Hence there exists a
set X of k vertices which spans only blue edges. Again partition the vertices of G
into two sets V (G) = V ′ ∪ V ′′, where V ′ consists of the k vertices with the highest
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degree. Since the sum of the degrees in G is 2m, we have that all the vertices in V ′′

have degree at most 2m/(k + 1). Embed the vertices of V ′ into X arbitrarily, and
then embed the vertices of V ′′ one by one as follows. Given a vertex v ∈ V ′′, let Y
be the set of vertices of Kn where we already embedded neighbors of v. Since the
maximum red degree in the coloring is d and |Y | ≤ d(v) ≤ 2m/(k + 1), by choosing
sufficiently large c2, we have that there are at least

n− d|Y | ≥ n− 2md

k + 1
>

c2m
s−1
2

log
s−3
2 m

− 2m√
m logm

(
c1 m

s−2
2

log
s−4
2 m

)
> 2m

vertices in Kn which are adjacent to all vertices in Y by blue edges. Note that the
total number of vertices of G is at most 2m, as it has no isolated vertices. Therefore
there exists an unoccupied vertex of Kn which is connected to all vertices in Y by
blue edges. This vertex can be used to embed v. In the end of this procedure we
obtain a blue copy of G. This completes the proof of the theorem.

3. Concluding remarks. Let H be a graph with vH ≥ 3 vertices and eH edges.
The density ρ(H) of H is defined as ρ(H) = eH−1

vH−2 . Also define

ρ∗(H) = max
H′⊆H

ρ(H ′).

For example, for the complete graph of order s we have ρ∗(Ks) = s+1
2 . The arguments

in the proof of Theorem 1.1 can be used to obtain the following more general result.
Since the proof of this statement does not require new ideas and contains somewhat
tedious computations, we omit it here.

Theorem 3.1. Let H be a fixed graph. Then there exists a constant c depending
only on H such that for every graph G with m edges,

r(H,G) ≥ c
(
m/ logm

) ρ∗
1+ρ∗ .

In addition to the triangle, this result is nearly tight when H is the complete
bipartite graph Kp,q with q � p. Indeed it is easy to check from the definition
that if p is fixed and q → ∞, then ρ∗(Kp,q) → p. Therefore for every p and ε > 0

there exists q such that
ρ∗(Kp,q)

1+ρ∗(Kp,q)
> p

1+p − ε. Thus, from Theorem 3.1 we have that

r(Kp,q, G) ≥ Ω(m
p

1+p−ε) for every G with m edges. On the other hand, from the
result of Kövari, Sós, and Turán [12] that Kp,q-free graphs on n vertices can have
at most O(n2−1/p) edges, it follows that such a graph has an independent set of size
Ω
(
n1/p

)
. This implies that r(Kp,q,Kk) ≤ O(kp) (see also [3, 14] for a slightly better

estimate). Using this bound together with the argument from the proof of the second

part of Theorem 1.1, we can show that if G is the disjoint union of Θ
(
m

p−1
p+1

)
cliques

of order m1/(p+1), then r(Kp,q, G) ≤ O(m
p

1+p ).
For s = 3 the lower bound in Theorem 1.1 is tight up to a multiplicative factor

of log1/3 m. It would be very interesting to close this gap. We think that our upper
bound in (1) is closer to the truth and there exists an absolute constant c such that

r(K3, G) ≥ cm2/3/ log1/3 m for every graph G of size m. To prove this one might try
to use an approach based on the semirandom method which was developed by Kim
[11] to determine the asymptotic behavior of Ramsey numbers r(K3,Kk).

It would be interesting to extend an upper bound in Theorem 1.2 to the general
case when H and G are arbitrary graphs with sizes t and m and with no isolated
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vertices. We conjecture that if t is fixed and m is sufficiently large, then

r(H,G) ≤ mO(
√
t).

This estimate, if true, is tight up to a constant in the exponent, since the known lower
bounds (see [16, 13]) on off-diagonal Ramsey numbers imply that r(H,G) ≥ mΩ(

√
t)

when H and G are complete graphs with t and m edges, respectively. In [3] it was
proved that if H is a graph with chromatic number � and maximum degree d ≥ �, then
for all sufficiently large m, r(H,K2m) ≤ m�d. Using this estimate it is easy to obtain
the following partial result, which shows that our conjecture holds if the chromatic
number of H is a fixed constant.

Proposition 3.2. Let H and G be two graphs with no isolated vertices such
that the size of G is m, the size of H is t, and H has chromatic number � ≥ 2.
Then there exists a constant c depending only on � such that for sufficiently large m,
r(H,G) ≤ mc

√
t.

Sketch of proof. We use induction on t. Let v be the vertex of maximum degree
in H. Since G has m edges, it has at most 2m vertices. Therefore, if the maximum
degree of H is at most 2

√
t, it follows from the above cited estimate in [3] that

r(H,G) ≤ m2
√
t�. Otherwise, the degree of v in H is larger than 2

√
t. Delete it and

denote H1 = H \ {v}. This graph has t1 ≤ t− 2
√
t edges and

√
t1 ≤

√
t− 1.

Let n = m2
√
t� and consider red-blue coloring of the edges of the complete graph

Kn. Since G has at most 2m vertices, we can assume that there is no red K2m in this
coloring. Therefore, by Turán’s theorem, there is a vertex x in Kn, whose blue degree
is at least n/2m � m(2

√
t−2)� ≥ m2

√
t1�. Let U be the set of blue neighbors of x.

Clearly, this set contains no blue copy of H1. Now we can use induction to conclude
that it contains a red copy of G.
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ON K-TERM DNF WITH THE LARGEST NUMBER OF PRIME
IMPLICANTS∗
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Abstract. It is known that a k-term DNF can have at most 2k − 1 prime implicants and that
this bound is sharp. We determine all k-term DNF having the maximal number of prime implicants.
It is shown that a DNF is maximal if and only if it corresponds to a nonrepeating decision tree
with literals assigned to the leaves in a certain way. We also mention some related results and open
problems.
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1. Introduction. Prime implicants of a Boolean function, or, in other words,
maximal subcubes of a subset of the n-dimensional hypercube, form a basic concept
for the theory of Boolean functions and their applications. Concerning the maximal
number of prime implicants, it is known that an n-variable Boolean function can have
at most O( 3n

√
n
) prime implicants, and there are n-variable Boolean functions with

Ω( 3n

n ) prime implicants (see, e.g., [4]).
Another case considered is the maximal number of prime implicants of Boolean

functions represented by disjunctive normal forms (DNF) with a bounded number of
terms. The result that a k-term DNF can have at most 2k − 1 prime implicants was
discovered independently by Chandra and Markowsky [4], Levin [17], and McMullen
and Shearer [19]. For a recent application in computational learning theory, see
Hellerstein and Raghavan [9]. It was shown by Laborde [16], Levin [17], and McMullen
and Shearer [19] that the bound is sharp, i.e., there are k-term DNF with 2k−1 prime
implicants (Chandra and Markowsky gave an example with more than 2k/2 prime
implicants). In view of these results, we call a DNF maximal if it has k terms and
2k − 1 prime implicants for some k.

In this paper we complete the results of [4, 16, 17, 19] by determining all the
maximal DNF. In order to formulate the description, let us introduce the following
definition.

By a tree we mean a rooted binary tree such that for every inner node, the
edge leading to its left (resp., right) child is labeled 0 (resp., 1). For a given k ≥ 2
and r ≥ 0, let us consider the pairwise distinct variables x1, . . . , xk−1, y1, . . . , yk, and
z1, . . . , zr. For each of the y and z variables, pick an orientation, i.e., form the literals

yεii (i = 1, . . . , k) and z
δj
j (j = 1, . . . , r), where for εi and δj the value 1 (resp., 0)
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corresponds, as usual, to an unnegated (resp., negated) variable. A nonrepeating,
unate-leaf decision tree (NUD) T over these variables and literals is constructed by
taking a tree with k− 1 inner nodes (and thus with k leaves), assigning to each inner
node a distinct x variable, assigning to each leaf a distinct y literal from those formed
above, and, in addition, assigning to each leaf an arbitrary subset of the z literals
formed above. The set of leaves of T is denoted by L. If we want to mention the
number of x variables and y literals used in the construction, then we refer to T as a
k-NUD (the value r is irrelevant). Figure 1 gives an example of a 5-NUD (the labeling
of the edges is omitted for simplicity).

A k-NUD represents a k-term DNF, determined as follows. For a leaf � ∈ L, let
the term t� be the conjunction of the x literals along the path leading to � (where
traversing an edge labeled 1 corresponds to an unnegated literal, and traversing an
edge labeled 0 corresponds to a negated literal) and of the y and z literals assigned
to �. The k-term DNF represented by the k-NUD T is

ϕT =
∨
�∈L

t�.

For example, the 5-term DNF represented by the 5-NUD of Figure 1 is

x1 x2 x4 y1 z1 ∨ x1 x2 x4 y2 z2 z3 ∨ x1 x2 y3 z1 ∨ x1 x3 y4 z1 z4 ∨ x1 x3 y5 z2.

The Boolean function represented by ϕT can also be thought of in the following way:
Given a truth assignment a to all the variables, use the values of the x variables to
determine a path from the root to a leaf. The function value is 1 if a makes all the
y and z literals assigned to this leaf true, and it is 0 otherwise. It is clear from the
definition that the input vectors accepted at a leaf � are precisely those vectors which
satisfy the term t�. The function ϕT is a generalized addressing function or multiplexer
[20, 25]. If a DNF ϕ comes from a NUD T , then T can be reconstructed from ϕ. The
y and z literals are those which are unate in ϕ, i.e., their negation does not occur in ϕ,
while the x variables are those which occur both negated and unnegated. Among the
x variables, the one labeling the root is the only one which occurs in every term (either
unnegated or negated). The left child is the only x variable which occurs in every
term containing the negation of the root variable, etc. In view of this correspondence,
with some abuse of terminology, we can talk about a DNF being a NUD, rather than
corresponding to a NUD. The maximal DNF of [16, 19] (resp., [17]) corresponds to a
tree which is a single path (resp., a complete binary tree), without any z literals. A
NUD generalizes these examples by allowing for a binary arbitrary tree and for the
additional z literals. Now we can formulate the description of maximal DNF.

Theorem 1. A DNF is maximal if and only if it corresponds to a NUD.

x1

y5z2

y2 z2z3

y3z1

x2 x3

x4

y1z1

y4z1z4

Fig. 1. A nonrepeating, unate-leaf decision tree (NUD).
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A closely related class of DNF tautologies is obtained if we consider trees with
the same kind of inner nodes, but without any literals assigned to the leaves. In the
case of the example of Figure 1, the corresponding DNF tautology is

x1 x2 x4 ∨ x1 x2 x4 ∨ x1 x2 ∨ x1 x3 ∨ x1 x3 .

Let us refer to this class of tautologies as nonrepeating decision tree tautologies, or
ND ’s. The main step in the proof of Theorem 1, the ND lemma (Lemma 11) is to show
that for every DNF tautology the following two properties are equivalent: (a) any two
of its terms have exactly one conflicting pair of literals (in other words, the terms are
pairwise neighboring), (b) it is an ND. Lemma 11 was proven recently, independently
from our work, by Kullmann [14, 15]. Kullmann’s proof uses the concept of Hermitian
defect and other concepts from linear algebra. (The Hermitian rank of a symmetric
matrix is the maximum of the number of positive and the number of negative eigen-
values of the matrix (Gregory, Watts, and Shader [7]), and the Hermitian defect is
the difference of the order of the matrix and its Hermitian rank [14, 15].) Kullmann
also uses the characterization of ND’s as strongly minimal tautologies with the addi-
tional property that the number of terms is one more than the number of variables
(Aharoni and Linial [1], Davydov, Davydova, and Kieine Böning [5], Kullmann [13]),
proved using Hall’s theorem or resolution techniques. (A tautology is strongly mini-
mal if deleting any term, or adding any literal to a term results in a nontautology.)
Our proof is an elementary combinatorial argument.

We note that ND’s come up in other contexts as well, e.g., in connection with the
complexity of analytic tableaux (Urquhart [24], referring to an earlier unpublished
work of Cook, and Arai, Pitassi, and Urquhart [2]). Another related topic is the
decision tree complexity of tautologies (Lovász et al. [18]).

The characterization of ND’s as pairwise neighboring DNF tautologies is a direct
consequence of the following splitting lemma (Lemma 10): if the n-dimensional hyper-
cube is partitioned into subcubes of pairwise distance 1 then there is a split of the
whole cube into two half cubes such that every cube of the partition is contained in
one of the two halves. We also consider the question of what can be said about cube
partitions without the distance assumption. The goodness of a split into two half
cubes can be measured by the fraction of the total volume of subcubes contained in
one of the two halves (thus in the distance 1 case one always has a split of measure 1).
This measures the fraction of points for which flipping the component corresponding
to the two half cubes gives a point in a different subcube of the partition. Thus the
goodness of the split measures the influence of the variable corresponding to the half
cubes, on the partition (for other notions of influence, see, e.g., Hammer, Kogan, and
Rothblum [8] and Kahn, Kalai, and Linial [11]). We give general lower and upper
bounds for the best achievable split. The upper bound uses a result of Savický and
Sgall [21] on DNF tautologies with bounded occurrences of the variables.

Recent related work on the combinatorial aspects of the satisfiability problem
(see Kullmann [15] for a recent survey) makes use of the connection with partitioning
complete graphs into complete bipartite graphs (bicliques). This connection, and
in particular, the Graham–Pollak theorem [6] is used by Laborde [16] to show that
a maximal k-term DNF contains at least 2 k − 1 variables. (This result, in turn,
follows immediately from Theorem 1 without using the Graham–Pollak theorem.)
We give an application of the splitting lemma (Lemma 10) to show that the family of
recursive partitions into complete bipartite graphs has an extremal property among
all partitions into complete bipartite graphs.
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The paper is organized as follows. After some preliminaries in section 2, the
results of [4, 16, 17, 19] are presented in section 3. The proof of Theorem 1 is given
in section 4. Section 5 contains the bounds for the general splitting problem. The
connection to partitions of complete graphs into complete bipartite graphs is discussed
briefly in section 6. Section 7 contains some further open problems on the number of
prime implicants.

2. Preliminaries. A literal is a variable or a negated variable, a term is a con-
junction (or a set) of literals, and a disjunctive normal form (DNF) is a disjunction of
terms. The empty conjunction (resp., disjunction) is identically true (resp., false). It
is assumed that terms do not contain both a variable and its negation. The size of a
term t, denoted by |t|, is the number of its literals. The number of conflicts between
two terms is the number of variables occurring unnegated in one term and negated
in the other. A DNF is disjoint if any two of its terms have at least one conflict.
We write ψ ≤ ϕ if every truth assignment satisfying ψ also satisfies ϕ, and ψ < ϕ
if, in addition, there is a truth assignment a with ψ(a) = 0 and ϕ(a) = 1. The set
of vectors in {0, 1}n satisfying ϕ are denoted by T (ϕ). If t is a term, then T (t) is a
subcube (or simply cube) in {0, 1}n, with |T (t)| = 2n−|t|. With an abuse of notation,
we usually write cube t instead of cube T (t). (This is an example of switching freely
between syntactic and semantic views of the same object, which occurs frequently in
the paper and is, in general, useful in the study of Boolean functions.) For a literal
z, the z half cube of {0, 1}n is the (n− 1)-dimensional subcube formed by the vectors
for which z is true.

A term t is an implicant of a DNF ϕ = t1 ∨ · · · ∨ tk if t ≤ ϕ. In this case we
also say that ϕ is a cover of t, as the union of the cubes T (ti) covers the cube T (t).
Note that the variables occurring in t and ϕ may differ. It may be assumed w.l.o.g.
that by a truth assignment we mean an assignment of truth values to every variable
occurring in t or ϕ. The term t is a prime implicant of ϕ, if t is an implicant of ϕ, but
every term obtained by deleting a literal from t is not an implicant of ϕ. The DNF ϕ
is a minimal cover of the term t, if ϕ is a cover of t (i.e., t is an implicant of ϕ), but
every DNF obtained from ϕ by deleting a term is not a cover of t.

Let t be a term and ϕ = t1∨· · ·∨tk be a DNF. Every term ti of ϕ can be uniquely
written in the form

(1) ti = t′i ∧ t′′i ,

where t′i contains all the literals from ti which also occur in t, and t′′i contains the
remaining literals of ti.

Given a DNF ϕ, let V ar(ϕ) (resp., Lit(ϕ)) denote the set of variables (resp.,
literals) occurring in any term of ϕ, and let

(2) UL(ϕ) = {z ∈ Lit(ϕ) : z̄ �∈ Lit(ϕ)}

be the set of unate literals in ϕ, i.e., the set of those literals occurring in ϕ, for which
their negation does not occur in ϕ.

For a ∈ {0, 1}n, the vector a(�) is the vector obtained from a by flipping its
component corresponding to the literal �, e.g., for variables x1, x2, x3, x4 one has
1010(x2) = 1110 and also 1010(x̄2) = 1110. Given a, b ∈ {0, 1}n, the term correspond-
ing to the smallest subcube containing both a and b is obtained by including every
literal corresponding to components where a and b agree. For example, the smallest
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subcube containing both 1010 and 1100 is x1x4. The Hamming distance d(a, b) of
a, b ∈ {0, 1}n is the number of components where a and b differ. The graph of the
n-dimensional cube has {0, 1}n as vertices, and edges (a, b) for every a, b of Hamming
distance 1. The distance of two subcubes C1 and C2 is min{d(a, b) : a ∈ C1, b ∈ C2}.
Note that the distance of T (t1) and T (t2) is equal to the number of conflicts between
the terms t1 and t2. A partition of the cube into subcubes can also be viewed as a
disjoint DNF tautology. A partition of a cube into subcubes is pairwise neighboring,
if any two subcubes in the partition have distance 1. A set of terms forms a pairwise
neighboring partition if the corresponding set of cubes forms a pairwise neighboring
partition.

3. Prime implicants and k-term DNF. In this section we describe the results
of [4, 16, 17, 19] on prime implicants of k-term DNF. We give a complete presentation
in order to make the paper self-contained, to clarify what are the consequences of
the separate assumptions of being an implicant, a prime implicant (resp., a minimal
cover), and to give an explicit formulation of results implicit in [16]. We use the
notation introduced in (1) and (2).

Proposition 2. A term t is an implicant of a DNF ϕ if and only if
∨k

i=1 t
′′
i = 1.

Proof. For the ⇐ direction, let a be a truth assignment such that t(a) = 1. Then
t′i(a) = 1 for every i and t′′i (a) = 1 for some i, so ti(a) = 1 for some i, and thus
ϕ(a) = 1.

For the ⇒ direction assume
∨k

i=1 t
′′
i < 1, i.e., (

∨k
i=1 t

′′
i )(a) = 0 for some a. The

literals occurring in
∨k

i=1 t
′′
i do not occur in t, but it may be the case that the negation

of such a literal occurs in t. Let b be the truth assignment obtained from a by setting
all the literals of t to 1. Then every literal in

∨k
i=1 t

′′
i is either unchanged, or is changed

to 0, thus (
∨k

i=1 t
′′
i )(b) = 0, and so ϕ(b) = 0. But t(b) = 1, contradicting the fact that

t is an implicant of ϕ.
Proposition 3. If t is a prime implicant of ϕ, then

(a) t =
∧k

i=1 t
′
i,

(b) every literal of t occurs in ϕ.

Proof. For a), it follows from the definition that t ≤
∧k

i=1 t
′
i. Assume that a

variable x in t does not occur in any ti. Then x does not occur in ϕ at all, though x̄
may occur in some t′′i . But then t is an implicant of the disjunction of those terms in
ϕ which do not contain x̄, and so by deleting x from t we still get an implicant of ϕ.
Part b) follows trivially from a).

Proposition 4. If ϕ is a minimal cover of t, then
(a) Lit(t) ∩ Lit(ϕ) = UL(ϕ),

(b)
∨k

i=1 t
′′
i is a minimal cover of 1.

Proof. For the ⊆ part of (a), note that if t contains a nonunate literal z of ϕ, then
terms containing z̄ can be deleted from ϕ and we still get a cover of t, contradicting the
minimality of ϕ. For the ⊇ part of (a), assume that a unate literal z is not contained in
t. Then z̄ t is also an implicant of ϕ, which is covered by the terms of ϕ not containing
z. As these terms do not contain z̄ either, their disjunction covers t as well, again
contradicting the minimality of ϕ. Part (b) follows from Proposition 2.

Putting together Propositions 2, 3, and 4, we get the following theorem.
Theorem 5. If t is a prime implicant of ϕ and ϕ is a minimal cover of t, then

(a) t is the conjunction of the literals in UL(ϕ),

(b)
∨k

i=1 t
′′
i is a minimal cover of 1.
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Theorem 6 (see [4, 17, 19]). Every k-term DNF has at most 2k − 1 prime
implicants.

Proof. Let ϕ be a k-term DNF and t be a prime implicant of ϕ. Consider a
minimal set of terms of ϕ covering t. Then, by Theorem 5(a), t is uniquely determined
by this nonempty set of terms.

The next result gives important structural information on maximal DNF’s.
Theorem 7 (see [16]). Let ϕ = t1 ∨ · · · ∨ tk be a k-term DNF with 2k − 1 prime

implicants, and let t be the term formed by the literals in UL(ϕ).
Then
(a)

∨k
i=1 t

′′
i is a minimal cover of 1,

(b) t′′i and t′′j conflict in exactly one variable, for every 1 ≤ i < j ≤ k.
Proof. By Theorems 5 and 6, every nonempty subset of the terms of ϕ is a minimal

covering of some prime implicant of ϕ. Part (a) follows by applying Theorem 5(b) to
all the terms.

Let us consider now ψi,j = ti ∨ tj . Again, this is a minimal cover of a prime
implicant of ϕ. If ti and tj do not conflict in any variable, then, by Theorem 5(a), the
corresponding prime implicant is the term formed by all the literals in ti and tj . But
that term is not a prime implicant. Indeed, it must be the case that ti �= tj , and so
ti ∧ tj < ti or ti ∧ tj < tj . If ti and tj conflict in more than one variable, then we get
a contradiction to Theorem 5(b), as the disjunction of two terms with at least two
conflicts cannot be 1.

4. Proof of Theorem 1. In this section we prove Theorem 1: a DNF is maximal
if and only if it corresponds to a NUD.

First we consider the ⇐ direction.
Lemma 8. Every NUD corresponds to a maximal DNF.
Proof. Let T be a k-NUD, and let H be a nonempty subset of its leaves. Define

the term

tH = UL({t� : � ∈ H}).

Let a be a truth assignment satisfying tH . It follows by induction on the number
of inner nodes evaluated that on input a we arrive at a leaf belonging to H, and it
follows from the definition of tH that a satisfies every literal assigned to that leaf.
Thus tH is an implicant of ϕT .

Assume that we delete an x literal, say xε
i from tH , to get the term t′. As

xε
i ∈ UL({t� : � ∈ H}), there is a leaf �1 belonging to H below the ε-child of the

inner node xi, but no leaf below the (1 − ε)-child of xi is in H. Let a be the vector
satisfying all the literals in t�1 and tH , with every literal of the form y

εj
j not occurring

in these terms set to 0. Let b = a(xi). On the input b we arrive at a leaf �2 below
the (1 − ε)-child of xi. But the y literal assigned to �2 is set to 0 in b, and hence
ϕT (b) = 0. On the other hand, b still satisfies t′. Thus t′ is not an implicant.

Assume now that we delete a y literal, say y
εj
j , from tH , to get the term t′. Let �

be the leaf containing y
εj
j . It follows from the definition of tH that � ∈ H. Let a be

a vector satisfying t� and tH , and let b = a(yj). Then the input b leads to �, but as
the literal y

εj
j has value 0 for vector b, we get ϕT (b) = 0. On the other hand, b still

satisfies t′. Thus t′ is not an implicant. The case when we delete a z literal, say z
δj
j ,

from tH is the same, except now there may be several leaves in H containing z
δj
j . We

can choose any such leaf and repeat the same argument as for y
εj
j . It again follows

that the term obtained after deleting the literal is not an implicant.
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Thus the term tH is a prime implicant of ϕT . Terms corresponding to different
subsets of L are different, as each leaf has its unique y literal. Hence ϕT has at least
2k − 1 prime implicants, and so it is maximal by Theorem 6.

The rest of this section contains the proof of the ⇒ direction of Theorem 1.

Lemma 9. Every maximal DNF corresponds to a NUD.

Proof. Let ϕ = t1 ∨ · · · ∨ tk be a k-term DNF with 2k − 1 prime implicants.
Consider the term t = UL(ϕ), and the decomposition ti = t′i ∧ t′′i of the terms of
ϕ with respect to t, as in (1). According to Theorem 7, the terms t′′1 , . . . , t

′′
k form a

pairwise neighboring partition over the nonunate variables occurring in ϕ, i.e., over
{0, 1}s, where s = |V ar(ϕ)\UL(ϕ)|. The following lemma states a basic combinatorial
property of pairwise neighboring partitions.

Lemma 10 (splitting lemma). If a set of k ≥ 2 terms forms a pairwise neighboring
partition, then there is a variable that occurs (unnegated or negated) in every term.

Proof. We proceed by induction on the number of variables; the case of one or two
variables is trivial. Let u1, . . . , uk be terms forming a pairwise neighboring partition
of {0, 1}s.

Consider the � half cube corresponding to an arbitrary literal �. The restriction of
u1, . . . , uk to the � half cube is formed by deleting terms which contain the literal �. It
follows directly from the definitions that the restriction gives a pairwise neighboring
partition of the � half cube. If the restriction consists of a single cube, then � is a term
of the original partition. In this case every other term of the original partition must
contain � and we are done. Hence in what follows we may assume that the restrictions
always contain at least two terms.

Applying the induction hypothesis to the pairwise neighboring partition of the
s − 1 dimensional cube obtained by deleting the component corresponding to �, and
deleting the literal � from each of the remaining terms, it follows that there is a
variable Split(�), different from the variable of �, contained (negated or unnegated) in
every term covering a point in the � half cube. As there are 2s literals and s variables,
there are literals �1 and �2 such that Split(�1) = Split(�2) = z for some variable z.

We claim that z occurs (negated or unnegated) in every term of the partition
u1, . . . , uk. If �1 is the negation of �2, then z must occur in every term and we are
done; henceforth we can assume that �1 and �2 have different variables. Assume now
for contradiction that z is not in every term of the partition. Let u be a term of the
partition containing neither z nor z, and let a be a point in u. Then a belongs to
neither the �1 subcube, nor the �2 subcube.

Consider the points a(�1) and a(�2), covered, respectively, by terms u�1 and u�2 of
the partition. Note that u�1 and u�2 are different. Indeed, if u�1 = u�2 = u′, then, as
a(�1) and a(�2) differ in both their �1 and �2 components, u′ contains neither �1 nor
�2, and hence it covers a as well. This contradicts the definition of a.

The points a(�1) and a(�2) differ only in their �1 and �2 components; hence the
unique conflict of the terms u�1 and u�2 is either �1 or �2. Assume w.l.o.g, that the
conflict is �1. By definition, both u�1 and u�2 contain a z literal. As a(�1) and a(�2) do
not conflict on z, both u�1 and u�2 contain the same z literal, say z. Thus so far we
have that u�1 contains �ε1 and z, and u�2 contains �1−ε

1 and z, for some ε ∈ {0, 1}.
Now consider the point a(�1,z) covered by the term u�1,z of the partition. As

a(�1,z) is in the �1 subcube, it contains a z literal, which must be z. What is the
unique conflict of u (the term covering a) and u�1,z? As a(�1,z) and a conflict only
on their �1 and z components, but u contains no z literal, it must be �1. Thus u�1,z

contains �ε1 and z. But then u�2 and u�1,z conflict in at least two components, a
contradiction.
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The splitting lemma is now used to prove the characterization of nonrepeating
decision tree tautologies mentioned in the introduction.

Lemma 11 (see the ND Lemma [14]). A set of k ≥ 2 terms forms a pairwise
neighboring partition if and only if it is an ND.

Proof. We begin by applying Lemma 10 to the pairwise neighboring partition to
get a variable x1 occurring in every term. It must be the case that x1 occurs both
unnegated and negated, as otherwise the cubes would not cover the whole cube. If
the xε

1 half cube contains just one cube, then we stop at that branch, otherwise we
use the lemma again to get a variable which occurs in every subcube of the partition,
belonging to the xε

1 half cube, etc. In this way we get a tree, where the inner nodes
are labeled with variables and there are k leaves �1, . . . , �k corresponding to the cubes
in the partition. (The tree constructed is (the dual of) a special search tree in the
sense of [18] for the partition.) The labels of the inner nodes are different, as the
same label appearing twice would mean that some pair of cubes have distance at least
2. Indeed, if variable xi occurs twice, then let xj be the variable labeling the least
common ancestor of the two occurrences in the tree. By construction, there are terms
containing x̄i x̄j (resp., xi xj). Thus the partition is an ND.

Now we can complete the proof of Lemma 9. Lemma 11 gives an ND for the
pairwise neighboring terms t′′1 , . . . , t

′′
k . We claim that by adding the literals in t′i to

the leaf �i, we get a k-NUD for ϕ. Consider any truth assignment a to the variables
in ϕ. Evaluating the tree on a, we arrive at a leaf corresponding to a term t′′i . As
ϕ(a) = 1 if and only if t′i(a) = 1, the tree computes ϕ correctly. By construction,
all the literals in the leaves are unate. Thus, in order to verify the NUD-ity of the
tree, it only remains to show that for every leaf there is a literal which occurs only
in that leaf (that literal will be its y literal). Assume that this is not the case, and
every (unate) literal assigned to leaf �i occurs in some other leaf. Let xε

j be the

last literal on the path leading to �i. Then x1−ε
j ∈ UL(ϕ \ {ti}). We claim that

UL(ϕ \ {ti}) \ {x1−ε
j } is an implicant of ϕ. Let a be a truth assignment satisfying

every literal in UL(ϕ \ {ti}) \ {x1−ε
j }, and let us evaluate the tree on a. If we arrive

at a leaf other than �i, then ϕ(a) = 1 by construction. But ϕ(a) = 1 if we arrive at
�i as well, as all unate literals in �i occur in other leaves, and thus they must be set
to 1 in a. Thus UL(ϕ \ {ti}) is not a prime implicant of ϕ, contradicting Theorems 5
and 6.

5. The general splitting problem for cube partitions. According to the
splitting lemma (Lemma 10), for every pairwise neighboring cube partition, the whole
cube can be split into two halves in such a way that every cube of the partition is
contained in one of the halves. In this section we consider the following question:
What can be said without the pairwise neighboring property? Given an arbitrary
partition of the whole cube into subcubes and a split into two halves, let us say that
a cube in the partition is good if it is contained in either one of the halves. We would
like to find a split such that the good cubes contain many points.

Thus we consider the following quantities. Given a cube partition ϕ over the
variables x1, . . . , xn and a variable xj , let

vϕ,j =
∑{

2−|t| : t ∈ ϕ, xj ∈ t or x̄j ∈ t
}

be the fraction of the volume of good cubes in ϕ with respect to the xj split of the
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cube, and let

αn = min
ϕ

max
1≤j≤n

vϕ,j ,

where ϕ ranges over all cube partitions, or in other words, over all disjoint DNF
tautologies. Note that as ϕ is a partition it holds that

(3)
∑
t∈ϕ

2−|t| = 1.

Theorem 12. It holds that

log n− log log n

n
≤ αn ≤ O

(
n− 1

5

)
.

Proof. Let ϕ = t1 ∨ · · · ∨ tr be a disjoint DNF tautology over the variables
x1, . . . , xn. If the term ti contains xj or x̄j , then ti contributes 2−|ti| to vϕ,j . Thus

n∑
j=1

vϕ,j =

r∑
i=1

|ti| · 2−|ti|,

and there is a variable xj with

vϕ,j ≥
1

n

r∑
i=1

|ti| · 2−|ti|.

Let s denote the size of the shortest term in ϕ. As every term has size at least s, it
follows from (3) that

1

n

r∑
i=1

|ti| · 2−|ti| ≥ s

n

r∑
i=1

2−|ti| =
s

n
.

On the other hand, for every variable xj occurring in a shortest term ti it holds that
vϕ,j ≥ 2−s. Thus

(4) αn ≥ min
( s

n
, 2−s

)
.

The lower bound then follows by taking s = log n− log log n, for which the two terms
in (4) are close to each other.

The upper bound follows from a construction of Savický and Sgall [21], providing
an upper bound on the number of variable occurrences in tautological k-DNF formulas
(a problem introduced by Tovey [23] and Kratochv́ıl, Savický and Tuza [12]). They

constructed disjoint DNF tautologies over n = 4� variables, having 23�

terms of size
3�, such that every variable occurs in at most a (3/4)� fraction of the terms. The
bound then follows by a direct calculation.

We note that the upper bound of Savický and Sgall [21] has recently been
improved almost optimally by Hoory and Szeider [10]. The improved constructions do
not appear to improve the upper bound, since the DNF constructed are not disjoint.

In view of Theorems 1 and 12, it may be of interest to consider the quantity αd
n,

which is defined as αn, except that ϕ is restricted to cube partitions with pairwise
distances bounded by d. In the construction of [21] the maximal distance grows
linearly with n.
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6. Partitions of complete graphs into complete bipartite graphs. Given
a set of pairwise disjoint cubes in {0, 1}n, corresponding to terms t1, . . . , tr, one can
construct a covering

G = {G1, . . . , Gn}
of the r-vertex complete graph Kr by complete bipartite graphs, where Gu has an
edge connecting vertices vi and vj if terms ti and tj conflict in the variable xu. If the
set of cubes is pairwise neighboring, then this covering is a partition, as the complete
bipartite graphs are edge disjoint.

Conversely, given a covering G = {G1, . . . , Gn} of Kr by complete bipartite
graphs, we can construct a set of pairwise disjoint cubes t1, . . . , tr in {0, 1}n. For
every Gu, fix arbitrarily one of the sides as the left side. The term ti contains xu

(resp., x̄u), if vertex vi is contained in the left (resp., right) side of Gu. If G is a parti-
tion, then it follows that the ti’s are pairwise neighboring. The cubes thus constructed
do not necessarily form a partition of {0, 1}n (an example is given below).

The Graham–Pollak theorem [6] states that every partition of Kr into complete
bipartite graphs consists of at least r − 1 graphs. A large class of such partitions,
which can be called recursive partitions, is obtained as follows. Take a complete
bipartite graph on the whole vertex set. This “takes care” of all edges connecting the
two sides. In order to partition the remaining edges (those having both endpoints on
the same side), repeat the same construction, i.e., recursively add similar partitions
of the complete graphs formed by the two sides of this bipartite graph (see, e.g., [3]).

Consider a partition G = {G1, . . . , Gn} of Kr into complete bipartite graphs. Let
the degree of a vertex v with respect to G, denoted by dG(v), be the number of Gi’s
containing v, and let the volume vol(G) of the partition be defined as

vol(G) =
∑
v

2−dG(v).

In view of the translation into a set of pairwise disjoint cubes in {0, 1}n described
above, vol(G) ≤ 1 for every G, as dG(vi) = |ti| for every i = 1, . . . , r, and vol(G) = 1
if and only if the cubes form a partition of {0, 1}n. For example, the partition of K4

into the three complete bipartite graphs ({1}, {3, 4}), ({2}, {1, 4}), and ({3}, {2, 4})
(mentioned in [16]) has volume 7

8 . This partition of K4 is not recursive. (It was
actually this example which suggested Lemma 10.) As a corollary to the splitting
lemma (Lemma 10) one gets the following characterization of recursive partitions.
This characterization is also a direct consequence of Kullmann’s [13, 14, 15] results.

Corollary 13. A partition G is recursive if and only if vol(G) = 1.
Proof. The ⇒ direction follows directly by induction on the number of vertices

by considering the bipartite graph from G which contains all the vertices.
For the ⇐ direction, one only has to note that the set of terms t1, . . . , tr con-

structed above is pairwise neighboring, and by the volume condition it is also a par-
tition of the whole cube.

Applying Lemma 10 we get that there is a variable which occurs (unnegated or
negated) in every term. This means that the corresponding bipartite graph contains
all the r vertices. The remaining partitions of the two sides of this bipartite graph
have total volume 2, and thus each side must have volume 1. The statement then
follows by induction.

The corollary shows that among partitions of Kr into complete bipartite graphs,
recursive ones have the largest possible volume. Among the partitions of Kr into r−1
complete bipartite graphs, which ones have minimal volume?
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7. Other open problems. In this paper we have discussed k-term DNF with
the largest number of prime implicants. Similar results do not appear to be known
for shortest prime implicants, i.e., prime implicants containing the smallest possible
number of literals. The k-term DNF

x1x̄2 ∨ x2x̄3 ∨ · · · ∨ xk−1x̄k ∨ xkx̄1,

which is false for 0k and 1k, and true everywhere else, has k(k− 1) prime implicants,
namely xix̄j for every i �= j. These prime implicants are all shortest prime implicants,
as the DNF has no prime implicants consisting of a single literal. How many shortest
prime implicants can a k-term DNF have in general?

Another question concerns the maximal number of prime implicants of a Boolean
function which is true at a given number of points. As noted by Levin [17], every
implicant is determined by the top and bottom of the corresponding subcube, in the
componentwise partial ordering of the hypercube (the top and bottom may also be
identical). Thus if a function is true at m points, then it has O(m2) prime implicants.
It is also noted in [17] that the n-variable function which is true for vectors of weight
between n

3 and 2n
3 , has mlog 3−o(1) prime implicants. (This is the function with the

largest known number of prime implicants among n-variable functions.) Thus the
maximal number of prime implicants is bounded by two polynomial functions of m,
and the question is to get sharper bounds.
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fonction du nombre de conjunctions de l’une de ses formes normales, Discrete Math., 32
(1980), pp. 209–212.

[17] A. A. Levin, Comparative complexity of disjunctive normal forms, Metody Diskret. Analiz.,
36 (1981), pp. 23–38 (in Russian).

[18] L. Lovász, M. Naor, I. Newman, and A. Wigderson, Search problems in the decision tree
model, SIAM J. Discrete. Math., 8 (1995), pp. 119–132.

[19] C. McMullen and J. Shearer, Prime implicants, minimum covers, and the complexity of
logic simplification, IEEE Trans. Comput. C-35 (1986), pp. 761–762.

[20] J. E. Savage, Models of Computation: Exploring the Power of Computing, Addison-Wesley,
Reading, MA, 1998.
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COLORING BULL-FREE PERFECTLY CONTRACTILE GRAPHS∗
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Abstract. We consider the class of graphs that contain no bull, no odd hole, and no antihole of
length at least five. We present a new algorithm that colors optimally the vertices of every graph in
this class. This algorithm is based on the existence in every such graph of an ordering of the vertices
with a special property. More generally we prove, using a variant of lexicographic breadth-first
search, that in every graph that contains no bull and no hole of length at least five there is a vertex
that is not the middle of a chordless path on five vertices. This latter fact also generalizes known
results about chordal bipartite graphs, totally balanced matrices, and strongly chordal graphs.
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1. Introduction. The chromatic number of a graph G is the smallest integer
χ(G) for which it is possible to assign one color from the set {1, . . . , χ(G)} to each
vertex so that any two adjacent vertices receive different colors. A graph G is perfect
if the chromatic number of every induced subgraph H of G is equal to ω(H), where
ω(H) is the maximum clique size in H. A hole is a chordless cycle on at least four
vertices. The complement of a hole is called an antihole. A hole or an antihole is
odd if it has an odd number of vertices. Graphs that do not contain an odd hole
or an odd antihole of length at least five are usually called Berge graphs. Berge
[2, 3] conjectured that such graphs are perfect, and this famous problem, known
as the strong perfect graph conjecture, was solved by Chudnovsky et al. [5]. Earlier,
Grötschel, Lovász, and Schrijver [15] gave a polynomial time algorithm that computes
the chromatic number of every perfect graph; but this algorithm, based on the ellipsoid
method, is considered very impractical, and it is still an open problem to find a
purely combinatorial algorithm to color optimally the vertices of all perfect graphs in
polynomial time. Here we consider the class of bull-free graphs.

�

� �

� �

�
�

�
�

Fig. 1. The bull.

A bull is a graph with five vertices a, b, c, d, e and edges ab, bc, cd, de, bd; see Figure
1. We will denote such a bull by a-bcd-e. In a bull a-bcd-e, we call the edge bd the
central edge and vertices b, d the ears of the bull. Chvátal and Sbihi [8] proved that
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the strong perfect graph conjecture holds for bull-free graphs, that is, every bull-free
Berge graph is perfect. Subsequently, the structure of bull-free Berge graphs was
also studied by Reed and Sbihi [31]; De Figueiredo, Maffray, and Porto [10, 11]; and
Hayward [18]. De Figueiredo and Maffray [9] gave a combinatorial algorithm, based
on the results from [8, 10], that optimally colors every bull-free Berge graph G with
n vertices and m edges in time O(n5m3).

Let B be the class of bull-free Berge graphs that contain no antihole of length at
least five. We will present an O(mn) algorithm that computes an optimal coloring for
every graph in class B. This algorithm is based on new structural results concerning
the graphs in that class. Before doing so, we want to review the known methods that
perform such a task, and for this purpose we need to introduce a few more definitions.

A graph G is weakly chordal [17] if G contains no hole of length at least five and no
antihole of length at least five. A graph G is transitively orientable [14, 28] if we can
assign one orientation to each of its edges so that for every directed path u → v → w
the arc u → w is present in the orientation. A graph G is perfectly orderable [6] if
it admits an ordering < such that, for every induced subgraph H of G, applying the
greedy coloring algorithm on (H,<) produces an optimal coloring (such an ordering
is called a perfect ordering). A homogeneous set in a graph G is a set S ⊂ V (G) with
|S| ≥ 2, S �= V (G), such that every vertex of V (G) \ S is adjacent to either all or
none of the vertices of S. A prism is a graph that consists in two disjoint triangles
and three disjoint paths between the two triangles, with no edge between any two of
these three paths other than the triangles’ edges. A prism is odd if these three paths
have odd length. A graph G is an Artemis graph [12] if it contains no odd hole, no
antihole of length at least five, and no prism. A graph G is a Grenoble graph [12]
if it contains no odd hole, no antihole of length at least five, and no odd prism. It
was proved in [10] that every graph in class B is “perfectly contractile” in the sense
of Bertschi [4]; see section 5. Note that a prism either is the complement of a cycle
of length six or contains a bull. Therefore, “bull-free Artemis,” “bull-free Grenoble,”
and “bull-free perfectly contractile” are just different names for class B.

We know of three purely combinatorial methods to color graphs in class B, which
we summarize briefly:

• Method 1: Results from [10, 11] say that every graph in class B either is weakly
chordal, or has a homogeneous set, or is transitively orientable. Homogeneous sets
can be handled by the so-called modular decomposition, which decomposes any graph
into O(n) subgraphs that have no homogeneous sets. Modular decomposition can
be performed in time O(n + m); see, for example, [16]. By [10, 11], for a graph
in class B, these indecomposable subgraphs are either weakly chordal or transitively
orientable. One can find an optimal coloring for these subgraphs in time O(nm) for
weakly chordal graphs [19] and in time O(m) for transitively orientable graphs [27].
One can then combine these optimal colorings along the modular decomposition to
obtain an optimal coloring of the original graph (details are omitted). Thus we can
estimate the complexity of this method at O(n2m).

• Method 2: Chvátal [7] conjectured that every graph in class B is perfectly
orderable, and Hayward [18] proved that conjecture, using some results from [10, 11].
We estimate the technique in [18] at O(n5) (the exponent 5 is due to the search for an
induced P5 performed in [11]), and so, combining the techniques in [10, 11, 18], and
using again a linear-time algorithm for modular decomposition such as [16], one can
find a perfect ordering of any graph in class B in time O(n5(n+m)). Then applying
the greedy coloring on this ordering produces an optimal coloring in time O(m). Thus
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the total complexity of this method can be estimated at O(n5(n + m)).
• Method 3: Since every graph in class B is an Artemis graph, one can use the

algorithm from [25], which colors every Artemis graph in time O(n2m).
Our aim here is to present an algorithm that we think is conceptually simpler

than all of the above and whose complexity is also lower.
First let us fix some terminology and notation. We say that a vertex a sees a

vertex b when ab is an edge of the graph, otherwise vertex a misses b. The complement
of a graph G is denoted by G. The neighborhood of a vertex v is denoted by N(v). The
degree of a vertex v in G is denoted by d(v). A chordless path on k vertices is denoted
by Pk. A house is a graph with five vertices a, b, c, d, e and edges ac, ce, eb, bd, da, ae;
vertex c is called the top of the house. Note that a house is the complement of a P5.
We will establish the following result.

Theorem 1.1. Every graph in B has a vertex that is not the top of a house.
The above theorem implies the following. Let G be any graph in B. So G

has a vertex v1 that is not the top of a house, and for i = 2, . . . , n, the subgraph
G \ {v1, . . . , vi−1} has a vertex vi that is not the top of a house in this subgraph. We
may call the ordering v1, . . . , vn of the vertices of G an NTH elimination ordering.
In section 3 we show how such an ordering can be computed in time O(nm), using
the algorithm described in section 2. After such an ordering is obtained, we run an
O(nm) coloring algorithm called Cosine*, which is a new algorithm based on Hertz’s
coloring algorithm Cosine [21]. Algorithm Cosine works on a graph whose vertices
need not be ordered, while Cosine* uses the NTH elimination ordering. In section 5
we prove the optimallity of this coloring algorithm for every graph in B. In section 6
we present an extension of this algorithm that finds a clique of maximum size in a
graph in B. This yields an O(nm) robust algorithm to color graphs in B.

Let C be the class of graphs that contain no bull and no hole of length at least five.
Clearly B is strictly contained in C, and Theorem 1.1 is an immediate consequence of
the following.

Theorem 1.2. Every graph in C has a vertex that is not the middle of a P5.
The above theorem will be proved in section 3. Note that this theorem implies

the following. Let G be any graph in C. So G has a vertex v1 that is not the middle
of a P5, and for i = 2, . . . , n, the subgraph G \ {v1, . . . , vi−1} has a vertex vi that is
not the middle of a P5 in this subgraph. We may call the ordering v1, . . . , vn of the
vertices of G an NMP5 elimination ordering. The proof of Theorem 1.2 is an O(nm)
algorithm called LexBFS* that finds such an ordering.

We mention a theoretical consequence of this theorem. Recall that a graph is
chordal bipartite if it is bipartite and it contains no hole of length at least six. A
classical result is the existence in every chordal bipartite graph of a vertex that is not
the middle of a P5. This result is known under several equivalent variants, such as
the existence of a simple vertex in every strongly chordal graph, or the existence of
a Γ-free ordering in every totally balanced matrix [26]. Since every chordal bipartite
graph is in class C, our Theorem 1.2 generalizes this result.

2. Algorithm LEXBFS*. Algorithm LexBFS* is a particular case of Algo-
rithm LexBFS (lexicographic breadth-first search). Algorithm LexBFS, due to Rose,
Tarjan, and Lueker [32], explores a graph and numbers its vertices one by one, from
n to 1. At the general step, each unnumbered vertex has a label, which is the set
of numbers of its already numbered neighbors. A lexicographic order is defined on
the labels: label L(a) is strictly greater than label L(b) if there exists an integer i
such that i ∈ L(a) \ L(b) and ∀j > i, either j ∈ L(a) ∩ L(b) or j /∈ L(a) ∪ L(b). The
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next vertex to be numbered is any unnumbered vertex whose label is lexicographically
maximal. Ties in LexBFS are broken arbitrarily.

In LexBFS*, we need to break ties according to the following rule. Suppose that
at a given step the set A of unnumbered vertices with maximal label satisfies |A| ≥ 2.
Let L(A) be the label of the vertices in A. Let U be the set of unnumbered vertices
not in A. For each u ∈ U , set L′(u) := L(u) \ L(A), and let the vertices of U be
ordered lexicographically according to L′. Then the first (i.e., maximal according to
the L′ ordering) vertex u of U “votes” by eliminating from A the nonneighbors of
u (except if that causes A to become empty; in that case u has no effect); then the
second vertex of U votes, etc. The procedure stops when all vertices of U have voted;
then ties are broken arbitrarily. Here is a formal description of the algorithm:

Algorithm LexBFS*

Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.
Initialization: For every vertex a of G, set L(a) := ∅;
General step: For i = n, . . . , 1 do:
1. Let A be the set of unnumbered vertices whose label is maximum,
and let U be the other unnumbered vertices.
2. While U �= ∅ do:

2.1. Select a vertex u ∈ U for which L(u) \ L(A) is maximum.
2.2. Set U := U \ {u}. If A ∩N(u) �= ∅, then set A := A ∩N(u).

3. Pick any vertex a ∈ A and set σ(a) := i.
4. For each unnumbered neighbor v of a, add i to L(v).

Complexity analysis. Let us analyze the complexity of Algorithm LexBFS*.
Rose, Tarjan, and Lueker [32] showed that Algorithm LexBFS can be implemented
in time O(n + m) as follows, where n is the number of vertices and m the number
of edges of the graph in input. Ordering the vertices according to the value of L(v)
can be done with the usual techniques, such as bucket sort [1]: For each label �, we
maintain the set S� of the unnumbered vertices v such that L(v) = �. This set is
implemented as a doubly linked list, where each element also points to the head of
the list, which is a special cell containing their label. The heads of the nonempty S�’s
are themselves put in decreasing lexicographic label order into a doubly linked list M .
During the initialization step, all vertices are put into S∅, and S∅ is the only element
of M . Thus the initialization takes time O(n). Set A of step 1 of the algorithm is
the first set in M . When a vertex a of A is selected at step 3, it is removed from the
data structure, and each neighbor u of a is removed from the set S� that contains u
and added into a (new) set S� ∪{σ(a)} = S� ∩N(A) which is placed just before S� in
M (empty sets are removed from M). This operation of splitting the S�’s takes time
O(d(a)). So the total cost of steps 3 and 4 is O(n + m). This is how LexBFS is
implemented in [32].

Unfortunately, breaking the ties in LexBFS* increases the complexity to O(nm)
as we show now. Consider the set U defined on line 1 of the algorithm. Set U is
ordered according to L′(u) by using the same data structure as before. This takes
time O(n + m). This ordering procedure is performed only once, at the beginning of
step 2. Then, at step 2.1 we take the maximum vertex u in the ordered set U (which
takes constant time), and the operations performed in step 2.2 take time O(d(u)). So
the total cost of step 2 is O(n + m). Since this step is performed n times, the total
running time of Algorithm LexBFS* is O(n(n + m)).

Actually, we will need to apply Algorithm LexBFS* on the complement G of a
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graph G. Let m be the number of edges in G. Since m = O(n2), this might lead to a
complexity of O(n3), but we can avoid this as follows. When applied on G, splitting
the sets S� take time O(d(a)), where d is the degree function in G, but we can do it
in time O(d(a)) if, instead of removing each neighbor u of a (in G) from the set S�

that contains u and adding it into the new set S� ∩NG(A), we remove each neighbor
u of a (in G) from the set S� that contains u and add it into a new set S� \NG(A),
which is placed just after S� in M . The same idea can be used to sort the set U and
to update A in time O(n + m). In conclusion, the total running time of Algorithm
LexBFS* applied on the complement G of a graph G with n vertices and m edges is
O(nm).

Properties of LexBFS. Here are some notation and properties for Algorithm
LexBFS. When the algorithm selects a vertex a ∈ A at step 3 of Algorithm LexBFS,
we denote by La(u) the current value of the label of any vertex u at this step of the
algorithm. We denote by a < b the fact that σ(a) < σ(b).

Lemma 2.1. Suppose that a < u, b ≤ u, and Lu(a) < Lu(b). Then a < b and, ∀v
such that v ≤ u, Lv(a) < Lv(b).

Proof. Suppose a < u, b ≤ u, and Lu(a) < Lu(b). At the step of the algorithm
when u is numbered, there exists i > σ(u) such that i ∈ Lu(b) \ Lu(a) and ∀j > i,
either j ∈ Lu(a)∩Lu(b) or j /∈ Lu(a)∪Lu(b). After u is numbered, integers that may
be added to L(a) and L(b) are smaller than σ(u) and therefore strictly smaller than
i, so the inequality L(a) < L(b) still holds throughout the rest of the execution of the
algorithm. Thus the lemma holds.

Lemma 2.2. Suppose that a < b and Lb(a) �= Lb(b). Then there exists a vertex
> b that sees b and misses a. Let f(b, a) be a maximum such vertex. Then we have
the following properties:

• For every u that sees a and misses b, we have u < f(b, a).
• Every u such that f(b, a) < u either sees both a, b or misses both a, b.

Proof. Suppose a < b and Lb(a) �= Lb(b). Then Lb(a) < Lb(b) because b is
selected before a. Then there exists i such that i ∈ Lb(b)\Lb(a) and ∀j > i, either j ∈
Lb(a)∩Lb(b) or j /∈ Lb(a)∪Lb(b). Vertex f(b, a) is the vertex such that σ(f(b, a)) = i.

Suppose a vertex u sees a, misses b, and u > f(b, a). Let j = σ(u). Since u sees
a, we have j ∈ Lb(a). Since u misses b, we have j /∈ Lb(b). So j ∈ Lb(a) \ Lb(b), a
contradiction to the definition of i.

Let u′ be a vertex such that f(b, a) < u′. Let j′ = σ(u′). Since j′ = σ(u′) >
σ(f(b, a)) = i, we have j ∈ Lb(a) ∩ Lb(b) or j /∈ Lb(a) ∪ Lb(b), and so u′ either sees
both a, b or u′ misses both. Thus the lemma holds.

Lemma 2.3. Suppose that a < b < u, and u sees a and misses b. Let a0 = a,
b0 = b, a1 = u, b1 = f(b, a), and define vertices ai and bi, for i ≥ 2, as follows, as
long as possible:

• If bi misses ai, then let ai+1 = f(ai, bi−1).
• If ai+1 misses bi, then let bi+1 = f(bi, ai).

Let k be the maximum integer such that ak is defined. Let � be the maximum integer
such that b� is defined, so � is equal to k or k + 1. Denote by P(u, b, a) the path
a0-· · ·-ak-b�-· · ·-b0. If a misses b, then P(u, b, a) is a chordless path. If a sees b, then
P(u, b, a) is a hole.

Proof. Suppose � = k for convenience (the same can be done when � = k + 1).
We prove by induction on j ≤ k the property that the sequences (ai)i≤j , (bi)i≤j are
well defined, a0 < b0 < a1 < b1 < · · · < aj < bj , a0-· · ·-aj and b0-· · ·-bj are chordless
paths, and there is no edge between the (ai)’s and the (bi)’s, except for akbk and
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possibly a0b0.

If j = 1, then a1 sees a0, misses b0, and a0 < b0 < a1, so Lb0(a0) �= Lb0(b0). So
vertex b1 = f(b0, a0) is well defined by Lemma 2.2. Vertex b1 sees b0, misses a0, and
a1 < b1. So the property is true for j = 1.

Now suppose that 1 ≤ j < k and that the property is true for j. Since bj sees
bj−1, misses aj , and bj−1 < aj < bj , we have Laj (bj−1) �= Laj (aj). Apply Lemma 2.2
to define aj+1 = f(aj , bj−1). Vertex aj+1 sees aj , misses bj−1, and bj < aj+1. Since
aj+1 misses bj−1, and a0 < b0 < a1 < b1 = f(b0, a0) · · · < aj = f(aj−1, bj−2) < bj =
f(bj−1, aj−1), it follows that aj+1 misses a0, . . . , aj−1, b0, . . . , bj−1. The same can be
done to define bj+1. So the property is true for j + 1. Thus the lemma holds.

Lemma 2.4. In a graph that contains no hole of length at least five, suppose that
a < b < u, u sees a, u misses b, and a sees b. Then f(b, a) sees u.

Proof. Consider the path P(u, b, a) of Lemma 2.3. Since a sees b, that path is a
hole, so it is a hole of length four, so f(b, a) sees u.

Properties of LexBFS*. Here are some notation and properties for Algorithm
LexBFS*. When the algorithm selects a vertex a ∈ A at step 3 of Algorithm
LexBFS*, we put L′

a(u) = La(u) \ La(a) for every (unnumbered) vertex u.

Lemma 2.5. Suppose that a < b, Lb(a) = Lb(b), and N(a) �= N(b). Then, during
the loop of step 2 of algorithm LexBFS*, vertex a has been removed from A by a
vertex u = g(b, a) that sees b and misses a. We have the following properties:

• u < a,
• Lb(u) < Lb(b),

if there exists a vertex v < a that sees a, misses b, and Lb(v) �= Lb(b), then L′
b(v) ≤

L′
b(u). If L′

b(v) �= L′
b(u), then there exists a vertex > b that sees u and misses a, b, v,

denote by x = h(u, v) a maximum such vertex. We have the following properties:

• For all y that sees v and misses a, b, u, we have y < x.
• For all y such that x < y and y misses a, b, we have y sees u, v or y misses
u, v.

Proof. The definition of u and its properties follows from the definition of the
algorithm. Suppose there exists a vertex v < a that sees a, misses b, and Lb(v) �=
Lb(b).

Suppose that L′
b(v) > L′

b(u). Then v should have been selected at step 2.1 before
u. Then, at step 2.2, A∩N(v) should be empty, otherwise b is removed from A and b
is not the selected vertex at step 3. Since a is in N(v), it has been previously removed
from A by a vertex w with L′

b(w) ≥ L′
b(v). Since L′

b(w) ≥ L′
b(v) > L′

b(u), so w �= u.
This contradicts the definition of u = g(b, a), so L′

b(v) ≤ L′
b(u).

If L′
b(v) �= L′

b(u), then x = h(u, v) is well defined.

Suppose there exists a vertex y that sees v, misses a, b, u, and x < y. Then
L′
b(v) < L′

b(u) implies that there exists a vertex > y that sees u and misses a, b, v; a
contradiction to the definition of x.

Let y′ be a vertex such that x < y′ and y′ misses a, b. By the preceding property,
it is not possible that y′ sees v and misses u. If y′ sees u and misses v, then this is a
contradiction to the definition of x. So y sees u, v or y misses u, v. Thus the lemma
holds.

3. Proof of Theorem 1.2. Recall that C denotes the class of graphs that con-
tain no bull and no hole of length at least five. In this section we prove that when
the input graph is in C, the ordering given by Algorithm LexBFS* is an NMP5 elim-
ination ordering. It may be worth pointing out that this outcome does not hold for



COLORING BULL-FREE PERFECTLY CONTRACTILE GRAPHS 1005

LexBFS. For an example, consider the graph made of a chordless path a-b-c-d-e-f -
g plus one vertex h adjacent to a, c, e, g. Then LexBFS can produce the ordering
h, a, g, c, e, b, f, d, and d is the middle of the P5 b-c-d-e-f . It is this example that led
us to define the tie-breaking rule of LexBFS*.

Before proving the main result, we need the following lemma.

Lemma 3.1. In a graph G ∈ C, let P = a0-a1-· · ·-ar be a chordless path with
r ≥ 4, and let u be a vertex that sees the two endvertices a0, ar of P . Then one of the
following holds:

• u sees all vertices of P,
• r is even, and u sees a0, a2, . . . , ar and misses a1, a3, . . . , ar−1, or
• r = 4, and u sees a2 and exactly one of a1, a3.

Consequently, in any case, u sees a2 and ar−2.

Proof. Denote a segment as any subpath of P , of length at least one, whose
endvertices see u and interior vertices do not. So P is (edgewise) partitioned into its
segments. Since G contains no hole of length at least five, every segment has length
one or two. For � = 1, 2, let s� be the number of segments of P of length �. So
r = s1 + 2s2. If s1 = 0, then every segment has length two, and we have the second
outcome of the lemma. Now let s1 > 0. So u sees two consecutive vertices of P .
Suppose that we do not have the first outcome, so u has a nonneighbor in P . Thus,
up to symmetry, there is an integer i such that u sees ai and ai+1 and not ai+2. Then
i ≤ 1, for otherwise a0-uaiai+1-ai+2 is a bull, and r ≤ i+ 3, for otherwise ar-uaiai+1-
ai+2 is a bull. It follows that r = 4 and i = 1, and we have the third outcome. Thus
the lemma holds.

Now we prove the following theorem, which implies Theorem 1.2. For any path
P , let P ∗ denote the path formed by the interior vertices of P .

Theorem 3.2. When the input graph is a graph in C, Algorithm LexBFS*

produces an NMP5 ordering of the vertices of G.

Proof of Theorem 3.2. Say that a P5 a-b-c-d-e in G is bad if c < min{a, b, d, e}.
Say that a bad P5 a-b-c-d-e is worse than another bad P5 a′-b′-c′-d′-e′ if a ≥ a′, b ≥
b′, c ≥ c′, d ≥ d′, e ≥ e′, and at least one of these five inequalities is strict. Our aim
is to prove that there is no bad P5, so let us assume the contrary and show that this
leads to a contradiction. Let a-b-c-d-e be a worst P5. Up to symmetry we may assume
that e < a.

Claim 1. e < b.

Proof. Suppose the claim is false, so c < b < e < a.

Since a sees b, misses e, and b < e < a, we can consider the chordless path
R = P(a, e, b) of Lemma 2.3. If none of c, d has a neighbor in R∗, then R ∪ {c, d} is
a cycle of length at least six, so one of c, d has a neighbor in R∗. Let q be the vertex
of R∗ closest to a that sees one of c, d. If q misses c, then R[b, q] ∪ {d, c} is a hole of
length ≥ 5. So q sees c. The hole R[b, q] ∪ {c} must have length < 5, so q sees a and
so q �= d.

Since q sees c, misses b, and c < b < q, we have Lb(c) �= Lb(b). Apply Lemma 2.2
to define r = f(b, c). Vertex r sees b, misses c, and q < r. Since b sees c, vertex r sees
q by Lemma 2.4. Since r sees b, we have r �= d. Since f(e, b) is the neighbor of e on R,
it follows that f(e, b) ≤ q < r, and r sees b so r sees e by Lemma 2.2. If r sees a, then
there is a bull e-rab-c, a contradiction, so r misses a. If r misses d, then r, b, c, d, e is
a hole, so r sees d. Suppose R has length > 3, then f(e, b) < q = f(a, e) < r, r sees e
and misses a, a contradiction. So R has length 3, q sees e, and q = f(e, b).

Since r sees e, misses a, and e < a < r, we have La(e) �= La(a). Apply Lemma 2.2
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to define s = f(a, e). Vertex s sees a, misses e, and r < s. Since s sees a, we have
s �= d. Since s misses e and q = f(e, b) < r = f(b, c) < s, it follows that s misses b, c
by Lemma 2.2. If s sees d, then s, a, b, c, d is a hole, so s misses d. If s sees q, then
b-asq-e is a bull, so s misses q. If s sees r, then c-der-s is a bull, so s misses r.

Since s sees a, misses q, and a < q < s, we have Lq(a) �= Lq(q). Apply Lemma 2.2
to define t = f(q, a). Vertex t sees q, misses a, and s < t. Since q sees a, vertex t sees
s by Lemma 2.4. Since t misses a and q = f(e, b) < r = f(b, c) < s = f(a, e) < t,
vertex t misses b, c, e by Lemma 2.2. Since t misses c, we have t �= d. If t sees r, then
t, r, b, a, s is a hole, so t misses r, but then b-req-t is a bull, a contradiction. Thus the
claim holds.

Now we go on with the proof of the theorem. Since b sees c, misses e, and
c < e < b, we have Le(c) �= Le(e). Apply Lemma 2.2 to define p = f(e, c). Vertex p
sees e, misses c, and b < p. Since p sees e and misses c, we have p �= a and p �= d. If p
sees a, then p sees the extremities of the P5 a, b, c, d, e without seeing c, a contradiction
to Lemma 3.1, so p misses a. If p sees b, then p sees d, otherwise p, b, c, d, e is a hole.
If p misses b, then p misses d, otherwise the bad P5 a-b-c-d-p is worse than a-b-c-d-e.
So p either sees both b, d or misses both b, d.

Claim 2. a < b.

Proof. Suppose the claim is false, so c < e < b < a by Claim 1.

Case 1. p < a and p sees b, d. Since a sees b, misses p, and b < p < a, we have
Lp(b) �= Lp(p). Apply Lemma 2.2 to define q = f(p, b). Vertex q sees p, misses b, and
a < q. Since p sees b, vertex q sees a by Lemma 2.4. Since q sees a, we have q �= d.
Since p = f(e, c) < q, vertex q either sees both e, c or misses both e, c. Suppose q
misses e, c. If q sees d, then q, a, b, c, d is a hole, so q misses d. Then c-dep-q is a
bull, a contradiction. So q sees e, c. Since q sees c, misses b, and c < b < q, we have
Lb(c) �= Lb(b). Apply Lemma 2.2 to define r = f(b, c). Vertex r sees b, misses c, and
q < r. Since b sees c, vertex r sees q by Lemma 2.4. Since r sees b, misses c, and
p = f(e, c) < q = f(p, b) < r, it follows that r sees p and misses e. But then c-brp-e
is a bull, a contradiction.

Case 2. p < a and p misses b, d. Since a sees b, misses p, and b < p < a, we
can consider the chordless path R = P(a, p, b) of Lemma 2.3. If none of c, d, e has a
neighbor in R∗, then the R ∪ {c, d, e} is a cycle of length at least 7, so one of c, d, e
has a neighbor in R∗. Let q be the vertex of R∗ closest to a that sees one of c, d, e. If
q misses c, then one of R[b, q] ∪ {c, d}, R[b, q] ∪ {c, d, e} is a hole of length ≥ 5. So q
sees c. Since q sees c and p = f(e, c) < q, vertex q sees e. The hole R[b, q] ∪ {c} must
have length < 5, so q sees a and so q �= d. Since q sees c, misses b, and c < b < q, we
have Lb(c) �= Lb(b). Apply Lemma 2.2 to define r = f(b, c). Vertex r sees b, misses
c, and q < r. Since b sees c, vertex r sees q by Lemma 2.4. Since r sees b, misses
c, and p = f(e, c) < f(p, b) ≤ q < r, vertex r sees p and misses e. Suppose R has
length > 3, then f(p, b) < q = f(a, p) < r, r sees p, so r sees a and then c-bar-p
is a bull, a contradiction. So R has length three and q sees p. But then q sees the
extremities of the P6 a-b-c-d-e-p without seeing b, a contradiction to Lemma 3.1.

Case 3. a < p and p sees b, d. Since p sees b, misses a, and b < a < p, we have
La(b) �= La(a). Apply Lemma 2.2 to define q = f(a, b). Vertex q sees a, misses b, and
p < q. Since a sees b, vertex q sees p by Lemma 2.4. Since q sees a, we have q �= d.
Since p = f(e, c) < q, vertex q either sees both e, c or misses both e, c. Suppose q
misses e, c. If q sees d, then q, a, b, c, d is a hole, so q misses d. Then c-dep-q is a
bull, a contradiction, so q sees c, e. Since q sees c, misses b, and c < b < q, we have
Lb(c) �= Lb(b). Apply Lemma 2.2 to define r = f(b, c). Vertex r sees b, misses c, and
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q < r. Since b sees c, vertex r sees q by Lemma 2.4. Since r sees b, we have r �= d.
Since r sees b, misses c, and p = f(e, c) < q = f(a, b) < r, vertex r sees a and misses e.
If r sees p, then c-brp-e is a bull, so r misses p. Since r sees a, misses p, and a < p < r,
we have Lp(a) �= Lp(p). Apply Lemma 2.2 to define s = f(p, a). Vertex s sees p,
misses a and r < s. Since s misses a and p = f(e, c) < q = f(a, b) < r = f(b, c) < s,
vertex s misses a, b, c, e. Since s misses c, we have s �= d. If s misses d, then c-dep-s
is a bull, so s sees d. But then a-b-c-d-s is a bad P5 that is worse than a-b-c-d-e, a
contradiction.

Case 4. a < p and p misses b, d. Since p sees e, misses b, and e < b < p, we have
Lb(e) �= Lb(b). Apply Lemma 2.2 to define q = f(b, e). Vertex q sees b, misses e, and
p < q. Since q sees b, we have q �= d. Since q misses e and p = f(e, c) < q, vertex q
misses c. If q misses d, then q-b-c-d-e is worse than a-b-c-d-e, so q sees d.

Case 4.1. q misses a. Since q sees b, misses a, and b < a < q, we have La(b) �=
La(a). Apply Lemma 2.2 to define r = f(a, b). Vertex r sees a, misses b, and q < r.
Since a sees b, vertex r sees q by Lemma 2.4. Since r sees a, we have r �= d. Since
r misses b and p = f(e, c) < q = f(b, e) < r, vertex r misses b, c, e. If r sees d,
then a, b, c, d, r is a hole, so r misses d. If r sees p, then a, b, c, d, e, p, r is a hole, so
r misses p. Since r sees a, misses p, and a < p < r, we can consider the chordless
path R = P(r, p, a) of Lemma 2.3. Every vertex u of R∗ misses a and satisfies
p = f(e, c) < q = f(b, e) < r = f(a, b) < u, so u misses a, b, c, e. If d has no neighbor
in R∗, then R ∪ {b, c, d, e} is a cycle of length at least eight, so d has a neighbor in
R∗. Let s be the vertex of R∗ closest to a that sees d. Then R[a, s]∪{b, c, d} is a hole
of length ≥ 5, a contradiction.

Case 4.2. q sees a. If q sees p, then c-baq-p is a bull, so q misses p. Since q
sees a, misses p, and a < p < q, we can consider the chordless path R = P(q, p, a) of
Lemma 2.3. Since p = f(e, c) < q = f(b, e), every vertex of R∗ either sees b, c, e or
misses b, c, e. Let r be the neighbor of q in R∗. Vertex r misses a, and f(p, a) ≤ r.
If r misses b, c, e, then c-baq-r is a bull, so r sees b, c, e. Then a-bcr-e is a bull, a
contradiction. Thus the claim holds.

Claims 1 and 2 imply that c < e < a < b.

Since p sees e, misses a, and e < a < p, we have La(e) �= La(a). Apply Lemma 2.2
to define q = f(a, e). Vertex q sees a, misses e, and p < q. Since q sees a, we have
q �= d. Since d sees e and misses a, it follows that d < q = f(a, e). Since q misses e
and p = f(e, c) < q, vertex q misses c. If q sees d, then q sees b, otherwise q, a, b, c, d
is a hole. If q misses d, then q misses b, otherwise the bad P5 q-b-c-d-e is worse than
a-b-c-d-e. So q sees b, d or misses b, d.

Claim 3. The path q-a-b-c-d-e-p is chordless.

Proof. Suppose that q sees p. Then q sees the extremities of the path a-b-c-d-e-p
without seeing c, so, by Lemma 3.1, the path is not chordless, so p sees b, d. If q
misses b, d, then p sees the extremities of the path q-a-b-c-d-e without seeing c, a
contradiction to Lemma 3.1, so q sees b, d. But then c-bqp-e is a bull, a contradiction.
So q misses p.

Since q sees a, misses p, and a < p < q, we have Lp(a) �= Lp(p). Apply Lemma 2.2
to define r = f(p, a). Vertex r sees p, misses a, and q < r. Since r misses a and
p = f(e, c) < q = f(a, e) < r, vertex r misses c, e.

Suppose p sees b, d. If r misses d, then c-dep-r is a bull, so r sees d. If r misses b,
then the bad P5 a-b-c-d-r is worse than a-b-c-d-e, so r sees b. Then a-brp-e is a bull,
a contradiction. So p misses b, d.

Suppose q sees b, d and r sees q. If r misses b, then c-baq-r is a bull, so r sees b.
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If r misses d, then the bad P5 r-b-c-d-e is worse than a-b-c-d-e, so r sees d. Then
e-drq-a is a bull, a contradiction.

Suppose q sees b, d and r misses q. Since r sees p, misses q, and p < q < r, we
have Lq(p) �= Lq(q). Apply Lemma 2.2 to define s = f(q, p). Vertex s sees q, misses
p, and r < s. Since s misses p and p = f(e, c) < q = f(a, e) < r = f(p, a), vertex
s misses a, c, e. If s misses b, then c-baq-s is a bull, so s sees b. If s misses d, then
the bad P5 s-b-c-d-e is worse than a-b-c-d-e, so s sees d. Then e-dsq-a is a bull, a
contradiction. So q misses b, d. Thus the claim holds.

Claim 4. d < b.

Proof. Suppose the claim is false, then c < e < a < b < d by Claims 1 and 2.

Case 1. Ld(b) �= Ld(d). Apply Lemma 2.2 to define s = f(d, b). Vertex s sees d,
misses b, and d < s. Since s sees d, we have s �= p. Suppose s sees c. If s misses e,
then b-csd-e is a bull, so s sees e. If s misses a, then the bad P5 a-b-c-s-e is worse
than a-b-c-d-e, so s sees a. If s misses p, then a-sde-p is a bull, so s sees p. Then
b-cds-p is a bull, a contradiction, so s misses c. If s sees a, then a, b, c, d, s is a hole,
so s misses a. Then the bad P5 a-b-c-d-s is worse than a-b-c-d-e, a contradiction.

Case 2. Ld(b) = Ld(d). Since a sees b and misses d, we have N(b) �= N(d). Apply
Lemma 2.5 to define s = g(d, b). Vertex s sees d, misses b, s < b, and Ld(s) < Ld(d).
Since s misses b, we have s �= a, c. Since q sees a and misses d, we have Ld(a) �= Ld(d),
and since a sees b and misses d, we have L′

d(a) ≤ L′
d(s). If s sees q, then s sees the

extremities of the P5 q, a, b, c, d without seeing b, a contradiction to Lemma 3.1, so
s misses q. So L′

d(a) �= L′
d(s). Apply Lemma 2.5 to define t = h(s, a). Vertex t

sees s, misses a, b, d, and q < t. Since t misses a and p = f(e, c) < q = f(a, e) < t,
vertex t misses c, e. Since t misses e, we have s �= e. If s sees c, then b-cds-t is a
bull, so s misses c. If s sees a, then a, b, c, d, s is a hole, so s misses a. Suppose
s < e. Since t sees s, misses e, and s < e < t, we have Le(s) �= Le(e). Apply
Lemma 2.2 to define u = f(e, s). Vertex u sees e, misses s, and t < u. Since u
sees e and p = f(e, c) < q = f(a, e) < t < u, vertex u sees a, c. Since u sees a,
misses s, t = h(s, a) < u, and s = g(b, d), vertex u sees b, d. But then a-ucd-s is a
bull, a contradiction. So e < s. Then the bad P5 a-b-c-d-s is worse than a-b-c-d-e, a
contradiction. Thus the claim holds.

Claim 5. Lb(d) = Lb(b).

Proof. Suppose the claim is false, so Lb(d) �= Lb(b). Apply Lemma 2.2 to define
s = f(b, d). Vertex s sees b, misses d, and b < s. Since s sees b, we have s �= q.
Suppose s sees c. If s misses a, then d-csb-a is a bull, so s sees a. If s misses e, then
the bad P5 a-s-c-d-e is worse than a-b-c-d-e, so s sees e. If s misses q, then e-sba-q is
a bull, so s sees q. Then d-cbs-q is a bull, a contradiction, so s misses c. If s sees e,
then b, c, d, e, s is a hole, so s misses e. Then s-b-c-d-e is a bad P5 that is worse than
a-b-c-d-e, a contradiction. Thus the claim holds.

Claim 6. a < d.

Proof. Suppose the claim is false, then d < a < b. By Lemma 2.1, Lb(d) ≤
Lb(a) ≤ Lb(b), and, by Claim 5, Lb(d) = Lb(b), so Lb(a) = Lb(b). Vertex q sees a,
misses b, and a < b < q, a contradiction. Thus the claim holds.

With the preceding claims, we have established that c < e < a < d < b < p =
f(e, c) < q = f(a, e), Lb(d) = Lb(b), and q-a-b-c-d-e-p is a chordless path. Define
sequences (ai), (bi), (di), (ei) as follows:

• a0 = a, b0 = b, d0 = d, e0 = e, b1 = q = f(a, e), d1 = p = f(e, c).
• For i ≥ 1, ai = g(bi, di), ei = g(di, bi−1).
• For i ≥ 2, bi = h(ai−1, ei−1), di = h(ei−1, ai−2).
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For any k ≥ 1, let us say that a-b-c-d-e admits an extension of order k, noted Wk, if
the sequences (ai)i<k, (bi)i≤k, (di)i≤k, (ei)i<k are well defined, and have the following
property:

• c < e0 < a0 < · · · < ek−1 < ak−1 < d0 < b0 < · · · < dk < bk.
• Lbk−1

(b0) = · · · = Lbk−1
(bk−1) = Lbk−1

(d0) = · · · = Lbk−1
(dk−1).

• bk-ak−1-bk−1-· · ·-b1-a0-b0-c-d0-e0-d1-· · ·-dk−1-ek−1-dk is a chordless path.

Claims 1–6 and the definition of p, q shows that a-b-c-d-e admits an extension of order
1. Let k be the greatest integer such that a-b-c-d-e admits an extension Wk of order
k. We will prove that a-b-c-d-e admits an extension of order k + 1. Since G is finite,
this is a contradiction that will complete the proof that there is no bad P5.

Claim 7. Ldk
(bk−1) = Ldk

(dk).

Proof. For suppose that Ldk
(bk−1) �= Ldk

(dk). Since bk−1 < dk we can apply
Lemma 2.2 to define r = f(dk, bk−1). Vertex r sees dk, misses bk−1, and dk < r. Since
r sees dk, we have r �= bk. Since r misses bk−1 and Lbk−1

(b0) = · · · = Lbk−1
(bk−1) =

Lbk−1
(d0) = · · · = Lbk−1

(dk−1), it follows that r misses b0, . . . , bk−1, d0, . . . , dk−1.
Since r misses b0, . . . , bk−1, d0, . . . , dk−1 and e1 = g(d1, b0) < a1 = g(b1, d1) < · · · <
ak−2 = g(bk−2, dk−2) < ek−1 = g(dk−1, bk−2) < d1 = f(e0, c) < b1 = f(a0, e0) < d2 =
h(e1, a0) < b2 = h(a1, e1) < · · · < bk−1 = h(ak−2, ek−2) < dk = h(ek−1, ak−2) < r,
it follows that r either sees all of c, a0, . . . , ak−2, e0, . . . , ek−1 or misses all of them.
If r sees them, then dk−1-ek−1dkr-ak−2 is a bull, so r misses them. If r sees one of
ak−1, bk, then Wk ∪ {r} contains a hole of length at least six, a contradiction, so r
misses ak−1, bk.

Case 1. r < bk. Since bk sees ak−1, misses bk−1, and ak−1 < bk−1 < bk, we have
Lbk−1

(ak−1) �= Lbk−1
(bk−1). Apply Lemma 2.2 to define s = f(bk−1, ak−1). Vertex s

sees bk−1, misses ak−1 and bk < s. Since bk−1 sees ak−1, vertex s sees bk by Lemma 2.4.
Since s sees bk−1 and r = f(dk, bk−1) < bk < s, vertex s sees dk. Since s sees bk, dk
and misses ak−1, it follows from Lemma 3.1 that r sees all of b0, . . . , bk, d0, . . . , dk and
misses all of c, a0, . . . , ak−1, e0, . . . , ek−1. If s sees r, then ek−1-dkrs-bk is a bull, so s
misses r.

Since s sees dk, misses r, and dk < r < s, we have Lr(dk) �= Lr(r). Apply
Lemma 2.2 to define t = f(r, dk). Vertex t sees r, misses dk, and s < t. Since r
sees dk, vertex t sees s by Lemma 2.4. Since t misses dk and r = f(dk, bk−1) < s =
f(bk−1, ak−1) < t, vertex t misses ak−1, bk−1. Since t misses bk−1 and Lbk−1

(b0) =
· · · = Lbk−1

(bk−1) = Lbk−1
(d0) = · · · = Lbk−1

(dk−1), it follows that t misses all
of b0, . . . , bk−1, d0, . . . , dk−1. Since t misses ak−1, b0, . . . , bk−1, d0, . . . , dk, and e1 =
g(d1, b0) < a1 = g(b1, d1) < · · · < ek−1 = g(dk−1, bk−2) < ak−1 = g(bk−1, dk−1) <
d1 = f(e0, c) < b1 = f(a0, e0) < d2 = h(e1, a0) < b2 = h(a1, e1) < · · · < dk =
h(ek−1, ak−2) < bk = h(ak−1, ek−1) < t, it follows that t misses all of c, a0, . . . , ak−1, e0,
. . . , ek−1.

Since t sees r, misses bk, and r < bk < t, we can consider the chordless path R =
P(t, bk, r) of Lemma 2.3. Every vertex u of R∗ misses r and satisfies t = f(r, dk) < u,
so u misses dk. The cycle R ∪ Wk has length at least ten, so one of Wk \ {bk} has
a neighbor in R∗. Let u be the vertex of R∗ closest to t that sees one of Wk \ {bk},
then R[u, r] ∪Wk contains a hole of size ≥ 5, a contradiction.

Case 2. bk < r. Since r sees dk, misses bk, and dk < bk < r, we can consider
the chordless path R = P(r, bk, dk) of Lemma 2.3. Every vertex u of R∗ misses dk
and satisfies r = f(dk, bk−1) < u, so u misses bk−1. Then, since Lbk−1

(b0) = · · · =
Lbk−1

(bk−1) = Lbk−1
(d0) = · · · = Lbk−1

(dk−1), vertex u misses all of b0, . . . , bk−1,
d0, . . . , dk−1. Since u misses b0, . . . , bk−1, d0, . . . , dk and e1 = g(d1, b0) < a1 =
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g(b1, d1) < · · · < ek−1 = g(dk−1, bk−2) < ak−1 = g(bk−1, dk−1) < d1 = f(e0, c) <
b1 = f(a0, e0) < d2 = h(e1, a0) < b2 = h(a1, e1) < · · · dk = h(ek−1, ak−2) < bk =
h(ak−1, ek−1) < u, vertex u either sees all of c, a0, . . . , ak−1, e0, . . . , ek−1 or misses all
of them.

Let t be the neighbor of bk in R∗, so t = f(bk, dk). If t sees c, a0, . . . , ak−1,
e0, . . . , ek−1, then bk−1-ak−1bkt-ek−1 is a bull. So t misses c, a0, . . . , ak−1, e0, . . . ,
ek−1. If t sees r, then Wk ∪ {r, t} is a hole, so t misses r.

Let u be the neighbor of r in R∗, so u = f(r, bk). Vertex u misses b0, . . . , bk, d0, . . . ,
dk. If u misses c, a0, . . . , ak−1, e0, . . . , ek−1, then R ∪Wk contains a hole of size ≥ 5,
so u sees c, a0, . . . , ak−1, e0, . . . , ek−1.

Since u sees c, misses b0, and c < b0 < u, we have Lb0(c) �= Lb0(b0). Apply
Lemma 2.2 to define v = f(b0, c). Vertex v sees b0, misses c, and u < v. Since b0 sees
c, vertex v sees u by Lemma 2.4. Since v sees b0 and Lbk−1

(b0) = · · · = Lbk−1
(bk−1) =

Lbk−1
(d0) = · · · = Lbk−1

(dk−1), vertex v misses b0, . . . , bk−1, d0, . . . , dk−1. Since v sees
bk−1, misses c, and d1 = f(e0, c) < r = f(dk, bk−1) < t = f(bk, dk) < u = f(r, bk) < v,
vertex v sees dk, bk, r and misses e0. But then b0-vru-e0 is a bull, a contradiction.
Thus the claim holds.

Claim 8. Ldk
(b0) = · · · = Ldk

(bk−1) = Ldk
(d0) = · · · = Ldk

(dk).

Proof. By Claim 7, Ldk
(bk−1) = Ldk

(dk), and Lbk−1
(b0) = · · · = Lbk−1

(bk−1) =
Lbk−1

(d0) = · · · = Lbk−1
(dk−1), and bk−1 < dk, so Ldk

(b0) = · · · = Ldk
(bk−1) =

Ldk
(d0) = · · · = Ldk

(dk). Thus the claim holds.

Since ak−1 sees bk−1 and misses dk, we have N(bk−1) �= N(dk). Apply Lemma 2.5
to define ek = g(dk, bk−1). Vertex ek sees dk, misses bk−1, ek < bk−1, and Ldk

(ek) <
Ldk

(dk) = Ldk
(d0). Since Ldk

(ek) < Ldk
(d0), so ek < d0 by Lemma 2.1. Since

ek sees dk, so ek /∈ Wk \ {ek−1}. Since ak−1 sees bk−1 and misses dk, we have
L′
dk

(ak−1) ≤ L′
dk

(ek). If ek sees bk, then ek sees the extremities of the chordless
path Wk without seeing bk−1, a contradiction to Lemma 3.1, so ek misses bk. So
L′
dk

(ak−1) < L′
dk

(ek). Apply Lemma 2.5 to define dk+1 = h(ek, ak−1). Vertex dk+1

sees ek, misses ak−1, bk−1, dk, and bk < dk+1.

Claim 9. Wk-ek-dk+1 is a chordless path.

Proof. Since dk+1 misses dk and Ldk
(b0) = · · · = Ldk

(bk−1) = Ldk
(d0) = · · · =

Ldk
(dk), vertex dk+1 misses b0, . . . , bk−1, d0, . . . , dk. Since dk+1 misses ak−1, b0, . . . ,

bk−1, d0, . . . , dk, and e1 = g(d1, b0) < a1 = g(b1, d1) < · · · < ek−1 = g(dk−1, bk−2) <
ak−1 = g(bk−1, dk−1) < d1 = f(e0, c) < b1 = f(a0, e0) < d2 = h(e1, a0) < b2 =
h(a1, e1) < · · · dk = h(ek−1, ak−2) < bk = h(ak−1, ek−1) < t, vertex dk+1 misses
c, a0, . . . , ak−1, e0, . . . , ek−1. Since dk+1 misses ek−1, we have ek �= ek−1. If dk+1 sees
bk, then ek sees the extremities of the chordless path Wk ∪ {dk+1} without seeing
bk−1, a contradiction to Lemma 3.1, so dk+1 misses bk.

Suppose ek sees dk−1. Consider the general step of the algorithm when bk−1 is
chosen. Since Ldk

(ek) < Ldk
(dk) = Ldk

(bk−1), we have Lbk−1
(ek) < Lbk−1

(bk−1),
by Lemma 2.1. Since L′

dk
(ak−1) < L′

dk
(ek), and Ldk

(bk−1) = Ldk
(dk), we have

L′
bk−1

(ak−1) < L′
bk−1

(ek). Set U of step 1 of the algorithm contains ek because

Lbk−1
(ek) < Lbk−1

(bk−1). Since L′
bk−1

(ak−1) < L′
bk−1

(ek), vertex ek is selected from U

at step 2.1 before ak−1. Then at step 2.2, A∩N(ek) must be empty, for otherwise bk−1

is removed from A and bk−1 is not the selected vertex at step 3. Since vertex dk−1 is
in N(ek), it has been removed earlier from A by a vertex u with L′

bk−1
(ek) ≤ L′

bk−1
(u).

Since L′
bk−1

(u) ≥ L′
bk−1

(ek) > L′
bk−1

(ak−1), we have u �= ak−1. This contradicts the
definition of ak−1, so ek misses dk−1.

If ek sees ek−1, then dk−1-ek−1dkek-dk+1 is a bull, so ek misses ek−1. If ek sees
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one of b0, . . . , bk−2, d0, . . . , dk−2, c, a0, . . . , ak−1, e0, . . . , ek−2, then Wk∪{s} contains a
hole of length > 5, so ek missees b0, . . . , bk−2, d0, . . . , dk−2, c, a0, . . . , ak−2, e0, . . . , ek−2.
Thus the claim holds.

Claim 10. ak−1 < ek.
Proof. Suppose the claim is false and ek < ak−1. Since dk+1 sees ek, misses ak−1,

and ek < ak−1 < dk+1, we have Lak−1
(ek) �= Lak−1

(ak−1). Apply Lemma 2.2 to define
u = f(ak−1, ek). Vertex u sees ak−1, misses ek, and dk+1 < u. Since u sees ak−1,
misses ek, dk+1 = h(ek, ak−1) < u, and ek = g(dk, bk−1), vertex u sees dk, bk−1. Since
u sees the extremities of the chordless path Wk \ {bk}, by Lemma 3.1 it must see all
the vertices of Wk \ {bk}. But then ak−1-uek−1dk-ek is a bull, a contradiction. Thus
the claim holds.

Claims 8, 9, and 10, and the definition of ek, dk+1, show that the sequences (ai)i<k,
(bi)i≤k, (di)i≤k+1, (ei)i<k+1 are well defined and satisfy the following properties:

• c < e0 < a0 < · · · < ek−1 < ak−1 < ek < d0 < b0 < · · · < dk < bk < dk+1.
• Ldk

(b0) = · · · = Ldk
(bk−1) = Ldk

(d0) = · · · = Ldk
(dk).

• Wk-ek-dk+1 is a chordless path.
The same type of proof can be done (and we omit the details) to define vertices
ak = g(bk, dk) and bk+1 = h(ak, ek) and to show that they satisfy the following
properties:

• c < e0 < a0 < · · · < ek < ak < d0 < b0 < · · · < dk+1 < bk+1.
• Lbk(b0) = · · · = Lbk(bk) = Lbk(d0) = · · · = Lbk(dk).
• bk+1-ak-Wk-ek-dk+1 is a chordless path.

This means that a-b-c-d-e admits an extension of order k + 1. This is a contradiction
to the definition of k. This completes the proof of the theorem.

4. Algorithm COSINE*. Algorithm Cosine* is a particular case of Algorithm
Cosine due to Hertz [20], which is an O(nm) algorithm for optimally coloring the
vertices of a Meyniel graph. The difference between Cosine and Cosine* is that
the input graph of Cosine* has an ordering σ on its vertices and ties are broken
according to this ordering.

Colors are viewed as integers 1, 2, . . . , �. Algorithm Cosine* constructs the color
classes iteratively. To construct the class of color c, the algorithm selects vertices until
all the vertices of the graph have a neighbor colored c. At each step, the vertex that
is selected and colored c is the vertex that has no neighbor already colored c and has
the maximum number of uncolored neighbors in common with the vertices already
colored c, with ties being broken by taking such a vertex that minimizes σ. More
formally:

Algorithm Cosine*

Input: A graph G on n vertices and an ordering σ on its vertices.
Output: A coloring of the vertices of G.
Initialization: c = 1;
General step: While there exist uncolored vertices do:
1. While there exist uncolored vertices that have no neighbor colored
c do:

1.1. Let A be the set of uncolored vertices that have a neighbor
colored c;

1.2. Select an uncolored vertex u that has no neighbor colored
c and has the maximum number of neighbors in A, with ties being
broken by taking such a vertex that is minimum for σ;

1.3. Color u with c;
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2. c := c + 1.
One may remark that the original formulation of Algorithm Cosine in [20] is

different. Hertz explains his algorithm in terms of vertex contraction. We prefer to
modify the formulation of the algorithm to simplify the algorithmic concepts. To
prove the optimality of the algorithm, we need to introduce the notion of contraction,
which is done in the next section.

Complexity analysis. To analyze the complexity of algorithm Cosine*, we will
assume that the input graph is connected; thus if n is the number of vertices and m
the number of edges of the graph, we have m ≥ n− 1. If the graph is not connected,
then it suffices to apply the algorithm on each of its components. Breaking the ties
in Cosine* does not increase the complexity of Algorithm Cosine, that is, it can be
implemented in time O(nm) as follows. Updating the set A at step 1.1 can be done in
time O(d(u)) whenever a new vertex u is colored at step 1.3, by adding the uncolored
neighbors of u to A. For one given color c, this procedure takes time O(n + m), so
the total cost is O(nm) over all colors. To compute step 1.2 efficiently, we use for
each vertex a counter that represents the number of its neighbors in A. Every time
a vertex is added to A we update the counter of the other vertices; this can also
be done in time O(n + m) for a given color and so in time O(nm) over all colors.
Then we search all the vertices in time O(n) to find the uncolored vertex that has
the maximum counter and is minimum for σ. After each such search, one vertex is
colored, so the total cost of all such searches is O(n2). Therefore, the total running
time of Algorithm Cosine* is O(nm).

5. Even pairs contraction. An even pair in a graph G is a pair of nonadjacent
vertices such that every chordless path between them has even length. A survey on
even pairs is given in [12]. Given two nonadjacent vertices x, y in G, the operation
of contracting them means removing x and y and adding one vertex with an edge to
each vertex of N(x) ∪N(y). The following lemmas state essential results about even
pairs.

Lemma 5.1 (see [13, 29]). For any graph G, the graph G′ obtained from G by
contracting an even pair of G satisfies ω(G′) = ω(G) and χ(G′) = χ(G).

Lemma 5.2 (see [12]). If a graph G contains no odd hole, then the graph G′

obtained from G by contracting an even pair contains no odd hole.
Lemma 5.3 (see [12]). If a graph G contains no antihole, then the graph G′

obtained from G by contracting an even pair contains no antihole different from C6.
Following Bertschi [4], a graph G is called even contractile if it is either a clique

or it contains an even pair whose contraction yields an even contractile graph, and G
is perfectly contractile if every induced subgraph of G is even contractile. See [12] for
a survey on perfectly contractile graphs.

We need to define a superclass of B. Let us say that a graph G is a quasi-B
graph if G is a Berge graph that contains no antihole of length at least five and G
has a vertex, called a pivot, that is an ear of every bull of G. (This definition can be
compared with the definition of quasi-Meyniel graphs in [20].) We observe that every
graph in class B is a quasi-B graph (and in such a graph, every vertex is a pivot), and
if G is a quasi-B graph and z is a pivot, then G \ z is in class B.

We prove that, for every graph G in class B, Algorithm LexBFS* applied on G
followed by Algorithm Cosine* applied on G produces a coloring of the vertices of G
with ω(G) colors, where ω(G) is the maximum size of a clique in G. This will prove
the optimality of this algorithm on the class B. Our proof follows the same steps as
Hertz’s proof [20] that his algorithm Cosine is optimal on quasi-Meyniel graphs. Just
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like in [20], the optimality of our algorithm will follow from the fact that each color
class produced by the algorithm corresponds to the contraction of even pairs.

The following lemma generalizes Lemma 3.1 to quasi-B graphs.

Lemma 5.4. In a quasi-B graph G, let P = a0-a1-· · ·-ar be a chordless odd path
with r ≥ 5, where a0 is a pivot of G, and let u be a vertex that sees the two endvertices
a0, ar of P . Then u sees a2.

Proof. Suppose the lemma is false and u misses a2. If u sees a1, then ar-ua0a1-
a2 is a bull of which a0 is not an ear, a contradiction. So u misses a1. Denote a
segment as any subpath of P , of length at least one, whose endvertices see u and
interior vertices do not. So P is (edgewise) partitioned into its segments. Since G is
odd-hole-free, every segment has length one or even length. Since P is odd, there is a
least one segment of length one. Let i be the smallest integer such that u sees ai and
ai+1. Since u misses a1, a2, we have i ≥ 3. Then ai−1-aiai+1u-a0 is a bull of which
a0 is not an ear, a contradiction.

Now we prove the following theorem, which implies the optimality of our coloring
algorithm.

Theorem 5.5. Let G be in class B. Then the coloring obtained by Algorithm
LexBFS* applied on G followed by Algorithm Cosine* applied on G uses exactly
ω(G) colors.

Proof of Theorem 5.5. Let � be the total number of colors used by the algorithm.
For each color c ∈ {1, . . . , �} let kc be the number of vertices colored c. Therefore
every vertex of G can be renamed xi

c, where c ∈ {1, . . . , �} is the color assigned to
the vertex by the algorithm and i ∈ {1, . . . , kc} is the integer such that xi

c is the ith
vertex colored c. Thus V (G) = {x1

1, x
2
1, . . . , x

k1
1 , x1

2, . . . , x
k2
2 , . . . , x1

� , . . . , x
k�

� }.
Define a sequence of graphs and vertices as follows. Put G1

1 = G and w1
1 = x1

1

(that is a pivot of G). For i = 2, . . . , k1, call Gi
1 the graph obtained from Gi−1

1 by
contracting wi−1

1 and xi
1 into a new vertex wi

1 colored with the color one. In the graph
Gk1

1 , we remark that wk1
1 is adjacent to all other vertices of Gk1

1 ; for otherwise, there is
a vertex y that is not adjacent to wk1

1 , that means that y has no neighbor of color one,
so the algorithm should have colored more vertices with color one; a contradiction.
More simply, let us call w1 the vertex wk1

1 .

The sequence continues as follows. For each c ∈ {2, . . . , �}, put G1
c = G

kc−1

c−1 and
w1

c = x1
c . For i = 2, . . . , kc, call Gi

c the graph obtained from Gi−1
c by contracting

vertices wi−1
c and xi

c into a new vertex wi
c colored with the color c. In Gkc

c , we can
again remark that wkc

c is adjacent to all other vertices of Gkc
c , for the same reason

as above, and we simply call wc the vertex wkc
c . So the last graph in the sequence,

Gk�

� , is a clique of size l with vertices w1, . . . , w�, where each wc is obtained by the
contraction of the vertices of color c.

Claim 1. For every color c ∈ {1, . . . , �} and integer i ∈ {1, . . . , kc − 1}, if Gi
c

is a quasi-B graph, wi
c is a pivot, and not the top of a house of Gi

c, then there is no
chordless odd path from wi

c to xi+1
c in Gi

c.

Proof. Suppose on the contrary that there exists a chordless odd path P = a0-
a1-· · ·-ar−1-ar from a0 = wi

c to ar = xi+1
c in Gi

c. We have r ≥ 3 since wi
c, x

i+1
c are

not adjacent. Note that every vertex of P has a nonneighbor in Gi
c. Put W1 = ∅

and Wc = {w1, . . . , wc−1} if c ≥ 2, and recall that any w ∈ Wc is a vertex of Gi
c that

is adjacent to all vertices of Gi
c \ w. So P contains no vertex of Wc. We know that

every vertex of Gi
c \ Wc will have a color from {c, c + 1, . . . , �} when the algorithm

terminates.

Let us consider the situation when Algorithm Cosine* selects xi+1
c . Let A be
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the set defined at step 1.1 of the algorithm. Vertex a1 is in A and a2 is not in A. Let
T = N(xi+1

c ) ∩A. Every vertex of T is adjacent to at least one vertex colored c in G
and thus is adjacent to wi

c in Gi
c.

Suppose that there exists a vertex t ∈ T that misses a2. If r = 3, then either t
misses a1 and then u, a0, a1, a2, a3 induce an odd hole, or t sees a1 and then a0 is the
top of a house, in either case a contradiction. So r ≥ 5. Vertex t sees both extremities
of the chordless odd path P without seeing a2, a contradiction to Lemma 5.4. So
every vertex of T sees a2. Then T ∪ {a1} ⊂ N(a2) ∩ A, and so a2 has strictly more
neighbors in A than xi+1

c , which contradicts the fact that xi+1
c is selected at step 1.2.

Thus the claims holds.

Claim 2. For every color c ∈ {1, . . . , �} and integer i ∈ {0, 1, . . . , kc − 1}, the
following two properties hold:

(Ai) If i ≥ 1, then wi
c and xi+1

c form an even pair of Gi
c.

(Bi) 1. Gi+1
c is a quasi-B graph.

2. wi+1
c is a pivot of Gi+1

c .
3. wi+1

c is not the top of a house of Gi+1
c .

Proof. Let c ∈ {1, . . . , �}. We show by induction on i that (Ai) and (Bi) hold.

Property (A0) holds by vacuity. Graph G1
1 is in B, so w1

c is a pivot of this graph,
and so (1) and (2) are satisfied when c = 1 and i = 0. To prove item 3, consider
the beginning of Algorithm Cosine*: The set A of step 1.1 is empty, so w1

1 is the
minimum vertex of σ. Since the ordering σ was obtained by Algorithm LexBFS*

applied on G, Theorem 3.2 ensures that w1
1 is not the middle of a P5 in G1

1, so w1
1 is

not the top of a house in G1
1.

Suppose c ≥ 2. In the graph G1
c , every vertex wh with h ∈ {1, . . . , c − 1} is

adjacent to all other vertices of the graph; moreover, G1
c \ {w1, . . . , wc−1} is in B,

since it is a subgraph of G. It follows that G1
c is actually in B, and so w1

c is a pivot
of this graph. At this step of Algorithm Cosine* the set A of step 1.1 is empty, so
at step 1.2 every vertex of G1

c \ {w1, . . . , wc−1} has no neighbor colored c and has the
maximum number of neighbors in A, so the vertex w1

c = x1
c that is selected is the

minimum for σ in G1
c \{w1, . . . , wc−1}, and Theorem 3.2 ensures that this vertex is not

the top of a house in G1
c\{w1, . . . , wc−1}. Since every vertex wh with h ∈ {1, . . . , c−1}

is adjacent to all other vertices of the graph, it follows that w1
c is not the top of a

house in G1
c .

Now suppose that i ≥ 1 and that (Ai−1) and (Bi−1) hold. Claim 1 implies imme-
diately that (Ai) holds. It remains to prove (Bi). By (Ai), (Bi−1), and Lemmas 5.2
and 5.3, the graph Gi+1

c contains no odd hole and no antihole different from C6.

Suppose that Gi+1
c contains a C6, with vertices a1, a2, a3, a4, a5, a6 and nonedges

a1a2, a2a3, a3a4, a4a5, a5a6, a6a1. If wi+1
c is not one of the ai’s, then this C6 is also

contained in Gi
c, a contradiction. So, by symmetry, we may assume that wi+1

c = a1.
By the definition of contraction, both wi

c, x
i+1
c miss a6 and a2, and each of a3, a4, a5

sees at least one of wi
c, x

i+1
c . At least one of wi

c, x
i+1
c sees both a3, a5, for otherwise

either wi
c-a3-a5-x

i+1
c or wi

c-a5-a3-x
i+1
c is a chordless path between wi

c and xi+1
c , a

contradiction to (Ai). Call u a vertex of wi
c, x

i+1
c that sees both a3, a5, and call v the

other one. None of u, v sees all of a3, a4, a5, for otherwise a C6 is contained in Gi
c. So

u misses a4, and so v sees a4 and misses at least one of a3, a5. By symmetry we can
assume that v misses a3. But then v-a4a2a6-a3 is a bull of Gi

c of which wi
c is not an

ear, a contradiction. So Gi+1
c contains no C6.

Suppose that Gi+1
c contains a bull a1-a2a3a4-a5 such that wi+1

c is not an ear of
this bull. If wi+1

c is not in the bull, then the bull is also contained in Gi
c and wi

c is not
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in it, which contradicts the fact that wi
c is a pivot of Gi

c. So, by symmetry, we may
assume that wi+1

c = a1 or wi+1
c = a3. If wi+1

c = a1, then wi
c, x

i+1
c miss all of a3, a4, a5,

and at least one of wi
c, x

i+1
c sees a2; but this yields a bull in Gi

c of which wi
c is not an

ear, a contradiction. If wi+1
c = a3, then both wi

c, x
i+1
c miss both a1, a5, and at least

one of wi
c, x

i+1
c sees both a2, a4, for otherwise either wi

c-a2-a4-x
i+1
c or wi

c-a4-a2-x
i+1
c

is a chordless path between wi
c and xi+1

c , a contradiction to (Ai). But this yields a
bull in Gi

c of which wi
c is not an ear, a contradiction.

It follows from the preceding two paragraphs that Gi+1
c is a quasi-B graph and

that wi+1
c is a pivot of Gi+1

c .
Now suppose that wi+1

c is the top of a house in Gi+1
c with vertices a1, a2, a3, a4,

a5 and nonedges a1a2, a2a3, a3a4, a4a5. So wi+1
c = a3. In Gi

c, both wi
c, x

i+1
c miss

a2, a4. Vertex wi
c misses at least one of a1, a5, for otherwise it is the top of a house in

Gi
c, a contradiction to (Bi−1). By symmetry, we may assume that wi

c misses a5, and
so xi+1

c sees a5. Then xi+1
c also sees a1, for otherwise wi

c-a1-a5-x
i+1
c is a path that

contradicts (Ai). Then wi
c misses a1, for otherwise wi

c-a1x
i+1
c a5-a2 is a bull in Gi

c of
which wi

c is not an ear. Note that, in Gi
c, vertices a1, a2, x

i+1
c , a4, a5 induce a house,

of which xi+1
c is the top, and wi

c misses all of them. Let us consider the situation
when Algorithm Cosine* selects xi+1

c . Let A be the set defined at step 1.1 of the
algorithm. Since wi

c misses all of the ai’s, none of them is in A. Let T = N(xi+1
c )∩A,

and consider any vertex t of T . By the definition of T , vertex t sees xi+1
c and wi

c

in Gi
c. If t misses both a1, a5, then t sees a4, for otherwise t-xi+1

c a5a1-a4 is a bull
in Gi

c of which wi
c is not an ear, and similarly t sees a2, but then wi

c-ta4a2-a5 is a
bull in Gi

c of which wi
c is not an ear. So t sees at least one of a1, a5, say a1. Then t

sees a4, for otherwise wi
c-tx

i+1
c a1-a4 is a bull in Gi

c of which wi
c is not an ear. Then

t sees a2, for otherwise wi
c-ta1a4-a2 is a bull in Gi

c of which wi
c is not an ear. Then

t sees a5, for otherwise wi
c-ta4a2-a5 is a bull in Gi

c of which wi
c is not an ear. So

every vertex of T sees a1, a2, a4, a5. Now a1, a2, a4, a5 are all uncolored vertices that
have no neighbor colored c and have at least as many neighbors in A as xi+1

c , so they
have the maximum number of neighbors in A, and according to the ordering σ we
have xi+1

c < min{a1, a2, a4, a5}. By Theorem 3.2, xi+1
c is not the top of a house, a

contradiction. Thus the claim holds.
Claim 2 implies that in the sequence G = G1

1, . . . , G
k�

� , each graph other than the
first one is obtained from its predecessor by contracting an even pair of the predecessor.
Then Lemma 5.1 applied successively along the sequence implies that ω(G) = ω(Gk�

� )

and χ(G) = χ(Gk�

� ); but χ(Gk�

� ) = ω(Gk�

� ) = � since Gk�

� is a clique of size �; so the
algorithm does color the input graph optimally with ω(G) colors. This completes the
proof of the theorem.

Coloring a graph in B takes time O(nm) since algorithm LexBFS* applied on G
has complexity O(nm) and Algorithm Cosine* too.

6. Finding a maximum clique. We can extend the preceding algorithms by
another greedy algorithm, which, in the case of a graph in class B, will produce in
linear time a clique of maximum size. Let G be any graph given with a coloring of its
vertices using � colors. Then we can apply the following algorithm to build a set Q:

Algorithm Clique

Input: A graph G and a coloring of its vertices using � colors.
Output: A set Q that consists of � vertices of G.
Initialization: Set Q := ∅, c := �, and for every vertex x set q(x) := 0;
General step: While c �= 0 do:
Pick a vertex x of color c that maximizes q(x), do Q := Q ∪ {x}, for
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every neighbor y of x do q(y) := q(y) + 1, and do c := c− 1.
Algorithm Clique can be implemented in time O(m + n). To do this, at the step
where the vertices of color c are examined, keep one vertex of color c that maximizes
the counter q, and update the counter of the neighbors of that vertex.

We claim that when the input consists of a graph G in class B, with the coloring
produced by Algorithm LexBFS* followed by Algorithm Cosine*, the output Q of
Algorithm Clique is a clique of size �. Actually this will be true in a more general
framework.

Lemma 6.1. Let G be a graph given with a coloring of its vertices using � col-
ors. Call its vertices x1

1, x
2
1, . . . , x

k1
1 , x1

2, . . . , x
k2
2 , . . . , x1

� , . . . , x
k�

� , so that vertices of
subscript c have color c. Define the corresponding sequence of graphs Gi

c and vertices
wi

c (1 ≤ c ≤ �, 1 ≤ i ≤ kc) obtained by successive contractions as in the preceding
section. Suppose that for each color c = 1, . . . , �− 1, we have the following:

(i) Every vertex of color strictly greater than c has a neighbor of color c.
(ii) For each i = 1, . . . , kc − 1, the graph Gi

c contains no chordless path on four
vertices whose endvertices are wi

c and xi+1
c .

Let Q be a clique whose vertices have colors strictly greater than c for some c ∈
{1, . . . , �− 1}. Then there is a vertex of color c that is adjacent to all of Q.

Proof. For i = 1, . . . , kc, consider the following Property Pi: “In the graph Gi
c,

vertex wi
c is adjacent to all of Q.” Note that Property Pkc holds by (i) and by the

definition of wkc
c . We may assume that Property P1 does not hold, for otherwise the

lemma holds with vertex x1
c = w1

c . So there is an integer i ∈ {2, . . . , kc} such that Pi

holds and Pi−1 does not. Then, in the graph Gi−1
c , vertex xi

c must be adjacent to all
of Q, for otherwise Q contains vertices a, b such that a is adjacent to wi−1

c and not to
xi
c and b is adjacent to xi

c and not to wi−1
c , and then the path wi−1

c -a-b-xi
c contradicts

(ii). So the lemma holds with vertex xi
c.

Lemma 6.2. Let G be a graph in class B, and let x1
1, x

2
1, . . . , x

k1
1 , x1

2, . . . , x
k2
2 , . . . ,

x1
� , . . . , x

k�

� be a coloring produced by Algorithm LexBFS* applied on G followed by
Algorithm Cosine* applied on G. Then, when Algorithm Clique is run on this input
it produces a clique of size ω(G).

Proof. Consider the set Q maintained during Algorithm Clique. We claim that,
for each c = �, �−1, . . . , 1, at the end of step c the set Q is a clique of size �−c+1 that
contains one vertex of each color c, . . . , �. This is clear when c = �. At the general
step, Lemma 6.1 ensures that there exists a vertex of color c − 1 that is adjacent to
all of Q. So Algorithm Clique will select such a vertex, add it to Q, and so the claim
remains true at the end of that step. Thus the algorithm ends with a clique Q of size
�. Since G admits a coloring of size �, we have � = χ(G) = ω(G).

7. Comments. We observe that the hypothesis of Lemma 6.2 actually yields
some slightly stronger properties:

(a) For any color c, every vertex of color c lies in a clique of size c; and more
generally, every clique whose smallest color is c is included in a clique that contains a
vertex of each color 1, . . . , c. This is a consequence of Lemma 6.1 that can be derived
just like Lemma 6.2. A coloring that has this property is called strongly canonical
in [22].

(b) The set of vertices of color 1 is a stable set that intersects all maximal cliques
of G. This too can be derived easily from Lemma 6.1. Such a set is called a strong
stable set in [23]. Thus every graph G in class B is strongly perfect (i.e., every induced
subgraph of G has a strong stable set), which was also a corollary of Hayward’s result
[18]. Moreover, using for graphs in B the idea from Hoàng [24, Theorem 2.1], this
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implies that one can find a minimum weighted coloring and a maximum weighted
clique for a graph in B in time O(n2m).

The coloring algorithm is “robust” [30] in the sense that the input graph can be
any graph G, and if G is not in B and the output coloring is not optimal, it can detect
this fault. To do this we apply Algorithm LexBFS* on G followed by Algorithm
Cosine* and Algorithm Clique on G, and we need only check whether Q is a clique
(which can be done in linear time). If Q is a clique, then the coloring is optimal since
it uses � colors and Q has size �. If Q is not a clique, then we know that the input
graph is not in B.

Since every graph in B admits a perfect ordering, as proved in [18], one may
wonder whether the ordering in which the vertices are colored by Algorithm LexBFS*

applied on G followed by Algorithm Cosine* applied on G gives such a perfect order.
But here is a counterexample. Let G be the graph on six vertices a, b, c, d, e, f , where
a-b-c-d-e is a path on five vertices and f is adjacent to a, c, d, e. Then Algorithm
LexBFS* applied on G can produce the ordering f < b < c < e < d < a and
Algorithm Cosine* can color the vertices in the ordering f < b < c < e < a < d. This
is not a perfect ordering for G since the four vertices b, c, d, e form an “obstruction” [6]
since b < c and e < d.
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[6] V. Chvátal, Perfectly ordered graphs, in Topics on Perfect Graphs, C. Berge and V. Chvátal,
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[24] C. T. Hoàng, Efficient algorithms for minimum weighted colouring of some classes of perfect

graphs, Discrete Appl. Math., 55 (1994), pp. 133–143.
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Abstract. We examine a selective list of combinatorial optimization problems in NP with respect
to inapproximability (Arora and Lund (1997)) given that the ground set of elements N has additional
characteristics. For each problem in this paper, the set N is expressed explicitly by subsets of N either
as a partition or in the form of a cover. The problems examined are generalizations of well-known
classical graph problems and include the minimal spanning tree problem, a number of elementary
machine scheduling problems, the bin-packing problem, and the travelling salesman problem (TSP).
We conclude that for all these generalized problems the existence of a polynomial time approximation
scheme (PTAS) is impossible unless P=NP. This suggests a partial characterization for a family of
inapproximable problems. For the generalized Euclidean TSP we prove inapproximability even if the
subsets are of cardinality 2.
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1. Introduction. When attempting to define combinatorial optimization, the
combinatorial optimization community commonly states it as “the mathematical
study of the arrangement, grouping, ordering, or selection of discrete objects, usu-
ally finite in number” (see Lawler (1976)). In the majority of the many books about
combinatorial optimization topics, there is no attempt (or need) to define it. In the
well-acknowledged book by Nemhauser and Wolsey (1988), the authors propose the
following generic description of a combinatorial optimization problem.

Let N = {1, 2, . . . , n} be a finite set (referred to as the ground set of elements)
and let c = (c1, c2, . . . , cn) be an n-vector. For F ⊆ N , define c(F ) =

∑
j∈F cj . Given

a collection of subsets F of N , the combinatorial optimization problem is

(CP) max{c(F ) : F ∈ F}.

With such a generic description of combinatorial optimization problems, a char-
acterization of a problem is largely determined by the description of the collection F
of subsets on N . For instance, in the case of the travelling salesman problem (TSP),
the collection of subsets F corresponds to the edges of a given graph (arcs, for the
directed TSP), where a walk over each such subset forms a cyclic permutation of the
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nodes of the given graph. The nodes and the edges of the graph are the elements of
the ground set.

This paper focuses on a number of combinatorial optimization problems charac-
terized by a further delineation regarding the ground set of elements. As an example
of what is meant here by a delineation of the ground set, we describe a version of the
classical TSP known as the generalized TSP (GTSP).

One is given a graph G = (V,E) of n > 3 nodes together with distances (weights)
for the edges in E. The set of n nodes (the set V ) is partitioned into k (3 < k ≤ n)
nonempty subsets, and the “travelling salesman” tour for the GTSP has to visit each
subset exactly once. That is, the tour visits one node in each of the subsets. For the
GTSP, the optimal solution forms a distance minimizing circuit (if one exists) of k
nodes with one node from each subset.

In Dror and Haouari (2000) an attempt was made to respond intuitively to a hy-
pothetical question about the hardness relationship of finding solutions for a problem
and its generalized version. In the combinatorial problems discussed in this paper,
we assume either an explicit set partition of the set N or an explicit collection of
subsets of N that cover N . We provide the motivation for a number of the problems.
However, many problems are of interest because of their respective places in the com-
binatorial literature. The problems that were proven NP-hard in Dror and Haouari
(2000) are (the generalized) versions of the minimal spanning tree (MST) problem,
the assignment problem (AP), the Chinese postman problem (CPP), some machine
scheduling problems such as the two-machine flow-shop problem, the bin-packing (BP)
problem, and the TSP. In this paper we show that the above generalizations lead to
inapproximability results as defined in Arora and Lund (1997). We also examine here
the generalized version of a number of other problems. It is not clear how one would
formally frame this set of generalized problems as a well-defined problem class, and
we will not attempt to do so here. We simply prove an appropriate inapproximability
result for the problems listed above. We begin by examining some classical graph
problems in section 2, starting with the generalized minimum spanning tree (GMST)
problem in section 2.1. In section 2.2 we examine path and circuit problems. In
section 2.3 we turn to matching problems, including the generalized Chinese postman
problem (GCPP). In section 2.4 we continue with acyclic graph problems. In the pro-
cess of examining the different problems and the complexity of their generalizations,
it seems appropriate to separate the subset partition generalizations from subset cov-
ering generalizations since the hardness of the later class is not surprising. Thus, a
subset covering generalization—a subset bin-packing (SBP) problem is examined in
section 3. Section 4 examines a number of machine scheduling problems. In section 5
we return to the GTSP and prove that even the Euclidean planar GTSP with subsets
of cardinality 2 is inapproximable. Short conclusions follow in section 6.

A list in chronological order of new inapproximability results is as follows: (1) the
Generalized Acyclic Graph Problem, (2) the SBP problem, (3) the Generalized Due
Date Problem, (4) the generalized Euclidean planar TSP with subsets of cardinality 2.
We also conjecture that the Generalized Weighted Sum of Completion Times Problem
is inapproximable.

2. Graph problems.

2.1. The generalized minimum spanning tree (GMST) problem. Given
a connected undirected graph G = (V,E) with a node set V and an edge set E, a
tree in G is a connected subgraph T = (V ′, E′) containing no cycles. If V ′ = V ,
then T is a spanning tree for the graph G. Given a weight function w : E → Z+ (Z+
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denotes the set of positive integers), a minimal weight spanning tree is a spanning tree
T ∗ for which

∑
e∈T∗ we ≤

∑
e∈T we for all T : T spanning trees of G (see Magnanti

and Wolsey (1995) for an in-depth overview of combinatorial optimization focused on
trees).

Here we examine the GMST problem in which one requires a tree to contain
at least one node out of every subset of nodes (node partition) in a graph G. This
problem arises in irrigation network design in desert areas where parcels of land share
a common water source (see Dror, Haouari, and Chaouachi (2000)). It is also the
problem of designing a backbone (communication, high voltage, sewage, etc.) network
at minimum cost where there is flexibility in locating the nodes of the network. The
GMST was independently introduced by Myung, Lee, and Tcha (1995) and Dror,
Haouari, and Chaouachi (2000).

Definition. Given a connected graph G = (V,E), a positive integer K (≥ 3),

and a partition of the node set V , where V =
⋃K

k=1 Vk, Vi ∩ Vj = ∅ for i 	= j, and
Vi 	= ∅, i = 1, . . . ,K, together with an edge weight we, e ∈ E, a GMST is a connected
subgraph of G of minimal weight with no cycles, denoted here by GT = (V ‘, E‘), such
that V ‘ ∩ Vi 	= ∅, i = 1, . . . ,K.

Note that in the case where V =
⋃K

k=1 Vk, Vk ⊂ V for all k (the Vk subsets cover V
but are not necessarily disjoint), the construction of a minimal weight tree spanning
with at least one node from each Vk can be easily transformed into an equivalent
GMST problem with disjoint node subsets by making duplicates of nodes.

Complexity of the GMST. If |Vk| = 1, k = 1, . . . ,K, then the GMST problem
reduces to the classical MST. A “greedy” solution procedure (for instance, Kruskal’s
algorithm) constructs a minimal weight spanning tree by examining the edges one at a
time in nondecreasing order of weight, rejecting an edge if it forms a cycle with those
already chosen. Moreover, when K = 1 or 2, the GMST is trivial. In general, the
GMST is NP-hard in the strong sense (Dror, Haouari, and Chaouachi (2000), Myung,
Lee, and Tcha (1995). The two papers present different proofs for this fact. Myung,
Lee, and Tcha (1995) provide an inappoximabilty result for the GMST restricted to
graphs where the nodes in each of the node subsets (node partition) are not incident
to each other, asking for a spanning tree that spans exactly one node from each subset
of nodes. Thus, the GMST problem can be stated as an existence decision problem.
They prove that for this GMST, there is no polynomial time heuristic with a fixed
performance guarantee. A more direct prove of the GMST inapproximability result
is presented in Dror, Haouari, and Chaouachi (2000) by a transformation from the
Steiner tree problem, which is known to be APX-complete, proving that the GMST
is also APX-complete (see Ausiello, Crescenzi, and Protasi (1995) for complexity
concepts).

2.2. Generalized path and circuit problems. Generalized path, circuit, or
matching problems are fundamental problems in numerous applications. Here we
state formally a few of the basic problems and provide their computational hardness.

Generalized Path Problem with Forbidden Pairs. We restate an “old” (1976)
classical problem which can be trivially recast in our framework of subset delineation
of the ground set.

INSTANCE. A directed graph G = (V,A) and m pairs of arcs (m subsets of A),
|V | = n nodes, and two designated nodes s and t.

QUESTION. Is there a path from s to t that includes at most one arc of every
pair?

This problem is equivalent to a problem of determining the existence of a path
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with forbidden pairs that was proven NP-complete by transformation from 3SAT in
Gabow, Maheshwari, and Osterweil (1976). The optimization version of this problem
(minimizing the number of paired arcs in such path) is NP-hard and inapproximable.

Cycle with at most one node per subset problem—Generalized Circuit Problem 1.
INSTANCE. A directed graph G = (V,A) with arc set A and disjoint subsets of

nodes S1, . . . , SK , Si ⊂ V , i = 1, . . . ,K.
QUESTION. Is there a directed cycle that includes at most one node of any

subset?
This problem was proven NP-complete by Thompson and Orlin (1989). We re-

state the proof below.
Theorem 1. The cycle with at most one node per subset problem is NP-complete.
Proof. The proof is based on transformation from the Hamiltonian path problem.

One is given a directed graph G = (V,A) with |V | = n nodes. Establishing the
existence of a Hamiltonian path on G is NP-complete (see Garey and Johnson (1979)).

The transformation is as follows: For each node i ∈ V create a set Si of n labelled
copies. That is, Si = {i1, . . . , in}. For every arc (i, j) ∈ A, create a set of n− 1 copies
{(ik, jk+1) : k = 1, . . . , n−1}. Also add arcs from jn i1 for all i, j, i 	= j. Observe that
any path from i1 to jn corresponds to a walk of n − 1 arcs in the original graph. If
we require that the path has at most one node from each subset Si, then any feasible
path corresponds to a Hamiltonian path. Clearly the other direction holds as well.
Thus the equivalence.

Again, the optimization version of this cycle with at most one node per subset
problem is NP-hard and inapproximable. That is, in this case of a directed graph,
there is no polynomial time approximation scheme for the problem of constructing a
minimal weight cycle which contains at most one node from each subset unless P=NP.

The next problem is similar to the node subsets replaced by arc subsets. Com-
plexity implications directly follow.

Cycle with at most one arc per subset problem—Generalized Circuit Problem 2.
INSTANCE. A directed graph G = (V,A) with node set V and arc set A decom-

posed into disjoint subsets of arcs.
QUESTION. Is there a directed cycle that includes at most one arc from each

subset of arcs?
One can transform Generalized Circuit Problem 1 into this problem by perform-

ing node splitting on each node (see Ahuja, Magnanti, and Orlin (1993)) and then
decomposing the node-splitting arcs into subsets.

2.3. Generalized matching. Matching problems play an important role in
combinatorial optimization. Below we present two generalized matching problems—
one hard and one easy, followed by the generalized Chinese postman problem (GCPP).

3-Dimensional Matching Optimization.
INSTANCE. A collection of triples T ⊆ X × Y × Z, where X = {x1, . . . , xn},

Y = {y1, . . . , yn}, Z = {z1, . . . , zn}, and a positive integer K.
PROBLEM. Find a maximum cardinality subset M ⊆ T so that no two elements

of M agree on any coordinate.
Generalized Matching Problem 1.
INSTANCE. An undirected multigraph G = (V,E), where E =

⋃n
i=1 Ei, Ei ∩

Ej = ∅, i 	= j.
PROBLEM. Find the maximum cardinality subset M ′ so that M ′ is a matching

in G and so that |M ′ ∩ Ek| ≤ 1 for all k = 1, . . . , n.
Theorem 2. The generalized matching problem is APX-complete.
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Proof. The generalized matching problem is in APX because the greedy algorithm
is guaranteed to produce a matching that is within 1/3 of being maximum. We will
provide a transformation from the 3-Dimensional Matching Optimization Problem,
which was proved to be APX-complete by Kann (1991).

Let T ⊆ X × Y × Z be an instance of the 3-dimensional matching problem. We
construct an undirected graph G = (V,E) together with a partition of E into disjoint
sets E1, . . . , En. For each triple (i, j, k) ∈ T , create an edge (i, j) ∈ Ek.

Now suppose that M ⊆ T is a feasible solution for the 3-dimensional matching
problem. We construct a matching M ′ for the generalized matching problem as fol-
lows: For each triple (i, j, k) ∈ M , let M ′ contain arc (i, j) ∈ Ek. It follows that M ′

is a generalized matching and |M ′| = |M |.
Conversely, suppose M ′ is a generalized matching. Then |M ′∩Ek| ≤ 1 for each k.

We create a 3-dimensional matching as follows: if (i, j) ∈ M ′ ∩Ek, then (i, j, k) ∈ M .
It follows that M is a 3-dimensional matching, and |M ′| = |M |.

We break the routine of inapproximable problems by examining a following subset
version of a maximal weight matching problem.

Node-based Generalized Matching Problem.

INSTANCE. An undirected graph G = (V,E), with node partition V =
⋃r

i=1 Vi,
Vi∩Vj = ∅, i 	= j. Let wi be a real value weight for node i ∈ V and an integer K > 0.

PROBLEM. Find a matching M and a V ′ ⊆ V such that every node in V ′ is
matched in M , |V ′ ∩ Vj | ≤ 1 for all i = 1, . . . , r, and

∑
i∈V ′ wi ≥ K.

This problem is solvable using weighted matroid intersection. The collection V ′′

of nodes is independent in the first matroid if there is a matching M that matches
each node of V ′′. A collection V ′′ of nodes is independent in the second matriod if it
contains at most one node of Vj for each j. The answer to the instance of node-based
generalized matching is yes if and only if the max weight matroid intersection has
weight of at least M .

Note that we do not require that all nodes of M be included in V ′′.

The GCPP. The classical Chinese postman problem (CPP) is a problem that
focuses on traversals of the graph’s edges. That is, given a connected undirected
graph G = (V,E) with a nonnegative bounded weight for each edge, the quest is
to construct a minimum weight circuit that traverses each edge in E at least once.
Edmonds and Johnson (1973) have shown that the CPP can be solved efficiently
(in polynomial time). The most commonly stated time complexity for the CPP is
O(|V |3), even though the problem can be solved faster for sparse graphs (for more
details see Dror (2000)).

Now suppose that the graph G is partitioned with respect to the edge set E
into nonempty connected subgraphs G1, . . . , GK . That is, G1 = (V1, E1), . . . , GK =
(VK , EK), where each subgraph Gi is connected and Ei ∩ Ej = ∅, i 	= j. The GCPP
is defined as the problem of constructing a minimal weight circuit on G which visits
at least one edge from each subgraph. To our knowledge, this problem was first
introduced in Dror and Haouari (2000). The proof that the GCPP is NP-hard can
be obtained very simply by transformation from a routing problem referred to in
the literature as the rural postman problem (RPP). In fact, a special case of the
GCPP with all but one of the subgraphs Gi being of one edge is already equivalent
to the RPP. An additional fact (see Lenstra and Rinnooy Kan (1976)) is that the
travelling salesman problem (TSP) is a special case of the RPP. Given this sequence
of transformations and special cases together with the more recent results by Arora
et al. (1998) and Trevisan (2000) that the TSP is inapproximable (even in Euclidean
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space of dimension log n), the GCPP is also inapproximable.

2.4. Generalized Acyclic Graph Problem. In this subsection we examine
generalizations of a number of acyclic graph problems. For more details and appli-
cations of acyclic graph problems we refer the reader to Ahuja, Magnanti, and Orlin
(1993).

INSTANCE. A directed graph G = (V,A), |A| = m, and m even. The arcs in
A are partitioned into pairs (the pairs are disjoint). The graph is permitted to have
multiple arcs with the same head and tail—a multigraph.

QUESTION. Is there a subset of arcs A′ ⊂ A, |A′| = m/2, with one arc from
each pair, such that A′ is acyclic?

Theorem 3. The Generalized Acyclic Graph Problem is NP-complete.

Proof. The proof is by transformation from 3-Satisfiability.

3-Satisfiability ( 3SAT).

INSTANCE. List of literals U = {u1, ū1, u2, ū2, . . . , un, ūn} and sequence of (con-
junctive) clauses C = (C1, C2, . . . , Cm), where each clause Ci is a subset of U of
cardinality 3.

QUESTION. Is there a truth assignment for the literals u1, . . . , un that satisfies
all the clauses in C, that is, a subset U ′ ⊆ U such that |U ′ ∩ {ui, ūi}| = 1, 1 ≤ i ≤ n,
and such that |U ′ ∩ Ci| ≥ 1, 1 ≤ i ≤ m?

A truth assignment is an n-dimensional vector x∗ of variables. If x∗
i = 1, then

variable xi is true. If x∗
i = 0, then variable xi is false. In an instance of 3-satisfiability,

we let clause Cj = {cj1, cj2, cj3}, where cjr is a literal for r = 1, 2, and 3. For example,
if Cj = (x3, x̄5, x̄9), then cj1 = x3, cj2 = x̄5, and cj3 = x̄9. In this case, clause Cj is
satisfied by truth assignment x∗ if x∗

3 = 1 or x∗
5 = 0 or x∗

9 = 0. The collection C is
satisfied if every clause in C is satisfied.

Let C = {C1, . . . , Cm} be a collection of clauses for 3-SAT defined on a set
X = {x1, . . . , xn} of variables. We define an instance of the Generalized Acyclic
Graph Problem as follows.

The node set V = {s}∪{x1, . . . , xn}∪{x̄1, . . . , x̄n}∪{wj1, wj2, wj3 : j = 1, . . . ,m}.
That is, |V | = 2n+1+3m, with one node for each variable, one node for each variable
complement, a node s, and 3m additional nodes (w·,·) numbered in 1-1 correspondence
with the literals in the m clauses.

For each clause (cj1, cj2, cj3), we let (c̄j1, c̄j2, c̄j3) denote the complements of the
literals in the clause.

The pairs of arcs are defined as follows:

1. For each variable xj , there is a pair of arcs (s, xj) and (s, x̄j).

2. For each clause Cj with literals cj1, cj2, and cj3, there are three pairs of arcs
{(wj1, wj2), (c̄j1, s)}, {(wj2, wj3), (c̄j2, s)}, and {(wj3, wj1), (c̄j3, s)}.

When we refer to the node cjk or c̄jk above, we are referring to a node in
{x1, . . . , xn} ∪ {x̄1, . . . , x̄n}. For example, if cj1 = x̄5, then (c̄j1, s) denotes the arc
(x5, s).

We will show that the instance of 3-SAT is satisfiable if and only if there is a
subset A′ of arcs, one from each pair, such that A′ is acyclic.

We first suppose that there is a truth assignment for the instance of 3-SAT. We
assume without loss of generality that the literal cj1 is satisfied for j = 1, . . . ,m. We
obtain a collection A′ of arcs, one arc from each pair as follows:

1. If xj is true, then (s, xj) ∈ A′; if xj is false, then (s, x̄j) ∈ A′.

2. For each clause Cj , we select arcs (c̄j1, s), (wj2, wj3), and (wj3, wj1).
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We note that the arc (c̄j1, s) does not create a directed cycle. Consider, for
example, the case that c̄j1 = x6, and thus (x6, s) ∈ A′. In this case, cj1 = x̄6, and
by assumption, x6 is false, and so (s, x̄6) ∈ A′. In particular, (s, x6) /∈ A′, and so
(x6, s) is not part of a directed cycle. Finally, the arcs (wj2, wj3) and (wj3, wj1) do
not create a directed cycle.

Conversely, suppose that A′ is a collection of arcs, one from each pair. And
suppose that A′ is acyclic. We create a truth assignment as follows:

1. If (s, xj) ∈ A′, then xj is true; if (s, x̄j) ∈ A′, then xj is false.
For each clause Cj , we cannot select all three of (wj1, wj2), (wj2, wj3), and

(wj3, wj1) since it would create a directed cycle. It follows that for each j, A′ has an
arc (c̄jr, s) for some r ∈ {1, 2, 3}. It follows that (s, c̄jr) /∈ A′, and so literal cjr is
satisfied. We conclude that x is a truth assignment.

The problem of identifying the largest acyclic graph is already APX-hard (Pa-
padimitriou and Yannakakis (1991)). Thus, identifying the largest acyclic graph with
at most one arc from each pair is APX-hard.

Remark. In the above proof we permit multiple parallel arcs. We can get rid of
the need for parallel arcs as follows:

First of all, we restrict the attention to 3SAT problems in which at least one
clause contains xj and at least one clause contains x̄j . Therefore, n(j) ≥ 2, where
n(j) counts the number of clauses with literal j. For each variable xj , we create nodes
{xj1, . . . , xj,n(j)} and {x̄j1, . . . , x̄j,n(j)}. We also create the following 2n(j) − 1 pairs
of arcs:

{(s, xj1), (s, x̄j1)} ∪ {(s, xjr), (xj1, xjr) : r = 2, . . . , n(j)}
∪ {(s, x̄jr), (x̄j1, x̄jr) : r = 2, . . . , n(j)}.

Note that if arc (s, xj1) ∈ A′, then there is a path from s to xjk, k = 1, . . . , n(j). If
arc (s, x̄j1) is selected, then there is a path from s to x̄jk, k = 1, . . . , n(j).

If cjr = x̄j and if it is the kth occurrence of the variable xj in the clauses, the
corresponding arc in the graph would be (xjk, s). If cjr = xj and if it is the kth
occurrence of the variable xj in the clauses, the corresponding arc in the graph would
be (x̄jk, s).

The transformation still carries through, and there are no multiple copies of any
arc in the network.

3. Subset covering generalization—subset bin packing. Consider as be-
fore a set of elements U = {u1, . . . , un} together with m “covering” subsets Ui ⊂ U ,
1 ≤ i ≤ m. That is,

⋃m
i=1 Ui = U . The size of a subset Ui is simply measured by the

cardinality of this subset, implying that the different elements in U are of identical
“volume” (the same size). In addition, there are an infinite number of bins of size
Q—a positive integer. Following Coffman and Dror (1992), we ask what the mini-
mal number of bins sufficient to pack all the subsets Ui, 1 ≤ i ≤ m, is and call this
problem the subset bin-packing (SBP) problem. Packing a subset Ui implies that the
subset is contained (in its entirety) in at least one bin. Coffman and Dror (1992) (re-
produced in Dror and Haouari (2000)) examine many well-known “good” heuristics
for bin packing and show that they produce results with no bound guarantees when
extended to the SBP problem. This leads to questions about hardness of the SBP
problem, which we address below. But first we examine a related problem for the
knapsack.

A similar problem was stated by Goldschmidt, Nehme, and Yu (1994) for the
knapsack version of this problem referred to as the set-union knapsack problem (SKP),
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referred to here as a subset knapsack problem (SKP). Goldschmidt et al. also described
a version for the bin packing referred to as the set-union bin-packing (SBP) problem.
As opposed to the SBP problem as defined in the previous paragraph, they had
positive integer (≥ 1) valued sizes associated with the elements in U .

A decision version of the SKP with unit size items can be stated in the form of a
graph problem as follows.

INSTANCE. Given a bipartite graph G = (V1, V2;E), denote by v1(i) all the
nodes in V1 adjacent to node vi ∈ V2. Let 0 < K ≤ |V1|, 0 < B ≤ |V2| be two given
integers.

QUESTION. Is there a subset V ′
2 ⊂ V2 such that |

⋃
i∈V ′

2
v1(i)| ≤ K and |V ′

2 | ≥ B?
Obviously, the optimization version of this problem is asking for maximizing the

cardinality of the subset V ′
2 subject to |

⋃
i∈V ′

2
v1(i)| ≤ K.

The unit size items SKP has been examined in the literature before. For instance,
Khuller, Moss, and Naor (1999) and Moss (2001) provide detailed analysis of this and
the more general nonidentical unit size SKP under the heading of the budgeted max-
imum coverage problem. They first provide a heuristic with constant approximation
factor that is later improved to a factor of (1− 1/e) and prove that no approximation
algorithm with performance guarantee of 1 − 1/e + ε is likely to exist for any ε > 0
unless P ⊆ DTIME (nO(log log n)). This result has been first stated in Feige (1998).
That is, these references establish that the unit size items SKP is also inapproximable.
We do not reproduce their proof here. One of the immediate corollaries of this result
is that the SBP problem is also inapproximable because if the number of subsets Ui

(Ui corresponds to a node i ∈ V2) that fit into one bin of size K is greater than B,
then the rest of the subsets (m−B) will fit into a “small” number of other bins.

Note that a stronger inapproximability result can be deduced from an appropriate
transformation of a the set covering problem to a special case of the SBP problem.

4. Machine scheduling. This section contains a number of generalized schedul-
ing problems. We start by considering a single machine problem, which also introduces
the notation.

Initially consider a set J of n jobs to be scheduled for processing on a single
machine. Let J =

⋃m
i=1 Ji, where each Ji is a nonempty subset of J . Each job j ∈ J

has a positive integer processing time requirement denoted by pj . Assume that all
the jobs are ready for processing at time zero. The machine can process at most one
job at a time, and preemption of jobs is not allowed. Given a subset of jobs σ ⊂ J ,
let C(σ) denote the minimal completion time of the jobs in σ. Given the subset
representation or cover {Ji}mi=1 for the jobs in J , one would like to process some jobs
and complete such a processing as soon as possible while processing at least one job
from each subset. In other words, select a subset σ∗ ⊂ J such that σ∗ shares at
least one job with each of the subsets and its completion time is minimized. That is,
C(σ∗) = minσ⊂J C(σ); σ∩Ji 	= ∅, 1 ≤ i ≤ m. The corresponding scheduling problem
which is that of minimizing makespan for the jobs in subset σ can be expressed as

min
σ

{maxCj : j ∈ σ, σ ∩ Ji 	= ∅, 1 ≤ i ≤ m}.

In terms of the 3-field notational convention in scheduling, this problem can be de-
noted as 1|ss|Cmax (

∑
j Cj if total flow time is the criterion), where ss stands for

subset selection.
The interesting case in this scheduling problem is when the subsets Ji, 1 ≤ i ≤ m,

have pairwise nonempty intersections since when all the subsets are disjoint, the



COMBINATORIAL OPTIMIZATION OVER SUBSETS 1027

problem is solvable using the greedy algorithm. In Dror and Haouari (2000), it is
proven that 1|ss|Cmax (

∑
j Cj) are NP-hard in the strong sense by its equivalence

with the hitting set problem (see Garey and Johnson (1979)). Below we restate the
0-1 integer programming formulation of the 1|ss|Cmax problem taken from Dror and
Haouari (2000) given that |J | = n:

(4.1) minimize

n∑
j=1

pjxj

subject to ∑
j∈Ji

xj ≥ 1, 1 ≤ i ≤ m,(4.2)

xj ∈ {0, 1}, 1 ≤ j ≤ n.(4.3)

Since the above formulation also corresponds to the SETCOVER problem, which
is one of the representative inapproximable problems in Arora and Lund (1997), the
inapproximability (which cannot be approximated to within a factor o(log n); see Raz
and Safra (1997)) for the 1|ss|Cmax follows.

This inapproximability result for the 1|ss|Cmax problem implies similar results for
a number of other machine scheduling problems. For instance, the two-machine flow-
shop problem with the subsets Ji, 1 ≤ i ≤ m, as a partition of the job set J denoted
as F2|ss∅|Cmax (the ∅ symbol denotes the fact that the pairwise subset intersections
of Ji’s are empty) is also proven NP-hard in Dror and Haouari (2000).

Next, we examine two inapproximable generalizations of single machine schedul-
ing problems not mentioned in Dror and Haouari (2000).

4.1. Generalized Due Date Problem.
INSTANCE. n pairwise disjoint subsets of jobs, labelled J1, . . . , Jn. The process-

ing time of the jth job in Ji is pij , and its due date is dij .
PROBLEM. What is the minimum number of late jobs in a feasible generalized

(selecting at least one job from each subset) schedule?
Theorem 4. The Generalized Due Date Problem is strongly NP-hard and inap-

proximable.
Proof. We first prove that the decision version of this problem is strongly NP-

complete. The proof is by transformation from 3-Partition.
3-Partition.
INSTANCE. Integers a1, . . . , a3n, b, where b

4 < ai <
b
2 , i = 1, . . . , 3n.

QUESTION. Is there a partition of the integers into n subsets each summing up
to b, where b =

∑3n
i=1

ai

n ?
We create an instance of the Generalized Due Date Problem as follows. The

subsets of jobs are labelled J1, . . . , J3n, and each subset has exactly n jobs. Let Jij be
the jth job from subset Ji. For each job Jij , let pij = jai, and let dij = bj(j + 1)/2
for j = 1, . . . , n. We refer to the collection {Jij : i = 1, . . . , 3n} of jth jobs in each
subset as the type j jobs.

We claim that it is possible to schedule all jobs on time if and only if there is a
solution to the 3-Partition problem.

Suppose first that there is a solution for the 3-Partition problem. Let the cer-
tificate be S1, . . . , Sn, where each subset Si has three integers summing to b, and⋃n

i=1 Si = {a1, . . . , a3n}. We now select jobs in the Generalized Due Date Problem as
follows: If ai ∈ Sj , then we select Jij .
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We observe that exactly one job is selected from Ji. We also note that the
processing times of the selected type j jobs sums to jb, and their due dates are
j(j + 1)b/2. If we schedule the jobs in order of their type, then all jobs are scheduled
on time. If the answer to the 3-Partition problem is yes, then so is the answer to the
scheduling problem.

Before we prove the converse, we state and prove a lemma.
Lemma 1. Consider the following linear program:

(4.4) minimize

n∑
i=1

qi

subject to

j∑
i=1

qi ≤ j(j + 1)/2, j = 1, . . . , n− 1,(4.5)

n∑
j=1

qj/j = n(4.6)

The unique optimal solution is qj = j, j = 1, . . . , n, and the optimal objective
value is n(n + 1)/2.

Proof. We first note that the solution qj = j for each j is a feasible solution and
that all constraints hold with equality. We also note that it is the unique solution
where all inequalities are tight, and the objective value is n(n + 1)/2.

Let q′ be an optimal solution. We suppose that not all constraints are tight, and
we will derive a contradiction. Let k be the minimum index of a constraint that is not
tight. That is,

∑j
i=1 q

′
i = j(j + 1)/2 for j < k, and

∑k
i=1 q

′
i < k(k + 1)/2. Therefore

q′k < k. But
∑n

j=1 qj/j = n, and so there must be a first index l > k such that
q′l > 0. But then we can improve the objective function and maintain feasibility by
increasing q′k by kε and decreasing q′l by lε for some very small positive ε. Thus q′ is
not optimal.

Returning to the scheduling problem, we now consider the converse. Suppose
that there is a certificate for the scheduling problem. Let J∗ be the selected subset of
jobs. If Jij ∈ J∗, then ai ∈ Sj . We may assume that the jobs are scheduled in order
of increasing due dates, and thus the jobs are scheduled in order of their type.

Let rj be the sum of the processing times of the type j jobs, and let qj = rj/b.
Then the q’s satisfy constraints (4.5) and (4.6), and the time that the type n jobs
complete is b

∑n
i=1 qi. By Lemma 1, the minimum completion time is bn(n + 1)/2,

and for this completion time to occur, it must be true that qj = j for each j, and thus
rj = jb for each j. Thus, there is a feasible schedule if and only if there is a solution
to the Number Partition problem.

This proves that the problem of determining if the tardiness is zero (no tardy
jobs) is NP-complete. Thus, the minimization problem is inapproximable.

As for the problem of maximizing the number of jobs that are on time, we do not
know if this problem is APX-complete.

Theorem 5. The Generalized Due Date Problem is strongly NP-hard and inap-
proximable even if each subset contains two jobs.

Proof. We extend the transformation from 3-Partition given in the proof of The-
orem 4. The numbers for 3-Partition are a1, . . . , a3n and b. We assume that ai ≥ aj
for i < j.
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We create 3n2 pairs of jobs, one pair for each job in the transformation used in
the proof of Theorem 6. The pairs are labelled Pij , i = 1, . . . , 3n; j = 1, . . . , n. Let
pair Pij have two jobs, one called the small job and one called the big job. The small
job of Pij has a processing time of 1 and a due date of i(n − 1). The big job has a
processing time of n2jai, and a due date of M +n2bj(j+1)/2, where M = 3n(n−1).

We claim that there is a solution to this instance of a Generalized Due Date
Problem if and only if there is a solution to the instance of the 3-Partition problem.

Suppose first that there is a solution for the 3-Partition problem. Let the subsets
of numbers be S1, . . . , Sn. We now select jobs in the Generalized Due Date Problem
as follows: If ai ∈ Sj , then we select the large job from pair Pij of jobs. Otherwise, we
take the small job from the pair. For each i = 1, . . . , n, let Pi = {Pij : j = 1, . . . , n}.
We select n − 1 small jobs from the n pairs in Pi. It is easy to verify that the last
scheduled small job in Pi finishes at time (n−1)i, and thus the last small job completes
at time M = 3n(n − 1). As in the proof of Theorem 1, the last scheduled large job
in Pi completes at time M + n2bj(j + 1)/2, and thus all large jobs are completed on
time.

We now consider the converse. Without loss of generality, we may assume that
there are 3n(n − 1) small jobs selected. (If there were a feasible solution in which
fewer small jobs were selected, then one could exchange a large job for a small job and
still meet all of the due dates.) We also assume without loss of generality that exactly
n− 1 small jobs of Pi are selected for each i. (Otherwise, we could let k be the least
index such that fewer than n− 1 small jobs of Pk are selected, and at least two large
jobs, say, from Pkr and Pks. But then there is an index l > k such that n small jobs
of Pl are selected. But we could create an alternative solution that meets all of the
due dates if we exchange the small job from Pkr for the large job and simultaneously
exchange the large job from Plr for the small job.

So, the feasible solution has exactly one large job from each Pi. We are now in
the same situation considered in the proof of Theorem 6, except that the large jobs
start at M , the due dates are all translated by M , and each processing time and due
date is multiplied by a factor of n2. This completes the proof.

Next, we prove that another generalized scheduling problem is NP-complete.

Generalized Weighted Sum of Completion Times Problem.

INSTANCE. n pairs of jobs J1, . . . , Jn and an integer K. The processing time of
the jth job in Ji is pij and its weight wij , i = 1, . . . , n; j = 1 or 2.

QUESTION. Is it possible to select one job from each pair so that the weighted
sum of completion times is at most K?

Theorem 6. The Generalized Weighted Sum of Completion Times Problem is
weakly NP-complete.

Proof. The proof is by transformation from Number Partition.

Number Partition.

INSTANCE. Integers a1, . . . , an.

QUESTION. Is there a 0-1 vector x such that
∑n

i=1 aixi = b, where b =∑n
i=1 ai/2?

Given an instance of the Number Partition problem, choose n pairs of jobs as
follows. The first job of Ji has processing time pi1 = ai and a weight wi1 = 2ai. We
refer to the first job in each pair as its short job. The second job Ji has a processing
time pi2 = 2ai and a weight wi2 = ai. We refer to this job as its long job. We let
K = 3b2 +

∑n
i=1 (ai)

2.

We claim that the answer to the Number Partition problem is yes if and only if
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the answer to the Generalized Weighted Sum of Completion Times Problem is also
yes.

First we establish an elementary fact about this instance of the Generalized
Weighted Sum of Completion Times Problem. Let E be the set of indices of the
pairs whose short job is selected, and let L be the indices of the pairs of jobs whose
long job is selected. Let a(E) =

∑
i∈E ai, and let a(L) =

∑
i∈L ai.

Lemma 2. The optimum weighted sum of completion times for this schedule is∑n
i=1 (ai)

2 + 4b2 − a(E)a(L).
Proof. It is well known that the optimum solution to the Weighted Sum of Com-

pletion Times Problem is to schedule jobs in nondecreasing order of the ratio of the
processing times to the weights. Thus, the order in which the jobs are scheduled are
(1) the short jobs (in any order) followed by (2) the long jobs (in any order).

The weighted sum of completion times for the short jobs is
∑

i,j∈E:i≤j ai(2aj) =∑
i∈E (ai)

2 + a(E)2. The weighted sum of completion times for the long jobs is∑
i,j∈L:i≤j 2aiaj+a(E)a(L) =

∑
i∈L (ai)

2+a(L)2+a(E)a(L). If we sum the weighted

sum of completion times of the short and long jobs, we get
∑n

i=1 (ai)
2+a(E)2+a(L)2+

a(E)a(L) =
∑n

i=1 (ai)
2 +(a(E)+a(L))2−a(E)a(L) = (

∑n
i=1 (ai)

2)+4b2−a(E)a(L).
We now consider the case that there is a subset Q such that a(Q) = b. In this

case, let E = Q and let L = {1, . . . , n} \ Q. By Lemma 2, the weighted sum of
processing times is

∑n
i=1 (ai)

2) + 4b2 − a(E)a(L) = (
∑n

i=1 (ai)
2) + 3b2 = K. Thus,

whenever the answer is yes for the number partition problem, the answer is also yes
for the scheduling problem.

We now consider the case that there is a subset E of pairs of jobs such that
scheduling early jobs from E and the late jobs from {1, . . . , n}\E results in a weighted
sum of completion times of at most (

∑n
i=1 (ai)

2)+3b2 = K. It follows from Lemma 2
that a(E) = a(L) = b, and thus there is a solution to the Number Partition problem.
This completes the proof.

Open problem. For this problem (the Generalized Weighted Sum of Completion
Times Problem) we were able only to establish ordinary NP-completeness. We do not
know whether this problem is strongly NP-complete, nor do we know whether the
minimization problem is inapproximable.

5. The generalized TSP (GTSP). The last problem on the list of Dror and
Haouari (2000) is the GTSP. For the classical TSP, given triangle inequality, the best
heuristic for a very long time was that of Christofides (1976) which assured a worst
case bound of no more than 3/2. All other known heuristics yielded a bound of at
least 2. More recently, Arora (1996) and Mitchell (1996) developed a polynomial time
approximation scheme (PTAS) for the planar Euclidean TSP. For the GTSP with
triangle inequality, a Christofides-type heuristic gives at best a performance guarantee
of 2 (Dror and Haouari (2000)). For the general GTSP, inapproximability is obtained
simply as a consequence of the TSP being MAXSNP-hard (Papadimitriou and Yan-
nakakis (1993)). The following is an interesting question: Is the planar Euclidean
GTSP inapproximable? We address this question below.

The GTSP can be stated somewhat differently in the format resembling that of
the prize collecting TSP. That is, we want to construct a closed tour (circuit) of
minimal cost with K nodes (each node represents a profit of one unit) and one node
from each nonempty subset of nodes Vi, i = 1, . . . ,K. Given a triangle inequality of
the cost matrix and relaxing the profit requirement to at least K units does not change
the problem. This problem can be viewed as a generalization of a similar problem
that requires the construction of a prize collecting tree. This problem is referred to



COMBINATORIAL OPTIMIZATION OVER SUBSETS 1031

as the K-MST problem. An instance of this problem includes an undirected graph
G = (V,E), with edge costs c : E → Q+, a specified root r ∈ V , and a positive integer
K. The objective is to find a minimum cost subtree T of G spanning at least K nodes
and containing r. For the K-MST problem in the Euclidean plane a polynomial
time approximation scheme is presented in Arora (1996) and Mitchell (1996, 1999).
However, in our case K points are picked from K nonempty subsets of V , requiring
one point to be selected from each subset. We note (see a comment at the end of this
section) that this Euclidean plane generalized K-MST does not have a PTAS unless
P=NP.

In the TSP we are given n (> 3) locations to be visited by a salesman in a cyclic
fashion (a TSP tour). In the geometric TSP, the n locations lie in a Euclidean space.
Even in the special case of the Euclidean plane, finding the minimal distance TSP
tour is NP-hard (Garey, Graham, and Johnson (1976), Papadimitriou (1977)). If the
n locations lie in a Euclidean space of dimension logn, finding the minimal distance
TSP tour in any lp norm is Max SNP-hard. That is, it is NP-hard to approximate an
optimal TSP tour within some constant r > 1 (Trevisan (2000)). However, if finding
an optimal TSP tour is restricted to the Euclidean plane, then there exists a PTAS
for this problem. Even if it is hard to find an optimal TSP tour, a 1+ε approximation
of an optimal tour can be constructed in polynomial time for any ε > 0 (Arora (1996),
Mitchell (1996)).

A GTSP is similar to the TSP; however, the set of locations is partitioned into
k > 2 nonempty subsets, and the TSP tour has to visit (select) exactly one location
from each subset. If each subset contains only one point, the problem reverts to the
original TSP. (In the literature, versions of this problem are referred to as the Group-
TSP, One-of-a-set TSP, or TSP with neighborhoods.) Computational analysis for this
problem in the Euclidean plane dates back to Arkin and Hassin (1994), who describe a
constant approximation ratio algorithm if each group partition (the neighborhoods) in
the problem consist of discs, parallel segments of equal length, and translates of convex
region. For more about the evolution of results for the different problem variants see
de Berg et al. (2002), Dumitrescu and Mitchell (2001), and Safra and Schwartz (2002).
Safra and Schwartz (2002) have proven that the GTSP in the plane is NP-hard to
approximate to within any constant factor. However, their proof requires that the
subsets’ size be ≥ 4. Here we examine the GTSP in the plane with subsets of size two
each.

Theorem 7. The planar Euclidean GTSP with subsets of cardinality 2 is inap-
proximable.

Proof. The proof is by transformation from Vertex Cover. Berman and Karpinski
(1998) have shown that Vertex Cover is hard to approximate within a factor of 79/78
in polynomial time unless P=NP, even when the degree of each vertex is bounded by
four.

Vertex Cover.
INSTANCE. An undirected graph G = (V,E), where |V | = n, and a positive

integer K. (We assume that
√
n ≤ K ≤ n; the vertex cover is inapproximable in this

range.)
QUESTION. Is there a subset S ⊆ V such that each edge e ∈ E is incident to a

vertex in S and |S| ≤ K?
Transformation from Vertex Cover to the GTSP in the plane with subsets of

cardinality 2 is as follows: For each edge (i, j) ∈ E, we create 3n pairs of points. The
rth pair of points for (i, j) is ((r, i), (r, j)), r = 1, . . . , 3n. We set the first coordinate
as the x coordinate and the second coordinate as the y coordinate.
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Claim 1. Let K be the value of some solution for the Vertex Cover problem, and
suppose K is even. Then there is a solution to the GTSP that has a length at most
3nK + 2n.

Proof. Let S be the optimal vertex cover. For each i ∈ S, include in the tour the
line segment consisting of all points whose y coordinate is i. Then connect up to K
line segments into a tour with additional patching length of at most 2n, using points
with x coordinate 1 or 3n.

Claim 2. Suppose there is a solution T to the GTSP of value ≤ 3nK + 2n for
K even. Then there is a solution to the Vertex Cover problem of value ≤ K.

Proof. Since all lengths are ≥ 1, there are at most 3nK + 2n nodes in the tour.
By the pigeonhole principle, there is some value r of the x coordinate such that T has
at most K nodes whose x coordinate is r. Let V = {i : (r, i) ∈ T}. This V is a vertex
cover.

To complete the proof of the theorem, let K ′ be the optimal value of the Vertex
Cover problem, and let K̂ be the optimal value of the GTSP tour. Using the results
of Claims 1 and 2, we conclude that⌊

K̂

3n

⌋
− 1 ≤ K ′ <

⌈
K̂

3n

⌉
+ 1.

By assumption, K ′ >
√
n. So, any PTAS for the GTSP in the plane will yield a

PTAS for the Vertex Cover problem.
Note that the above transformation for the Euclidean GTSP can be used to prove

that the generalized version of the Euclidean plane K-MST is inapproximable.

6. Conclusion. In this paper we have examined generalized versions of a num-
ber of classical combinatorial optimization problems. We have focused on general-
izations for which the ground set of elements N is explicitly expressed as a partition
(N =

⋃m
i=1 Ni, Ni ∩ Nj = ∅ for i 	= j) in some cases and a cover in the other cases

(N =
⋃m

i=1 Ni). For most of the problems examined (the GMST problem, subset
scheduling, the GCPP, the SBP problem, and the GTSP) we have proven that there
is no PTAS for these problems unless P=NP. This suggests that in the field of combi-
natorial optimization the elementary objects of the ground set over which the combi-
natorial search is conducted might require some sort of characterization. We have not
attempted to do so in this paper and only suggest it as an interesting research question.
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Abstract. The average distance μ(G) of a connected graph G of order n is the average of the
distances between all pairs of vertices of G. We prove that for a 3-edge-connected graph G of order
n the inequality μ(G) ≤ n/6 + 24 on the average distance holds. Our bound is shown to be best
possible even if G is 4-edge-connected, and our results answer, in part, a question of Plesńık [J.
Graph Theory, 8 (1984), pp. 1–24].
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1. Introduction. For a given graph G, n, μ(G), and λ(G) denote the order,
average distance, and edge-connectivity of G, respectively. In this paper the present
authors continue their investigations into the average distance of graphs of given edge-
connectivity begun in [2], where the bounds (i) μ(G) ≤ 2n/15 + 9, if λ = 5, 6, (ii)
μ(G) ≤ n/9 + 10, if λ = 7, and (iii) μ(G) ≤ n/(λ + 1) + 5, if λ ≥ 8, were proved.
Bounding the average distance of 3-edge-connected graphs turns out to be harder and
requires some additional ideas. We will therefore consider this problem separately as
the subject of this article. Thus here we completely solve the problem of determining
a sharp upper bound on the average distance in terms of order and edge-connectivity
posed in [7]. We prove that the bound μ(G) ≤ n/6 + 24 holds for a 3-edge-connected
or 4-edge-connected graph G of order n.

We will use the terminology and notation in [2]. Briefly, let G = (V,E) be a
connected simple graph. For a subset S ⊆ V , G[S] denotes the subgraph induced
by S in G, and diam(S) is the maximum value of dG(x, y), x, y ∈ S. For v ∈ V ,
exG(v) and σG(v) denote the eccentricity and distance of v in G, respectively. σ(G)
denotes the distance of G. For subsets M1,M2 ⊆ V , σM1(v) denotes the distance
(i.e.,

∑
x∈M1

dG(v, x)) of v with respect to M1, whereas σM1(M2) denotes the distance
(i.e.,

∑
x∈M2

σM1(x)) of M2 with respect to M1. The distance between v and M1 (i.e.,
minu∈M1 dG(u, v)) is denoted by d(v,M1). E(M1,M2) denotes the set of edges {ab ∈
E | a ∈ M1, b ∈ M2}. NG(v) denotes the set of all vertices adjacent to v in G, and its
cardinality is the degree of v in G and is denoted by degG(v). For a subset S ⊂ V ,
NS(v) denotes the set of neighbors of v in S, and its cardinality is denoted by degS(v).
For a positive integer i, Ni(v) denotes the ith distance layer of v, and ki(v) denotes the
cardinality of Ni(v). We denote the set ∪0≤j≤iNj(v) by N≤i(v) and the set ∪j≥iNj(v)
by N≥i(v). N(S) denotes the neighborhood of subset S ⊆ V , namely, ∪u∈SNG(u).
N(S) denotes the closed neighborhood of S, i.e., N(S) = N(S) ∪ S, whereas N≤i(S)
denotes the ith neighborhood of S ⊆ V , namely, ∪u∈SN≤i(u). By S = V1

⊎
V2, we

mean that S = V1 ∪ V2 and V1 ∩ V2 = ∅, where S, V1, V2 ⊆ V . The graph G1 + G2 +
· · · + Gk denotes the sequential join of the vertex disjoint graphs G1, G2, . . . , Gk.
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2. Preliminary results. Plesńık [7] showed that the distance of an arbitrary
vertex in a 2-edge-connected graph of order n is at most 
 1

3 (n2 − n)�. We begin by
improving this result for 3-edge-connected graphs.

Lemma 1. Let G be a 3-edge-connected graph of order n ≥ 4. Then for any vertex
v of G, we have σG(v) ≤ 1

4 (n2 − n) + 1
2 . Moreover, σG(v) ≤ 1

4 (n2 − 2n) + 1 if G is a
block with n ≥ 6.

Proof. Let v be a vertex of G, and let e be the eccentricity of v. Note that

σG(v) = 1k1 + 2k2 + 3k3 + 4k4 + · · · + eke(1)

for i = 0, 1, . . . , e− 1, E(Ni, Ni+1) is a disconnecting set of G; hence kiki+1 ≥ λ(G) ≥
3. Clearly, ki ≥ 1 for all i = 0, 1, . . . , e. Thus,

ki + ki+1 ≥ 4 for all i = 0, 1, . . . , e− 1.(2)

We maximize (1) subject to (2) and the condition
∑e

i=0 ki = n. Clearly for fixed e,
(1) is maximized for

(k0, k1, . . . , ke−1) =

{
(1, 3, 1, 3, . . . , 1, 3) if e is even,
(1, 3, 1, 3, . . . , 1, 3, 1) if e is odd,

and ke = n− 2e (n− 2e + 1) if e is even (odd). Hence

σG(v) ≤⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 · 3 + [2 · 1 + 3 · 3] + · · · + [(e− 2) · 1 + (e− 1) · 3]
+e(n− 2e) if e is even,

1 · 3 + [2 · 1 + 3 · 3] + · · · + [(e− 3) · 1 + (e− 2) · 3]
+(e− 1) · 1 + e(n− 2e + 1) if e is odd

≤ en− e2 − 1

2
e +

1

2
.(3)

Summing (2) over all i yields n ≥ 2e + 1 and thus e ≤ n−1
2 . A simple differentiation

shows that (3) is maximized, subject to the constraint e ≤ n−1
2 , for e = n−1

2 and we
obtain

σG(v) ≤
(
n− 1

2

)
n−

(
n− 1

2

)2

− 1

2

(
n− 1

2

)
+

1

2
=

1

4
(n2 − n) +

1

2
,

as desired.
If G is a 3-edge-connected block with n ≥ 6, we have

k0 = 1, k1 ≥ 3, ki ≥ 2 for i = 2, 3, 4, . . . , e− 1 and ke−1 + ke ≥ 4.(4)

We maximize (1) subject to (4) and the condition
∑e

i=0 ki = n. For fixed e, (1) is
maximized for (k0, k1, . . . , ke−1) = (1, 3, 2, 2, . . . , 2). Thus,

σG(v) ≤ 1 · 3 + 2 · 2 + 3 · 2 + · · · + (e− 2) · 2
+(e− 1) · 2 + e(n− 4 − 2(e− 2))

= e(n− 1 − e) + 1.(5)

By (4), n =
∑e

i=0 ki ≥ 2e + 2. Hence e ≤ n−2
2 . A simple differentiation shows that

(5) is maximized, subject to the constraint e ≤ n−2
2 , for e = n−2

2 , and we obtain
σG(v) ≤ 1

4 (n2 − 2n) + 1, as desired.
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Fig. 1. The graph induced by E(U1, U2) of Fact 1.

Summing σG(v) for all v ∈ V (G) and an application of Lemma 1 implies the
following bound, which we will use to prove our main bound for small values of n.

Corollary 2. Let G be a 3-edge-connected graph of order n ≥ 4. Then σ(G) ≤
1
4n(n2 − n) + 1

2n.

3. Distance layers of an arbitrary vertex in 3-edge-connected blocks.
In this section, we consider only 3-edge-connected blocks, unless otherwise specified.
Some of these graphs have connectivity 2; they can be disconnected by removing only
two vertices u, v. If such vertices u, v are close to one another, then this will allow
us to bound the average distance. Here we study some of the situations which are
sufficient for such 2-element vertex cut sets to occur in distance layers.

Proposition 1. Let G be a 3-edge-connected graph, v a vertex of G, and 1 ≤
l ≤ exG(v) − 1. If (kl, kl+1) = (2, 2), then diam(Nl), diam(Nl+1) ≤ 2.

Proof. Assume that Nl = {u1, u2} and Nl+1 = {v1, v2}. Let H be the graph
induced by E(Nl, Nl+1). Then H is a bipartite graph with vertices u1, u2, v1, v2

and at least λ(G) ≥ 3 edges. Hence H is isomorphic to either P4 or K2,2 and has
diameter at most 3. Since u1 and u2 (v1 and v2) are in the same partition set,
dH(u1, u2) (dH(v1, v2)) is even. Hence dH(u1, u2) = 2 (dH(v1, v2) = 2) and thus
dG(u1, u2) ≤ 2 (dG(v1, v2) ≤ 2).

Definition 1. Let G be a 3-edge-connected block and v a vertex of G. We say
that T = (Nl, Nl+1), 1 ≤ l ≤ exG(v)−2, is a separating pair of v if (kl, kl+1) = (2, 2).

We shall use the following fact repeatedly.
Fact 1. Let G be a 3-edge-connected block with two disjoint separating sets

U1, U2 ⊆ V (G), U1 = {a1, a2} and U2 = {b1, b2, b3}, where E(U1, U2) is a disconnect-
ing set. If d(a1, a2) > 2, then the graph induced by E(U1, U2) is isomorphic to the
graph (U1 ∪ U2, {a1b1, a2b2, a2b3}).

Proof. Let H be the graph induced by E(U1, U2). Then H is a bipartite graph
with vertices a1, a2, b1, b2, b3, partition sets U1, U2, and at least λ(G) ≥ 3 edges. From
d(a1, a2) > 2, it follows that N(a1)∩N(a2) = ∅; hence degU1(x) ≤ 1 for x ∈ U2. Thus
since |U2| = 3 and |E(H)| ≥ 3, we have degU1(x) = 1 for each x ∈ U2. Hence H is
isomorphic to either (U1 ∪ U2, {a1b1, a1b2, a1b3}) or (U1 ∪ U2, {a1b1, a2b2, a2b3}).
In the former case, E(U1, U2) = {a1b1, a1b2, a1b3} disconnects G; hence a1 is a
cut vertex, contradicting the fact that G is a block. Therefore, H is isomorphic to
(U1 ∪ U2, {a1b1, a2b2, a2b3}), (see Figure 1) as desired.

Proposition 2. Let G be a 3-edge-connected block, v a vertex of G, and 1 ≤ l ≤
exG(v) − 3.

(i) If (kl, kl+1, kl+2) = (3, 2, 3), then diam(Nl+1) ≤ 2.
(ii) If (kl, kl+1, kl+2) = (2, 3, 2), then diam(Nl) ≤ 3 or diam(Nl+2) ≤ 3.
Proof. (i) Let Nl = {u1, u2, u3}, Nl+1 = {v1, v2}, and Nl+2 = {w1, w2, w3}.

Suppose to the contrary that d(v1, v2) ≥ 3. By Fact 1, assume without loss of gener-
ality that the graph induced by E(Nl, Nl+1) has edge set {u1v1, u2v1, u3v2}. Since

d(v1, v2) ≥ 3, v2v1 /∈ E(G). Hence from deg(v2) ≥ 3 and N(v2) ⊆
⋃l+2

i=l Ni, assume
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Fig. 2. Proof of Proposition 2(i).

without loss of generality that v2w2, v2w3 ∈ E(G). Applying Fact 1, we see that the
graph induced by E(Nl+1, Nl+2) has edge set {v1w1, v2w2, v2w3}. Refer to Figure 2.

Since v1v2 /∈ E(G), a path from v1 to v2 contains either vertices from Nl or
vertices from Nl+2, in which case it contains the edge u3v2 or v1w1. Therefore, there
are at most 2 edge-disjoint paths joining v1 and v2, contradicting the fact that G is
3-edge-connected.

(ii) Let Nl = {u1, u2}, Nl+1 = {v1, v2, v3}, and Nl+2 = {w1, w2}. Suppose to the
contrary that d(u1, u2), d(w1, w2) ≥ 4. By Fact 1, assume without loss of generality
that the graph induced by E(Nl, Nl+1) has edge set {u1v1, u2v2, u2v3}. It follows from
the assumption on d(u1, u2) and d(w1, w2) that v1v2, v1v3 /∈ E(G) and that v1 can be

adjacent only to at most one of w1, w2. Hence from N(v1) ⊆
⋃l+2

i=l Ni, deg(v1) ≤ 2,
a contradiction.

Definition 2. Let G be a 3-edge-connected block and v a vertex of G. We
say that T = (Nl, Nl+1, Nl+2), 1 ≤ l ≤ exG(v) − 3, is a separating triple of v if
(kl, kl+1, kl+2) ∈ {(3, 2, 3), (2, 3, 2)}.

Proposition 3. Let G be a 3-edge-connected block and v a vertex of G. If
(kl, kl+1, kl+2, kl+3) = (2, 3, 3, 2) for some integer l, 1 ≤ l ≤ exG(v) − 4, then
diam(Nl) ≤ 4 or diam(Nl+3) ≤ 4.

Proof. Let Nl = {a1, a2}, Nl+1 = {b1, b2, b3}, Nl+2 = {c1, c2, c3}, and Nl+3 =
{d1, d2}. Suppose to the contrary that d(a1, a2), d(d1, d2) > 4. By Fact 1, assume
without loss of generality that the graph induced by E(Nl, Nl+1) (E(Nl+2, Nl+3)) has
edge set {a1b1, a2b2, a2b3} ({c1d1, c2d2, c3d2}). Hence, by our assumption on d(a1, a2)
and d(d1, d2), b1b2, b1b3 /∈ E(G) and b1 cannot be adjacent to both c1 and c2(c3).

Therefore, since deg(b1) ≥ 3 and N(b1) ⊆
⋃l+2

i=l Ni, b1c2, b1c3 ∈ E(G). Similarly,
c1b2, c1b3 ∈ E(G). Letting S1 = {a1, b1, c2, c3, d2} and S2 = {a2, b2, b3, c1, d1}, our
assumption on d(a1, a2) and d(d1, d2) implies that E(S1, S2) = ∅. A path from N0 to
Ne thus contains either edges from {a2b2, a2b3} and from {c1d1} or edges from {a1b1}
and from {c3d2, c2d2}. Thus {a1b1, c1d1} is a disconnecting set of G, contradicting
the fact that G is 3-edge-connected.

Definition 3. Let G be a 3-edge-connected block and v a vertex of G. We say
that T = (Nl, Nl+1, Nl+2, Nl+3), 1 ≤ l ≤ exG(v)− 4, is a separating quadruple of v if
(kl, kl+1, kl+2, kl+3) = (2, 3, 3, 2).

Lemma 3. Let G be a 3-edge-connected block, v a vertex of G, and x ≥ 2 an
integer. If for some l, 1 ≤ l ≤ exG(v) − 5, we have (kl, kl+1, kl+2, kl+3, kl+4) ∈
{(2, 3, x, 2, 3), (2, 3, x, 3, 2), (3, 2, x, 2, 3), (3, 2, x, 3, 2)}, then there exists i, l ≤ i ≤
l + 4, for which diam(Ni) ≤ 8 and ki = 2.

Proof. Let S =
⋃l+4

i=l Ni. Suppose to the contrary that

(∗) there is no i ∈ {l, . . . , l+4} for which diam(Ni) ≤ 8 and ki = 2.
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By Fact 1, let Nl+3 ∪ Nl+4 = {xl+3, yl+3, xl+4, yl+4, a}, where xl+3, yl+3 ∈ Nl+3,
xl+4, yl+4 ∈ Nl+4, xl+3xl+4, yl+3yl+4 ∈ E(G), and a is adjacent to either {xl+3, xl+4}
or {yl+3, yl+4} but not both. Assume, without loss of generality, that a is adjacent
to {yl+3, yl+4}. For i = 1, 2, . . . , l + 2, let vx1x2 . . . xl+2xl+3 (vy1y2 . . . yl+2yl+3) be a
v − xl+3 (v − yl+3) shortest path. It follows that for i = l, l + 1, l + 2 we have that
xi = yi; otherwise diam(Ni) ≤ 8 for i = l+ 3 or i = l+ 4 with ki = 2, a contradiction
to (*). Therefore, with the above notation, write Nl ∪ Nl+1 = {xl, yl, xl+1, yl+1, b},
and from Fact 1, b is adjacent to {xl, xl+1} or {yl, yl+1} but not both. We distinguish
two cases.

Case A: b ∈ Nl. It follows that kl+1 = 2 so that every vertex in
⋃l+4

i=l+1 Ni is
in N≤3(xl+1) or N≤3(yl+1). Moreover, by Fact 1, b is adjacent to Nl+1. By (*),
d(xl+1, yl+1) ≥ 9; hence S = (S ∩N≤3(xl+1))

⊎
(S ∩N≤3(yl+1)) is a disjoint union,

and the sets (S ∩N≤3(xl+1)) and (S ∩N≤3(yl+1)) are nonadjacent. A path from
N0 to Ne thus contains either edges from E(Nl, Nl+1) ∩ E(G[S ∩ N≤3(xl+1)]) and
from E(Nl+3, Nl+4) ∩ E(G[S ∩ N≤3(xl+1)]) or edges from E(Nl, Nl+1) ∩ E(G[S ∩
N≤3(yl+1)]) and from E(Nl+3, Nl+4)∩E(G[S ∩N≤3(yl+1)]). Hence, the union of any
two of the four sets E(Nl, Nl+1) ∩ E(G[S ∩ N≤3(xl+1)]), E(Nl+3, Nl+4) ∩ E(G[S ∩
N≤3(xl+1)]), E(Nl, Nl+1)∩E(G[S∩N≤3(yl+1)]), E(Nl+3, Nl+4)∩E(G[S∩N≤3(yl+1)])
is a disconnecting set of G. Note that xl+3xl+4 is the only edge in E(Nl+3, Nl+4) ∩
E(G[S∩N≤3(xl+1)]). Recall that byl+1 ∈ E(G) or bxl+1 ∈ E(G). The former implies
that xlxl+1 is the only edge in E(Nl, Nl+1)∩E(G[S∩N≤3(xl+1)]), so that the removal
of xlxl+1 and xl+3xl+4 separates v and xl+4 and thus disconnects G, a contradiction.
The latter implies that ylyl+1 is the only edge in E(Nl, Nl+1)∩E(G[S ∩N≤3(yl+1)]),
so that the removal of ylyl+1 and xl+3xl+4 separates v and xl+4 and thus disconnects
G, again a contradiction.

Case B: b ∈ Nl+1. We first show that

(∗∗) S = (S∩N≤4(xl))
⊎

(S∩N≤4(yl)).

Note first that, since b ∈ Nl+1, we have Nl = {xl, yl}, and every vertex in S is within
distance 4 of Nl; hence S = (S ∩N≤4(xl)) ∪ (S ∩N≤4(yl)) in (**) follows. From (*),
d(xl, yl) ≥ 9; hence the union in (**) is disjoint. Next we show that

(∗∗∗) E (S ∩N≤4(xl), S ∩N≤4(yl)) = ∅.

Now suppose that E (S ∩N≤4(xl), S ∩N≤4(yl)) is nonempty and contains an edge
pq. From d(xl, yl) ≥ 9 and pq ∈ E(S ∩N≤4(xl), S ∩N≤4(yl)) we can assume without
loss of generality that p ∈ Nl+4 ∩N≤4(xl) and q ∈ Nl+4 ∩N≤4(yl). If, on one hand,
a ∈ Nl+3, then Nl+4 ∩ N≤4(xl) = {xl+4} and Nl+4 ∩ N≤4(yl) = {yl+4}, and by
(*), d(xl+4, yl+4) ≥ 9; so xl+4yl+4 /∈ E(G). If, on the other hand, a ∈ Nl+4, then
Nl+4 ∩N≤4(xl) = {xl+4} and Nl+4 ∩N≤4(yl) = {yl+4, a}. By Fact 1, ayl+3 ∈ E(G).
By (*), d(xl+3, yl+3) ≥ 9; hence {yl+4, a} and {xl+4} are nonadjacent. Thus (***) is
established.

A path from N0 to Ne thus contains either edges from E(Nl, Nl+1) ∩ E(G[S ∩
N≤4(xl)]) and from E(Nl+3, Nl+4) ∩E(G[S ∩N≤4(xl)]) or edges from E(Nl, Nl+1) ∩
E(G[S ∩N≤4(yl)]) and from E(Nl+3, Nl+4)∩E(G[S ∩N≤4(yl)]). Hence, the union of
any two of the four sets E(Nl, Nl+1) ∩E(G[S ∩N≤4(xl)]), E(Nl+3, Nl+4) ∩E(G[S ∩
N≤4(xl)]), E(Nl, Nl+1) ∩ E(G[S ∩ N≤4(yl)]), E(Nl+3, Nl+4) ∩ E(G[S ∩ N≤4(yl)]) is
a disconnecting set of G. Now first observe from Fact 1 that xl+3xl+4 is the only
edge in E(Nl+3, Nl+4) ∩ E (G [S ∩N≤4(xl)]). Also xlb ∈ E(G) or ylb ∈ E(G). In the
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Fig. 3. A separating quintuple.

former case, one gets that ylyl+1 is the only edge in E(Nl, Nl+1)∩E (G [S ∩N≤4(yl)]);
hence {ylyl+1, xl+3xl+4} separates v and xl+4 and is thus a disconnecting set of
G, a contradiction. In the latter case, one gets that xlxl+1 is the only edge in
E(Nl, Nl+1)∩E (G [S ∩N≤4(xl)]); hence {xlxl+1, xl+3xl+4} separates v and xl+4 and
is thus a disconnecting set of G, again a contradiction. This completes the proof of the
lemma.

Definition 4. Let G be a 3-edge-connected block and v a vertex of G. We say that
T = (Nl, Nl+1, Nl+2, Nl+3, Nl+4), 1 ≤ l ≤ exG(v) − 5, is a separating quintuple of v
if (kl, kl+1, kl+2, kl+3, kl+4) ∈{(2, 3, x, 2, 3), (2, 3, x, 3, 2), (3, 2, x, 2, 3), (3, 2, x, 3, 2)}
for some integer x ≥ 2.

Example 1. If the hypothesis of Lemma 3 is satisfied, then Lemma 3 guarantees
the existence of a 2-element distance layer Ni of diameter at most 8. To see that the
value 8 is close to best possible, consider the 3-edge-connected graph of Figure 3. Then
T = (N7, N8, N9, N10, N11) is a separating quintuple of v, and d(a, b) = 7 = d(c, e).

3.1. Forbidden separators. Let G be a 3-edge-connected block and v be a
vertex of G with exG(v) = e ≥ 63. Assume that T is a separating pair, triple,
quadruple, or quintuple of v. By Propositions 1, 2, and 3 and Lemma 3, T contains a
distance layer Nα = {u1, u2}, say, of v with diam(Nα) ≤ 8. Assume that one wishes
to estimate, using Nα, the distance between two vertices x and y, where x is a vertex
close to u1 and y is a vertex close to u2. Roughly, if α is large enough, the bound

d(x, y) ≤ d(x, u1) + d(u1, u2) + d(u2, y) ≤ d(x, u1) + 8 + d(u2, y)

is better than

d(x, y) ≤ d(x, u1) + d(u1, u2) + d(u2, y) ≤ d(x, u1) + 2α + d(u2, y).

Thus, roughly speaking, for α large, a small diameter of Nα reduces distances, and,
for our purposes, if T is such that 31 ≤ α ≤ e − 31, we say that T is a forbidden
separator of v. More formally, we state the following.

Definition 5. Let G be a 3-edge-connected block and v be a vertex of G with
exG(v) = e.

(a) A separating pair (Nl, Nl+1) of v is called a forbidden separating pair of v if
31 ≤ l ≤ e− 32.

(b) A separating triple (Nl, Nl+1, Nl+2) of v is called a forbidden separating triple
of v if 31 ≤ l ≤ e− 33.

(c) A separating quadruple (Nl, Nl+1, Nl+2, Nl+3) of v is called a forbidden sep-
arating quadruple of v if 31 ≤ l ≤ e− 34.

(d) A separating quintuple (Nl, Nl+1, Nl+2, Nl+3, Nl+4) of v is called a forbidden
separating quintuple of v if 31 ≤ l ≤ e− 35.

We say that v has a forbidden separator if v has a forbidden separating pair, a
forbidden separating triple, a forbidden separating quadruple, or a forbidden separating
quintuple.
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Claim 1. Let G be a 3-edge-connected block and v a vertex of G with exG(v) =
e ≥ 63. If v has no forbidden separator, then ki + ki+1 ≥ 5 for all i = 31, . . . , e− 32.

Proof. Note that, since G is 2-connected, we have ki ≥ 2 for all i = 1, . . . , e− 1.
If for some i ∈ {31, . . . , e − 32}, we have ki + ki+1 = 4, then clearly, ki = 2 = ki+1

and v has a forbidden separating pair (Ni, Ni+1), a contradiction.
Definition 6. Let G be a 3-edge-connected block and v a vertex of G with

exG(v) = e ≥ 63. Assume that v has no forbidden separator. If for l ∈ {31, . . . , e−32}
we have kl + kl+1 = 5, then we say that (Nl, Nl+1) is a 5v-class.

We remark that if (Nl, Nl+1) is a 5v-class, then either kl = 2 and kl+1 = 3 or
kl = 3 and kl+1 = 2, since otherwise, if kl = 1 or kl+1 = 1, G has a cut vertex.

Claim 2. Let G be a 3-edge-connected block, let v be a vertex of G with no
forbidden separator, and let (Nl, Nl+1) and (Nl+e1 , Nl+e1+1) be two 5v-classes where
e1 is a positive integer. Then e1 ≥ 4.

Proof. Assume that (Nl, Nl+1) is a 5v-class. We first show that (Nl+1, Nl+2)
cannot be a 5v-class. If, on one hand, kl = 2 and kl+1 = 3, then kl+2 > 2; otherwise v
has a forbidden separating triple (Nl, Nl+1, Nl+2), a contradiction. Thus (Nl+1, Nl+2)
cannot be a 5v-class. If, on the other hand, kl = 3, kl+1 = 2, then kl+2 ≥ 4; other-
wise v has a forbidden separating pair (Nl+1, Nl+2) or a forbidden separating triple
(Nl, Nl+1, Nl+2), which is a contradiction. Therefore, (Nl+1, Nl+2) is not a 5v-class.

Next, we show that (Nl+2, Nl+3) cannot be a 5v-class. We have seen that kl+2 ≥
3 and equality holds only if kl = 2 and kl+1 = 3. Therefore, (Nl+2, Nl+3) can
be a 5v-class only if kl+2 = 3 and kl+3 = 2. However, this implies that v has a
forbidden separating quadruple (Nl, Nl+1, Nl+2, Nl+3), contradicting the fact that v
has no forbidden separator. Thus (Nl+2, Nl+3) cannot be a 5v-class.

Last, e1 cannot be 3, since otherwise v has a forbidden separating quintuple
(Nl, Nl+1, Nl+2, Nl+3, Nl+4).

Claim 3. Let G be a 3-edge-connected block and v be a vertex of G with exG(v) =
e ≥ 65. Assume that v has no forbidden separator. If (Nl, Nl+1), 32 ≤ l ≤ e− 33, is
a 5v-class, then

kl−1 + kl + kl+1 + kl+2 ≥ 12.

Proof. If kl = 2 and kl+1 = 3, then, as in the proof of Claim 2, kl−1 ≥ 4 and
kl+2 ≥ 3. Therefore,

kl−1 + kl + kl+1 + kl+2 ≥ 4 + 2 + 3 + 3 = 12,

as desired. The case kl = 3 and kl+1 = 2 follows analogously.
Claim 4. Let G be a 3-edge-connected block and v be a vertex of G with exG(v) =

e ≥ 63. Assume that v has no forbidden separator. If (Nl, Nl+1) is not a 5v-class,
where l ∈ {31, . . . , e− 32}, then kl + kl+1 ≥ 6.

Proof. By Claim 1, kl + kl+1 ≥ 5. If kl + kl+1 = 5, then (Nl, Nl+1) is a 5v-class,
a contradiction. Therefore, kl + kl+1 ≥ 6, as desired.

The following lemma guarantees that if the distance layers between two consec-
utive 5v-classes have on average less than three vertices, then one of these distance
layers has exactly two vertices and small diameter.

Lemma 4. Let G be a 3-edge-connected block, and let v be a vertex of G with no
forbidden separator. Let (Nl, Nl+1) be a 5v-class and e1 be the smallest integer greater
than 4 such that (Nl+e1 , Nl+e1+1) is a 5v-class. If

l+e1−2∑
i=l+3

ki < 3(e1 − 4),
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then
(i) e1 is odd, (kl+3, kl+4, kl+5, kl+6, . . . , kl+e1−2) = (2, 4, 2, 4, . . . , 2), and
(ii) there exists i, l ≤ i ≤ l + e1 + 1, such that diam(Ni) ≤ 8 and ki = 2.
Proof. (i) By the definition of e1, (Ni, Ni+1) is not a 5v-class for i = l+ 3, . . . , l+

e1 − 3. Therefore, by Claim 4, ki + ki+1 ≥ 6. If e1 is even, then

l+e1−2∑
i=l+3

ki = (kl+3 + kl+4) + · · · + (kl+e1−3 + kl+e1−2)

≥ 6 + · · · + 6 = 3(e1 − 4),

a contradiction to our hypothesis. Therefore, e1 is odd. Now,
∑l+e1−2

i=l+3 ki = (kl+3 +

kl+4) + · · · + (kl+e1−4 + kl+e1−3) + kl+e1−2 ≥ ( e1−5
2 )6 + 2 and

∑l+e1−2
i=l+3 ki = kl+3 +

(kl+4 + kl+5) + · · · + (kl+e1−3 + kl+e1−2) ≥ 2 + ( e1−5
2 )6. If the above inequalities

are strict, then
∑l+e1−2

i=l+3 ki > ( e1−5
2 )6 + 2 = 3e1 − 13, a contradiction. Therefore,

both inequalities hold with equality. Then kl+3 = kl+e1−2 = 2 and ki + ki+1 = 6
for all i ∈ {l + 3, l + 4, . . . , l + e1 − 3}. Hence (kl+3, kl+4, kl+5, kl+6, . . . , kl+e1−2) =
(2, 4, 2, 4, . . . , 2), as desired.

(ii) Observation 1. From (i) it is immediate that
(a) for every j = l, l+ 1, . . . , l+ e1 − 2, at least one of kj+1, kj+2, kj+3 is equal to

2;
(b) for all x ∈ Ni, l + 2 ≤ i ≤ l + e1 + 1, there exists θ ∈ {i − 2, i − 1, i}, with

kθ = 2. Hence dG(x,Nθ) ≤ 2.
Suppose to the contrary that (ii) does not hold, i.e.,

(∗) there is no i ∈ {l, l+1, . . . , l+e1 +1} with diam(Ni) ≤ 8 and ki = 2.

Let Nl+e1 ∪Nl+e1+1 = {xl+e1 , yl+e1 , xl+e1+1, yl+e1+1, a}, where xl+e1 , yl+e1 ∈ Nl+e1 ,
xl+e1+1, yl+e1+1 ∈ Nl+e1+1. Because of (*), by Fact 1, we can assume without loss of
generality that xl+e1xl+e1+1, yl+e1yl+e1+1∈ E(G) and a is adjacent to {yl+e1 , yl+e1+1}.
For i = 1, 2, . . . , l + e1 − 1, let vx1x2 . . . xl+e1−1xl+e1 (vy1y2 . . . yl+e1−1yl+e1) be a
v−xl+e1 (v−yl+e1) shortest path, and denote by P1 (P2) its xl−xl+e1+1 (yl−yl+e1+1)
section. We first show that

(∗∗) xi = yi for all i = l, l + 1, . . . , l + e1 − 1.

Suppose that (**) is false, and let i, i ≤ l + e1, be the largest value for which
xi = yi. First note that xl+e1−1 = yl+e1−1, since otherwise diam(Nr) ≤ 4 < 8 for
some r ∈ {l+e1, l+e1+1}, with kr = 2, a contradiction to (∗). Thus l ≤ i ≤ l+e1−2.
By Observation 1(a), let Nθ = {xθ, yθ} be such that kθ = 2 and θ ∈ {i+1, i+2, i+3}.
Then d(xθ, yθ) ≤ d(xθ, xi) + d(yi, yθ) = 3 + 3 < 8, a contradiction to (*). This
establishes (**).

With the above notation, noting Fact 1 and letting Nl∪Nl+1 = {xl, yl, xl+1, yl+1,
b}, we have that b is adjacent to {xl, xl+1} or {yl, yl+1} but not both. Let S =
∪l+e1+1
i=l Ni and S ∩ N≤2(V (Pi)) =: Si for i = 1, 2. By Observation 1(b) and Fact 1,

S = S1 ∪ S2. We show that, in fact,

(∗∗∗) S1 and S2 are disjoint and not joined by an edge.

Suppose that the two sets intersect and that u ∈ S1 ∩ S2, u ∈ Ni. We first show that
u /∈ Nl∪Nl+1. Assume without loss of generality that b is adjacent to {yl, yl+1}. If, on
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one hand, u ∈ {xl, xl+1} is within distance 2 of V (P2), then the vertices in Nl ∪Nl+1

are connected by a path of order at most 8. If, on the other hand, u ∈ {b, yl, yl+1}
is within distance 2 of V (P1), then again the vertices of Nl ∪ Nl+1 are connected
by a path of order at most 8. In either case, we have that diam(Nr) ≤ 8 for some
r ∈ {l, l + 1}, with kr = 2, a contradiction to (∗). Hence u /∈ Nl ∪ Nl+1 and thus
l + 2 ≤ i ≤ l + e1 + 1. By Observation 1(b), there exists θ, i − 2 ≤ θ ≤ i, with
d(u,Nθ) ≤ 2 and kθ = 2. Without loss of generality we can assume that d(xθ, u) ≤
d(yθ, u) and thus d(xθ, u) ≤ 2. From u ∈ S2, let yr be such that d(u, yr) ≤ 2. Hence
i − 2 ≤ r ≤ i + 2. Thus d(xθ, yθ) ≤ d(xθ, u) + d(u, yr) + d(yr, yθ) ≤ 2 + 2 + 4 = 8, a
contradiction to (*). Therefore, S1 and S2 are disjoint.

Now suppose to the contrary that pq joins S1 and S2, p ∈ Ni and q ∈ Nj ,
and hence |i − j| ≤ 1. We first show that i, j ≥ l + 2. Assume, without loss of
generality, that b is adjacent to {yl, yl+1}. Since S1 and S2 are disjoint, no vertex
from N({xl, xl+1}) is adjacent to a vertex from N({b, yl, yl+1}), and hence i, j ≥ l+2.
By Observation 1(b) let Nθ = {xθ, yθ}, i − 2 ≤ θ ≤ i, be such that d(p,Nθ) ≤ 2.
Therefore, since S1 and S2 are disjoint, d(p, xθ) ≤ 2. Again by Observation 1(b) let
Nr = {xr, yr}, j − 2 ≤ r ≤ j, be such that d(q,Nr) ≤ 2. Therefore, since S1 and
S2 are disjoint, d(q, yr) ≤ 2. The fact that |i − j| ≤ 1, i − 2 ≤ θ ≤ i, in conjunction
with j − 2 ≤ r ≤ j gives d(yr, yθ) ≤ 3. It follows that d(xθ, yθ) ≤ d(xθ, p) + d(p, q) +
d(q, yr) + d(yr, yθ) ≤ 2 + 1 + 2 + 3 = 8, a contradiction to (*). Therefore, S1 and
S2 are not joined by an edge and (***) is proved. (Refer to Figure 4 showing the
paths P1 and P2 and all of the edges in E(Nl, Nl+1) and E(Nl+e1 , Nl+e1+1) for the
case where b is in Nl and adjacent to {xl, xl+1} and a is in Nl+e1+1 and adjacent to
{yl+e1 , yl+e1+1}.)

By (***), a path from N0 to Ne thus contains either edges from E(Nl, Nl+1) ∩
E(G[S1]) and from E(Nl+e1 , Nl+e1+1)∩E(G[S1]) or edges from E(Nl, Nl+1)∩E(G[S2])
and from E(Nl+e1 , Nl+e1+1) ∩ E(G[S2]). Hence, the union of any two of the four
sets E(Nl, Nl+1)∩E(G[S1]), E(Nl+e1 , Nl+e1+1)∩E(G[S1]), E(Nl, Nl+1)∩E(G[S2]),
E(Nl+e1 , Nl+e1+1) ∩ E(G[S2]) is a disconnecting set of G.

Recall by Fact 1 that xl+e1xl+e1+1 is the only edge in E(Nl+e1 , Nl+e1+1) ∩
E (G [S1]). Also b is adjacent to {xl, xl+1} or b is adjacent to {yl, yl+1} but not



1044 P. DANKELMANN, S. MUKWEMBI, AND H. C. SWART

both. In the former case, ylyl+1 is the only edge in E(Nl, Nl+1) ∩ E (G [S2]); hence
{ylyl+1, xl+e1xl+e1+1} is a disconnecting set of G, a contradiction. In the latter case,
xlxl+1 is the only edge in E(Nl, Nl+1) ∩ E (G [S1]); hence {xlxl+1, xl+e1xl+e1+1} is
a disconnecting set of G, again a contradiction. This completes the proof of the
lemma.

3.2. An upper bound on distance in 3-edge-connected blocks. In this
subsection, we begin by establishing an upper bound on the distance of a vertex v
of a 3-edge-connected block G, given that v has no forbidden separator and that for
any two consecutive 5v-classes (Nl, Nl+1) and (Nl+e1 , Nl+e1+1) we have

∑l+e1−2
i=l+3 ki ≥

3(e1 − 4). First we need the following definition about sequences which carry some
information about the vertex v.

Definition 7. Let n and e, e ≥ 67, be positive integers. We say that a sequence
of numbers (ai) = (a0, a1, . . . , ae) is (n, e)-realizable if (ai) satisfies the following
conditions:

(A)
∑e

i=0 ai = n.
(B) a0 = 1, a1 ≥ 3, ai ≥ 2 for i ∈ {2, 3, . . . , e− 1} and ae−1 + ae ≥ 4.
(C) ai + ai+1 ≥ 5 for i ∈ {31, . . . , e− 32}.
(D) If i, j ∈ {31, . . . , e−32}, i < j, and ai +ai+1 = 5 = aj +aj+1, then j− i ≥ 4.
(E) If i1 < i2 < · · · < it, i1 ≥ 31, it ≤ e− 32, are consecutive integers for which

ai1 + ai1+1 = ai2 + ai2+1 = · · · = ait + ait+1 = 5, then the following hold:

(i)
∑ij+1−2

r=ij+3 ar ≥ 3(ij+1 − ij − 4) for j = 1, 2, . . . , t− 1.

(ii)
∑ij+2

r=ij−1 ar ≥ 12 for j = 2, . . . , t− 1.

(iii) If i1 = 31 (it = e − 32), then
∑i1+2

r=i1
ar (

∑it+1
r=it−1 ar) ≥ 8 and if i1 ≥

32 (it ≤ e− 33), then
∑i1+2

r=i1−1 ar(
∑it+2

r=it−1 ar) ≥ 12.
Lemma 5. Let n and e, e ≥ 67, be integers and (ai) be an (n, e)-realizable se-

quence. Then there exists a sequence (bi) = (b0, b1, . . . , be) which satisfies the following
conditions:

(i) b0 = 1, b1 ≥ 3, bi ≥ 2 for i ∈ {2, 3, . . . 30} ∪ {e − 30, e − 29, . . . , e − 1} and
be−1 + be ≥ 4;

(ii) bi ≥ 3 for all values of i ∈ {31, . . . , e− 31} with the exception of at most two
values of i for which bi may assume the value 2;

(iii)
∑e

i=0 bi = n;
(iv)

∑e
i=1 iai ≤

∑e
i=1 ibi + e−61

2 .
Proof. First we prove the statement for the case that ai−1 + ai ≥ 6 for all

i ∈ {32, . . . , e− 31}. We consider two cases separately. If, on one hand, e is odd, then
let

bi =

⎧⎨
⎩

ai if i ∈ {0, 1, . . . , 30} ∪ {e− 30, . . . , e},
3 if i ∈ {31, . . . , e− 31}, i odd,
ai−1 + ai − 3 if i ∈ {31, . . . , e− 31}, i even.

Clearly, since (ai) is (n, e)-realizable, (i) holds for (bi), and, moreover since ai−1+ai ≥
6 for all {32, . . . , e−31}, we have bi ≥ 3 for all i ∈ {31, . . . , e−31} and thus (ii) holds
for (bi). For all q = 15, 16, . . . , (e − 33)/2, we have b2q+1 + b2q+2 = a2q+1 + a2q+2,
and hence from

∑e
i=0 ai = n it follows that

∑e
i=0 bi = n; that is, (iii) holds for (bi).

Moreover,

(2q + 1)a2q+1 + (2q + 2)a2q+2 = (2q + 1)b2q+1 + (2q + 2)b2q+2 + 3 − a2q+1

≤ (2q + 1)b2q+1 + (2q + 2)b2q+2 + 1.
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Thus,

e−31∑
i=31

iai =

e−33
2∑

q=15

[(2q + 1)a2q+1 + (2q + 2)a2q+2]

≤
e−33

2∑
q=15

[(2q + 1)b2q+1 + (2q + 2)b2q+2 + 1] =

e−31∑
i=31

ibi +
e− 61

2
.

Hence
∑e

i=1 iai ≤
∑e

i=1 ibi + e−61
2 , and (bi) is the required sequence. If, on the other

hand, e is even, then let

bi =

⎧⎨
⎩

ai if i ∈ {0, 1, . . . , 30} ∪ {e− 31, . . . , e},
3 if i ∈ {31, . . . , e− 32}, i odd,
ai−1 + ai − 3 if i ∈ {31, . . . , e− 32}, i even.

Clearly, as above, (bi) is the required sequence with a slightly stronger bound
∑e

i=1 iai
≤

∑e
i=1 ibi + e−62

2 .
Hence we can assume that there is at least one member i, i ∈ {31, . . . , e − 32},

for which ai + ai+1 = 5. Let i1 < i2 < · · · < it be the collection of these values of i.
Define the sets A := {0, 1, . . . , 30}, J1 := {31, 32, . . . , i1 + 2}, for j = 1, 2, . . . , t − 1,
Rj := {ij + 3, ij + 4, . . . , ij+1 − 2}, for j = 2, 3, . . . , t− 1, Sj := {ij − 1, ij , ij + 1, ij +
2}, J2 := {it − 1, it, . . . , e − 31}, and B := {e − 30, . . . , e}. Then {0, 1, . . . , e} =

A ∪ J1 ∪ (
⋃t−1

j=1 Rj) ∪ (
⋃t−1

j=2 Sj) ∪ J2 ∪ B. We define the sequence (bi) on each of

these sets. We will define bi so that the equation
∑

h∈S ah =
∑

h∈S bh for all
S ∈ {A, J1, Rj , Sj , J2, B} can easily be verified, mostly by manipulations of pairs of
the sequences as done above. For i ∈ A ∪B, let bi = ai. Hence (bi) satisfies (i).

Let h ∈ Rj . We consider three cases. For ij+1 − ij even, let

bh =

{
3 if h = ij + r, r odd,
ah−1 + ah − 3 if h = ij + r + 1, r odd.

Since ah−1 +ah ≥ 6, we have bh ≥ 3 for all h ∈ Rj . For q = 1, 2, . . . , (ij+1 − ij − 4)/2,
we have

(ij + 2q + 1)aij+2q+1 + (ij + 2q + 2)aij+2q+2

= (ij + 2q + 1)bij+2q+1 + (ij + 2q + 2)bij+2q+2

+3 − aij+2q+1

≤ (ij + 2q + 1)bij+2q+1 + (ij + 2q + 2)bij+2q+2 + 1.

Hence for all j = 1, 2, . . . , t−1, we obtain
∑

h∈Rj
hah ≤

∑
h∈Rj

hbh+(ij+1 − ij − 4)/2.
For ij+1 − ij odd and aij+1−2 ≥ 3, let

bh =

⎧⎨
⎩

3 if h = ij + r, r odd, h = ij+1 − 2,
ah−1 + ah − 3 if h = ij + r + 1, r odd,
ah if h = ij+1 − 2.

Clearly, as above, bh ≥ 3, and, for all j = 1, 2, . . . , t − 1, we have
∑

h∈Rj
hah ≤∑

h∈Rj
hbh + (ij+1 − ij − 5)/2. For ij+1 − ij odd and aij+1−2 = 2, we proceed as
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follows. From
∑ij+1−2

r=ij+3 ar ≥ 3(ij+1 − ij − 4), there exists θ = ij + r, r odd, such that

aθ + aθ+1 ≥ 7. We define bh as follows: Let

bh =

⎧⎨
⎩

3 if h = ij + r, r odd,
ah−1 + ah − 3 if h = ij + r + 1, r odd, h = θ + 1,
aθ + aθ+1 − 4 if h = θ + 1.

Clearly, bh ≥ 3 for all h ∈ Rj . Denote the set {θ, θ+1, ij+1−2} by Aj . Since θ−ij+1 ≤
−4, we have

∑
r∈Aj

rar =
∑

r∈Aj
rbr + θ − ij+1 + 6 − aθ ≤

∑
r∈Aj

rbr. A simple

calculation as above shows that
∑

r∈Rj\Aj
rar ≤

∑
r∈Rj\Aj

rbr + (ij+1 − ij − 7)/2.

Hence for all j = 1, 2, . . . , t−1, we have
∑

h∈Rj
hah ≤

∑
h∈Rj

hbh +(ij+1 − ij − 7)/2.
We conclude that in all cases, for h ∈ Rj , j = 1, 2 . . . , t − 1, we have defined bh ≥ 3
so that ∑

h∈Rj

hah ≤
∑
h∈Rj

hbh +
ij+1 − ij − 4

2
.(6)

Recall that Sj = {ij − 1, ij , ij + 1, ij + 2} for j = 2, 3, . . . , t − 1. For h ∈ Sj , let
bh = 3 if h = ij + 2 and bh =

∑
r∈Sj

ar − 9 if h = ij + 2. Since
∑

r∈Sj
ar ≥ 12, we

have bh ≥ 3 for all h ∈ Sj . From aij−1 + aij ≥ 6, aij + aij+1 = 5, aij−1 ≥ 3,∑
h∈Sj

hah =
∑
h∈Sj

hbh + 13 − (aij−1 + aij ) − 2aij−1 ≤
∑
h∈Sj

hbh + 1.(7)

Recall that J1 = {31, . . . , i1 + 2} and J2 = {it − 1, . . . , e− 31}. For h ∈ J1 ∪ J2,
we define bh as follows. If i1 = 31 (it = e − 32), then bh = ah for h ∈ J1 (h ∈ J2).
Thus bh ≥ 3 for all h ∈ J1 (h ∈ J2) with the exception of at most one value of h. If,
however, i1 > 31, let

bh =

{
3 if h = i1 − 1, i1, i1 + 1,
ai1−1 + ai1 + ai1+1 + ai1+2 − 9 if h = i1 + 2,

and, for h ∈ {31, . . . , i1 − 2} and i1 even, let

bh =

{
3 if h is odd,
ah−1 + ah − 3 if h is even,

whereas for h ∈ {31, . . . , i1 − 2} and i1 odd, set

bh =

⎧⎨
⎩

3 if h is odd h = i1 − 2,
ah−1 + ah − 3 if h is even,
ah if h = i1 − 2.

Clearly, for i1 > 31 we have bh ≥ 3 for all h ∈ J1 with the exception of at most one
value of h. Moreover, similar calculations as above give

∑
h∈J1

hah ≤
∑

h∈J1
hbh +

(i1 − 30)/2. If it ≤ e− 33, let

bh =

{
3 if h = it − 1, it, it + 1,
ait−1 + ait + ait+1 + ait+2 − 9 if h = it + 2,

and, for h ∈ {it + 3, . . . , e− 31} and e− it odd, let

bh =

{
3 if h = it + r , r is odd,
ah−1 + ah − 3 if h = it + r + 1, r is odd,
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whereas, for h ∈ {it + 3, . . . , e− 31} and e− it even, set

bh =

⎧⎨
⎩

3 if h = it + r, r is odd h = e− 31,
ah−1 + ah − 3 if h = it + r + 1, r odd,
ah if h = e− 31.

Clearly, for it ≤ e − 33 we have bh ≥ 3 for all h ∈ J2 with the exception of at
most one value of h. Moreover, similar calculations as above give

∑
h∈J2

hah ≤∑
h∈J2

hbh + (e− it − 31)/2. Thus,

∑
h∈J1∪J2

hah ≤
∑

h∈J1∪J2

hbh +
i1 − 30

2
+

e− it − 31

2
.(8)

Recall that {0, 1, . . . , e} = A ∪ J1 ∪ (
⋃t−1

j=1 Rj) ∪ (
⋃t−1

j=2 Sj) ∪ J2 ∪ B. Hence the

fact that
∑

h∈S ah =
∑

h∈S bh if S equals A, J1, J2, B and if S equals Rj , Sj for all j
yields n =

∑e
i=0 ai =

∑e
i=0 bi. The fact that bi = ai for all i ∈ A ∪B, in conjunction

with (6), (7), and (8), yields

e∑
r=1

rar ≤
e∑

r=1

rbr +

t−1∑
j=1

(
ij+1 − ij − 4

2

)
+

t−1∑
j=2

1 +
i1 − 30

2
+

e− it − 31

2

=

e∑
r=1

rbr +
e− 61

2
− t <

e∑
r=1

rbr +
e− 61

2
,

as desired. This completes the proof of the lemma.
Lemma 6. Let G be a 3-edge-connected block, and let v be a vertex of G with

exG(v) = e ≥ 67. Assume that v has no forbidden separator. If for any two consecu-
tive 5v-classes (Nl, Nl+1) and (Nl+e1 , Nl+e1+1),

l+e1−2∑
i=l+3

ki ≥ 3(e1 − 4),

then

σG(v) ≤ 1

6
(n2 + 64n + 469).

Proof. Since G is a 3-edge-connected block, we have k0 = 1, k1 ≥ 3, ki ≥ 2 for
i ∈ {2, 3, . . . , 30} ∪ {e − 30, . . . , e − 1} and ke−1 + ke ≥ 4. Hence our hypothesis, in
conjunction with Claims 1, 2, 3, and 4, yields that the sequence (k0, k1, . . . , ke) is
(n, e)-realizable.

By Lemma 5, let (bi) = (b0, b1, . . . , be) be a sequence with
(i) b0 = 1, b1 ≥ 3, bi ≥ 2 for i ∈ {2, 3, . . . , e− 1} and be−1 + be ≥ 4,
(ii) bi ≥ 3 for all values of i ∈ {31, . . . , e− 31} with the exception of at most two

values of i,
(iii)

∑e
i=0 bi = n, and

(iv)
∑e

i=1 iki ≤
∑e

i=1 ibi + e−61
2 .

We first find an upper bound on
∑e

i=1 ibi by maximizing
∑e

i=1 ibi subject to the
constraints (i), (ii), and (iii) above. Clearly, subject to these conditions,

∑e
i=1 ibi is

maximum for b0 = 1, b1 = 3, bi = 2 for i ∈ {2, 3, . . . , 32} ∪ {e− 30, . . . , e− 1}, bi = 3
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for i = 33, 34, . . . , e− 31, and be = n− 3e + 63. Thus

e∑
i=1

ibi ≤ 3 + 2(2 + 3 + · · · + 32) + 3(33 + 34 + · · · + e− 31)

+ 2(e− 30 + · · · + e− 1) + e(n− 3e + 63)

= en− 3

2
e2 +

63

2
e− 62;

hence from (iv), we have

σG(v) =

e∑
i=1

iki ≤ en− 3

2
e2 + 32e− 185

2
.(9)

From the hypothesis of the lemma, and a little calculation, we have n =
∑e

i=0 ki ≥
3e − 61, that is, e ≤ n+61

3 . Subject to this condition and by differentiation, (9) is
maximized for e = n+32

3 to yield σG(v) ≤ 1
6 (n2 + 64n + 469), as desired.

Lemma 7. Let G be a 3-edge-connected block of order n. Then

σ(G) ≤ n(n− 1)
(n

6
+ 24

)
.

Proof. Let v ∈ V (G) be a vertex of largest distance, and let e be its eccentricity.
If e ≤ 66, we distinguish two cases. For n ≤ 133, Corollary 2 gives the result, whereas,
if n ≥ 134, the following holds:

σG(v) ≤ 3 + 2(2 + · · · + 65) + 66(n− 1 − 3 − 2 · 64) = 66n− 4421;

hence

σ(G) ≤ nσG(v) ≤ n(66n− 4421) ≤ n(n− 1)
(n

6
+ 24

)
for all n. Thus assume that e ≥ 67, and hence n ≥ 136. If v has no forbidden
separator and for any two consecutive 5v-classes (Nl, Nl+1) and (Nl+e1 , Nl+e1+1),∑l+e1−2

i=l+3 ki ≥ 3(e1−4), then by Lemma 6, σG(v) ≤ 1
6 (n2+64n+469). Summing σG(v)

for all v and since n > 8, we obtain σ(G) ≤ 1
6n(n2 + 64n + 469) ≤ n(n− 1)(n6 + 24),

as desired.
If, however, v has a forbidden separator or there exists two consecutive 5v-classes

(Nl, Nl+1) and (Nl+e1 , Nl+e1+1) such that
∑l+e1−2

i=l+3 ki < 3(e1 − 4), then we proceed
with our proof by induction on the order n of G. For n < 288, the result fol-
lows by Corollary 2. We assume that n ≥ 288 and that, for any 3-edge-connected
block with less than n vertices, the result holds. Since v has a forbidden separa-
tor or there are two consecutive 5v-classes (Nl, Nl+1) and (Nl+e1 , Nl+e1+1) such that∑l+e1−2

i=l+3 ki < 3(e1 − 4), then by Propositions 1–3, Lemmas 3 and 4, let Nα = {u1, u2},
31 ≤ α ≤ e− 31, be a distance layer with d(u1, u2) ≤ 8.

We form a new graph H from G as follows: Consider the sequential join K =∑7
i=1 Hi, where

Hi =

{
K3 if i is odd,
K1 if i is even,
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Fig. 5. Attaching graph K to Nα = {u1, u2}.

and V (K)∩V (G) = ∅. We attach the graph K to G to obtain the graph H by joining
u1 (respectively, u2) to every vertex of H1 (respectively, H7).

Denote the vertex set of K by V (K) = A = {a1, a2, . . . , a15}. (See Figure 5).
Clearly, in H[Nα∪A], d(u1, u2) = 8, unless u1u2 ∈ E(G); hence, since dG(u1, u2) ≤

8, we have dG(u1, u2) = dH(u1, u2). This, in conjunction with the fact that new ver-
tices and new edges have been attached exclusively to u1 and u2, yields

dG(x, y) = dH(x, y) for all x, y ∈ V (G).(10)

Let G1 = H[N≤α ∪ A] and G2 = H[N≥α ∪ A]. Thus G1 and G2 have in common
Nα ∪A. Hence, letting |V (Gi)| = ni for i = 1, 2, we obtain

n1 + n2 − 32 = n.(11)

Note that |N≤α| ≥
∑31

i=0 ki ≥ 64 and |N≥α| ≥
∑e

e−31 ki ≥ 64. Hence, n1 ≥ |N≤α| +
|A| ≥ 64 + 15 = 79 and n2 ≥ |N≥α| + |A| ≥ 64 + 15 = 79. Thus from (11), we have
n1 ≤ n− 47. We are going to bound σ(G) using upper bounds on σ(G1) and σ(G2).
Hence, the following two claims, which are easy to verify, are important.

Claim 5. G1 and G2 are 3-edge-connected blocks.
Claim 6. Let X =

∑15
i=1 σG1

(ai) and Y =
∑15

i=1 σG2
(ai). Then

σ(G) = σ(G1) + σ(G2) − 2(X + Y ) + 2σA(A)

+ 2
∑

x∈N<α

∑
y∈N>α

dH(x, y) −
∑

(x,y)∈Nα×Nα

dH(x, y).

Clearly,

σA(A) ≤ σ(K) = 568 and
∑

(x,y)∈Nα×Nα

dH(x, y) = 2dG(u1, u2) ≥ 2.(12)
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Now in H,

2

⎛
⎝ ∑

x∈N<α,y∈N>α

dH(x, y)

⎞
⎠ ≤ 2

∑
x∈N<α

∑
y∈N>α

[dH(x, u1) + dH(u1, y)]

= 2
∑

x∈N<α

[|N>α|dH(x, u1) + σG2
(u1) − σA∪{u2}(u1)]

= 2[|N>α|(σG1(u1) − σA∪{u2}(u1)) + |N<α|(σG2(u1) − σA∪{u2}(u1))].

Since dG(u1, u2) ≥ 1, we have σA∪{u2}(u1) ≥ 40. Thus,

2
∑

x∈N<α,y∈N>α

dH(x, y) ≤ 2[(n2 − 17)(σG1
(u1)− 40)+ (n1 − 17)(σG2(u1)− 40)].(13)

We find lower bounds on X and Y . Note that

σG1
(u1) =

∑
x∈V (G1)

d(u1, x) ≤
∑

x∈V (G1)

[d(u1, a1) + d(a1, x)]

=
∑

x∈V (G1)

[1 + d(a1, x)] = n1 + σG1(a1).

Therefore, σG1(a1) ≥ σG1
(u1) − n1. Similarly, σG1

(a2), σG1
(a3) ≥ σG1

(u1) − n1;
σG1(a4) ≥ σG1(u1) − 2n1; σG1

(a5), σG1(a6), σG1
(a7) ≥ σG1

(u1) − 3n1; σG1
(a8) ≥

σG1(u1)−4n1; σG1(a9), σG1(a10), σG1(a11) ≥ σG1(u1)−5n1; σG1(a12) ≥ σG1(u1)−6n1;
σG1(a13), σG1(a14), σG1(a15) ≥ σG1(u1) − 7n1. Summing yields

X ≥ 15σG1
(u1) − 60n1.(14)

Analogously,

Y ≥ 15σG2
(u1) − 60n2.(15)

By Claim 5, we use induction to bound σ(G1) and σ(G2). Hence σ(Gi) ≤ ni(ni −
1)

(
1
6ni + 24

)
for i = 1, 2. Combining this with Claim 6 and (12), (13), (14), and (15)

yields

σ(G) ≤ n1(n1 − 1)

(
1

6
n1 + 24

)
+ n2(n2 − 1)

(
1

6
n2 + 24

)
+2(n2 − 32)σG1

(u1) + 2(n1 − 32)σG2
(u1) + 40n + 5134.

This, in conjunction with Lemma 1 and (11), yields

σ(G) ≤ n(n− 1)

(
1

6
n + 24

)
+

{
3142

3
(n1 + n2) −

53

3
n1n2 + 40n− 14706

}
.

Denote the term in curly brackets of the right-hand side of the inequality by f(n1, n2).
We show that f(n1, n2) ≤ 0. Recall that n1, n2 ≥ 79, and thus (n1−79)(n2−79) ≥ 0.
It follows that n1n2 ≥ 79(n1 + n2) − 6241. This, in conjunction with (11), yields
f(n1, n2) ≤ 84405 − 925

3 n ≤ 0 for all n ≥ 274, as desired. This completes the proof
of Lemma 7.
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4. An upper bound on average distance in 3-edge-connected graphs.
We now show that the upper bound on the distance, proved in the previous section
for 3-edge-connected blocks, holds for all 3-edge-connected graphs.

Theorem 8. Let G be a 3-edge-connected graph of order n. Then

μ(G) ≤ 1

6
n + 24.

Apart from the additive constant, this inequality is best possible.
Proof. We prove this theorem by induction on the number of blocks in G. If G

is a block, then the theorem follows by Lemma 7. So assume that G has at least two
blocks. We prove the equivalent statement

σ(G) ≤ n(n− 1)

(
1

6
n + 24

)
.

Let G1 be an end block, G2 be the union of the other blocks, and u be the unique
common vertex of G1 and G2. Hence, letting ni = |V (Gi)| for i = 1, 2, we obtain
n1 + n2 − 1 = n. Note that

σ(G) =
∑

(x,y)∈V (G)×V (G)

d(x, y)

= σ(G1) + 2
∑

x∈V (G1)−{u}

∑
y∈V (G2)−{u}

d(x, y) + σ(G2)

= σ(G1) + 2[(n2 − 1)σG1
(u) + (n1 − 1)σG2

(u)] + σ(G2).(16)

It is easy to verify that G1 and G2 are 3-edge-connected. Hence, by the induction
hypothesis, we get σ(Gi) ≤ ni(ni − 1)( 1

6ni + 24) for i = 1, 2. By Lemma 1, we have
σGi(u) ≤ 1

4 (n2
i − ni) + 1

2 for i = 1, 2. This, in conjunction with n1 + n2 − 1 = n and
(16), yields

σ(G) ≤ n(n− 1)

(
1

6
n + 24

)
+

{
146

3
(n1 + n2) −

143

3
n1n2 −

149

3

}
.

Denote the term in curly brackets of the right-hand side of the inequality by f(n1, n2).
We show that f(n1, n2) ≤ 0. Since n1, n2 ≥ 4, we have (n1 − 4)(n2 − 4) ≥ 0, that
is, n1n2 ≥ 4(n1 + n2) − 16. This, in conjunction with n1 + n2 = n + 1, yields
f(n1, n2) ≤ 571 − 142n ≤ 0 for all n ≥ 5. Observe that if n = 4, then G = K4, and
our result clearly holds.

It remains to show that, apart from an additive constant, the bound is best
possible. Let n be an even integer, and let Gi = K2, where i ∈ N. Let Gn,3 =
G1 + G2 + · · · + Gk, where k = n

2 . Clearly, Gn,3 is 3-edge-connected and μ(Gn,3) =
1
6n + 1

6 + 1
2(n−1) , as desired.

Theorem 9. Let G be a 4-edge-connected graph of order n. Then

μ(G) ≤ 1

6
n + 24.

Apart from the additive constant, this inequality is best possible.
Proof. Since a 4-edge-connected graph is also 3-edge-connected, the previous

theorem applies. To see that, apart from the additive constant, the bound is best
possible, consider the graph Gn,4 = G1 + G2 + G3 + · · · + Gk, where Gi = K1, for



1052 P. DANKELMANN, S. MUKWEMBI, AND H. C. SWART

i = 1, k, Gi = K2 for i = 3, 4, . . . , k− 2, Gi = K4, for i = 2, k− 1, and k = n−2
2 , n an

even integer. Clearly, Gn,4 is 4-edge-connected and

μ(G) =
1

6
n +

1

6
+

100 − 21n

2n(n− 1)
,

as desired.
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1. Introduction. For two graphs G and H, the Rado arrow notation G → (H)p
is the statement that if the edges of G are p-colored, then there exists a monochromatic
subgraph of G isomorphic to H. In 1967 Erdős and Hajnal [2] (also see [3]) conjectured
that for each p there exists a graph G, containing no K4, which has the property that
G → (K3)p. This conjecture was proved by Folkman [4] for p = 2. A Folkman graph
is a K4-free graph G with G → (K3)2. Nešetřil and Rödl [9] proved the conjecture
for general p. In particular, for any k1 < k2 and any p ≥ 2, one could ask what is the
smallest integer n such that there is a Kk2-free graph G on n vertices satisfying

G → (Kk1)p.

Let f(p, k1, k2) denote this smallest integer n. Graham [6] proved that f(2, 3, 6) = 8
by showing

K8 \ C5 → (K3)2.

Irving [7] proved that f(2, 3, 5) ≤ 18, and it was further improved by Khadzhiivanov
and Nenov [8] to f(2, 3, 5) ≤ 16. Finally, Piwakowski, Radziszowski, and Urbański
[13] and Nenov [12] proved f(2, 3, 5) = 15. However, both upper bounds of Folkman
and of Nešetřil and Rödl for f(2, 3, 4) are extremely large. Frankl and Rödl [5] first
gave a reasonable bound

f(2, 3, 4) ≤ 7 × 1011.

Erdős set a prize of $100 for the challenge f(2, 3, 4) ≤ 1010. This reward was claimed
by Spencer [10, 11], who proved that

f(2, 3, 4) < 3 × 109.

Erdős then offered another $100 prize (see [1, page 46]) for the new challenge

f(2, 3, 4) < 106.

∗Received by the editors March 29, 2007; accepted for publication (in revised form) August 20,
2007; published electronically January 22, 2008.

http://www.siam.org/journals/sidma/21-4/68674.html
†Department of Mathematics, University of South Carolina, Columbia, SC 29208 (lu@math.sc.

edu). This author was supported in part by NSF grant DMS 0701111.
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Here we claim the reward.
Theorem 1.

f(2, 3, 4) ≤ 9697.

In fact, we construct several “small” Folkman graphs. This paper is organized as
follows. In section 2, we use spectral analysis to establish a sufficient condition for
G → (K3)2. This allows us to test a set of graphs efficiently. In section 3, we examine
a special class of graphs and find four “small” Folkman graphs.

2. Spectral analysis.

2.1. Localization. Our starting point is the following lemma from Spencer [10].
We will use the following notation.

For any graph H and a vertex-set partition V (H) = X ∪ Y , let e(X,Y ) be the
number of edges in H with one end in X and the other end in Y . Let b(H) be the
maximum of e(X,Y ) among all partition V (H) = X ∪ Y .

Consider a random partition V (H) = X∪Y by putting each vertex independently
into X or Y with equal probability. The expected number of e(X,Y ) is exactly
1
2 |E(H)|. Thus we have

b(H) ≥ 1

2
|E(H)|.

Definition 1. For 0 < δ < 1
2 , a graph H is said to be δ-fair if b(H) < ( 1

2 +
δ)|E(H)|.

Supposing G �→ (K3)2, we see that the edges of G can be colored in red and blue
with no monochromatic triangle. For each triangle, there are two possible colorings
(two red edges and a blue edge or vice versa). Each triangle has two vertices incident
with a red edge and a blue edge. Thus

|{xyz : xy is a red edge, xz is a blue edge, and yz is an edge}| = 2|{all triangles}|.

For any vertex v ∈ V (G), let Γ(v) be the set of neighbors of v in G. Let Gv be
the induced subgraph on Γ(v). The left-hand side of the above equation is at most∑

v b(Gv) while the right-hand side is exactly 2
3

∑
v |E(Gv)|. This observation leads

to the following lemma.
Lemma 1 (see Spencer [10]). If

∑
v b(Gv) <

2
3

∑
v |E(Gv)|, then G → (K3)2.

Corollary 1. Suppose for each vertex v the local graph Gv is 1
6 -fair. Then

G → (K3)2.

If in addition Gv is triangle-free for each v, then G is a Folkman graph.

2.2. δ-fair graphs. Suppose H is a graph on vertices v1, v2, . . . , vn. Let A =
(aij) be the adjacency matrix of H so that

aij =

{
1 vivj is an edge of H;
0 otherwise.

Let 1 denote the n-dimensional column vector with all entries 1. Let d = (d1, d2, . . . , dn)′

be the column vector of degrees. Here di is the degree of vertex vi. By definition, we
have

(1) d = A · 1.
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For any set S ⊂ V (H), the volume of S is defined as

Vol(S) =
∑
v∈S

dv.

We write Vol(H) = Vol(V (H)) =
∑

v dv = 2|E(H)|. Let d̄ = Vol(H)
n be the average

degree of H.
Lemma 2. If the smallest eigenvalue of M = A − 1

Vol(H)d · d′ is greater than

−2δd̄, then H is δ-fair.
Proof. For any partition of the vertex set V (H) = X ∪ Y , let 1X be the n-

dimensional column vector whose entries are 1 if the index is in X and 0 otherwise.
The vector 1Y is defined similarly. By definition, we have

(2) 1X + 1Y = 1.

From (1), we have

M · 1 =

(
A− 1

Vol(H)
d · d′

)
· 1

= A · 1 − 1

Vol(H)
d · d′ · 1

= d − 1

Vol(H)
dVol(H)

= 0.

Thus, 0 is always an eigenvalue of M and 1 is the corresponding eigenvector.
Let α(t) = (1 − t)1X − t1Y . For any t, we claim

α(t)′ ·M · α(t) = −e(X,Y ) +
1

Vol(H)
Vol(X)Vol(Y ).

From (2), we can rewrite

α(t) = 1X − t1 = −1Y + (1 − t)1.

We have

α(t)′ ·M · α(t) = (1X − t1)′ ·M · (−1Y + (1 − t)1)

= −1′
X ·M · 1Y

= −1′
X ·A · 1Y +

1

Vol(H)
1′
X · d · d′ · 1Y

= −e(X,Y ) +
Vol(X)Vol(Y )

Vol(H)
.

Here we use the fact that M · 1 = 0.
Let ρ be the largest eigenvalue of −M . By assumption, ρ < 2δd̄. We have

e(X,Y ) − 1

Vol(H)
Vol(X)Vol(Y ) = α(t)′ · (−M) · α(t)

≤ ρ‖α(t)‖2.
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Choose t = |X|
n so that ‖α(t)‖2 reaches its minimum |X||Y |

n . We have

e(X,Y ) − Vol(X)Vol(Y )

Vol(H)
≤ ρ

|X||Y |
n

.

Apply the Cauchy–Schwarz inequalities to Vol(X)Vol(Y ) and to |X||Y |. We have

e(X,Y ) ≤ Vol(X)Vol(Y )

Vol(H)
+ ρ

|X||Y |
n

.

≤ (Vol(X) + Vol(Y ))2

4Vol(H)
+ ρ

(|X| + |Y |)2
4n

=
Vol(H)

4
+ ρ

n

4

<
Vol(H)

4
+ 2δd̄

n

4

= (1 + 2δ)
Vol(H)

4

= (
1

2
+ δ)|E(H)|.

Since this holds for any partition X ∪ Y , we have

b(H) ≤
(

1

2
+ δ

)
|E(H)|.

H is δ-fair as claimed.
Corollary 2. Suppose H is a d-regular graph and that the smallest eigenvalue

of its adjacency matrix A is greater than −2δd. Then H is δ-fair.
Proof. Since H is d-regular, we have d = d1 and Vol(H) = nd. Thus,

M = A− d

n
1 · 1′.

Note that 1 is the eigenvector of A with respect to the eigenvalue d. Suppose α is
another eigenvector of A with respect to an eigenvalue λ (λ �= d). The eigenvector α
is orthogonal to 1. We have Mα = Aα = λα. Suppose A has eigenvalues λ1 ≤ λ2 ≤
· · · ≤ λn = d. Then M has eigenvalues λ1, λ2, . . . , λn−1, and 0. In particular, the
smallest eigenvalue of M equals the smallest eigenvalue of A. The conclusion follows
from Lemma 2.

Remark. The largest Laplacian eigenvalue of graph H can also be used to derive
the δ-fairness of H. However, in practice, it is not as effective as the matrix M .

2.3. The spectrum of circulant graphs. Let Zn = Z/nZ be the cyclic group
of order n. A circulant graph H generated by a subset S ⊂ Zn is a graph with the
vertex set V (H) = Zn and the edge set E(H) = {xy | x− y ∈ S}. Here S ⊂ Zn is a
subset satisfying that

• if s ∈ S, then −s ∈ S;
• 0 �∈ S.

The following lemma determines the spectrum of circulant graphs.
Lemma 3. The eigenvalues of the adjacency matrix for the circulant graph gen-

erated by S ⊂ Zn are ∑
s∈S

cos
2πis

n
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for i = 0, . . . , n− 1.
Proof. Let J = (Jij) be the adjacency matrix of the directed cycle on n vertices.

Namely, Jij = 1 if j − i ≡ 1 mod n, and 0 otherwise. The adjacency matrix of the
circulant graph generated by (Zn, S) can be expressed as

A =
∑
s∈S

Js.

We identify elements Zn with 0, 1, 2, . . . , n − 1 and define a polynomial f(x) =∑
s∈S xs. Note that A = f(J). The eigenvalues of A are completely determined

by the eigenvalues of J and the polynomial f(x).

Let ρ = e
2πi
n denote the primitive nth unit root. We observe that J has eigenvalues

1, ρ, ρ2, . . . , ρn−1.

Thus, the eigenvalues of A are

f(1), f(ρ), . . . , f(ρn−1).

Since A is symmetric, the above eigenvalues are all real. For i = 0, 1, 2, . . . , n− 1, we
have

f(ρi) = �(f(ρi)) =
∑
s∈S

cos
2πis

n
.

3. Graph L(m, s). The previous section allows us to test a special class of
graphs efficiently.

Suppose m is an odd positive integer and s < m is another positive integer
relatively prime to m. Let φ(m) be the totient function of m, which is the number
of positive integers not exceeding m and relatively prime to m. By Euler’s theorem,
we have sφ(m) ≡ 1 mod m. Let n be the smallest positive integer satisfying sn ≡ 1
mod m. In particular, n is a factor of φ(m). Define a subset S = S(s) ⊂ Zm as

S = {si mod m | i = 0, 1, 2, . . . , n− 1}.

We observe that
• if −1 ∈ S, then for any t ∈ S, −t ∈ S;
• with inherited multiplication from Zm, S forms an abelian group isomorphic

to Zn.
Definition 2. We define graph L(m, s) to be the circulant graph on m vertices

generated by S = S(s) provided −1 ∈ S.
The graph G = L(m, s) is a vertex-transitive graph on m vertices. All local

graphs Gv are isomorphic to each other. The following lemma shows that Gv is also
a circulant graph under isomorphism.

Lemma 4. The unique local graph of L(m, s) is isomorphic to a circulant graph
of order n.

Proof. The local graph H of L(m, s) can be described as follows.
1. V (H) = S.
2. E(H) = {xy | x ∈ S, y ∈ S, and x− y ∈ S}.

We define a bijection f : Zn → S which maps i to si mod m. This is a well-defined
map since sn ≡ 1 mod m. The map f is a group isomorphism from Zn to S:

f(i + j) = f(i)f(j).
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We define T ⊂ Zn as

T = {i | f(i) − 1 ∈ S}.

Let H ′ be the circulant graph generated by (Zn, T ). If suffices to show f is a graph
homomorphism mapping H ′ to H.

On the one hand, for any edge jk ∈ E(H ′), we have j − k ∈ T . Thus,

f(j − k) − 1 ∈ S.

Since f(j)−f(k) = f(k)(f(j−k)−1) and S is a group, we conclude that f(j)−f(k) ∈
S. Equivalently, f(j)f(k) is an edge of H.

On the other hand, for any edge f(j)f(k) ∈ E(H), we have f(j)−f(k) ∈ S. Note
that f(−k) is the inverse of f(k) in S. We conclude that

f(j − k) − 1 = f(−k)(f(j) − f(k)) ∈ S.

Thus, j − k ∈ T and jk is an edge of H ′.

3.1. Results from computation. For a fixed pair (m, s), let H be the local
graph of L(m, s) and A the adjacency matrix of H. Let σ = σ(m, s) be the ratio of
the smallest eigenvalue and the largest eigenvalue of A. If σ > − 1

3 , then H is 1
6 -fair

from Corollary 2. Thus, from Corollary 1, L(m, s) → (K3)2. Table 1 (except for the
last row) shows graphs L(m, s) satisfying that

1. L(m, s) is K4-free;
2. σ = σ(m, s) is maximized in the sense that σ(m, s) > σ(m′, s′), for all pairs

(m′, s′) in the table and m′ < m.

We note that σ > − 1
3 in the last four rows of Table 1. Thus, L(9697, 4),

L(30193, 53), L(33121, 2), and L(57401, 7) are Folkman graphs.

Table 1

A set of candidates for Folkman graphs.

L(m, s) σ
L(17, 2) −0.8047 · · ·
L(61, 8) −0.7826 · · ·
L(79, 12) −0.7625 · · ·
L(127, 5) −0.6363 · · ·
L(421, 7) −0.6253 · · ·
L(457, 6) −0.6
L(631, 24) −0.5749 · · ·
L(761, 3) −0.5613 · · ·
L(785, 53) −0.5404 · · ·
L(941, 12) −0.5376 · · ·
L(1777, 53) −0.5216 · · ·
L(1801, 125) −0.4912 · · ·
L(2641, 2) −0.4275 · · ·
L(9697, 4) −0.3307 · · ·

L(30193, 53) −0.3094 · · ·
L(33121, 2) −0.2665 · · ·
L(57401, 7) −0.3289 · · ·

Proof of Theorem 1. It suffices to show that G = L(9697, 4) is a Folkman graph.
The local graph of G is a circulant graph H generated by T ⊂ Zn. Here n = 1212
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and

T = {3, 9, 46, 57, 62, 70, 81, 91, 98, 115, 141, 166, 202, 204, 233, 271,

286, 301, 325, 342, 372, 376, 383, 396, 397, 403, 411, 428, 430, 436,

448, 450, 456, 471, 472, 479, 489, 516, 522, 532, 556, 564, 566, 588,

593, 595, 617, 619, 624, 646, 648, 656, 680, 690, 696, 723, 733, 740,

741, 756, 762, 764, 776, 782, 784, 801, 809, 815, 816, 829, 836, 840,

870, 887, 911, 926, 941, 979, 1008, 1010, 1046, 1071, 1097, 1114,

1121, 1131, 1142, 1150, 1155, 1166, 1203, 1209}.

An easy calculation (by Maple) shows that H has the following properties:
1. H is a 92-regular and triangle-free graph.
2. The smallest eigenvalue of the adjacency matrix of H is

∑
t∈T

cos
2π · 502t

1212
≈ −30.43170597 . . . .

Since 30.43170597 . . . < 92
3 , H is 1

6 -fair. Thus, L(9697, 4) is a Folkman graph on 9697
vertices.

Remark 1. We say G is a strong Folkman graph if G is K4-free and G → (K4−e)2.
Here K4 − e is the graph obtained by removing one edge from K4. We can show that
both L(30193, 53) and L(33121, 2) are strong Folkman graphs.

Remark 2. Graphs with relatively large σ (as shown in Table 1) are good candi-
dates for Folkman graphs. Recently Exoo showed that L(17, 2), L(61, 8), L(79, 12),
L(421, 7), and L(631, 24) are not Folkman graphs. Little is known for other graphs.
For example, is L(2641, 2) a Folkman graph?

Remark 3. Exoo (see [14]) conjectured that L(127, 5) is a Folkman graph. The
set S ⊂ Z127 generated by 5 is precisely all nonzero cubes in Z127. Exoo did extensive
computation on this graph. If his conjecture is true, then it implies f(2, 3, 4) ≤ 127.

Remark 4. Recently, Dudek and Rödl independently proved f(2, 3, 4) < 130000.
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NONSEPARATING INDUCED CYCLES CONSISTING OF
CONTRACTIBLE EDGES IN k-CONNECTED GRAPHS∗

YOSHIMI EGAWA† , KATSUMI INOUE† , AND KEN-ICHI KAWARABAYASHI‡

Abstract. Egawa and Saito proved that every k-connected graph with girth at least 4 has an
induced cycle C such that G− V (C) is (k − 3)-connected, and every edge of C is contractible. This
means that we can find not only a nonseparating cycle C but also one that consists of contractible
edges. Motivated by this result, we prove that if G is a k-connected graph which does not contain
K−

4 , then G has an induced cycle C such that G− V (C) is (k − 2)-connected and either every edge
of C is k-contractible or C is a triangle. As a corollary of this result, we get the following result:
Every k-connected graph with girth at least 4 has an induced cycle C such that G−V (C) is (k− 2)-
connected, and every edge of C is contractible. This theorem is a generalization of some known
theorems. In particular, this generalizes the above-mentioned result proved by Egawa and Saito and
the result of Egawa which says that a k-connected graph with girth at least 4 has an induced cycle
C such that G− V (C) is (k − 2)-connected.

Key words. nonseparating cycle, contractible edge, k-connected graphs

AMS subject classification. 05C40

DOI. 10.1137/060665956

1. Introduction. Let k ≥ 2 be an integer. An edge e of a k-connected graph is
said to be k-contractible if the graph obtained from G by contracting e (and replacing
each of the resulting pairs of double edges by a single edge) is still k-connected.

The study of contractible edges and their applications to noseparating cycles has
received much attention by many researchers; cf. [1, 2, 3, 5, 9, 10].

There are some theorems concerning nonseparating induced cycles in k-connected
graphs. In [9], Thomassen proved the following “fundamental” theorem.

Theorem 1. Let G be a k-connected graph. Then G has an induced cycle C such
that G− V (C) is (k − 3)-connected.

Later, Egawa [2, 3] considered the cases of girth 4 and girth 5 in Theorem 1 and
proved the following theorems.

Theorem 2. Let G be a k-connected graph with girth at least 4. Then G has an
induced cycle C such that G− V (C) is (k − 2)-connected.

Theorem 3. Let G be a k-connected graph with girth at least 5. Then G has an
induced cycle C such that G− V (C) is (k − 1)-connected.

Let K−
4 be the graph obtained from the complete graph of order 4 by deleting an

edge. Recently, Kawarabayashi [6] proved the following theorem, which is stronger
than Theorem 2.

Theorem 4. Let G be a k-connected graph which does not contain a K−
4 . Then

G has an induced cycle C such that G− V (C) is (k − 2)-connected.
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The key to the proofs of the above results is to use a k-contractible edge. In fact,
what we need to do is apply induction on the number of vertices. For instance, let
us consider a proof of Theorem 1. If there is a triangle T in G, then we just delete
this triangle T . This decreases the connectivity to at most 3, so we are done. So we
may assume that G has no triangles. Then Thomassen [9] proved that there is a k-
contractible edge e in G. We contract this edge e and apply induction (on the number
of vertices). This is possible since the resulting graph is still k-connected. This is,
roughly, how the proof in [9] goes. As we see here, the existence of k-contractible
edges plays an important role in this proof. This is also the case in [2, 3, 6].

But if we look at k-connected graphs with girth at least 4, then G must contain
a k-contractible edge by the result of Thomassen [9]. In fact, there are many k-
contractible edges in these graphs; see [4]. So one natural question is whether we can
find a k-contractible edge in some certain configuration. In particular, since we know
that such graphs have nonseparating cycles by Theorems 2, 3, and 4, thus one natural
question is whether we can find a nonseparating cycle containing a k-contractible
edge.

Motivated by this question, several results have appeared in the literature. In [1],
Dean proved the following theorem.

Theorem 5. Let G be a k-connected graph with girth at least 4. Then G has an
induced cycle C such that each edge of C is a k-contractible edge and G − V (C) is
connected.

As a generalization of Theorem 5, Egawa and Saito [5] proved the following the-
orem.

Theorem 6. Let G be a k-connected graph with girth at least 4. Then G has an
induced cycle C such that each edge of C is a k-contractible edge and G − V (C) is
(k − 3)-connected.

In this paper, we prove the following theorem, which is a common refinement of
Theorems 4 and 6.

Theorem 7. Let G be a k-connected graph which does not contain a K−
4 . Then

G has an induced cycle C such that G− V (C) is (k − 2)-connected and either C is a
triangle or each edge of C is a k-contractible edge.

It is easy to see that the following corollary immediately follows from Theorem 7.
Corollary 8. Let G be a k-connected graph with girth at least 4. Then G has

an induced cycle C such that each edge of C is a k-contractible edge and G−V (C) is
(k − 2)-connected.

In this paper, all graphs considered are finite, undirected, and without loops or
multiple edges. For a graph G, V (G), E(G), and δ(G) denote the set of vertices, the
set of edges, and the minimum degree of G, respectively.

For a vertex x ∈ V (G), let N(x) = NG(x) denote the neighborhood of x in G,
and let dG(x) = |NG(x)|. For a subset S of V (G), N(S) = NG(S) denotes the union
of N(x) as x ranges over S.

For a subset S of V (G), the subgraph induced by S is denoted by 〈S〉. For a
subgraph H of G and a vertex v ∈ V (G), we let NH(v) = NG(v) ∩ V (H).

A cutset consisting of k vertices is called a k-cutset.
In our proof of Theorem 7, when there is no confusion we sometimes write H ∩A

for a subgraph H and a vertex set A.

2. Proof of Theorem 7. Throughout this section, we assume that G is k-
connected and that G does not contain K−

4 . Then it is easy to see that, for any cycle
C of order 3 or 4, |NC(v)| ≤ 2 for v ∈ V (G) − V (C).
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We first note that, when k = 3, Thomassen and Toft [10] proved that, for any
3-connected graph of order at least 5, G has an induced cycle C such that each edge
of C is 3-contractible and G− V (C) is connected. Hence, we may assume k ≥ 4.

For a technical reason, we prove the following statement, which immediately
implies Theorem 7.

(I) Let G be a k-connected graph that does not contain K−
4 . Then G has an

induced cycle C such that G − V (C) is (k − 2)-connected and either each edge of
C is k-contractible, or C is a triangle. Moreover, for any vertex v ∈ V (G) − V (C),
|NC(v)| ≤ 2.

If there exists a triangle T such that G − V (T ) is (k − 2)-connected, then (I)
holds. Thus we may assume that there are no such triangles. This implies that every
triangle is contained in a k-cutset, which in particular implies that no k-contractible
edge is contained in a triangle. Suppose that there is no induced cycle C, as described
in (I). First, we prove (I) for the following case.

Case 1. Every k-contractible edge is contained in a cycle of length 4 (this includes
the case where G has no k-contractible edge).

Recall that every triangle is contained in a k-cutset, and no k-contractible edge
is contained in a triangle. Since we assume that (I) fails, any C4 consisting of k-
contractible edges only is contained in a (k+ 1)-cutset. Note that, for any C4 and for
any vertex v ∈ V (G) − V (C4), |NG(v) ∩ V (C4)| ≤ 2, and for any triangle T and for
any vertex v ∈ V (G) − V (T ), |NG(v) ∩ V (T )| ≤ 1.

Let A1, A2, and A3 denote, respectively, the set of k-cutsets containing a non-
k-contractible edge which is not contained in any triangle, k-cutsets containing a
triangle, and (k+1)-cutsets containing a C4, each edge of which is k-contractible. We
claim that the assumption of Case 1 and the observation in the preceding paragraph
imply that A1 ∪ A2 ∪ A3 	= ∅. If there is a triangle, then clearly the assertion holds.
Otherwise, every edge is not contained in any triangles. If there is an edge that is
not k-contractible, then clearly the assertion holds. On the other hand, if every edge
is k-contractible, then the assumption of Case 1 implies that there must be a C4 in
which each edge consists of k-contractible edges. Since we assume (I) fails, this C4 is
contained in a (k + 1)-cutset of G. Hence we may assume that A1 ∪A2 ∪A3 	= ∅.

Let A ∈ A1 ∪A2 ∪A3 and let H be a component in G−A. Let W = G−A−H.
First, we prove the following lemmas.

Lemma 1. If A ∈ A1 ∪ A2, then |H| ≥ k − 1. (Thus, |W | ≥ k − 1.) If A ∈ A3,
then |H| ≥ k − 2. (Thus, |W | ≥ k − 2.)

Proof. It is easy to see that there exists an edge zw in H. Since G does not
contain a K−

4 , we have |NG(z) ∩ NG(w)| ≤ 1. Hence, |NG(z) ∪ NG(w)| ≥ 2k − 1,
which implies |H| ≥ 2k − 1 − |A|. Hence when A ∈ A1 ∪ A2, |H| ≥ k − 1; when
A ∈ A3, |H| ≥ k − 2.

Hence, if there is no confusion, we may write H ∩ A instead of V (H) ∩ A. We
may also write W ∩A,W ∩A′, etc., if there is no confusion. These may be applied to
proofs of Lemmas 3, 8, 14, etc.

Lemma 2. Let A ∈ A1 ∪ A2, A
′ ∈ A1 ∪ A2 ∪ A3, and let H be a component in

G−A. Then H 	⊆ A′.

Proof. Suppose H ⊆ A′. Let W = G−A−H. Let H ′ be a component in G−A′,
and let W ′ denote G−A′−H ′. By Lemma 1, |H|, |W | ≥ k−1 and |H ′|, |W ′| ≥ k−2.
Let H1, H2, and H3 denote H∩H ′, H∩A′, and H∩W ′, respectively. Actually, by our
assumption, H ⊆ A′, H1 = H3 = ∅. Also, let W1, W2, and W3 denote W ∩H ′, W ∩A′,
and W ∩W ′, respectively. Let Q1, Q2, and Q3 denote A ∩H ′, A ∩ A′, and A ∩W ′,
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respectively. Suppose A′ ∈ A3. Since |H| ≥ k−1, |H2| ≥ k−1. Hence |W2 ∪Q2| ≤ 2.
Since |W | ≥ k − 1 and |W2| ≤ 2, W1 	= ∅ or W3 	= ∅. By choosing a different
component of G − A′, if necessary, we may assume that W1 and W3 are symmetric.
So, without loss of generality, we may assume W3 	= ∅. Then W2∪Q2∪Q3 is a cutset,
and hence |W2|+|Q2|+|Q3| ≥ k. Since |W2|+|Q2| ≤ 2, this implies |Q3| ≥ k−2. Now
if W1 	= ∅, we similarly obtain |Q1| ≥ k − 2; if W1 = ∅, we have |Q1| = |H ′| ≥ k − 2.
Thus |Q1| ≥ k − 2. Consequently, 2(k − 2) ≤ |Q1| + |Q3| = |A| − |Q2| = k − |Q2|.
Since k ≥ 4, this forces k = 4, |Q2| = 0, and |Q1| = |Q3| = 2, which implies |W2| = 2,
|H2| = 3, and A′ = W2 ∪ H2. Since there is no edge between W2 and H2, this
contradicts the fact that A′ contains a cycle of length 4. This completes the proof for
the case where A′ ∈ A3, and the case where A′ ∈ A1 ∪A2 can be settled in a similar
way.

Lemma 3. Let A ∈ A1 ∪ A2 ∪ A3, A
′ ∈ A1 ∪ A2, and let H be a component in

G−A. Then H 	⊆ A′.

Proof. Suppose H ⊆ A′. Let W = G − A − H. Let H ′ be a component in
G − A′, and also let W ′ denote G − A′ − H ′. By Lemma 2, |H|, |W | ≥ k − 2 and
|H ′|, |W ′| ≥ k − 1. Let H1, H2, and H3 denote H ∩ H ′, H ∩ A′, and H ∩ W ′,
respectively. Actually, by our assumption, H ⊆ A′, H1 = H3 = ∅. Also, let W1, W2,
and W3 denote W ∩H ′, W ∩A′, and W ∩W ′, respectively. Let Q1, Q2, and Q3 denote
A∩H ′, A∩A′, and A∩W ′, respectively. In view of Lemma 2, we may assume A ∈ A3.
Since |A| = k + 1 and |A′| = k, 2k + 1 = |A| + |A′| =

∑3
i=1 |Qi| + |W2| + |Q2| + |H2|.

Since |H| ≥ k − 2, |H2| ≥ k − 2. Hence |W2 ∪Q2| ≤ 2.

Applying Lemma 2 with the roles of A and A′ interchanged, we see from H1 =
H3 = ∅ that W1 	= ∅ and W3 	= ∅, and hence both W2∪Q2∪Q3 and W2∪Q1∪Q2 are
cutsets. Since A contains a k-contractible edge, this implies |W2∪Q2∪Q3|+|W2∪Q2∪
Q1| ≥ 2k+1. Also, since |H2| ≥ k−2, 2k+1 = |A|+ |A′| =

∑3
i=1 |Qi|+ |W2|+ |Q2|+

|H2| = |W2∪Q2∪Q3|+ |W2∪Q2∪Q1|+ |H2|− |W2| ≥ 2k+1+k−2−|W2| ≥ 3k−3.
This holds only if k = 4 and |W2| = 2. This implies |H2| = 2 and |Q2| = 0, which
in turn implies that Q1 or Q3 contains a cycle of length 4. Hence, either |Q1| ≥ 4
or |Q3| ≥ 4, and thus |Q1| ≤ 1 or |Q3| ≤ 1. But then, either |W2 ∪ Q2 ∪ Q3| ≤ 3 or
|W2 ∪Q2 ∪Q1| ≤ 3, which is contrary to the fact that G has connectivity k ≥ 4.

We henceforth assume that we have chosen A ∈ (A1 ∪A2 ∪A3) and a component
H in G−A so that |H| is least possible.

Recall that |H| ≥ k − 2, and hence E(H) 	= ∅. Note also that if an edge e with
V (e) ∩ H 	= ∅ is not k-contractible, then there exists a k-cutset A′ containing e (so
A′ ∩H 	= ∅) such that A′ ∈ A2 or A′ ∈ A1, depending on whether e is contained in a
triangle or not.

In the rest of the proof, we let W = G − A − H, and we let C ′ denote the set
of these cycles T ′ of length 4 such that each edge of T ′ is k-contractible, and such
that |T ′ ∩ H| ≥ 2 (so T ′ ⊆ A ∪ H). Further, we use the following notation for
A′ ∈ A1 ∪A2 ∪A3: Let H ′ be a component in G−A′, and let W ′ denote G−A′−H ′.
Let H1, H2, and H3 denote H ∩H ′, H ∩A′, and H ∩W ′, respectively. Also, let W1,
W2, and W3 denote W ∩H ′, W ∩A′, and W ∩W ′, respectively. Let Q1, Q2, and Q3

denote A ∩H ′, A ∩A′, and A ∩W ′, respectively.

We need the following lemma, which is due to Mader [7, 8].

Lemma 4. Let G be a k-connected graph. Let B be a k-cutset containing either
an edge not contained in any triangle or a triangle. Let S be a component in G−B.
We choose B and S so that |S| is least possible. Assume there exists an edge uv with
v ∈ S and u ∈ B ∪ S such that either vu is not contained in any triangle and vu is
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not k-contractible, or uv is contained in a triangle which is contained in a k-cutset.
Then |S| ≤ 1

2k.
We prove the following lemma.
Lemma 5. A ∈ A3.
Proof. Assume A ∈ A1∪A2. Since k−1 > 1

2k for k ≥ 4, it follows from Lemmas 1
and 4, and the assumption of Case 1, that the following hold:

(1) No vertex in H is contained in any triangle.
(2) For any edge e such that V (e) ∩H 	= ∅, e is k-contractible and contained in

some C4.
We first prove that C ′ 	= ∅. Assume that C ′ = ∅. We prove the following claim.
Claim 1. Let vv1 be an edge in H. (Note that vv1 is a k-contractible edge by

(2).) Then there exists an edge v2v3 ∈ E(A) such that v2 ∈ NG(v1) and v3 ∈ NG(v).
Proof. By (2), vv1 must be contained in a C4. Let vv1v2v3v be a C4. By (2), vv2

and v1v3 are k-contractible edges. If v2v3 	∈ E(〈A〉), then again by (2) v2v3 must be
a k-contractible edge, and hence vv1v2v3v ∈ C ′. Hence v2v3 must be in A.

Claim 1 also implies that for any v ∈ V (H), NG(v) ∩ A 	= ∅. Next, we prove the
following claim.

Claim 2. Let xyz be a P3 in H. Then NG(x) ∩NG(z) = {y}.
Proof. Note that both xy and yz are k-contractible edges. Assume that the claim

is false, and let w ∈ NG(x) ∩NG(z) − {y}. Then both xw and zw are k-contractible
edges. Hence xyzwx ∈ C ′, a contradiction.

Take a vertex x ∈ H, and write NG(x)∩H = {x1, . . . , xm}, where m = |NG(x)∩
H|. Then by Claim 1, NG(xi) ∩ A 	= ∅ for all i. Since x is not contained in any
triangle, NG(x) ∩ NG(xi) = ∅ for any i. Also, by Claim 2, NG(xi) ∩ NG(xj) = {x}
for all i, j with i 	= j. Since |A| = k and m+ |NG(x)∩A| = |NG(x)| ≥ k, this implies
that m = k − |NG(x) ∩ A| and |NG(xi) ∩ A| = 1 for all i, since NG(xi) ∩ A 	= ∅
and NG(xi) ∩ NG(xj) = {x} for all i, j with i 	= j. Since x was taken arbitrarily,
we can apply the above argument to each xi to get |NG(x) ∩ A| = 1, and hence
m = k − 1. Write NG(x) ∩ A = {c} and NG(xi) ∩ A = {bi}. Then it is easy to see
A = {c, b1, . . . , bk−1}. By Claim 1, cbi ∈ E(〈A〉) for all i. Again, since x was taken
arbitrarily, we can apply the above argument to each xi to see bibj ∈ E(〈A〉) for all
i, j with i 	= j. Therefore, we can conclude that 〈A〉 is a complete graph, and since
k ≥ 4, 〈A〉 contains a K−

4 , a contradiction. This proves C ′ 	= ∅.
Let A′ ∈ A3 be a (k + 1)-cutset containing a member T ′ of C ′. By Lemma 2,

H1 	= ∅ or H3 	= ∅. Without loss of generality, we may assume H1 	= ∅. Since |A| = k

and |A′| = k + 1, |A| + |A′| =
∑3

i=1 |Qi| + |W2| + |Q2| + |H2| = 2k + 1.
We claim W3 = ∅. Assume it does not. Then, by the connectivity of G, |W2 ∪

Q2 ∪ Q3| ≥ k. Since A′ ∩ H 	= ∅ and T ′ ⊆ Q2 ∪ H2, by the minimality of H,

|Q1 ∪ Q2 ∪ H2| ≥ k + 2. But then 2k + 1 =
∑3

i=1 |Qi| + |W2| + |Q2| + |H2| =
|W2 ∪Q2 ∪Q3|+ |Q1 ∪Q2 ∪H2| ≥ k+ k+2 = 2k+2, a contradiction. Thus, W3 = ∅.

On the other hand, from |Q1∪Q2∪H2| ≥ k+2 and |Q1∪Q2∪Q3| = k, we obtain
|Q3| < |H2|. Consequently, |W ′| = |Q3 ∪H3| < |H2 ∪H3| < |H|, which contradicts
the minimality of |H|. This proves Lemma 5.

By arguing as in the last part of the proof of Lemma 5, but now Lemma 3 in
place of Lemma 2, we can obtain the following lemma.

Lemma 6. Let T ′ be a triangle or an edge such that V (T ′) ∩H 	= ∅. Then there
is no A′ ∈ A1 ∪A2 such that V (T ′) ⊆ A′.

Sketch of proof. Suppose that there exists such an A′. By Lemma 3, we may
assume H1 	= ∅. Suppose that W3 	= ∅. Let T be a cycle of length 4 in A, each
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edge of which is k-contractible. If T ⊆ Q1 ∪ Q2, then |Q1 ∪ Q2 ∪ H2| ≥ k + 2 and
|W2 ∪ Q2 ∪ Q3| ≥ k; if T 	⊆ Q1 ∪ Q2, then E(Q2 ∪ Q3) ∩ E(T ) 	= ∅, and hence
|Q1 ∪ Q2 ∪ H2| ≥ k + 1 and |W2 ∪ Q2 ∪ Q3| ≥ k + 1. In either case, 2k + 1 =
|W2 ∪Q2 ∪Q3| + |Q1 ∪Q2 ∪H2| ≥ 2k + 2, a contradiction. Thus W3 = ∅. But then
|W ′| = |Q3 ∪H3| ≤ |H2 ∪H3| < |H|, a contradiction.

By Lemma 6 and the observation made at the beginning of Case 1, we know the
following:

(1) No vertex in H is contained in any triangle.

(2) For any edge e = ab such that {a, b} ∩ V (H) 	= ∅, e is k-contractible and
contained in some C4.

Take an edge e = xy in H. By (1), NG(x) ∩ NG(y) = ∅. Hence, we know that
|H| ≥ 2k − k − 1 ≥ k − 1.

Lemma 7. Let A′ ∈ A3. Then H 	⊆ A′.

Proof. Suppose H ⊆ A′. Since |A| = |A′| = k+1, |A|+ |A′| =
∑3

i=1 |Qi|+ |W2|+
|Q2| + |H2| = 2k + 2. Also, by the assumption, H1 = H3 = ∅. Since |H| ≥ k − 1,
|H2| ≥ k − 1. Hence |W2 ∪ Q2| ≤ 2. Since |W | ≥ k − 1 and |W2| ≤ 2, W1 	= ∅ or
W3 	= ∅. Assume W1 = ∅. Then |Q1| ≥ k − 1 and W3 	= ∅. Hence |Q2 ∪ Q3| ≤ 2.
Recall that |W2 ∪Q2| ≤ 2. Since W3 	= ∅, W2 ∪Q2 ∪Q3 is a cutset and its cardinality
is at most |Q2 ∪ Q3| + |W2 ∪ Q2| ≤ 4. This holds only if k = 4, |H2| = |Q1| = 3,
Q2 = ∅, and |Q3| = |W2| = 2. But since A contains a cycle of length 4 and Q2 = ∅,
|Q1| ≥ 4 or |Q3| ≥ 4, a contradiction.

Next, assume W1 	= ∅ and W3 	= ∅. Then, W2 ∪ Q1 ∪ Q2 and W2 ∪ Q2 ∪ Q3 are
cutsets, and since A contains a k-contractible edge, |W2∪Q1∪Q2|+ |W2∪Q2∪Q3| ≥
2k+1. Then, since |H2| ≥ k−1, 2k+2 = |A|+ |A′| =

∑3
i=1 |Qi|+ |W2|+ |Q2|+ |H2| ≥

|W2∪Q1∪Q2|+ |W2∪Q2∪Q3|+ |H2|−|W2| ≥ 2k+1+k−1−2 ≥ 3k−2. This forces
k = 4, |H2| = 3, |W2| = 2, and Q2 = ∅, which contradicts the fact that A′ contains a
cycle of length 4.

Finally, assume W3 = ∅. This case can be settled by an argument similar to the
proof of the case W1 = ∅.

Recall that C ′ denotes the set of cycles T ′ of length 4 such that each edge of T ′

is k-contractible and |T ′ ∩ V (H)| ≥ 2. Set H ′′ = V (C ′) ∩ V (H) and H0 = H −H ′′,
where V (C ′) denotes the union of the vertex sets of the members of C ′.

Next, we consider the structure of H0 and we prove the following lemmas.

Lemma 8. H0 does not contain a P3.

Proof. Assume not. First, we claim the following.

Claim 3. |NG(x) ∩A| ≥ 2 for any x ∈ V (H0).

Proof. By (2) and an argument similar to the proof of Claim 1, we can conclude
|NG(x)∩A| ≥ 1 for any x ∈ V (H0). Suppose that, for some x ∈ V (H0), |NG(x)∩A| =
1. Let NG(x)∩V (H) = {x1, . . . , xm}, where m = |NG(x)∩H|. Then by an argument
similar to the proof of Claim 1, we can conclude NG(xi) ∩ A 	= ∅ for all i. Write
NG(x) ∩A = {c} and take bi ∈ NG(xi) ∩A. By an argument similar to the proofs of
Claims 1 and 2 (applied to each xi), we can conclude cbi ∈ E(A) for all i, and bi 	= bj
for all i, j with i 	= j. Since |NG(x) ∩ A| = 1, |{c, b1, . . . , bm}| = |NG(x)| ≥ k. Let
T be a C4 in A, each edge of which is k-contractible. Since |A| = k + 1, this implies
that |V (T ) ∩ {c, b1, . . . , bm}| ≥ 3. If c 	∈ V (T ), then 〈V (T ) ∪ {c}〉 contains a K−

4 , a
contradiction. Hence c ∈ V (T ). Assume bn ∈ V (T ). If cbn 	∈ E(C), then 〈V (T )〉
contains a K−

4 , a contradiction. Recall that C is the cycle contained in A. Hence
cbn ∈ E(C). But then since cbn is a k-contractible edge, xxnbncx is a C4, each edge
of which is k-contractible, which is contrary to the fact that x ∈ V (H0).
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It suffices to prove that for any x ∈ V (H0), |NG(x) ∩ V (H0)| ≤ 1. Since x is
not in any C4, by the definition of H0 we have NG(y) ∩ NG(z) ∩ A = ∅ for any
y, z ∈ NG(x) ∩ V (H) with y 	= z.

Since x is not contained in any triangle, NG(x)∩NG(y) = ∅ for any y ∈ NG(x)∩
V (H). By using the same argument as in the proof of Claim 1, NG(z) ∩ A 	= ∅ for
any z ∈ NG(x)∩H ′′. Also, by Claim 3, |NG(y)∩A| ≥ 2 for any y ∈ NG(x)∩ V (H0).
Hence |A| ≥ |NG(x)∩A|+ |NG(x)∩H ′′|+ 2|NG(x)∩ V (H0)|. Since |A| = k + 1, this
implies |NG(x) ∩ V (H0)| ≤ 1.

Lemma 8 also implies that H ′′ 	= ∅; otherwise, H does not contain a P3 ∈ H,
which is impossible because k ≥ 4. Note that |H| ≥ k − 1 by the remark just before
Lemma 7. Hence there exists A′ ∈ A3 such that A′ ∩ V (H) = ∅ and A′ contains a
member of C ′.

Lemma 9. If H has an edge not contained in any member of C ′, then |H| ≥
2k − 2.

Proof. Let e = xy be an edge of H not contained in any member of C ′. It is easy
to see that there exists a vertex z ∈ H such that A′ ∩ V (H) = ∅ and z ∈ NG(x) or
z ∈ NG(y). We may assume z ∈ NG(y). By using the same argument as in the proof
of Claim 2, NG(x) ∩ NG(z) = {y}. Also, since y is not contained in any triangle,
NG(x)∩NG(y) = NG(y)∩NG(z) = ∅. Hence |H| ≥ 3k− 1− (k + 1) = 2k− 2.

In what follows, we let A′ ∈ A3 denote a (k + 1)-cutset containing a cycle T ′

of length 4 such that each edge of T ′ is k-contractible, and such that T ′ ⊆ A ∪ H,
T ′ ∩H 	= ∅, and T ′ ∩W = ∅.

Lemma 10. Suppose Q1 ∪Q2 contains a k-contractible edge. Then Q2 ∪Q3 does
not contain a k-contractible edge.

Proof. Assume that both Q1 ∪Q2 and Q2 ∪Q3 contain k-contractible edges. By
Lemma 7, H1 	= ∅ or H3 	= ∅. Without loss of generality, we may assume H1 	= ∅.
Since |A| = |A′| = k + 1, |A| + |A′| =

∑3
i=1 |Qi| + |W2| + |Q2| + |H2| = 2k + 2.

We claim W3 = ∅. Assume it does not. Then, by the connectivity of G, |W2 ∪
Q2 ∪ Q3| ≥ k + 1 since Q2 ∪ Q3 contains a k-contractible edge. By the minimality

of H, |Q1 ∪ Q2 ∪ H2| ≥ k + 2. But 2k + 2 =
∑3

i=1 |Qi| + |W2| + |Q2| + |H2| =
|W2 ∪ Q2 ∪ Q3| + |Q1 ∪ Q2 ∪ H2| ≥ k + 1 + k + 2 = 2k + 3, a contradiction. Thus,
W3 = ∅. From |Q1 ∪ Q2 ∪H2| ≥ k + 2 and |Q1 ∪ Q2 ∪ Q3| = k + 1, we also obtain
|Q3| < |H2|. Consequently, |W ′| = |Q3 ∪ H3| < |H2 ∪ H3|, which contradicts the
minimality of |H|.

Let T be a cycle of length 4 in A, each edge of which is k-contractible. By
Lemma 10, T is contained in either Q1 ∪ Q2 or Q2 ∪ Q3, and E(T ) ∩ E(Q2) = ∅.
Without loss of generality, we may assume that T is contained in Q1 ∪Q2.

Lemma 11. H3 = ∅.
Proof. Assume H3 	= ∅. Then by the minimality of H, |H2 ∪Q2 ∪Q3| ≥ k + 2. If

W1 	= ∅, then since Q1 ∪ Q2 ∪W2 is a cutset containing T , |Q1 ∪ Q2 ∪W2| ≥ k + 1.

But 2k + 2 =
∑3

i=1 |Qi| + |W2| + |Q2| + |H2| = |H2 ∪ Q2 ∪ Q3| + |Q1 ∪ Q2 ∪W2| ≥
k + 1 + k + 2 = 2k + 3, a contradiction. Thus, W1 = ∅. Since |H2 ∪Q2 ∪Q3| ≥ k + 2
and |Q1 ∪Q2 ∪Q3| = k+1, we have |H2| ≥ |Q1|+1. But then |Q1 ∪H1| < |H1 ∪H2|,
which contradicts the minimality of |H|.

Lemma 12. |Q1 ∪Q2 ∪H2| = k + 2 and |W2 ∪Q2 ∪Q3| = k.

Proof. By Lemmas 7 and 11, we have H1 	= ∅. Hence by the minimality of
|H|, we have |Q1 ∪ Q2 ∪ H2| ≥ k + 2, and hence |H2| > |Q3|. Now if W3 = ∅,
then |W ′| = |Q3 ∪ H3| < |H2 ∪ H3| < |H|, which contradicts the minimality of
|H|. Thus W3 	= ∅. Since G is k-connected, this implies |W2 ∪ Q2 ∪ Q3| ≥ k. But
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2k+2 =
∑3

i=1 |Qi|+ |W2|+ |Q2|+ |H2| = |Q1 ∪Q2 ∪H2|+ |W2 ∪Q2 ∪Q3|, and hence
equality holds.

Since |Q1 ∪Q2 ∪Q3| = k + 1, by Lemma 12, we have |H2| = |Q3| + 1. Further if
T ′ ∈ C ′, then |H2| ≥ 2, and hence we have |Q3| ≥ 1.

Lemma 13. For any v ∈ H, dT (v) ≤ 1.

Proof. Suppose not and let vv1, vv3 ∈ E(G), where v1v2v3v4v1 is T . Then, since
vv1, vv3 are k-contractible edges, vv1v2v3v is a C4, each edge of which is k-contractible,
and hence there exists a (k+1)-cutset A′ containing vv1v2v3v. But then A∩A′ contains
k-contractible edges, v1v2 and v2v3, a contradiction to Lemma 10.

Lemma 14. |N(U) ∩H| ≥ |U | + 1 for all nonempty subsets U of A− T .

Proof. Suppose there exists a nonempty subset U of A−T with |N(U)∩H| ≤ |U |.
Then, |U | ≤ |A − T | ≤ k − 2 < k − 1 ≤ |H|. Hence, H − N(U) 	= ∅. Since each
edge of T is k-contractible, this implies that (A−U)∪ (N(U)∩H) is a (k+ 1)-cutset
containing T and separating H −N(U) from W ∪ U . But, since |H −N(U)| < |H|,
this contradicts the minimality of |H|.

By Lemma 14, since N(Q3)∩H ⊆ H2 and |H2| = |Q3|+1, we have N(Q3)∩H =
H2. Also, recall that if T ′ ∈ C ′, then |H2| ≥ 2, and hence we have |Q3| ≥ 1.

By Lemmas 11–14, we can obtain the following fact.

Let {T1, . . . , Tj} ⊆ C ′. Then each Ti is contained in some (k+1)-cutset Ai ∈ A3.
Let Hi be a component in G − Ai, and let W i denote G − Ai − Hi. Let Hi

1, Hi
2,

and Hi
3 denote H ∩ Hi, H ∩ Ai, and H ∩ W i, respectively. Also, let W i

1, W
i
2, and

W i
3 denote W ∩Hi, W ∩ Ai, and W ∩W i, respectively. Let Qi

1, Q
i
2, and Qi

3 denote
A∩Hi, A∩Ai, and A∩W i, respectively. We may assume T ⊆ Qi

1∪Qi
2. Then Hi

3 = ∅,
|Hi

2| = |Qi
3| + 1, and N(Qi

3) ∩ V (H) = Hi
2.

Lemma 15.

(1) |
⋃j

i=1 N(Qi
3) ∩ V (H)| ≤ 2|

⋃j
i=1 Q

i
3|.

(2) If (N(Qh
3 ) ∩ V (H)) ∩ (

⋃h−1
i=1 N(Qi

3) ∩ V (H)) 	= ∅ for each h with 1 ≤ h ≤ j,

then |
⋃j

i=1 N(Qi
3) ∩ V (H)| ≤ |

⋃j
i=1 Q

i
3| + 1.

Proof. We prove the lemma by induction on j. Suppose j = 1. Then since
N(Q1

3) ∩ V (H) = H2 and |H2| = |Q1
3| + 1, the result follows. Assume j ≥ 2. Let

R = Qj
3∩

⋃j−1
i=1 Qi

3. We first prove (2). If R 	= ∅, then by Lemma 14, |(
⋃j−1

i=1 N(Qi
3))∩

N(Qj
3) ∩ V (H)| ≥ |N(R) ∩ V (H)| ≥ |R| + 1. Thus, whether or not R = ∅, we have

|(
⋃j−1

i=1 N(Qi
3))∩N(Qj

3)∩V (H)| ≥ |R|+1 because (
⋃j−1

i=1 N(Qi
3))∩N(Qj

3)∩V (H) 	= ∅
by the assumption in (2). Hence by the induction hypothesis, |

⋃j
i=1 N(Qi

3)∩V (H)| ≤
|
⋃j−1

i=1 Qi
3| + 1 + |Qj

3| + 1 − |R| − 1 = |
⋃j

i=1 Q
i
3| + 1, as desired.

We now prove (1). If R 	= ∅, then |(
⋃j−1

i=1 N(Qi
3)) ∩ N(Qj

3) ∩ V (H)| ≥ |R| + 1,

and hence |
⋃j

i=1 N(Qi
3) ∩ V (H)| ≤ 2|

⋃j−1
i=1 Qi

3| + |Qj
3| + 1 − |R| − 1 ≤ 2|

⋃j−1
i=1 Qi

3| +
2(|Qj

3 − |R|) = 2|
⋃j

i=1 Q
i
3|; if R = ∅, then |

⋃j
i=1 N(Qi

3) ∩ V (H)| ≤ |
⋃j−1

i=1 N(Qi
3) ∩

V (H)| + |N(Qj
3) ∩ V (H)| ≤ 2|

⋃j−1
i=1 Qi

3| + 2|Qj
3| = 2|

⋃j
i=1 Q

i
3|.

Lemma 16. If |H0| ≥ 3, then |H ′′| ≥ 2k − 5.

Proof. Suppose there exists an edge x1x2 ∈ E(〈H0〉). Take a vertex x3 ∈ V (H0)−
{x1, x2}. By Lemmas 8 and 13, for each i with 1 ≤ i ≤ 3, |NG(xi)∩(V (H ′′)∪A−T )| ≥
k−2. It is easy to see NG(x1)∩NG(x2) = ∅. Also, |NG(xi)∩NG(x3)| ≤ 1 for i = 1, 2.
Otherwise, there exists a C4 containing xi, x3, each edge of which is a k-contractible
edge for i = 1 or i = 2.

Hence |H ′′| ≥
∑3

i=1 |NG(xi)∩(H ′′∪A−T )|−
∑2

i=1 |NG(xi)∩NG(x3)|−|A−T | ≥
3k − 6 − 2 − (k − 3) = 2k − 5.
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Next, assume that there is no edge in H0. Take three vertices x1, x2, x3 ∈ V (H0).
By the same argument as in the preceding paragraph, we know |NG(xi)∩NG(xj)| ≤ 1

for i, j = 1, 2, 3 with i 	= j. Hence, |H ′′| ≥
∑3

i=1 dG(xi)− 3− (k + 1) ≥ 2k− 4.

Suppose H has an edge not contained in any member of C ′. Then |H| ≥ 2k−2 by
Lemma 9. Let {T1, . . . , Tj} = C ′. Then since Ti∩H ⊆ Hi

2 = N(Qi
3)∩V (H) for each i,

H ′′ ⊆
⋃j

i=1 N(Qi
3)∩V (H), and hence by Lemma 15(1), |H ′′| ≤ 2|V (A)−T | = 2k−6.

Hence, we have |H0| ≥ 4 and thus |H ′′| ≥ 2k − 5. This is a contradiction to the
assertion that |H ′′| ≤ 2k − 6.

Finally, suppose that every edge of H is contained in a member of C ′. In this case,
we define {T1, . . . , Tj} = C ′ by the following procedure. Let e1 be any edge of H, let
T1 be a member of C ′ containing e1, and let A1 ∈ A3 be a (k + 1)-cutset containing

T1. Assume that we have defined Ti and Ai for 1 ≤ i ≤ l − 1. If H =
⋃l−1

i=1 H
i
2,

then we let j = l − 1 and terminate our procedure; if H 	= V (
⋃l−1

i=1 H
i
2), then we

let el be an edge of H joining
⋃l−1

i=1 V (Hi
2) to V (H) −

⋃l−1
i=1 V (Hi

2) (such an edge
exists because H is connected), let Tl be a member of C ′ containing el, and let
Al ∈ A3 be a (k + 1)-cutset containing Tl. Then since Hi

2 = N(Qi
3) ∩ V (H) for

each 1 ≤ i ≤ j, we have (N(Qk
3) ∩ V (H)) ∩ (

⋃k−1
i=1 N(Qi

3) ∩ V (H)) 	= ∅ for each

2 ≤ k ≤ j, and
⋃j

i=1 N(Qi
3) ∩ V (H) = V (H). Hence, by Lemma 15(2), we have

|H| ≤ |
⋃j

i=1 Q
i
3|+ 1 ≤ |A−T |+ 1 ≤ k− 2. But, since |H| ≥ k− 1 by the remark just

after Lemma 7, this is impossible.

Case 2. There exists a k-contractible edge which is not contained in a cycle of
length 4.

We need the following proposition.

Proposition 1. Let G be a k-connected graph and xy be a k-contractible edge.
Also, let G′ be the graph obtained from G by contracting xy and z be the vertex of G′

which comes from the contraction of xy.

(1) If ab ∈ E(G′) is a k-contractible edge in G′ and z 	= a, b, and if ab is not
contained in any triangle in G′, then ab is also k-contractible in G.

(2) If za ∈ E(G′) is a k-contractible edge in G′ and if xy is not contained in any
triangle in G, then either xa or ya is a k-contractible edge.

Proof. (1) Assume ab is a k-contractible edge in G′ but not in G. This is possible
only when {a, b} ⊂ A for some k-cutset A such that A ∩ {x, y} 	= ∅, and {x, y} − A
is a connected component in G − A. Then 〈z, a, b〉 is a triangle which contains ab,
which is contrary to the fact that ab is not contained in any triangle. Similarly, we
can prove (2). Note that since 〈x, y, a〉 cannot be a triangle, one of xa and ya cannot
be an edge in G.

Now, we can finish the proof for Case 2. By the assumption of Case 2, there
exists a k-contractible edge e = xy which is not contained in a cycle of length 4. Then
the graph G′ obtained from G by the contraction of e does not contain a K−

4 . Recall
that no k-contractible edge is contained in any triangle in G; in particular, e is not
contained in a triangle. Let v be the vertex of G′, which comes from the contraction
of xy.

By the induction hypothesis, G′ contains an induced cycle C such that G′−V (C)
is (k−2)-connected and each edge of C is k-contractible or C is a triangle, and for any
vertex x ∈ V (G′) − V (C), |NC(x)| ≤ 2 (if G′ has a k-contractible edge contained in
a triangle, then we take such a triangle as C). First, we consider the case v 	∈ V (C).
We can regard C as an induced cycle in G, and we can easily see that |NC(x)| ≤ 2
and |NC(y)| ≤ 2, and hence G−V (C) is (k−2)-connected. If C is a triangle, then we
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are done. If C is not a triangle, then by the choice of C, no edge of C is contained in
any triangle in G′, and hence by Proposition 1, we know that each edge of C is also
k-contractible in G. Hence C is a desired induced cycle.

Finally, suppose v ∈ V (C). Now, we let C1 be the unique cycle of G which
contains the path C−v and either one or both of x, y. Since C is an induced cycle and
e is not contained in any triangle, we see that |NC1

(z)| ≤ 2 for all z ∈ V (G)−V (C1),
and G−V (C1) is (k−2)-connected. If C is a triangle, then since e is not contained in
a cycle of length 4, C1 is also a triangle; if C is not a triangle, then by Proposition 1,
each edge of C ′ is k-contractible in G.

This completes the proof of Theorem 7.

3. Concluding remarks. In [6], Kawarabayashi proved the following theorem.
Theorem 9. Let k ≥ 3 be an integer, and let G be a k-connected graph which

does not contain K−
4 . Then there exists a k-contractible edge which is not contained in

a triangle, or there exists a k-contractible triangle, where a triangle of a k-connected
graph is said to be a k-contractible triangle if the graph obtained from G by contracting
the triangle (and replacing each of the resulting pairs of double edges by a single edge)
is still k-connected.

Considering Theorem 9, the following stronger statement will most likely hold.
Conjecture 1. Let G be a k-connected graph which does not contain a K−

4 .
Then G has an induced cycle such that G − V (C) is (k − 1)-connected or G − V (C)
is (k − 2)-connected and each edge of C is k-contractible.

Acknowledgments. We thank both referees for many helpful suggestions which
improved the presentation of this paper.
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MATCHED-FACTOR d-DOMATIC COLORING OF GRAPHS∗

K. S. SUDEEP† AND SUNDAR VISHWANATHAN†

Abstract. Consider a graph G and a collection of connected spanning subgraphs G1, G2, . . . , Gk,
not necessarily edge-disjoint. A subset Ui of the vertex set is said to d-dominate Gi if in Gi, all
the vertices are at distance at most d from some vertex in Ui. Alon et al. [DiscreteMath., 262
(2003), pp. 17–25] introduced and studied a function μ(k), which is defined as the minimum radius
of domination d such that the vertex set of every graph with a collection of k spanning subgraphs
can be partitioned into U1, U2, . . . , Uk such that Ui d-dominates Gi. They proved that μ(k) < 3

2
k,

and the proof yields a polynomial time algorithm for the same. We prove that the problem is NP-
complete, and we also answer a question from their paper by improving their bound to ( 3

2
− ε)k. We

also present an algorithm which finds such a coloring in polynomial time.

Key words. graph theory, algorithms, domination, matched-factor domatic number

AMS subject classification. 05C69
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1. Introduction. The concept of factor domination was introduced by Brigham
and Dutton [3]. They defined k-factoring as a decomposition of a graph into k edge-
disjoint spanning subgraphs. Later, Alon et al. [1] considered problems related to
domination where all the subgraphs were required to be connected.

For the rest of this paper a factor means a connected spanning subgraph. Consider
a connected graph G(V,E). A k-factorization of G is a set of k connected spanning
subgraphs S1, S2, . . . , Sk of G whose union is G. We do not require these subgraphs
to be edge-disjoint. We denote by dG(u, v) the distance between vertices u and v in
graph G. The neighborhood of a vertex v in graph G is the set of vertices adjacent
to v along with the vertex v itself and can be represented as {x ∈ V : dG(v, x) ≤ 1}.
Generalizing this, the d-neighborhood of v in G is {x ∈ V : dG(v, x) ≤ d}. These are
the set of vertices at distance at most d from v in G.

A d-dominating set of vertices in graph G is a set S ⊆ V such that every vertex
in V is in the d-neighborhood of some element of S. A d-domatic coloring of G is a
partition of the vertex set V into color classes such that each color class constitutes a
d-dominating set of G. Note that it need not be a proper vertex coloring in the sense
that adjacent vertices can have the same color. The maximum number of colors in
any d-domatic coloring of a fixed graph G is called the d-domatic number of G. A
1-dominating set is commonly known as a dominating set, and the 1-domatic number
is called the domatic number. Approximation algorithms for the domatic number were
studied in [7].

We consider a related concept introduced by Alon et al. [1]. Let G be a graph
and let S1, S2, . . . , Sk be k connected spanning subgraphs of G whose union is G. A
vertex coloring of G, where the vertices of color i constitute a d-dominating set for
the subgraph Si, is called a matched-factor d-domatic coloring of G with respect to
S1, S2, . . . , Sk. A coloring is called an all-factor d-domatic coloring of G with respect
to S1, S2, . . . , Sk if the vertices of each color constitute a d-dominating set in each Sj
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for 1 ≤ j ≤ k. Note that both of them are always valid d-domatic colorings of the
graph G.

Given an integer k, we are interested in the minimum d(k) such that every k-
factorization of every graph on at least k vertices admits a matched-factor d(k)-
domatic coloring. Note that any partition of the vertex set into k sets is a matched-
factor R-domatic coloring for some R. Following Alon et al. [1] we denote this mini-
mum d(k) by μ(k). It was proved in [1] that k ≤ μ(k) ≤ � 3

2 (k − 1)�.
The problem we address is formally stated below.

Input: A graph G(V,E) and a collection of connected spanning subgraphs
S1, S2, . . . , Sk.

Output: A coloring of the vertices of G using k colors such that the vertices of
color i constitute an R-dominating set for the subgraph Si and R is minimum.

1.1. Summary of results. We first show that the corresponding decision prob-
lem is NP-complete for k = 2, even if we take the simple case of d = 1, and restrict
the connected spanning subgraphs to be trees.

It is proved in [1] that for every k ≥ 2, μ(k) ≤ � 3
2 (k − 1)�. Their proof yields

a polynomial time algorithm for the task. We present an improved upper bound
of (3

2 − ε)k for a fixed positive constant ε. One feature of our proof is that it uses
the Lovász local lemma [4]. We then use techniques from Molloy and Reed [9] to
get a randomized algorithm that has an expected polynomial running time to find a
( 3
2 − ε)k-domatic coloring. It is derandomized later to get a deterministic algorithm

that runs in polynomial time.

2. NP-completeness. Given two trees on the same vertex set, we show that
the problem of finding whether the vertex set can be partitioned into two parts such
that vertices of one part are a dominating set in one of the trees and those of the
other part are a dominating set in the other tree is NP-complete. For that we reduce
3-SAT to the problem defined above.

2.1. Reduction of 3-SAT to the problem. The problem 3-SAT [8] is as
follows:

• Instance: A Boolean expression C in conjunctive normal form (CNF) in
n variables and m clauses such that each clause has exactly three literals.
C = C1 ∧ C2 ∧ · · · ∧ Cm, where Ci = wi1 ∨ wi2 ∨ wi3; wij ∈ {u1, u

′
1, u2,

u′
2, . . . , un, u

′
n}, the set of literals. u′

i denotes the negation of ui.
• Question: Is there a truth assignment to all the variables in the set U =
{u1, u2, . . . , un} such that C evaluates to true?

We construct an instance of our problem from 3-SAT as follows. As the truth setting
component, for every variable ui (1 ≤ i ≤ n) we have 2m vertices ui1, ui2, . . . , uim,
u′
i1, u

′
i2, . . . , u

′
im in V , one copy each, of the variable and its negation, for every clause.

In addition to that we have four more vertices xi, x
′
i, yi, and y′i for each ui. In

the satisfiability component, for every clause Cj (1 ≤ j ≤ m) we have six vertices
Cj , C

′
j , C

′′
j , vj1, vj2, and vj3.

We construct the tree T1 as follows:

(i) For every variable ui (1 ≤ i ≤ n), there is an edge between vertices xi and
x′
i. Vertices ui1, ui2, . . . , uim, along with yi, are adjacent to xi. Similarly, vertices

u′
i1, u

′
i2, . . . , u

′
im, y′i are adjacent to x′

i.

(ii) For every clause Cj , there is a star that connects vertices C ′
j , C

′′
j , vj1, vj2, and

vj3 to Cj .
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Fig. 1. Construction of T1 and T2 from 3-SAT.

In T2, we have (i) edges xix
′
i and yiy

′
i for every variable ui. For every clause Cj

we have (ii) an edge C ′
jC

′′
j , along with (iii) a tree in which vertices that correspond to

the jth copy of the three literals wj1, wj2, and wj3 of the clause are adjacent to the
root vertex Cj . There are three more vertices vj1, vj2, and vj3 in the tree, and vjx is
adjacent to wjx (x = 1, 2, 3). For example, for a clause Cj = ua + ub + u′

c, we have
uaj , ubj , and u′

cj adjacent to Cj , and edges that connect vj1 to uaj , vj2 to ubj , and
vj3 to u′

cj .
Four vertices r1, r2, a, and b are added on both sides to connect the subtrees. A

path r1r2ab, with r2 connected to one vertex each in every subtree, is added to T2.
While in T1, r1 is adjacent to one vertex each in every subtree and a, b, and r1 are
adjacent to r2. The construction of the components of trees T1 and T2 that correspond
to the variables and clauses in 3-SAT is illustrated in Figure 1. How the subtrees in
the two trees are connected using vertices r1, r2, a, and b is shown in Figure 2.

Now we ask the following question: Does there exist a partition of the vertex set
V into two color classes V1 and V2 such that V1 is a dominating set in T1 and V2 is a
dominating set in T2?

We claim that there exists such a partition if and only if there is a satisfying
assignment for the corresponding 3-SAT instance.

A broad outline is as follows. The details follow immediately afterwards. The
variable ui being true will correspond to the vertex xi being picked in V1. We will
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Fig. 2. Vertices r1, r2, a, and b that connect the subtrees in T1 and T2.

ensure that both xi and x′
i do not get picked in V1, ensuring the truth setting. Also

when this happens, we will force all of the u′
ij ’s to be in V1. For the satisfaction of

the clauses, we will ensure that for each j, the vertex Cj corresponding to clause j
will be picked in V1. This ensures that at least one ufj is in V2. This will force the
corresponding xt to be in V1. The other vertices and edges are present to ensure such
an outcome.

Proof. The problem is in NP because if we are given a partition {V1, V2} of V
claiming that V1 and V2 are dominating sets in T1 and T2, respectively, then we can
verify that claim in polynomial time.

We first make the observation that the four extra vertices that connect the sub-
trees are added in such a way that it does not affect the partitions. For V2 to be a
dominating set in T2, one or both of {a, b} is in V2, and hence r2 ∈ V1 and r1 ∈ V2.

Now we assume we have a partition {V1, V2} such that V1 is a dominating set in
T1 and V2 dominates T2. We will show that from V1 and V2 we can get a satisfying
assignment for C.

For any variable ui ∈ U , the construction (i) of T2 ensures that xi and x′
i cannot

both be in V1. This is because if they are, then in T2, neither xi nor x′
i will be in

the neighborhood of any vertex in V2. The same holds for yi and y′i. Further, (i)
of T1 insists that both yi and y′i cannot be in V2 either, since at most one of xi and
x′
i can be in V1. Thus we have either xi, y

′
i ∈ V2 and yi, x

′
i, ui1, ui2, . . . , uim ∈ V1, or

yi, x
′
i ∈ V2 and xi, y

′
i, u

′
i1, u

′
i2, . . . , u

′
im ∈ V1.

By (ii) of T2, both C ′
j and C ′′

j cannot be in V1. This means that Cj ∈ V1, by virtue
of construction (ii) of T1. Now, (iii) of T2 leaves us with the only choice of having at
least one of the three neighbors of Cj in T2 be in V2 since V2 is a dominating set in
T2. If uaj ∈ V2, it cannot be the case that ya, x

′
a, ua1, ua2, . . . , uam ∈ V1. This forces

xa to be in V1. Similarly, if u′
cj ∈ V2, it cannot be that xc, y

′
c, u

′
c1, u

′
c2, . . . , u

′
cm ∈ V1,

and we have xc ∈ V2. Hence assigning ui to true if xi ∈ V1 and false otherwise, we
get an assignment that makes at least one of the three literals in every clause Cj true,
giving us a satisfiable assignment for C.

Conversely, if we have a truth assignment of variables in C, by assigning xi, y
′
i,

u′
i1, u

′
i2, . . . , u

′
im to be in V1 and x′

i, yi, ui1, ui2, . . . , uim to be in V2 if ui is true and
swapping the partition if ui is false, we get a partition that we need.

Cj ∈ V1 for all j, and one or both of {C ′
j , C

′′
j } is in V2. A vertex vjk is in V2 if the

literal corresponding to its neighbor in T2 is false; else it could be in V1 or in V2.
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3. An upper bound. We first sketch an upper bound on μ(k) from Alon
et al. [1]. Their proof yields a polynomial time algorithm. Our proof builds on
this proof.

Theorem 1 (see [1]). For every k ≥ 2, μ(k) ≤ � 3
2 (k − 1)�.

Theorem 2. For a large enough k, μ(k) ≤ ( 3
2 − ε)k, where 0 < ε < 1 is a

constant.

One tool we use here is the Lovász local lemma [4]. We use a symmetric version
of the lemma from Alon and Spencer [2].

Lemma 3 (Lovász local lemma, symmetric version). Let A1, A2, . . . , An be events
in a probability space such that Pr [Ai] ≤ p for all i. Let H be a graph with vertices
A1, A2, . . . , An such that for each i = 1, 2, . . . , n the event Ai is mutually independent
of any combination of events that are not neighbors of Ai in H. Suppose the maximum
degree of H is d, and e · p · (d+ 1) ≤ 1, where e is the base of the natural logarithm.
Then there is a positive probability that none of the events Ai occurs.

We also use the following, simplest version of the Chernoff bounds [2].

Lemma 4. Let Xi, for 1 ≤ i ≤ n, be mutually independent random variables with

P (Xi = 1) = P (Xi = 0) = 1/2. Then P (X1 + · · · + Xn > a) < exp −a2

2n .

We use the following two lemmas in the proof of Theorem 2, along with Lemma
3. Alon et al. prove the following lemma in [1]. We reproduce the simple proof for
completeness.

Lemma 5 (see [1]). Any tree T on vertex set V, |V | = n ≥ l ≥ 1 can be decom-
posed into vertex-disjoint trees T1, T2, . . . , Tp such that ∪V (Ti) = V , |Ti| ≥ l, and the
diameter of Ti is at most 2l − 2 for i = 1, 2, . . . , p.

Proof. If T has diameter at most 2l − 2, we are done. So we assume that
diameter(T ) ≥ 2l−1. It follows that T contains an edge e such that both subtrees T1

and T2 of T−e have at least l vertices each and both T1 and T2 are smaller in size com-
pared to T . Applying induction, T1 can be further decomposed into T11, T12, . . . , T1a,
and T2 can be further decomposed into T21, T22, . . . , T2b, each of which has a diameter
of at most 2l − 2 and size at least l.

Alon et al. use this lemma to break up a big tree and deal with each small tree
individually. In a subtree that has at least k vertices and whose diameter is at most
2k − 2, they show that there are at least k vertices at a distance of at most k−1

2
from the center of the tree, and every vertex in this group is at a distance of at
most � 3

2 (k − 1)� from any vertex in the tree. In other words, every vertex in this
group is a � 3

2 (k − 1)�-dominating set in this subtree. An auxiliary bipartite graph is
then constructed. To distinguish the vertices of the original graph from those of this
bipartite graph, we will call the vertices of the bipartite graph points.

Each of these groups of vertices from each subtree constitutes points in one par-
tition, say B. On the other hand, we have a set of points W, each of whose point
corresponds to a vertex of G. The edges of the graph are defined by inclusion. That
is, there is an edge between a point in B and a point in W if the corresponding vertex
is contained in the corresponding group.

A group of vertices corresponding to a point in B has exactly k vertices in it,
which means that the degree of each point in B is exactly k. Each vertex of the graph
is in exactly k subtrees, and hence in at most k of these groups. So the degree of a
vertex in W is at most k. By Hall’s theorem [6], this implies that it is possible to find
a matching that saturates all points in B. In other words, we can choose one vertex
from each group such that the vertices chosen are distinct. In each subtree of Si, we
assign color i to the vertex that represents the group of dominating vertices in the
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subtree. Thus we arrive at a coloring in which all vertices of Si are at a distance of at
most � 3

2 (k − 1)� from one of these vertices colored i. This is the essence of the Alon
et al. algorithm.

We motivate our algorithm below. If all subtrees are stars, then we can choose
k vertices in each star such that any vertex forms a 2-dominating set, and hence the
previous algorithm yields a much better result than the one proved. The bad case is
if all subtrees are paths of length 2k − 2. The algorithm picks k vertices around the
center of the path. Supposing all trees were such paths, it is better to take two sets
of size k/2, each at a distance of k/2 from the two endpoints. For the dominating set
we need to pick one vertex from each set. In the bipartite graph, the degree of a point
corresponding to these groups now falls to k/2. To make the matching argument
go through we have to make sure that a vertex is picked at most k/2 times. It is
not obvious how to do this. The other difficulty is that the subtrees we get could
be heterogeneous. They could look like paths, stars, or anything in between. We
deal with both these problems using a structural lemma which holds for all trees and
randomness. We give details below.

For a tree T (V,E) and x, y ∈ V , let dT (x, y) denote the distance between vertices
x and y in T . For a subset S ⊆ V and a vertex v ∈ V, we define DT (v, S) =
maxs∈S{dT (v, s)}.

Lemma 6 (the tree lemma). Let T (V,E) be a tree such that |V | ≥ l = (1 + δ)k
and diameter(T ) ≤ 2l − 2. Let D = ( 3

2 − ε)k, where δ and ε are positive constants
such that 28ε + 39δ ≤ 3. Then one of the following must hold:

(i) There is a subset S ⊆ V such that |S| = l and for all v ∈ V , DT (v, S) ≤ D.
(ii) There exist disjoint subsets P,Q,R ⊂ V (T ) such that |P | = |Q| = |R| = l

2
and for all v ∈ V, DT (v, P ) ≤ D and either DT (v,Q) ≤ D or DT (v,R) ≤ D.

Before we begin the proof, we note that case (i) of the lemma applies to trees
which are star-like. The other case deals with trees which look like paths. The reason
for having three sets (and not two, as one would expect) in case (ii) is technical, to
facilitate the phenomenon of picking a vertex at most k/2 times. We will not achieve
k/2 exactly but rather a bit more.

Proof.

Case 1. diameter(T ) ≤ 2k(1 − σ), where σ = ε + δ
2 .

This case, as also Case 2.1 below, deals with trees that behave like stars. The rest
is for trees that behave like paths. Let r be a center vertex of the tree T . Let u and v be
two vertices of maximum distance in T such that dT (r, v) ≤ dT (r, u). For any vertex
x ∈ V , dT (r, x) ≤ dT (r, u) ≤ k(1−σ). Let S∗ = {x : x ∈ V and dT (r, x) ≤ � l

2�}. We

claim that S∗ has at least l elements in it. This holds when dT (r, u) ≤ l
2 , in which

case S∗ is the entire vertex set V , since no vertex in the tree is farther from r than u.
Otherwise, since dT (r, v) ≥ dT (r, u) − 1, S∗ contains at least l

2 elements each (other
than r) on the unique paths from r to u and v, thus ensuring at least l elements in S∗.
The distance from any vertex y ∈ V to any vertex s ∈ S∗ is at most dT (y, r)+dT (r, s).
This sum is at most k(1 − σ) + k

2 (1 + δ) = ( 3
2 − (σ − δ

2 ))k = ( 3
2 − ε)k. Any size-l

subset of S∗ qualifies as subset S in the lemma.

Case 2. diameter(T ) > 2k(1 − σ).

Case 2.1. There are at least l vertices at a distance of at most k
2 (1−2ε−2δ) from

the center r.

Pick any l of those vertices as a set S. For y ∈ V and s ∈ S, dT (y, s) ≤ dT (y, r)+
dT (r, s) ≤ k(1 + δ) + k

2 (1 − 2ε− 2δ) = ( 3
2 − ε)k.

Case 2.2. There are fewer than l vertices at a distance at most k
2 (1 − 2ε − 2δ)
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from the center r.

We pick subsets P , Q, and R as follows. We let the middle l
2 vertices around the

center vertex r on the (u, v)-path be the subset P . The l
2 vertices, each preceding

and succeeding P on the path (u, v), are picked as Q and R, respectively. We argue
below that this is always possible by showing that there are at least 3

2 l vertices on
the path. The path length is at least 2k(1 − σ). We will show that the choice of σ
is such that 2k(1 − σ) ≥ 3

2 l. Note that these sets are disjoint by construction. By

recalling the value of σ and easy manipulations, 2k(1 − σ) = 3k
2

4(1−ε−δ/2)
3 . As long

as 5δ + 4ε ≤ 1, we have 4(1−ε−δ/2)
3 ≥ 1 + δ, which finishes this claim.

It remains to be shown that these sets satisfy the distance constraints. The
distance from any vertex y ∈ V to any vertex p ∈ P is at most dT (y, r) + dT (r, p) ≤
k(1 + δ) + k

4 (1 + δ) ≤ 5k
4 (1 + δ) = (3

2 − 1
4 + 5

4δ)k ≤ ( 3
2 − ε)k, as we have chosen δ

such that 4ε+5δ ≤ 1. It is enough to prove that a vertex y ∈ V is close to the vertices
in one of the two sets Q and R. Let the path from y to r touch the (u, v)-path at x.
Without loss of generality, we may assume that x lies between r and u on the path
(u, v). Let x be at a distance of d from r. Also, let w be the point at a distance of
k
2 (1 − 2ε− 2δ) from r on the path from y to r.

Case 2.2.1. w lies between x and r on the path from y to r.

We have dT (x, r) > dT (w, r) or d > k
2 (1 − 2ε− 2δ).

Case 2.2.2. w lies between y and x on the path from y to r.

We know that there are fewer than l vertices within a distance of k
2 (1 − 2ε− 2δ)

from r (Case 2.2). Adding up the number of vertices that lie within that distance
from r on paths (r, v), (r, u), and (w, x), we get 3k

2 (1 − 2ε − 2δ) − d < k(1 + δ) or

d > k
2 (1 − 6ε− 8δ). Note that this inequality holds even in Case 2.2.1.

For any element z in Q, if z lies between x and r in the path from u to r,
dT (y, z) = dT (y, r)−dT (r, z). But T is such that dT (y, r) < l and Q is chosen so that
for z ∈ Q, dT (r, z) ≥ l

4 . That is, dT (y, z) < l− l
4 = 3

4k(1+ δ) < ( 3
2 − ε)k. In a less

trivial case of x falling between r and z on the path, dT (y, z) ≤ dT (y, x)+dT (x, z) =

(dT (y, r)−d)+(dT (r, z)−d) ≤ (l−d)+( 3
4 l−d). Using the fact that d > k

2 (1−6ε−8δ),

we get dT (y, z) ≤ 7
4k(1 + δ) − k(1 − 6ε− 8δ) = (3

4 + 39
4 δ + 6ε)k ≤ ( 3

2 − ε)k when
39δ + 28ε ≤ 3. Note that ε could be made as big as 3

28 .

With these lemmas in place, we are now prepared for a proof of the theorem.

Proof of Theorem 2. Let S1, S2, . . . , Sk be a k-factorization of a graph G on
n ≥ k vertices. Let Ti be a spanning subtree of Si for i = 1, 2, . . . , k. By Lemma
5, each Ti can be decomposed into vertex-disjoint trees Ti1, Ti2, . . . , Tipi such that
∪V (Tij) = V (Ti), |Tij | ≥ l, and diameter(Tij) ≤ 2l − 2 for j = 1, 2, . . . , pi.

Using Lemma 6, if in each Tij we have a subset S of size l satisfying Lemma
6(i), then we pick any l

2 elements of S at random to get a subset Bij . Otherwise

we have sets P,Q, and R, all of size l
2 . Flip a coin and pick either the subset P

to be Bij or the two subsets Q and R to be Bij1 and Bij2, depending on the coin
flip. When we pick a single set Bij , by the tree lemma we have for all x ∈ V (Ti)
and y ∈ Bij , dT (x, y) ≤ ( 3

2 − ε)k. When we pick Bij1 and Bij2, we ensure that
for all x ∈ V (Ti), dT (x, y) ≤ ( 3

2 − ε)k either for all y ∈ Bij1 or for all y ∈ Bij2. Note
that in a tree, a vertex gets picked with probability at most 1

2 . A vertex appears in
k subtrees, one each in the decompositions of every Ti, and the expected number of
times a vertex appears in the picked sets is thus bounded above by k

2 .

We define a bad event to be the event of a vertex v getting picked in at least
k
2 (1 + δ) sets. By Chernoff’s bounds, the probability of such an event is at most
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e−δ2 k
6 . Two events of two vertices v1 and v2 getting picked are dependent only if the

two are in the same subtree. In addition, if (i) of Lemma 6 holds, the two events are
independent unless both vertices belong to the subset S. In the case of path-like trees,
i.e., when (ii) of Lemma 6 holds, the events are independent unless both vertices are
in P ∪Q ∪R. A vertex v is in exactly k subtrees, so the event of it being picked has
edges in the dependency graph with at most k · 3 · k

2 (1 + δ) events. These events
correspond to other vertices in S or in P ∪ Q ∪ R—whichever may be the case—
getting picked, in each subtree in which v lies. We may recall here that |S| = k(1+ δ)
and |P ∪Q ∪R| = 3 · k

2 (1 + δ).

With p ≤ e−δ2 k
6 and d ≤ k · 3 · k

2 (1 + δ), it follows from Lemma 3 that there is

always a way of picking the vertices such that no vertex is picked l
2 times or more if k

is big enough. We consider such a selection for the rest of our proof, since it is enough
for us to prove the existence of a particular coloring in order to prove an upper bound
on μ(k). We will require the problem to satisfy stricter conditions, compared to that
of the local lemma, in order to get an algorithm which actually finds such a coloring.
We discuss that in the next section.

Now, construct a bipartite graph H with bipartition B and W as follows. For
every 1 ≤ i ≤ k and 1 ≤ j ≤ pi, the class B contains points corresponding to subset
Bij or two points corresponding to two subsets Bij1 and Bij2, depending on what we
have picked for the tree Tij . W contains points corresponding to all vertices of G.
The edges of H are defined by containment as follows. Every point b ∈ B is connected
to a point v ∈ W if and only if v ∈ b. We know that degH(b) = l

2 for each element

b ∈ B, and degH(v) < l
2 for each v ∈ W . This implies that for every B′ ⊆ B there

are at least |B′| vertices in the neighborhood of B′ in W , and by Hall’s theorem [6]
there exists a matching M that saturates B; i.e., we have a vertex to represent each
of the dominating groups of vertices in each subtree Tij .

We color vertices matched to Bij , Bij1, or Bij2 in M with color i for 1 ≤ i ≤ k.
All remaining vertices of G are colored by any of the k colors. This way, the vertices
that represent the dominating groups in every subtree of Si are colored i. In trees Tij ,
where we have selected one set Bij such that every vertex in the tree is at a distance
of at most ( 3

2 − ε)k from any vertex in this set, we have one vertex from Bij in the
color class i. In trees where we have picked two sets Bij1 and Bij2 such that every
vertex is close to the vertices from either of these sets, the color class i has one vertex
each from both of these sets. Since Tij is a subgraph of Si, the distance between any
two vertices in the tree is no less than the distance between the two vertices in Si.
This makes the coloring a matched-factor ( 3

2 − ε)k-domatic coloring of G with respect
to S1, S2, . . . , Sk.

4. A polynomial time algorithm. In many probabilistic proofs, there is a
reasonably high probability that a randomly chosen object satisfies the desired prop-
erties. Thus these proofs often imply a randomized algorithm that finds an object
that we desire in expected linear or polynomial time. However, though some tools,
such as the Lovász local lemma [4], help in proving that such an object exists, the
probability with which the object occurs is very small. It becomes difficult to turn
the proofs of existence into efficient algorithms. Beck was the first to come up with
polynomial time algorithms for certain applications of the local lemma. A parallel
and simpler version appears in [2]. Molloy and Reed [9] present a general framework
for the application of these techniques and we follow their framework.

Using these standard techniques, we get a randomized algorithm that finds a
( 3
2 − ε)k-domatic coloring in expected polynomial time. We later remove the ran-
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domness using the method of conditional probabilities introduced by Erdős and Self-
ridge [5, 2] and now widely used.

We state the general technique from [9] first and then apply it to the problem
at hand. Let F = {f1, . . . , fm} be a set of independent random trials. Let A =
{A1, . . . , An} be a set of events such that each Ai is determined by the outcome of
the trials in Fi ⊆ F . We say that Ai intersects Aj if Fi ∩ Fj = φ.

For any fj1 , . . . , fjk ∈ Fi and any wj1 , . . . , wjk in the domains of fj1 , . . . , fjk , re-
spectively, we define Pr∗(Ai|fj1 → wj1 , . . . , fjk → wjk) to be the probability of Ai con-
ditional on the event that the outcomes of fj1 , . . . , fjk are wj1 , . . . , wjk , respectively. If
fj1 , . . . , fjk are already carried out and wj1 , . . . , wjk are their outcomes, we sometimes
just say Pr∗(Ai) when there is no ambiguity. When k = 0, Pr∗(Ai) = Pr(Ai).

Theorem 7 (see [9]). If we have that
1. for each 1 ≤ i ≤ n, Pr(Ai) ≤ p;
2. each Fi intersects at most d other Fj’s;
3. pd9 < 1

8 ;
4. for each 1 ≤ i ≤ n, |Fi| ≤ ω;
5. for each 1 ≤ i ≤ m, the size of the domain of fi is at most γ, and we can

carry out the random trial in time t1;
6. for each 1 ≤ i ≤ n, fj1 , . . . , fjk ∈ Fi, and wj1 , . . . , wjk in the domains of

fj1 , . . . , fjk , respectively, we can compute Pr∗(Ai) in time t2,
then we have a randomized O(m × d × (t1 + t2) + m × γωd log logm)-time algorithm
which will determine outcomes of f1, . . . , fm such that none of the events in A hold.

In this instance, depending on whether case (i) or (ii) of the tree lemma applies,
F = {f1, . . . , fm} is the set of independent random trials in which we pick a set of
vertices Bij of size l

2 , or sets Bij1 and Bij2 of size l
2 , where each vertex is in Tij . We

may denote by fij the trial that corresponds to the subtree Tij . Since we are working
with k connected spanning subgraphs S1 through Sk and since each subtree Tij is of
size at least l, |F| = m is bounded above by kn

l < n.

For every vertex v, Av is the bad event that the vertex is picked at least l
2 times.

This is determined by Fv, the set of trials of picking a set Bij or sets Bij1 and Bij2

from subtrees Tij in which v appears. Thus, fij ∈ Fv if and only if v ∈ V (Tij).

We know that Pr(Av) ≤ p = e−δ2 k
6 and d of condition 2 is bounded above by

k · 3 · k
2 (1 + δ). These values of p and d imply condition 3 for large enough k. In

condition 4, for each 1 ≤ i ≤ n, |Fv| = k = ω. For star-like trees the set S of the
tree lemma can be partitioned into two equal parts Sa and Sb, and the choice narrows
down to picking one of these two sets as Bij . For the remaining trees the choice is
between picking the subset P as Bij and picking two subsets Q and R as Bij1 and
Bij2. Thus, the domain size of a trial, denoted by γ in condition 5, is 2. The random
trial can be carried out in constant time, which means t1 is O(1). Given any set of
possible outcomes of the trials, whether or not Av holds now depends on the number
of trials left. This we can compute by summing certain binomial coefficients, and
hence t2 in condition 6, the time required to test each possible combinations of the
remaining trials, is bounded above by O(k).

While this is enough to give a randomized algorithm, to get a deterministic algo-
rithm we need to consider the details of the specific problem at hand. Hence we need
to look at the details of the proof of the above theorem as applied to our problem and
show that the method of conditional probabilities works. We do that in the next two
sections.
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4.1. Randomized algorithm and analysis. Before we give an outline of the
algorithm, we recall that the input is a graph G(V,E) and a collection of connected
spanning subgraphs S1, S2, . . . , Sk, and the output that we derive is a coloring of the
vertices of G using k colors such that the vertices of color i constitute a ( 3

2 − ε)k-
dominating set for the subgraph Si for a positive constant ε.

The algorithm is as follows. The spanning subgraphs Si are decomposed first into
subtrees Tij (1 ≤ i ≤ k and 1 ≤ j ≤ pi) with the help of Lemma 5.

In the first sweep, the subtrees Tij are considered in sequential order. If condition
(i) of Lemma 6 holds in Tij , we pick any l

2 elements of the set S at random as Bij .
Otherwise, we flip a coin and pick either the subset P to be Bij or subsets Q and
R to be Bij1 and Bij2. We compute Pr∗(Av) for each vertex v in the subtree Tij .
This is the probability that vertex v gets picked at least l

2 times, given the subsets
that have already been picked, including the one(s) that got picked in this step. If
Pr∗(Av) > p2/3, then we say that Av is dangerous, and we undo the trial and freeze
the subtree and all other subtrees containing v so that we do not consider them again
in this sweep.

At the end of the first sweep, Pr∗(Av) ≤ p2/3 for all v, implying that by the local
lemma, there is a solution in which none of the Av’s occurs, extending the partial
solution given by the trials already carried out. It turns out that not many of these
events become dangerous. Specifically, for each vertex v, the probability pd that Av

becomes dangerous in the first sweep is at most p1/3. To see this, we recall that by
the definition of a dangerous event Av, Pr∗(Av) > p2/3 and Pr(Av) ≥ pd · Pr∗(Av).
This would exceed p if pd > p1/3.

In addition, dangerous vertices are distributed in such a way that we can carry out
the frozen trials independently on small components. This makes it nearly feasible to
find a good set of outcomes for the remaining trials using an exhaustive search. Before
doing an exhaustive search we may repeat the first sweep at most a constant number
of times on any big components remaining. To show this in quantitative terms, we
use the notations from [9], which we describe below.

We denote by H the hypergraph with V (H) = F , and E(H) = {F1, . . . , Fn}, and
we let L be the line graph of H. Note that the vertices of L correspond to the vertices
of G and there is an edge between two vertices if the corresponding vertices in G fall
in the same subtree Tij . We denote by L(a,b) the graph with a vertex set that is the
same as that of L, and where two vertices are adjacent if they are at a distance of a
or b in L. T ⊆ E(H) is called a (1,2)-tree if the subgraph induced by T in L(1,2) is
connected. We call T ⊆ E(H) a (2,3)-tree if the subgraph induced by T in L(2,3) is
connected and no two vertices of T are adjacent in L (the corresponding edges do not
intersect in H). We call a tree dangerous if all of its vertices correspond to dangerous
events.

The main observation is that no Ai intersects two events Aj and Ak which belong
to two different maximal dangerous (1, 2)-trees. This is because it would mean that
(Ai, Aj) and (Ai, Ak) are edges in L, and in turn there is an edge that connects Aj

and Ak in L(1,2). This makes it possible to deal with the frozen trials independently
in each maximal dangerous (1, 2)-tree.

Claim 1. With probability at least 1
2 , there are no dangerous (1, 2)-trees of size

greater than d log2 m.

Proof. We reproduce the proof of the claim from [9].

Note that every dangerous (1, 2)-tree of size dK contains a dangerous (2, 3)-tree
of size K. For each fij (that corresponds to subtree Tij), the number of (2, 3)-trees
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of size K in H in which fij lies is at most (ed3)K . The hyperedges Fv of H, which
correspond to events Av, lying in any such tree are disjoint (by definition of a (2, 3)-
tree). Since an Av becomes dangerous in the first sweep with probability at most
p1/3, the probability that all events Ai corresponding to these hyperedges become
dangerous is at most (p1/3)K . There are m trials in F , and the expected total number
of dangerous (2, 3)-trees of size K is thus at most m(ed3p1/3)K . This is less than 1

2
for K = logm. That is, the expected number of (1, 2)-trees of size d logm is less than
1
2 . It follows from the definition of an expected value that the probability that there
is at least one dangerous (1, 2)-tree of size d logm is less than 1

2 .

After the first pass, if there is any dangerous (1, 2)-tree of size d log2 m, then
we repeat the first pass. Each repetition takes O(m × d × 2k) time, and the ex-
pected number of repetitions is constant. An exhaustive search for the satisfactory
outcomes to the frozen trials corresponding to each dangerous (1, 2)-tree now takes
time O(γωd logm). Since γ is constant, this is polynomial in the problem size as long
as k is O(log n). The running time can be improved by having a second sweep in the
same manner as the first sweep, where we carry out frozen events of the first sweep in
sequence and declare an event dangerous when conditional probability exceeds p1/3.
Within an expected linear number of repetitions of the second pass, there will be no
dangerous (1, 2)-trees of size greater than d log logm, and the exhaustive search in

each subtree takes time O(γωd log logm) = O(2
3
2k

3 log log n). Thus the total expected

running time is O(n× k2 × 2k + n×
√

8
k3 log log n

).

4.2. Derandomization. Although the algorithm above is a general framework
for a variety of problems, it turns out that, in the particular case of the problem at
hand, it can be derandomized using the method of conditional probabilities due to
Erdős and Selfridge [5] to get a deterministic algorithm that runs in polynomial time.

Theorem 8. There is a deterministic polynomial time algorithm, which when
provided with a graph G and a k-factorization S1, S2, . . . , Sk of G, finds a matched-
factor ( 3

2 − ε)k-domatic coloring when k ≥ k0, where k0 is a constant.

Note that we need k to be O(log n).

Proof. We eliminate the randomness in the algorithm by replacing each random
trial—in this case picking either a set Bij of size l

2 or two sets Bij1 and Bij2 of size l
2

each—with making a choice that minimizes the expected size of the biggest dangerous
(2, 3)-tree that remains after the first sweep. This is to make sure the dangerous (1, 2)-
trees that remain are small enough, as every dangerous (1, 2)-tree of size dK contains
a dangerous (2, 3)-tree of size K. Here also we mark an event Av dangerous and freeze
all the trials that belong to Av at the point when Pr∗(Av) crosses p2/3, as we did
in the randomized algorithm. As before, at the end of the first sweep we have that
Pr∗(Av) ≤ p2/3 for all v.

As we have noted earlier, the domain size of a trial γ = 2. For each choice we are
to make, between Sa and Sb or between P and (Q,R) depending on which case of the
tree lemma applies to the subtree, we do not pick one of the two at random. Instead
we estimate the expected number of dangerous (2, 3)-trees of size K = logm or more
for both choices. How we do it is explained below.

We cannot make a general estimate on the probability that any (2, 3)-tree of
size K becomes dangerous, as in the case of the randomized version, because at this
point, the choice has already been made on a certain number of subtrees. In other
words, a certain number of trials has already been carried out. So we have to look
at every candidate that could possibly become a dangerous (2, 3)-tree at the end of
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the first sweep and estimate the probability that it actually becomes dangerous. We
have already seen that for each fij ∈ F the number of (2, 3)-trees of size K in H in
which fij lies is at most (ed3)K , and any two vertices in such a tree T , which are
hyperedges Fv (that correspond to events Av) of H, are disjoint. Since the events
in T are independent of each other, the probability that all events Av in T become
dangerous is the same as the product of probabilities that Av becomes dangerous
if the remaining trials are carried out at random. In each T , this product can be
computed in time O(logm× t2), as |T | = K = logm. For each such T , we determine
the probability of it becoming dangerous. The expected number of dangerous (2, 3)-
trees of size K is the sum of these probabilities over all such T . This can be calculated
in time O(logm × t2 × m(ed3)logm) because the number of such sets T is bounded
above by m(ed3)K .

Of the two choices that we have before us, we make a choice for which this
expected number is minimum. We know that originally this value is less than 1

2 , and
since the expected value is an average of all possibilities at a particular point of time,
we can be sure that at each point we can make a choice that does not increase the
expected value. Thus we end up with a sequence of choices that ensures there is no
dangerous (2, 3)-tree of size logm, and hence no (1, 2)-tree of size d logm.

As in the randomized case, we do an exhaustive search for the satisfactory out-
comes to the frozen trials corresponding to each dangerous (1, 2)-tree, which is possible
in time polynomial in n, the number of vertices in G.

The time required to carry out the random trial fi in Theorem 7, t1, is replaced
by O(logm × 2k × (ed3)logm). This is the time required to calculate the conditional
probabilities of each (2, 3)-tree becoming dangerous in a trial fij if the remaining trials
are carried out at random. Thus the running time of the deterministic algorithm that

uses a single sweep is O(n× k2 × log n× 2k × ( 27
8 ek6)logn + n×

√
8
k3 logn

). A second
sweep reduces the running time, but we do not attempt to analyze it here.

5. Open problems. The combinatorial open problem is to determine μ(k) ex-
actly. The approximation ratio of the problem is wide open. The best lower bound
we have is two, given by the NP-completeness proof.
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CYCLE SYSTEMS IN THE COMPLETE BIPARTITE GRAPH PLUS
A ONE-FACTOR∗
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Abstract. Let Kn,n denote the complete bipartite graph with n vertices in each partite set and
Kn,n+I denote Kn,n with a one-factor added. It is proved in this paper that there exists an m-cycle
system of Kn,n + I if and only if n ≡ 1 (mod 2), m ≡ 0 (mod 2), 4 ≤ m ≤ 2n, and n(n + 1) ≡ 0
(mod m).

Key words. complete bipartite graph, one-factor, cycle system
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1. Introduction. Let G be a graph with vertex set V (G) and edge set E(G).
An m-cycle system of G is a collection T of m-cycles such that each edge of G is
contained in a unique m-cycle of T .

It is easy to get the necessary conditions for the existence of an m-cycle system
of G: ⎧⎨

⎩
3 ≤ m ≤ |V (G)|;
|E(G)| ≡ 0 (mod m);
d(u) ≡ 0 (mod 2) for each u ∈ V (G),

where d(u) denotes the number of edges incident with u in G.
Let Kn denote the complete graph of order n, and let Kx,y denote a complete

bipartite graph with partite sets of sizes x and y. For G = Kn or Kn,n, let G + I
denote G with a one-factor added and G−I denote G with a one-factor removed. The
existence of m-cycle systems has been studied extensively, and the following results
are known.

Theorem 1.1 (see [1, 6]). Let m and n be positive integers. Then there exists
an m-cycle system of Kn if and only if n ≡ 1 (mod 2), 3 ≤ m ≤ n, and n(n − 1) ≡
0 (mod 2m).

Theorem 1.2 (see [7]). Let m ≡ 0 (mod 2) and m ≥ 4. Then there exists
an m-cycle system of Kx,y if and only if x, y ≥ 1

2m, x ≡ y ≡ 0 (mod 2), and
xy ≡ 0 (mod m).

Theorem 1.3 (see [5]). Let n be an even integer and m be an integer in the
range 3 ≤ m ≤ n. Then there exists an m-cycle system of Kn + I if and only if m

divides n2

2 .
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Theorem 1.4 (see [1, 6]). Let m and n be positive integers. Then there exists an
m-cycle system of Kn − I if and only if n ≡ 0 (mod 2), 3 ≤ m ≤ n, and n(n− 2) ≡
0 (mod 2m).

Theorem 1.5 (see [2, 4]). Let m and n be positive integers. Then there exists an
m-cycle system of Kn,n−I if and only if n ≡ 1 (mod 2), m ≡ 0 (mod 2), 4 ≤ m ≤ 2n,
and n(n− 1) ≡ 0 (mod m).

In this paper, we study the existence and construction of m-cycle systems for
the bipartite graph Kn,n + I. Since in Kn,n + I there are 2n vertices, n2 + n edges,
d(u) = n+ 1 for each vertex u, and m must be even, we have the following necessary
conditions for the existence of an m-cycle system of Kn,n + I.

Lemma 1.6. If there exists an m-cycle system of Kn,n + I, then⎧⎨
⎩

n ≡ 1 (mod 2),
m ≡ 0 (mod 2) and 4 ≤ m ≤ 2n,
n(n + 1) ≡ 0 (mod m).

The purpose of this paper is to prove that these conditions are also sufficient for
the existence of an m-cycle system of Kn,n + I. This is an extension of the result in
[4].

2. Construction techniques. A cycle on m vertices is denoted by Cm. A Cn

in a graph with n vertices is called a Hamilton cycle. If there exists an m-cycle system
of G, then G is Cm-decomposable and is denoted by Cm|G.

In this section, we will provide some construction techniques for m-cycle systems
of Kn,n + I. For our first construction, we need the following result.

Lemma 2.1 (see [3]). Let n be an integer, n ≥ 3. Then there exists an n-cycle
system of Kn if and only if n ≡ 1 (mod 2).

When m is even, we can construct m-cycle systems of K 1
2m, 12m

+ I by applying
1
2m-cycle systems of K 1

2m
.

Theorem 2.2. Let m be a positive integer such that m ≡ 2 (mod 4) and m ≥ 6.
Then Cm|K 1

2m, 12m
+ I.

Proof. Let V (K 1
2m, 12m

) = {u0, u1, . . . , u 1
2m−1} ∪ {v0, v1, . . . , v 1

2m−1}. Since m ≡
2 (mod 4) and m ≥ 6, we have 1

2m ≡ 1 (mod 2) and 1
2m ≥ 3. Hence by Lemma 2.1,

K 1
2m

has a 1
2m-cycle system, denoted by T . Let V (K 1

2m
) = {w0, w1, . . . , w 1

2m−1}.
For

C
′

=
(
wj0 , wj1 , wj2 , wj3 , . . . , wj 1

2
m−1

)
∈ T,

let

C
′1∗ =

(
uj0 , vj0 , uj1 , vj1 , uj2 , vj2 , uj3 , vj3 , . . . , uj 1

2
m−1

, vj 1
2
m−1

)
and

C
′2∗ =

(
vj0 , uj0 , vj1 , uj1 , vj2 , uj2 , vj3 , uj3 , . . . , vj 1

2
m−1

, uj 1
2
m−1

)
.

For each

C =
(
wi0 , wi1 , wi2 , wi3 , . . . , wi 1

2
m−1

)
∈ T \ {C ′},

let

C∗ =
(
ui0 , vi1 , ui2 , vi3 , . . . , ui 1

2
m−1

, vi0 , ui1 , vi2 , ui3 , . . . , vi 1
2
m−1

)
.
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Let T ∗ = {C∗|C ∈ T \ {C ′}} ∪ {C ′1∗, C
′2∗} and I = {uivi|0 ≤ i ≤ 1

2m − 1}.
Then T ∗ is an m-cycle system of K 1

2m, 12m
+ I.

Now for a positive integer n, let D ⊆ Zn and let X(n;D) be a graph with vertex
set V (X(n;D)) = {ij |i ∈ Zn, j ∈ Z2} and edge set E(X(n;D)) = {{i0, (i + d)1}|d ∈
D, i ∈ Zn}. Clearly, Kn,n = X(n;Zn). The elements of D are called (0, 1)-mixed
differences. We say that {i0, (i + d)1} is an edge of difference d.

Suppose that C = ((i1)0, (i2)1, . . . , (im−1)0, (im)1) is a Cm in X(n;D). For x ∈
Zn, let C + x = ((i1 + x)0, (i2 + x)1, . . . , (im−1 + x)0, (im + x)1). Obviously, C + x is
still a Cm. Let (C) = {C + x|x ∈ Zn}. Here, (C) is called the orbit generated by C,
and C is called a base cycle of (C).

In our proof, we denote the union of multisets by �, for example, {1, 1, 2}�{2, 3} =
{1, 1, 2, 2, 3}.

We use the difference method to give constructions of m-cycle systems of X(n;D)
which we need in this paper.

Lemma 2.3. For an even integer m, m ≥ 4, Cm|Km−1,m−1 + I, where I is a
one-factor of Km−1,m−1.

Proof. We view Km−1,m−1 as X(m− 1;Zm−1) and I = {{i0, i1}|i ∈ Zm−1}. Let
dr ∈ Zm−1 � {0} and

dr+1 =

⎧⎨
⎩

r if 0 ≤ r ≤ 1
2m− 1,

0 if r = 1
2m,

r − 1 if 1
2m + 1 ≤ r ≤ m− 1.

Let er =
∑r

i=1(−1)i+1di for 1 ≤ r ≤ m. Then

er = er−1 + (−1)r+1dr.

When m ≡ 0 (mod 4),

ei =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− i
2 if i ≡ 0 (mod 2), 1 ≤ i ≤ 1

2m;

i−1
2 if i ≡ 1 (mod 2), 1 ≤ i ≤ 1

2m;

−m+1−i
2 if i ≡ 1 (mod 2), 1

2m + 1 ≤ i ≤ m;

−(m− 1 − m−i
2 ) if i ≡ 0 (mod 2), 1

2m + 1 ≤ i ≤ m.

When m ≡ 2 (mod 4),

ei =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− i
2 if i ≡ 0 (mod 2), 1 ≤ i ≤ 1

2m;

i−1
2 if i ≡ 1 (mod 2), 1 ≤ i ≤ 1

2m;

m−i
2 if i ≡ 0 (mod 2), 1

2m + 1 ≤ i ≤ m;

m− 1 − m+1−i
2 if i ≡ 1 (mod 2), 1

2m + 1 ≤ i ≤ m.

That is,

(1) ei = em+1−i(mod (m− 1)) for 1 ≤ i ≤ 1

2
m.

When m ≡ 0 (mod 4), let C be the following closed trail:

((e1)0, (e2)1, (e3)0, . . . , (e 1
2m−2)1, (e 1

2m−1)0, (e 1
2m

)1, (e 1
2m+1)0, . . . , (em−1)0, (em)1).
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By (1), C can also be written as

((e1)0, (e2)1, . . . , (e 1
2m−1)0, (e 1

2m
)1, (e 1

2m
)0, (e 1

2m−1)1, . . . , (e2)0, (e1)1).

The differences used in C are d1, d2, . . . , dm.
Since

0 = e1 < e3 < · · · < e 1
2m−1 =

1

4
m− 1

and

m− 2 = m− 1 + e2 > m− 1 + e4 > · · · > m− 1 + e 1
2m

=
3

4
m− 1 > 0,

it follows that the vertices of C are distinct so that C is an m-cycle.
When m ≡ 2 (mod 4), let C be the following closed trail:

((e1)0, (e2)1, (e3)0, . . . , (e 1
2m−1)1, (e 1

2m
)0, (e 1

2m+1)1, (e 1
2m+2)0, . . . , (em−1)0, (em)1).

By (1), C can also be written as

((e1)0, (e2)1, (e3)0, . . . , (e 1
2m−1)1, (e 1

2m
)0, (e 1

2m
)1, (e 1

2m−1)0, (e 1
2m−2)1, . . . , (e2)0, (e1)1).

The differences used in C are d1, d2, . . . , dm.
As before, it is easy to check that the vertices of C are distinct so that C is

an m-cycle. Let T = (C). Then T is an m-cycle system of Km−1,m−1 + I and
Cm|Km−1,m−1 + I.

3. Cycle decomposition of Kn,n + I with 1
2
m < n < 3

2
m. The main

purpose of this section is to prove Theorem 3.4, which considers cycle decomposition
of Kn,n + I with 1

2m < n < 3
2m. Lemmas 3.1, 3.2, and 3.3 will be needed in the proof

of Theorem 3.4. The following notation will appear in the three lemmas.
For any integer x, let

ε(x) =

{
0 if x ≡ 0 (mod 2),
1 if x ≡ 1 (mod 2).

Lemma 3.1. Let m and n be positive integers with m ≡ 0(mod 2), n ≡ 1(mod 2),
and 1

2m < n < 3
2m. Let g = gcd (m,n) > 1 and n = sm

g −1. Let D = {2, 3, . . . , m
g ,

n
g +

m
2g + 1}. Then Cm|X(n;D).

Proof. Let V (X(n;D)) = {ij |i ∈ Zn, j ∈ Z2}. Let

di =

⎧⎨
⎩

0 if i = 0,
i + 1 if 1 ≤ i ≤ m

g − 1,
n
g + m

2g + 1 if i = m
g .

For 1 ≤ i ≤ m
g , let {

e0 = 0,
ei = ei−1 + (−1)idi.

Then

ei =

⎧⎪⎨
⎪⎩

i
2 if i ≡ 0 (mod 2), 0 ≤ i ≤ m

g − 2,

− i+3
2 if i ≡ 1 (mod 2), 1 ≤ i ≤ m

g − 1,
n
g if i = m

g .
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Let P be the trail of length m
g given by

P = (e0)0, (e1)1, (e2)0, (e3)1, . . . , (em
g −2)0, (em

g −1)1, (em
g
)0.

The differences used in P are d1, d2, d3, . . . , dm
g
.

Since

0 = e0 < e2 < e4 < · · · < em
g

=
n

g

and

s
m

g
− 3 = n + e1 > n + e3 > n + e5 > · · · > n + em

g −1 = s
m

g
− m

2g
− 2,

the vertices of P are distinct so that P is a path. Moreover, the first and last vertices
of P are the only ones which are congruent modulo n

g . It follows that

C = P ∪
(
P +

n

g

)
∪
(
P +

2n

g

)
∪ · · · ∪

(
P +

(g − 1)n

g

)

is a Cm.
In C, each difference in D occurs exactly g times, and {i0, (i+ d)1} incident with

edges of difference d are all congruent modulo n
g . Let T = (C). It follows that T is

an m-cycle system of X(n;D) and Cm|X(n;D).
Lemma 3.2. Let m and n be positive integers with m ≡ 0 (mod 4), n ≡

1 (mod 2), and 1
2m < n < 3

2m. Let g = gcd (m,n) > 1 and n = sm
g − 1.

Let Dl = {(l − 1)mg + 1, (l − 1)mg + 2, . . . , lmg − 1, lmg , (l − 1)mg + n
g + m

2g + ε(l)}\
{(l − 2)mg + m

2g + n
g + ε(l + 1)} for 2 ≤ l ≤ s. Then Cm|X(n;Dl).

Proof. Let V (X(n;Dl)) = {ij |i ∈ Zn, j ∈ Z2}. For l ≡ 0 (mod 2), let

di =

⎧⎪⎪⎨
⎪⎪⎩

0 if i = 0,
(l − 1)mg + i if 1 ≤ i < n

g − m
2g + 1,

(l − 1)mg + i + 1 if n
g − m

2g + 1 ≤ i ≤ m
g − 1,

(l − 1)mg + n
g + m

2g if i = m
g .

For 1 ≤ i ≤ m
g , let

{
e0 = 0,
ei = ei−1 + (−1)idi.

Then

ei =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

i
2 if i ≡ 0 (mod 2), 0 ≤ i ≤ n

g − m
2g ,

−(l − 1)mg − i+1
2 if i ≡ 1 (mod 2), 0 ≤ i ≤ n

g − m
2g ,

i
2 + 1 if i ≡ 0 (mod 2), n

g − m
2g + 1 ≤ i ≤ m

g − 1,

−(l − 1)mg − i+1
2 if i ≡ 1 (mod 2), n

g − m
2g + 1 ≤ i ≤ m

g − 1,
n
g if i = m

g .

Let P be the trail of length m
g given by

P = (e0)0, (e1)1, (e2)0, (e3)1, . . . , (em
g −2)0, (em

g −1)1, (em
g
)0.
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The differences used in P are d1, d2, d3, . . . , dm
g
.

Since

0 = e0 < e2 < e4 < · · · < em
g

=
n

g

and

(s− l+1)
m

g
−2 = n+e1 > n+e3 > n+e5 > · · · > n+em

g −1 = (s− l+1)
m

g
− m

2g
−1,

the vertices of P are distinct so that P is a path. Moreover, the first and last vertices
are the only ones which are congruent modulo n

g . It follows that

C = P ∪
(
P +

n

g

)
∪
(
P +

2n

g

)
∪ · · · ∪

(
P +

(g − 1)n

g

)

is a Cm.
In C, each difference in D occurs exactly g times, and {i0, (i+ d)1} incident with

edges of difference d are congruent modulo n
g . Let T = (C). It follows that T is an

m-cycle system of X(n;Dl) and Cm|X(n;Dl) for l even.
For l ≡ 1 (mod 2), let

di =

⎧⎪⎪⎨
⎪⎪⎩

0 if i = 0,
(l − 1)mg + i if 1 ≤ i < n

g − m
2g ,

(l − 1)mg + i + 1 if n
g − m

2g ≤ i ≤ m
g − 1,

(l − 1)mg + n
g + m

2g + 1 if i = m
g .

Then

ei =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

i
2 if i ≡ 0 (mod 2), 0 ≤ i ≤ n

g − m
2g − 1,

−(l − 1)mg − i+1
2 if i ≡ 1 (mod 2), 0 ≤ i ≤ n

g − m
2g − 1,

i
2 if i ≡ 0 (mod 2), n

g − m
2g ≤ i ≤ m

g − 1,

−(l − 1)mg − i+3
2 if i ≡ 1 (mod 2), n

g − m
2g ≤ i ≤ m

g − 1,
n
g if i = m

g .

Let P be the trail of length m
g given by

P = (e0)0, (e1)1, (e2)0, (e3)1, . . . , (em
g −2)0, (em

g −1)1, (em
g
)0.

The differences used in P are d1, d2, d3, . . . , dm
g
.

Since

0 = e0 < e2 < e4 < · · · < em
g

=
n

g

and

(s− l+1)
m

g
−2 = n+e1 > n+e3 > n+e5 > · · · > n+em

g −1 = (s− l+1)
m

g
− m

2g
−2,

the vertices of P are distinct so that P is a path. Moreover, the first and last vertices
are the only ones which are congruent modulo n

g . It follows that

C = P ∪
(
P +

n

g

)
∪
(
P +

2n

g

)
∪ · · · ∪

(
P +

(g − 1)n

g

)
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is a Cm.
In C, each difference in D occurs exactly g times, and {i0, (i+ d)1} incident with

edges of difference d are congruent modulo n
g . Let T = (C). It follows that T is an

m-cycle system of X(n;Dl) and Cm|X(n;Dl) for l odd.
Lemma 3.3. Let m and n be positive integers with m ≡ 2 (mod 4), n ≡

1 (mod 2), and 1
2m < n < 3

2m. Let g = gcd (m,n) > 1 and n = sm
g − 1. Let Dl =

{(l−1)mg +1, (l−1)mg +2, . . . , lmg −1, lmg , (l−1)mg + n
g + m

2g +1}\{(l−2)mg + m
2g + n

g +1}
for 2 ≤ l ≤ s. Then Cm|X(n;Dl).

Proof. Let V (X(n;D)) = {ij |i ∈ Zn, j ∈ Z2} and let

di =

⎧⎪⎪⎨
⎪⎪⎩

0 if i = 0,
(l − 1)mg + i if 1 ≤ i < n

g − m
2g + 1,

(l − 1)mg + i + 1 if n
g − m

2g + 1 ≤ i ≤ m
g − 1,

(l − 1)mg + n
g + m

2g + 1 if i = m
g .

For 1 ≤ i ≤ m
g , let

{
e0 = 0,
ei = ei−1 + (−1)idi.

Then

ei =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

i
2 if i ≡ 0 (mod 2), 0 ≤ i ≤ n

g − m
2g ,

−(l − 1)mg − i+1
2 if i ≡ 1 (mod 2), 0 ≤ i ≤ n

g − m
2g ,

i
2 if i ≡ 0 (mod 2), n

g − m
2g + 1 ≤ i ≤ m

g − 1,

−(l − 1)mg − i+3
2 if i ≡ 1 (mod 2), n

g − m
2g + 1 ≤ i ≤ m

g − 1,
n
g if i = m

g .

Let P be the trail of length m
g given by

P = (e0)0, (e1)1, (e2)0, (e3)1, . . . , (em
g −2)0, (em

g −1)1, (em
g
)0.

The differences used in P are d1, d2, d3, . . . , dm
g
.

Since

0 = e0 < e2 < e4 < · · · < em
g

=
n

g

and

(s− l+1)
m

g
−2 = n+e1 > n+e3 > n+e5 > · · · > n+em

g −1 = (s− l+1)
m

g
− m

2g
−2,

the vertices of P are distinct so that P is a path. Moreover, the first and last vertices
are the only ones which are congruent modulo n

g . It follows that

C = P ∪
(
P +

n

g

)
∪
(
P +

2n

g

)
∪ · · · ∪

(
P +

(g − 1)n

g

)

is a Cm. In C, each difference in D occurs exactly g times, and {i0, (i+ d)1} incident
with edges of difference d are congruent modulo n

g . Let T = (C). It follows that T is

an m-cycle system of X(n;Dl) and Cm|X(n;Dl).
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With the above preparations, we now prove the following theorem.
Theorem 3.4. Let m be an even integer and n be an odd integer with 1

2m < n <
3
2m. Then there exists an m-cycle system of Kn,n + I if and only if m divides n2 +n.

Proof. The necessity is similar to that in Lemma 1.6; here we consider only the
sufficiency. Let g = gcd (m,n). If g = 1, then since n(n + 1) ≡ 0 (mod m) and
n + 1 < 2m, we have n = m − 1. By Lemma 2.3, there exists an m-cycle system of
Km−1,m−1 + I.

If n 	= m − 1, then g > 1. Since n(n + 1) ≡ 0 (mod m), we have n + 1 = sm
g .

When m ≡ 0 (mod 4), let

I =

{{
i0,

(
i + (s− 1)

m

g
+

n

g
+

m

2g
+ ε(s)

)
1

} ∣∣∣∣i ∈ Zn

}
.

We can put an additional difference (s− 1)mg + n
g + m

2g + ε(s) on Zn. Then

Zn �
{

(s− 1)
m

g
+

n

g
+

m

2g
+ ε(s)

}
=

s−1⋃
l=1

Dl �Ds

where

D1 =

{
2, . . . ,

m

g
,
n

g
+

m

2g
+ 1

}

and

Dl =

{
(l − 1)

m

g
+ 1, (l − 1)

m

g
+ 2, . . . , l

m

g
− 1, l

m

g
, (l − 1)

m

g
+

n

g
+

m

2g
+ ε(l)

}

∖{
(l − 2)

m

g
+

n

g
+

m

2g
+ ε(l + 1)

}

for 2 ≤ l ≤ s.
By Lemmas 3.1 and 3.2, there exists an m-cycle system of Kn,n+I. This completes

this case.
When m ≡ 2 (mod 4), let

I =

{{
i0,

(
(s− 1)

m

g
+

n

g
+

m

2g
+ 1

)
1

} ∣∣∣∣i ∈ Zn

}
.

We can put an additional difference (s− 1)mg + n
g + m

2g + 1 on Zn. Then

Zn �
{

(s− 1)
m

g
+

n

g
+

m

2g
+ 1

}
=

s−1⋃
l=1

Dl �Ds,

where

D1 =

{
2, . . . ,

m

g
,
n

g
+

m

2g
+ 1

}

and

Dl =

{
(l − 1)

m

g
+ 1, (l − 1)

m

g
+ 2, . . . , l

m

g
− 1, l

m

g
, (l − 1)

m

g
+

n

g
+

m

2g
+ 1

}
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∖{
(l − 2)

m

g
+

n

g
+

m

2g
+ 1

}

for 2 ≤ l ≤ s.
By Lemmas 3.1 and 3.3, there exists an m-cycle system of Kn,n+I. This completes

the proof.

4. Main result. Now we are in position to prove the main theorem of this paper.
Theorem 4.1. Let m be an even integer and n be an odd integer with 4 ≤ m ≤ 2n.

Then Kn,n + I can be decomposed into cycles of length m if and only if m divides
n2 + n.

Proof. The necessity can be found in Lemma 1.6; we need only prove the suffi-
ciency. For 1

2m ≤ n < 3
2m, we have proved the result in Theorems 2.2 and 3.4.

Now we need to consider the case n ≥ 3
2m. Let n = qm+ r, where q is a positive

integer and 1
2m ≤ r < 3

2m. Let V (Kn,n) = {v1, v2, . . . , vqm+r} ∪ {u1, u2, . . . , uqm+r},
Vi = {v(i−1)m+j |1 ≤ j ≤ m}, and Ui = {u(i−1)m+j |1 ≤ j ≤ m} for 1 ≤ i ≤ q. Let
Vq+1 = {vqm+j |1 ≤ j ≤ r}, Uq+1 = {uqm+j |1 ≤ j ≤ r}, and I = {uivi|1 ≤ i ≤ n}.

Let Hi,i be a subgraph of Km−1,m−1 + I induced by (Vi \ {v(i−1)m+1}) ∪ (Ui \
{u(i−1)m+1}) for 1 ≤ i ≤ q. Then Hi,i = Km−1,m−1 + Ii,i, where

Ii,i = {u(i−1)m+rv(i−1)m+r|2 ≤ r ≤ m}.

By Lemma 2.3, Cm|Hi,i for 1 ≤ i ≤ q. Let Ti,i be the m-cycle system of Hi,i.
Let Hi,j be a subgraph of Km,m induced by Vi ∪Uj , where 1 ≤ i, j ≤ q and i 	= j.

Then Hi,j = Km,m. By Theorem 1.2, Cm|Hi,j . Let Ti,j be the m-cycle system of
Hi,j .

Let Hi
r+1,m be a subgraph of Kr+1,m induced by (Vq+1 ∪ {v(i−1)m+1}) ∪ Ui for

1 ≤ i ≤ q. Then Hi
r+1,m = Kr+1,m. By Theorem 1.2, Cm|Hi

r+1,m for 1 ≤ i ≤ q. Let

T i
r+1,m be the m-cycle system of Hi

r+1,m.

Let Hi
m,r+1 be a subgraph of Km,r+1 induced by Vi∪(Uq+1∪{u(i−1)m+1}), where

1 ≤ i ≤ q. Then Hi
m,r+1 = Km,r+1. By Theorem 1.2, Cm|Hi

m,r+1 for 1 ≤ i ≤ q. Let

T i
m,r+1 be the m-cycle system of Hi

m,r+1.
Let Hr,r be a subgraph of Kr,r+I induced by Vq+1∪Uq+1. Then Hr,r = Kr,r+Ir,r,

where Ir,r = {uqm+jvqm+j |1 ≤ j ≤ r}. By Theorem 1.2, Cm|Hr,r. Let Tr,r be the
m-cycle system of Hr,r.

Let

T =
⋃

1≤i,j≤q

Ti,j

⋃
1≤i≤q

(
T i
m,r+1

⋃
T i
r+1,m

)⋃
Tr,r.

Then T is an m-cycle system of Kn,n + I. This concludes the proof.
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